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ABSTRACT

Curating data for instruction tuning is crucial for enhancing the performance
of large language models (LLMs). This work aims to select training data for
instruction tuning to improve the LLM performance on specific tasks. Existing
methods often rely on next-token prediction (NTP) loss as a proxy for target task
performance due to the non-differentiable nature of performance evaluation metrics.
They select training data points that are most helpful in reducing validation loss.
However, there is a discrepancy between minimizing NTP loss and maximizing
performance (e.g., code pass rate in code generation). To remedy this, we introduce
a novel Non-differentiable evaluation metric-based InfluenCe Estimation (NICE),
which leverages the policy gradient to select the training data that improves the
performance. Moreover, NICE can perform data selection in the absence of
labels (ground-truth responses) when the evaluation metrics do not require labels
(e.g., a reward model can output reward scores without supervision from labels).
Experimental results show that our approach outperforms existing data selection
baselines that use NTP loss in diverse and realistic scenarios. Notably, subsets
selected by NICE can produce models that outperform those trained on the full
dataset.

1 INTRODUCTION

Instruction tuning (Bai et al., 2022; Ouyang et al., 2022) is a fine-tuning paradigm that enables large
language models (LLMs) to follow specific human instructions, improving their performances on
target downstream tasks. The effectiveness of instruction tuning heavily relies on the quality of the
instruction dataset (Chen et al., 2023; Li et al., 2024a; Zhou et al., 2024). However, the instruction
dataset is usually collected from mixed sources, and some data points may not be directly relevant to
the target tasks (Wang et al., 2023; Xia et al., 2024). In addition, the data points often vary in quality
and may contain noisy labels (Carlini et al., 2024; Frénay & Verleysen, 2013; Wang et al., 2024a).
These challenges underline the importance of data selection methods, which enhance instruction
tuning by systematically choosing relevant, high-quality data to cultivate specific target capabilities
in LLMs. In practice, LLMs fine-tuned on selected subsets of data can outperform those trained on
the full dataset (Wang et al., 2023; Xia et al., 2024).

Loss-based influence estimation methods (Kwon et al., 2024; Xia et al., 2024; Yeh et al., 2022) have
been demonstrated to be effective in data selection. It estimates the effect of each training data on the
validation loss (e.g., Next-Token Prediction (NTP) loss) via the gradient of the validation loss, then
selects the subset of data with the most positive influence. However, many instruction-following tasks
require generating long-form responses, which are evaluated using non-differentiable metrics (instead
of the differentiable validation loss). These evaluation metrics, such as the code pass rate (Chen
et al., 2021), LLM-judge (Dubois et al., 2023; Zheng et al., 2023) and reward model (Ouyang et al.,
2022), cannot directly provide useful gradient information to estimate the influences due to their
non-differentiable nature. Moreover, minimizing NTP loss may poorly align with maximizing the
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evaluation metrics due to overfitting to surface-level patterns (e.g., n-grams) and ignoring alternative
correct generations (Brown et al., 2020; Gloeckle et al., 2024; Tay et al., 2021; Zhou et al., 2024). For
instance, in code generation (Chen et al., 2021), there are multiple ways of writing ‘correct’ code for
a problem, but NTP loss is only measured w.r.t one such way. This mismatch between the NTP loss
and the true evaluation metric poses a significant challenge to data selection for instruction tuning.
Therefore, existing approaches that rely on the influence of NTP loss may fail to select the dataset
that improves the metrics used in specific tasks.

To tackle this challenge, we introduce a novel Non-differentiable evaluation metric-based InfluenCe
Estimation (NICE) method. NICE selects data that directly optimizes commonly used yet non-
differentiable evaluation metrics of long-form generation tasks. Inspired by reinforcement learn-
ing (RL) (Williams, 1992; Wu et al., 2018; Sutton & Barto, 2018), NICE treats the evaluation
metric as the reward function and the LLM as policy. This formulation allows us to overcome the
non-differentiability by computing the policy gradient of the metric w.r.t. the model parameters. In
particular, the policy gradient is calculated based on the gradients of the likelihood of the model-
generated responses, weighted by their corresponding rewards. By using the policy gradients, NICE
directly quantifies the influence of training data on validation performance measured by the metric.
Therefore, NICE-selected data can better align with the evaluation metrics than the data selected
by loss-based influence estimation. Moreover, NICE has two additional advantages: First, NICE
supports data selection with unlabeled validation data when the reward function only requires the
input and the model-generated response (e.g., the reward model in Bai et al. (2022)), rendering wider
applicability and lower annotation costs compared to loss-based influence estimation. Second, NICE
is able to use responses generated from better-performing LLMs on the target tasks to further improve
the data selection performance as NICE can make use of these high-quality generated responses
(instead of only the label used in loss-based influence estimation).

We perform comprehensive analyses to demonstrate the advantages of NICE. First, we empirically
show the effectiveness of NICE across diverse and realistic scenarios for instruction tuning. This
includes (1) the task-agnostic setting where we select data from large and mixed-source instruction
tuning datasets and (2) the task-aware setting where we select data from datasets that closely align
with downstream tasks. Our experiments show that models trained on data subsets selected by our
approach generally outperform those trained using either data subsets selected by other baselines or
the full dataset. Second, we demonstrate the generality of NICE by applying it to multiple loss-based
influence estimation frameworks and empirically verifying their resulting improved performance.

2 PRELIMINARIES

Denote an LLM parameterized by θ as f(·; θ). Let x, y be the random variables (RVs) for the input
(prompt) and the output (response) of the LLM, respectively. Let y′ be the RV for a single-token
output. Let DN := {zi = (xi, yi)}ni=1 denote the training set, where zi consists of the prompt xi (a
sequence of words or tokens) and the label response yi (the ground truth sequence of words or tokens).
Similar notations apply to the validation set DV := {zv = (xv, yv)}n+mv=n+1. DV can contain different
subtasks: D1

V , ..., D
q
V

1. The LLM generates a sequence of words, denoted as ŷi = [ŷpi ]
P
p=1. Here,

ŷpi is the p-th word (or token) in the generated response, and the autoregressive generation process
can be described recursively as: ŷpi ∼ f(y′|xi, ŷ1i , . . . , ŷ

p−1
i ; θ). The NTP loss for the training data

point is defined as:

L(zi; θ) = − 1

P

P∑
p=1

log f(ypi |xi, y
1
i , . . . , y

p−1
i ; θ) .

The NTP loss for the validation data point is defined like-wise. In the rest of the section, we first
restate two representative loss-based influence estimation frameworks: TracIn (Pruthi et al., 2020)
and Influence Function (Koh & Liang, 2017). Then we review how to use these influence scores to
select training data points.

1In this paper, we examine several datasets, including AlpacaEval, which exhibit this characteristic. Addi-
tionally, we investigate datasets that lack explicit subtasks, where q = 1.
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2.1 TRACIN AND INFLUENCE FUNCTION

TracIn quantifies the influence of a training data point zi on the loss of a validation data point zv
during training. Denote ηt as the learning rate used in the parameter update. At each step t, the
influence is expressed as:

L(zv; θ
t+1)− L(zv; θ

t) ≈ −ηt⟨∇θL(zv; θ
t),∇θL(zi; θ

t)⟩ ,

which is the gradient similarity between zv and zi, derived in App. E.1. To measure the influence of
zi over the entire training run, TracIn aggregates the influence at every training step that uses zi. As
zi is used once per epoch, it is natural to express this as a summation over epochs:

InfTracIn(zi, zv) =

E∑
e=1

η̄e⟨∇θL(zv; θ
e),∇θL(zi; θ

e)⟩ ,

where η̄e denotes the average learning rate applied in the e-th epoch, E is total number of training
epochs, and θe represents the model parameters after the e-th epoch.

Influence Function (IF) measures the influence of down-weighting zi on the loss of the validation
data point zv:

InfIF(zi, zv) = ∇θL(zv; θ
E)⊤H−1

θE
∇θL(zi; θ

E) ,

where θE is the model parameters after the last epoch (total E epochs) and HθE =
1
n

∑n
i=1 ∇2

θL(zi; θ
E) is the Hessian matrix of the average training loss over the training set. The

derivation can be found in App. E.2.

2.2 TARGETED DATA SELECTION

The objective of data selection is to identify an optimal subset DS ⊂ DN such that training a model
f on DS achieves comparable or superior performance on downstream tasks compared to training on
the full dataset. It is achieved by selecting training data that maximizes the performance of the target
task’s validation set DV , thereby enhancing model performance on target tasks.

Loss-based influence estimation methods quantify the influence of the individual training data point
on validation loss. The influence scores are typically higher for training data which reduces the
validation loss more. When loss serves as a proxy for the validation performance, higher scores
indicate greater helpfulness for the target task when they are included in the training. To apply
influence estimation for data selection, it is necessary to aggregate the scores across the validation set,
which may consist of multiple subtasks. Specifically, the influence score of a training data point zi on
each subtask is first computed by averaging the influence scores across the validation data within that
subtask. The overall influence for the validation set DV is then calculated as the maximum influence
score across all subtasks:

Inf(zi,DV ) = max
j

1

|D(j)
V |

∑
zv∈D(j)

V

Inf(zi, zv) ,

where Inf(zi, zv) denotes an influence estimation (such as InfTracIn or InfIF) that aims to assign higher
scores to more helpful training data points. The use of the max function ensures that training data
improving performance on at least one validation subtask are prioritized (Xia et al., 2024). Based on
these scores, the top-ranked training data points are selected to construct the training subset DS . This
subset is then used to fine-tune the target model.

3 METHODOLOGY

3.1 NON-DIFFERENTIABLE EVALUATION METRIC-BASED INFLUENCE ESTIMATION (NICE)

Loss-based influence estimation methods quantify the effect of a training data point on the validation
loss (e.g., NTP loss), which is a differentiable proxy for the validation performance. However, there
are two major drawbacks of loss-based influence estimation: 1) There is a discrepancy between
the NTP loss and the evaluation metrics of instruction-following tasks, especially those that require
long-form generations (e.g., LLM-judge (Dubois et al., 2023) and code generation benchmarks (Chen
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et al., 2021)). In other words, selecting training data that minimizes NTP loss on validation data does
not necessarily improve the performance for these tasks (as shown in Fig. 1). 2) While obtaining the
prompt of a validation data point xv is relatively easy, the high-quality label yv may not always be
available.

We propose to directly compute the influence of each training data point on the evaluation metric
instead of the loss. Specifically, denote the reward function as r (defined by an evaluation metric),
which calculates the model performance as follows:

r(zv, ŷv) :=


r
(
xv, yv, ŷv

)
, when yv is required, e.g., LLM judge in Dubois et al. (2024) .

r
(
xv, ŷv

)
, when yv is not required, e.g., reward model in Bai et al. (2022) .

Note that the ground truth response yv is not always required by the reward function, depending on
the evaluation metric used here. We will use the terms “reward function” and “evaluation metric”
interchangeably in the rest of our paper.

To calculate the influence of a training data point on a non-differentiable r, we cannot directly apply
the same formula as the loss-based influence estimation such as TracIn or IF, because they require the
gradient of r(zv, ŷv) w.r.t. the model parameters, which is not available. To address this, we propose
to use the policy gradient from RL (Wu et al., 2018; Sutton & Barto, 2018). Specifically, we adopt
the RL objective function for a validation data point2:

Lr(zv; θ) = Eŷv∼f(y|xv;θ)[−r(zv, ŷv)] ,

where f(·; θ) denotes the policy defined by the LLM with parameter θ, which is used to generate
response ŷv for xv .

Subsequently, the policy gradient of Lr w.r.t. the model parameters can be derived using the log
derivative trick (Williams, 1992; Meyer, 2023):

∇θLr(zv; θ) = Eŷv∼f(y|xv ;θ)[−∇θ log(f(ŷv|xv; θ))r(zv, ŷv)] .

This can be estimated using Monte-Carlo sampling on the responses generated by f(xv; θ), a
technique also known as the Monte-Carlo (MC) policy gradient. Intuitively, policy gradient optimizes
the model by increasing the probability of generating responses with high and positive rewards. By
using the policy gradient, the influence of a training data point zi on the model performance on a
validation data point zv measured by the reward function r at time step t is calculated as:

Lr(zv; θ
t+1)− Lr(zv; θ

t) ≈ −ηt⟨∇θL(zi; θ
t),∇θLr(zv; θ

t)⟩ .
The approximation above is derived using a similar logic as Eq. 1 in App. E that uses the first-order
Taylor approximation. Then, we can measure the non-differentiable evaluation metric-based influence
of zi on zv’s performance over the entire training run as:

InfNICE(zi, zv) =
∑E
e=1 η̄e

〈
∇θL(zi; θ

e),Eŷv∼f(y|xv;θe)

[
−∇θ log(f(ŷv|xv; θe))r(zv, ŷv)

]〉
.

To interpret, NICE assigns a higher influence score to a training data point zi if its gradient (of
the training loss) is more similar to the policy gradients of the validation performance evaluated by
the reward function r. The higher the influence score, the larger the performance measured by the
evaluation metric improves when including training data point zi. To apply NICE for data selection,
the same aggregation of the influence scores in Sec. 2.2 is applied. We then select the data subset DS

by including the training data points with top-ranked aggregated influence scores.

To summarize, NICE enables data selection to directly optimize the non-differentiable evaluation
metrics via influence estimation using policy gradient. It also enables data selection with unlabeled
validation data when the metric does not require the label as input.

Although there are various alternatives to compute the gradient of Lr from policy optimization
research (Schulman et al., 2017; Rafailov et al., 2023), we use the MC policy gradient as it is easy to

2We use a negative sign in front of r to make the notations in the influence estimation in the rest of our paper
consistent with loss-based influence estimation, i.e., the lower the Lr(zv; θ), the better the model (consistent
with validation loss).
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implement and has been shown effective in many applications. We further demonstrate in App. I.1
that gradients computed by other policy optimization approaches can also be used in NICE to achieve
better performance than loss-based influence estimation.
Remark 3.1 (Equivalence to TracIn). When the label response consists of a single token and the
evaluation metric is accuracy, NICE is equivalent to TracIn. Thus, for tasks that do not require
generating long responses, vanilla loss-based influence estimation performs similarly to NICE.
Remark 3.2 (Empirical consideration). To improve the performance of NICE, we integrate the two
improvements proposed by LESS (Xia et al., 2024), which adapts TracIn for influence estimation
on LLM. Specifically, we use the Adam gradient for training data instead of the SGD gradient and
replace the inner product with cosine similarity (i.e., equivalent to normalizing the gradient before the
inner product) in the definition of influence to mitigate the bias toward short sequences. The explicit
form of NICE used in our implementation is elaborated in App. F.

3.2 GENERALIZATION TO OTHER LOSS-BASED INFLUENCE ESTIMATION METHODS

We have discussed the use of policy gradient on a specific loss-based influence estimation method –
TracIn – to estimate the influence of data points on the non-differentiable evaluation metrics. However,
our approach is not limited to TracIn alone. The policy gradient can be applied to other methods,
such as the influence function:

InfNICEIF(zi, zv) = Eŷv∼f(y|xv ;θE)[−∇θ log(f(ŷv|xv; θE))r(zv, ŷv)]⊤H−1
θE

∇θL(zi; θ
E) .

The derivation follows from a similar logic as Eq. 2 in App. E by first quantifying the influence of
the training data on the parameter, then using the chain rule to calculate the impact of this influence
on Lr at the validation data. A higher InfNICEIF means a larger increase in Lr and hence a larger
decrease in performance measured by r when down-weighting the training data (i.e., removing the
data point makes the model perform worse), indicating a higher quality of that training data point.
The same aggregation method described in Sec. 2.2 is used for aggregating InfNICEIF.

Our implementation uses a similar approach as DataInf to improve the efficiency of NICEIF by using
the first-order derivatives to estimate the Hessian inverse, which is required in the calculation of the
IF (Kwon et al., 2024).

3.3 ASSISTED MONTE-CARLO SAMPLING

We use MC sampling to estimate the policy gradient used in NICE. Recall that NICE uses the
MC policy gradient. Specifically, for a prompt xv of a validation data point, we sample multiple
responses from the LLM and use the sample mean to estimate the policy gradient. There are two
major advantages of using this MC policy gradient compared to the gradient used in loss-based
influence estimation: 1) Policy gradient estimated using MC utilizes multiple different responses,
offering diverse guidance compared to the label response; 2) The generated response can be better
than the label response (as demonstrated in Tab. 1, where the label response is incorrect and less
detailed) and hence result in better data selection performance.

Despite these advantages, the MC policy gradient has its practical limitations. Specifically, when the
model (policy) is too weak for the task, the MC samples may not contain high-quality responses with
high rewards. As a result, the corresponding estimated policy gradient will not contain signals for
improving the policy’s performance. To ensure the quality of the generated responses, we propose
an alternative approach named assisted Monte-Carlo (AMC) sampling, which uses a model g(·;ψ)
parameterized by ψ that is better at the target task to assist the response generation:

InfNICEAMC(zi, zv) =

E∑
e=1

η̄e⟨∇θL(zi; θ
e),Eŷ∗v∼g(y|xv;ψ)[−∇θ log(f(ŷ

∗
v |xv; θe)) r(zv, ŷ∗v)]⟩ .

The generated responses ŷ∗v ∼ g(xv;ψ) with the assistance from better-performing LLMs have better
quality assurance than vanilla MC sampling (Tab. 1). With AMC sampling, NICEAMC is more likely
to select a data subset that guides the model to generate better responses, improving the performance.
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Table 1: Generated responses from different models for a validation data point in AlpacaEval task.
Llama2-7B or Mistral-7B is the model f used in NICE. GPT4 is the ‘better-performing‘ LLM used
in NICEAMC. As the model improves, its generated response becomes more detailed and can be
better than the label response (the label response is incorrect while Mistral-7B and GPT’s responses
are correct).

Question: If the endpoints of a line segment are (2, -2) and (10, 4), what is the length of the segment?
Label Response : The length of the line segment is 12 units.
Llama2-7B Generated Response : The length of the segment is 10 - (-2) = 12 units.
Mistral-7B Generated Response : The length is the distance between the endpoints. To find this distance, use the following
formula: (final x− init x)2 + (final y − init y)2 = distance2

In this case, the values are (10, 4) and (2,−2). The length is sqrt(82 + 62) = sqrt(100) = 10.
GPT4 Generated Response: To find the length of a line segment given its endpoints, you can use the distance formula. The
distance formula between two points (x1, y1) and (x2, y2) in the coordinate plane is: d =

√
(x2 − x1)2 + (y2 − y1)2. For the

points given, (x1, y1) = (2,−2) and (x2, y2) = (10, 4). Plugging these into the formula: d =
√

(10− 2)2 + (4− (−2))2 d =√
82 + 62 d =

√
64 + 36 d =

√
100 d = 10. Therefore, the length of the line segment is 10 units.

4 EXPERIMENTS

We experimentally analyze model performance under two different settings: task-agnostic setting
and task-aware setting. We evaluate our method on tasks that require long-form generations and
use evaluation metrics that are commonly used to evaluate the corresponding tasks. In this section,
we describe the evaluation tasks (i.e., the task that we wish to improve on via instruction tuning) in
Sec. 4.1, experimental settings in Sec. 4.2, experimental details in Sec. 4.3, main results in Sec. 4.4,
and additional analysis in Sec. 4.5.

4.1 EVALUATION TASKS

We use four evaluation tasks, including AlpacaEval (Dubois et al., 2024), TLDR (Stiennon et al.,
2020), RLHF (Bai et al., 2022), and HumanEval (Chen et al., 2021).

Table 2: Detailed information about the evaluation datasets.
Dataset |DV | |Dtest| Evaluation metrics

AlpacaEval 10 795 length-controlled win rate
TLDR 322 6553 reward model
RLHF 2192 2354 reward model

HumanEval 10 154 pass@k

AlpacaEval is a compilation of prompt-response pairs aimed at assessing language models’ instruc-
tion following capability. We use the length-controlled win rate to ensure a fair evaluation (Dubois
et al., 2024). HumanEval evaluates code generation from natural language instructions using the
pass@k metric, which is the probability of having at least one correct solution (pass a specified unit
test) when sampling k responses from the model. Pass@k with k > 1 is practical in real-world
scenarios when expected behaviors are known and test cases are readily available. It evaluates the
test-time scaling capability of the model by allowing multiple candidate solutions (k) to be generated
and validated to effectively identify the correct code. We adopt pass@100 because it achieves sub-
stantially higher accuracy than smaller k (Chen et al., 2021), making it more practical for real-world
scenarios. For completeness, we also provide detailed results for different k in App. H.1. TLDR
contains polished text summaries. The evaluation metric is the reward model (OpenAssistant, 2023)
trained on human feedback, measuring the the quality of summaries and alignment with human
preference. RLHF consists of prompt-response pairs where each includes a ”chosen” response that
aligns better with human preferences (we use only the ”chosen” columns). We use a trained reward
model (Ray2333, 2024) as the evaluation metric to evaluate the helpfulness of the responses. For
the dataset splits, we randomly select 10 examples from both AlpacaEval and HumanEval as the
validation set, with the remainder as the test set. For RLHF, we sample 5% from the training dataset
as the validation set since the original dataset only contains train and test splits. For TLDR, we
use 5% of the original validation set, given that the original dataset size is too large. We study the
robustness of our method to different validation splits in App. H.2. We provide a summary of these
evaluation tasks in Tab. 2 and additional details on these tasks in App. B.1. Unless specified, the
results reported are evaluated on the test set.
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4.2 EXPERIMENTAL SETTINGS

Our problem setup focuses on targeted data selection, assuming access to validation data during data
selection. We further consider two distinct settings, namely ”task-agnostic” and ”task-aware” settings,
categorized by whether the knowledge of the downstream task is available when forming the initial
pool of training data (for selection) in the data preparation stage. Specifically:

Task-agnostic Setting. In this setting, a large, diverse, mixed-source pool of instruction tuning
training set is collected without the knowledge of the downstream task, before data selection. We
use Tulu (Wang et al., 2023) as the training dataset, which consists of Chain of Thought (COT) (Wei
et al., 2022), Databricks Dolly (DOLLY) (Conover et al., 2023), Open Assistant 1 (OASST) (Köpf
et al., 2023), and FLAN V2 (Longpre et al., 2023). Intuitively, this mixed-source pool of data may
contain irrelevant data (e.g., assistant-style conversations) w.r.t. the targeted task (e.g., coding task).
Additional details for the training set are in App. A.1.

Task-aware Setting. In this setting, the training set is collected specifically for the downstream
evaluation task (hence task-aware). We consider two evaluation tasks here: RLHF and HumanEval,
with the evaluation datasets the same as in Sec. 4.1. For RLHF, the training data is 95% of the original
training set used for the helpfulness assistant, as provided in Bai et al. (2022). For HumanEval, we
adopt the CodeAlpaca 20k (Chaudhary, 2023) dataset as the training set, which is a crowd-sourced
collection of code-related instruction-response pairs, designed to fine-tune language models for better
performance in code generation and understanding. Additional training set details are in App. A.1.

4.3 EXPERIMENTAL DETAILS

Efficient Data Selection for LLM. To improve the efficiency of data selection, we train models
with LoRA (Low-Rank Adaptation). We adopt the warmup training which trains the LLM on
a randomly selected subset of training data for influence estimation and the number of warmup
epochs is the E. Additionally, random projections are applied to the LoRA gradients, preserving
the essential inner products while reducing the dimensionality of the gradient to reduce the memory
requirement (Johnson, 1984). Detailed time-complexity analysis is elaborated in App. H.3.

Models and Hyperparameters. Our primary evaluation of NICE focuses on two LLMs: Llama2-
7B (Touvron et al., 2023), and Mistral-7B (Jiang et al., 2023), with performance averaged over three
seeds. Larger and state-of-the-art models, including Llama2-13B and Llama3-8B, were also tested
on the RLHF dataset, presented in App. H.4. We perform warmup training for 4 epochs on 5% of the
training set for the task-agnostic setting, and 20% for the task-aware setting due to its smaller training
set size. We project the LoRA gradient into an 8192-dimensional vector. The influence estimates
for data points are obtained by the respective data selection approaches, with the top 5% data points
(ranked by influence) to be the selected data subset DS for the task-agnostic setting (20% for the
task-aware setting). Multinomial sampling (Chatterjee & Cancedda, 2010) is used to generate the
MC samples for NICE. We generate 20 MC samples for all evaluation tasks, except for HumanEval,
where we generate 500 samples due to the difficulty of the task (i.e., responses having low code pass
rates). For NICEAMC, we use GPT-4 as g(·, ψ). Note that when the reward function does not require
labels, the ground truth label is not used by our approach, detailed in App. C.

Baselines. We evaluate NICE against a variety of baselines. The most straightforward baseline is
Random, where data points are randomly sampled from the training set for instruction tuning. We
also employ BM25 (Robertson et al., 2009), which ranks training data based on relevance to the
validation data, and then selects the top-ranked data points to form DS . Another baseline, DSIR (Xie
et al., 2023), selects DS based on n-gram lexical feature matching between training and validation
distributions. Representation-based Data Selection (RDS) (Zhang et al., 2018) ranks the training
instances using the cosine similarity of the features between the training and the validation data, and
we adopt SentenceBERT (Reimers, 2019) embedding as the features. LESS (Xia et al., 2024) uses
loss-based influence estimation to select the training data with top influence scores. TSDS (Liu et al.,
2024b) also leverages loss-based gradient features, and further optimizes for distribution alignment
and diversity via optimal transport and kernel density estimation, respectively. Note that all baselines,
except random, are calculated using complete data points (i.e., the concatenation of prompt and
response). More implementation details about the baselines are in App. D.
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Table 3: Comparison of NICE and NICEAMC in both task-agnostic and task-aware settings for
Llama2-7B and Mistral-7B. Bold numbers indicate the top-performing selected subset. A purple
cell suggests that NICE outperforms LESS which uses loss-based influence estimation. Underlined
numbers show that the subset selected by our approach exceeds the performance of the full dataset.
Subscript numbers represent standard deviations.

Model & Dataset Full Random RDS BM25 DSIR TSDS LESS NICE NICEAMC

Task-agnostic

Llama2-7B

AlpacaEval 22.59 16.13±1.18 14.70 19.60 20.27 17.40±2.44 26.94±2.37 27.61±2.13 30.45±2.40
TLDR 2.40 1.80±0.08 2.08 2.15 1.53 2.19±0.29 3.37±0.29 3.61±0.78 3.55±0.40
RLHF 2.31 2.05±0.11 1.87 2.83 2.57 1.01±0.12 1.44±0.07 2.82±0.10 3.03±0.02
HumanEval 47.44 44.30±2.36 45.29 46.19 42.22 43.68±1.82 47.50±1.57 48.59±2.08 45.10±2.84

Mistral-7B

AlpacaEval 33.77 24.99±4.28 21.70 28.47 29.31 35.84±0.53 41.09±1.56 41.43±3.00 47.40±2.94
TLDR 2.79 3.06±0.24 2.90 2.41 3.48 3.28±0.41 4.40±0.12 4.80±0.12 4.59±0.20

RLHF 2.56 2.13±0.04 1.78 2.88 2.94 1.83±0.15 1.70±0.09 3.10±0.06 3.42±0.05
HumanEval 83.63 85.56±1.27 84.15 84.09 79.17 82.78±1.25 85.24±0.45 85.59±1.41 85.67±0.34

Task-aware

Llama2-7B RLHF 1.01 1.04±0.04 0.66 1.29 1.43 0.97±0.02 1.62±0.05 1.69±0.05 1.32±0.05

HumanEval 51.27 51.91±1.61 54.74 52.23 53.10 49.85±3.17 52.67±0.71 55.09±1.66 50.67±1.24

Mistral-7B RLHF 0.99 1.05±0.04 0.56 1.31 1.31 1.15±0.06 1.29±0.13 1.71±0.01 1.35±0.07
HumanEval 84.27 83.34±2.54 86.75 84.81 79.91 85.51±1.28 85.26±1.13 87.35±1.03 84.18±1.63

4.4 RESULTS

The results of NICE and NICEAMC are presented in Tab. 3. We summarize the findings below.

NICE Outperforms the Loss-based Influence Estimation. Our results show that NICE consistently
outperforms LESS, which uses loss-based influence estimation for data selection, across various
models, settings, and datasets. This result verifies that using the estimated influence on the evaluation
metric is more helpful for data selection than that on the loss.

No Labels? No Problem! NICE Outperform Baselines that Use the Label Response. For tasks
like TLDR, RLHF, and HumanEval, NICE or NICEAMC uses only unlabeled validation data (i.e.,
only prompts). Surprisingly, they outperform baselines that use labeled data (both prompts and label
responses).

Less Is More: Subset Outperforms the Full Dataset. We find that the subset selected by NICE or
NICEAMC can outperform the full dataset, demonstrating the value of carefully curated data over
larger, less refined datasets.

Assisted Monte-Carlo Sampling Can Boost Data Selection. Adopting AMC sampling in policy
gradient has the potential to further improve the performance of NICE, especially when the initial
pool of training data is large. Responses generated from better-performing models can effectively
guide data selection, enabling models trained on the selected subset to achieve better performance.

However, NICEAMC does not always have improved performance compared to NICE, particularly
in the task-aware setting with a smaller selection pool (of training data). When the training set
is small, there may not be enough training data points with gradients close to the policy gradient
of NICEAMC. We perform a simple experiment to verify this intuition: restricting NICEAMC to
compute score from the RLHF training set yields a performance of 1.26, but expanding the selection
pool to the combination of RLHF set and a large instruction tuning set (COT, DOLLY, OASST,
Flan V2) increases the performance to 3.35. Note that the additional controlled experiment only
expanded the selection pool without altering the initial warmup process. In contrast, the performance
of NICE improves from 1.68 to 2.44 with a larger pool. This comparison shows a clear advantage
of NICEAMC when the size of the training data to select from is large. Consequently, for the
task-agnostic setting when the size of training data is large, we can prioritize using NICEAMC.

4.5 ADDITIONAL ANALYSIS

Unless specified, the experiments in the section below are conducted on the Llama2-7B model.

Generalizing NICE to the Influence Function (IF). We demonstrate the effectiveness of the main
idea of NICE beyond the TracIn framework by extending it to IF. We adopt DataInf as an efficient
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implementation for IF. We compute the DataInf on the last checkpoint of the warmup model and
adopt random projection to reduce the dimensionality of gradients and store the gradients, eliminating
the need for computing the gradients again after the computation of the Hessian. More details on the
implementation of DataInf are provided in the App. E.3. We compared the performance of selecting
data with the vanilla (loss-based) DataInf and the DataInf enhanced by the policy gradient: NICEIF,
in the task-agnostic setting (Sec. 4.2). As shown in Tab. 4, NICEIF generally outperforms DataInf,
demonstrating the effectiveness of our approach and showing that the concept of NICE of applying
policy gradient for influence estimation can be readily applied to other loss-based influence estimation
methods to improve the performance.

Table 4: Comparison between Influence Function (DataInf) and NICEIF on Llama2-7B in task-
agnostic setting. NICEIF consistently outperforms the DataInf.

Method AlpacaEval TLDR RLHF HumanEval

IF (DataInf) 11.11 2.01 0.83 37.40
NICEIF 20.44 3.97 1.89 39.68

The Discrepancy Between NTP Loss and Evaluation Metrics. Previous works have discussed
the discrepancy between validation loss and downstream performance in instruction tuning for
LLMs (Tay et al., 2021; Xia et al., 2024). In these scenarios, minimizing validation loss does
not necessarily correspond to improving validation performance, especially when the task requires
long-form generations. Empirical observations described in Fig. 1 and further results in App. H.5
verify this discrepancy: The minimized validation loss is achieved at step around 250. However, that
checkpoint is the worst-performing checkpoint (lowest validation reward). The reward can be further
increased in later steps, even if the loss increases. We additionally provide a comparison between
NICE and LESS in App. H.6, which demonstrates that NICE-selected data optimizes towards
the direction of increasing validation performance, while LESS-selected data may not consistently
improve validation performance.

Figure 1: Discrepancy between NTP loss and performance (i.e., measured by the reward model here)
of the validation set for RLHF task in the last few training steps. The checkpoint with the minimized
loss (highest negative loss) corresponds to the checkpoint with a relatively worse performance (having
the lowest reward among the five checkpoints). The performance may continue to increase even if the
loss increases (negative loss decreases).

The Effect of the Number of Monte-Carlo Samples. We empirically study the effect of the
number of Monte-Carlo (MC) samples used in approximating policy gradient on the data selection
performance (measured by reward for the RLHF dataset). The results in Fig. 2 indicate a positive
correlation between performance and the number of MC samples, which shows the potential to
further improve NICE by using more MC samples. However, generating additional MC samples is
computationally expensive. We use 20 MC samples for the majority of tasks since it is relatively less
computationally expensive, while sufficient to achieve better performance than other baselines. The
number of MC samples can also affect the stability of our approach, elaborated in App. H.7.

Data Addition. In Fig. 3, we plot the performance (measured by reward) against the percent of data
points selected by NICE and Random for RLHF dataset. The performance of the model trained on a
randomly selected subset increases gradually as more data is used. In contrast, for the NICE-selected
subset in the task-aware setting (right of Fig. 3), performance rises slightly from 5% to 25% but drops
sharply beyond 25%. The task-aware training data is more relevant to the downstream task, so a
small percentage can miss useful data, while a large percentage can include irrelevant or harmful data,
harming performance. In the task-agnostic setting, performance declines as the selection percentage
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Figure 2: Performance of LLMs trained on data selected by NICE for RHLF dataset when different
numbers of MC samples are used. There is a positive correlation between performance and generated
MC samples. Using the sampling size of 20 provides good performance while increasing the sampling
size has the potential to improve the performance.

increases, likely because only a small fraction is relevant. This experiment also demonstrates the
importance of data selection to exclude data points that are not useful to model performance.

Figure 3: Performance versus percent of data points selected by NICE or Random for RLHF dataset.
As the percentage selected by NICE increases, performance may drop due to the inclusion of
low-score, irrelevant, or harmful points. When using data selection, the trained model consistently
outperforms those trained on randomly selected data, even outperforming the full dataset, underscor-
ing the importance of data selection.

5 RELATED WORKS

Various approaches are proposed to estimate the influence of training data in fine-tuning LLMs.
LESS (Xia et al., 2024) adapts the TracIn framework to estimate the influence of data points in
instruction tuning. Kwon et al. (2024) and Choe et al. (2024) scale up the IF by speeding up the
computation of the Hessian inverse. Lin et al. (2024) studies the token-level influence function
for LLMs. These approaches above are all loss-based influence estimation methods that aim to
approximate the influence of data on the validation loss. Consequently, they fall short for generations
tasks whose evaluation metrics align poorly with NTP loss, as elaborated in Sec. 4.5. On the other
hand, the works of Kwon et al. (2024); Choe et al. (2024); Lin et al. (2024) focus on data attribution
and hence do not optimize for data selection. Other works, including Park et al. (2023) which
approximates the data model to estimate the influence, and Wang et al. (2024a) which scales up the
Shapley value to estimate the influence only consider classification tasks, and hence can not be used
in instruction tuning. Our work focuses on the influence estimation for tasks that require extensive
generations (i.e., generating long responses) instead of only classification. More related works on
data curation for instruction tuning are discussed in App. G.

6 CONCLUSION

We propose NICE, a novel influence estimation approach that selects training data to directly optimize
non-differentiable evaluation metrics via policy gradient, rather than relying on NTP loss. When
using a reward function that does not require label response, NICE can perform data selection without
relying on costly annotated labels. Experimental results show that our approach outperforms existing
data selection methods across diverse scenarios. Of note, despite the superior performance achieved
by NICE and NICEAMC, the computational cost of these approaches is not negligible even with
the acceleration (e.g., the use of LoRA and random projection). Further explorations can be done to
study other computationally efficient ways of computing the gradients.
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A TRAINING

A.1 TRAINING DATASET

For the task-agnostic setting, four processed training datasets that are utilized are described in Wang
et al. (2023). These datasets, annotated or authored by humans, are detailed in Tab. 5. FLAN V2 and
COT are based on existing NLP datasets, while DOLLY and OASST feature open-ended responses
from humans, demonstrating diverse formats, lengths, and tasks.

For the task-aware setting, we use 95% of the RLHF task’s training data as our training set, while the
remaining 5% serves as the validation set. The original RLHF data point is a pair of responses, with
one marked as ‘chosen’ by human annotators for being more helpful than the other. We only use these
‘chosen’ responses for training, validation, and test. During human labeling, only the last response
from the assistant is compared; hence the last response is considered more helpful. Consequently,
we use only the last-turn response as labels. For the HumanEval task’s training data, we adopt the
CodeAlpaca 20k (Chaudhary, 2023) dataset with the addition of the original instruction format for
each data point.

For fine-tuning Llama2, we adopt the ‘Tulu’ format following from the study by Wang et al. (2023).

Tulu Instruction Format

<user>
What can you help me with?

<assistant>
I’d like to show off how chat templating works!

For fine-tuning the Mistral and Llama3 models, we utilize the respective instruction formats predefined
by each model, as detailed below:

Mistral Instruction Format

[INST] What can you help me with? [/INST] I’d like to show off how chat templating
works!</s>

Llama3 Instruction Format

<|start header id|>user<|end header id|>

What can you help me with?<|eot id|>
<|start header id|>assistant <|end header id|>

I’d like to show off how chat templating works!

A.2 TRAINING DETAILS

All experiments utilized the parameter-efficient LoRA (Hu et al., 2021) approach. A linear
warm-up with 0.03 warmup ratio was employed, peaking at a learning rate of 2 × 10−5. We
trained for 4 epochs on each dataset with a batch size of 128. The LoRA module had a rank
of 128, an α of 512, a dropout rate of 0.1, and learned matrices for all attention layers. Specif-
ically, the Llama2-7b model used is meta-llama/Llama-2-7b-hf, Llama2-13b used is
meta-llama/Llama-2-13b-hf, Mistral-7B is mistralai/Mistral-7B-v0.1, Llama3-
8B is meta-llama/Meta-Llama-3-8B.

Each main experiment was repeated three times with random seeds 0, 1, and 2. Under random
selection methods, three different random subsets from the training set were chosen for each seed. For
LESS, TSDS, NICE, and NICEAMC, we first performed warmup training on subsets chosen by each
seed, then selected distinct subsets from the resulting warmup model for each trial. We used the same
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Table 5: Detailed information about the training set. The task-agnostic training set is the same as in
Xia et al. (2024) and Wang et al. (2023).

Task-agnostic
Dataset Size Sourced from # Turns Prompt Len. Response Len.

FLAN V2 100,000 Based on Existing NLP
Datasets

1 355.7 31.2

COT 100,000 Based on Existing NLP
Datasets

1 266.0 53.2

DOLLY 15,011 Human-written from
scratch

1 118.1 91.3

OASST 55,668 Human-written from
scratch

1.6 34.8 212.5

Task-aware
RLHF 41,643 Human feedback data 2.46 145.0 517.3

Code Alpaca 20,022 Code-related human-
written instructions

1 294.8 197.0

optimization seeds as those used for the warmup model. For experiments without reported standard
deviation, we used seed 0. Full training was conducted on seed 0 only, due to heavy computation.

B EVALUATION

B.1 EVALUATION DATASET

AlpacaEval sources its data from self-instruct, OASST, Anthropic’s helpful dataset, Vicuna, and
Koala, widely used for understanding model behavior in structured, instruction-driven settings. The
evaluation metric is a length-controlled win rate, adjusting for biases in response length using a
regression model to ensure fair and accurate assessments (Dubois et al., 2024). Each response is
compared to a baseline model, text davinci 003, using weighted alpaca eval gpt4 turbo as annotator.
We use text davinci 003 as a baseline because its relatively lower baseline performance can more
clearly highlight the performance difference between selected subsets. By contrast, using a stronger
baseline (e.g., gpt4 turbo) could mask the differences among the model trained on the subset selected
by different selection strategies. For annotation, we employ weighted alpaca eval gpt4 turbo, chosen
for its high agreement with human annotations, large context capacity, and cost-effectiveness.

HumanEval uses a set of programming challenges to evaluate code correctness and functionality,
measured by the pass@k metric which is how many correct solutions appear within a specified
number of attempts k (e.g., we use 100 in the main experiment). This metric assesses the ability
of models to generate correct solutions within a limited number of attempts, reflecting the model’s
efficiency in code generation. We additionally use the unbiased estimator of pass@k to avoid the
high variance of vanilla pass@k (Chen et al., 2021).

TLDR uses cleaned data from Stiennon et al. (2020), focusing on well-structured input-output pairs
for summarization tasks. It is evaluated against a reward model (OpenAssistant, 2023) that is trained
based on human feedback to ensure the generation of high-quality summaries.

RLHF is designed for training and evaluating language models using human feedback to optimize
response generation. It consists of prompt-response pairs and we only use the ”chosen” response
whose last-turn response aligns best with human preferences, according to specific criteria such as
relevance and safety. The evaluation metric is reward model (Ray2333, 2024) which can measure the
helpfulness of model responses.

B.2 EVALUATION DETAILS

For AlpacaEval, two samples are drawn from each of the five subtasks (self-instruct, OASST,
Anthropic’s helpful dataset, Vicuna, Koala), resulting in a total of ten samples. For HumanEval,
since pass@k aims to check if there is at least one functional code within the k generations of each
test data point, we select training data points that enhance performance across all validation data.
Each validation data point is treated as an individual task. Hence, AlpacaEval and HumanEval are
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multi-subtask scenarios with q = 5 and q = 10, while TLDR and RLHF are single-subtask scenarios
with q = 1. The aggregation of each training data point’s influence score w.r.t validation set follows
from Sec. 2.2.

For TLDR and RLHF, the reward function r used during the computation of the policy gradient is
the reward model, and the evaluation metric for the validation set is the average reward for each
validation point. For AlpacaEval, the reward function r for each generated response is the annotator’s
decision for that response, and the evaluation metric for the validation set is not simply an average but
an average of a debiased version of each annotator’s decision (Dubois et al., 2024). For HumanEval,
the reward function r for each generated response (code) is the boolean result of all unit tests for that
code, while the evaluation metric for the validation set is pass@k. This metric measures functional
correctness by generating k codes for each test problem and considering the problem solved if any
code passes all unit tests of that problem. The pass@1 score can be viewed as the average of each
boolean result, whereas pass@10 and pass@100 are computed via a problem-level “OR” across the
k generated codes, followed by an average across all problems. Additionally, to address numerical
instability and reduce variance, we use the unbiased estimator version of pass@k following Chen
et al. (2021).

We evaluate the validation set DV (the same set used for data selection) at the end of each epoch, and
the best-performing checkpoint (measured by the validation performance) is assessed on the test set.

C NICE AND NICEAMC DETAILS

NICE and NICEAMC rely solely on the probability of generated responses and the score from a
reward function, as enabled by the policy gradient mechanism. For AlpacaEval, labels are provided
to all approaches because the reward function requires ground-truth labels. For the other three tasks,
including TLDR, RLHF, and HumanEval, the ground-truth labels of the validation dataset are not
used by our method, although they are available to the other baselines (such as LESS). This is because
in these three tasks, the reward function does not require ground-truth labels. Specifically:

• For RLHF and TLDR, the reward function is a learned reward model that outputs scores based on
the prompt and generated response.

• For HumanEval, the reward is defined by whether the generated code passes unit tests, not requiring
reference solutions.

C.1 NICE DETAILS

We generate 20 MC samples for all evaluation datasets, except for HumanEval, where we generate
500 samples due to the task’s difficulty (i.e., a lower code pass rate). Generally, we set the sampling
temperature to 1.2 to promote diversity, except for AlpacaEval, where we use 1.0. The generated
responses of the validation set under temperature of 1.0 yield a higher win rate on the final checkpoint
compared to 1.2. We employ multinomial sampling with top k = 50 and top p = 0.95.

C.2 NICEAMC DETAILS

For NICEAMC, we use gpt-4-turbo-2024-04-09. Regarding the GPT API hyperparameters,
we set the frequency penalty to 0, presence penalty to 0, and temperature to 0.8 for all tasks.

For TLDR tasks, we add a prompt A brief summary of my post is (TL;DR): after the
prompt of the data point, before generating the response, to enhance generation quality.

For HumanEval, we prepend a prompt:

Complete the following python function to return only the function
body (completion).
Do not include the function header or docstring.

before the coding question. This ensures the model outputs only the necessary code, avoiding
chain-of-thought content that could fail unit tests.
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D BASELINE DETAILS

For LESS and TSDS, the hyperparameter settings are the same as in their official repos. For BM25,
DSIR, and RDS, these methods are warmup model-agnostic, meaning the selection process does
not rely on the warmup models’ randomness. Hence, we only run them on seed 0. To avoid the
instruction format’s effect on the representation or retrieval, we use the format of:

Question:[Question]\n\nAnswer:[Answer]

for the majority of the training data and validation data. We use TULU format for RLHF training and
validation data, as RLHF contains many turns.

For BM25, we use the rank bm25 package (https://github.com/dorianbrown/rank_
bm25). We treat each validation data point as a query to retrieve the BM25 scores of each training
data point. For RDS, we adopt the sentence-transformers/all-MiniLM-L6-v2 model
(https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). We
compute the cosine similarity of embeddings between each validation data point and each training
data point. Overall, for each validation point, BM25 and RDS will have a score vector of dimension
n (the size of the training dataset is n). We then follow the same aggregation steps as in Sec. 2.2 to
aggregate the scores. For DSIR, we use the official Github repo and match the distribution between
training data and validation data (https://github.com/p-lambda/dsir).

E PRELIMINARY

E.1 DERIVATION OF THE CHANGE IN THE VALIDATION LOSS

The detailed derivation of the change in the validation loss is explained here: When a training data
point zi is included in the training step t, the model parameters are updated accordingly, leading to a
change in the validation loss. Assuming a small learning rate ηt is used in the parameter updates with
the Stochastic Gradient Descent (SGD) optimizer, this one-step change at step t can be approximated
using a first-order Taylor expansion (Pruthi et al., 2020):

L(zv; θ
t+1)− L(zv; θ

t)

= ∇θL(zv; θ
t) · (θt+1 − θt) +O(∥θt+1 − θt∥2)

≈ ∇θL(zv; θ
t) · (θt+1 − θt)

= ∇θL(zv; θ
t) · (−ηt∇θL(zi; θ

t))

= −ηt⟨∇θL(zv; θ
t),∇θL(zi; θ

t)⟩ .

(1)

E.2 DERIVATION OF INFLUENCE FUNCTION

Influence Function (IF) (Koh & Liang, 2017) measures the influence of down-weighting the training
data point zi by some small ϵ, on the new parameter θEϵ,zi := argminθ∈Θ

1
n

∑n
i=1 L(zi; θ)+ϵL(zi; θ).

The parameter change is given by:

Idown,params(zi) =
∂θEϵ,zi
∂ϵ

∣∣∣∣
ϵ=0

= H−1
θE

∇θL(zi; θ
E) ,

where HθE = 1
n

∑n
i=1 ∇2

θL(zi; θ
E) is the Hessian matrix of the average loss over the training set

and is positive definite by assumption. Then, by applying the chain rule, IF can measure the influence
of down-weighting zi on the loss of the validation data point zv:

InfIF(zi, zv) =
∂L(zv; θ

E
ϵ,zi)

∂ϵ

∣∣∣∣
ϵ=0

= ∇θL(zv; θ
E)⊤

∂θEϵ,zi
∂ϵ

∣∣∣∣
ϵ=0

= ∇θL(zv; θ
E)⊤H−1

θE
∇θL(zi; θ

E) .

(2)
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E.3 EFFICIENT INFLUENCE FUNCTION

DataInf makes use of Bartlett’s second identity (Bartlett, 1953) to approximate the Hessian. That
is, the Hessian can be replaced with the second moment of the first-order gradients: G(θE) =
1
n

∑n
i=1 ∇θL(zi; θ

E)∇θL(zi; θ
E)⊤, which simplifies the computation of the Hessian matrix. The

θE here is the last checkpoint of the warmup model. In the later section, the computation of DataInf
is all w.r.t. to the last checkpoint of the warmup model. We denote the gradient of the loss of training
data point zi w.r.t. ϕ (ϕ can be a single layer’s parameter) by ∇ϕLi := ∇ϕL(zi; θ

E). To further
address computational challenges, DataInf adopts another two techniques: 1. Damping: A small
positive constant, λ, is added to the diagonal elements of G(θE), enhancing its positive definiteness
and invertibility (Martens et al., 2010). 2. Block Diagonal Matrix Representation: G(θE) is further
approximated using its block diagonal matrix, where each block is a layer of the neuron network
(Grosse et al., 2023). The inverse of Hessian then becomes:

(
1

n

n∑
i=1

∇θlLi∇θlL
⊤
i + λIdl

)−1

,

where θl ∈ Rdl is the model parameter in l-the layer and Idl ∈ Rdl×dl is identify matrix of size dl.

Following these transformations, DataInf simplifies the inverse of the average of the gradient outer
products regularized by λIdl using the Sherman-Morrison formula:

(
1

n

n∑
i=1

∇θlLi∇θlL
⊤
i + λIdl

)−1

≈ 1

n

n∑
i=1

(
∇θlLi∇θlL

⊤
i + λIdl

)−1

=
1

nλ

n∑
i=1

(
Idl −

∇θlLi∇θlL
⊤
i

λ+∇θlL
⊤
i ∇θlLi

)
.

The computation of the Hessian and the later computation of the influence function can require
retrieving the training gradient twice. To additionally optimize the time, we apply random projections
to each gradient vector ∇ϕLi and store them. Later, we can retrieve the stored projected gradients
and compute Hessian and the influence function score.

Besides DataInf, other methods have been proposed for efficiently computing the influence function
for large language models. Grosse et al. (2023) improved the computation of the block-diagonal
Hessian using the Kronecker product of uncentered forward and backward covariances of each
layer (EK-FAC). TRAK projects gradients into a low-dimensional space and calculates influence
scores within the subspace (Park et al., 2023). LORGA further improves the projection step with an
efficient gradient projection strategy that leverages the gradient structure in backpropagation (Choe
et al., 2024). However, neither EK-FAC nor LORGA discussed their applicability to LoRA fine-tuned
models, leading us to exclude them for experiment. Additionally, TRAK’s approach of treating the
multi-class classification problem as a single binary logistic regression may result in significant
information loss. Therefore, we also did not apply it, as our task is purely generative and each token’s
prediction is a multi-class classification prediction whose prediction space is vocabulary size. For the
hyperparameter in terms of Datainf, the projected gradient is 2048 dimension. The smaller dimension
is due to the fact that we need to project gradients for each layer. The λ is 0.0001.

F EXPLICIT FORM OF NICE DURING IMPLEMENTATION

As discussed in Sec. 3.1, Xia et al. (2024) replaces the SGD with Adam gradient and replaces the
inner product with the cosine similarity of the original TracIn for performance consideration. We
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integrate these two enhancements on NICE as well, leading to:

InfNICE(zi, zv) =

E∑
e=1

η̄e

〈
Eŷv∼f(y|xv ;θe)

[
−∇θ log(f(ŷv|xv; θe))r(zv, ŷv)

]
,Γθ(zi; θ

e)
〉

∥∥∥Eŷv∼f(y|xv ;θe)

[
−∇θ log(f(ŷv|xv; θe))r(zv, ŷv)

]∥∥∥∥∥∥Γθ(zi; θe)∥∥∥
Γθ(zi; θ

e) ≜
me+1

√
ve+1 + ϵ

me+1 =
β1m

e + (1− β1)∇θL(zi; θ
e)

1− βe1

ve+1 =
β2v

e + (1− β2) (∇θL(zi; θ
e))

2

1− βe2
,

where every operation is applied elementwise. Here, β1 and β2 represent the hyperparameters for the
first and second moments, respectively, with ϵ serving as a small constant.

G RELATED WORK: DATA CURATION FOR INSTRUCTION TUNING

Curating high-quality, diverse, and complex instruction tuning data has been shown to improve the
instruction-following ability of LLMs. Researchers have proposed different strategies to measure and
improve different aspects of instruction-following ability: Cao et al. (2023) utilize natural language
indicators to evaluate quality; Zhao et al. (2024) employ GPT-transformed instructions to measure
complexity; and Chen et al. (2023) adopt LLM-annotated scores to assess both quality and complexity.
Bukharin & Zhao (2023); Du et al. (2023); Lu et al. (2024); Wang et al. (2024b) optimize instruction
data by emphasizing diversity in tandem with quality or complexity. Liu et al. (2024a) offers a
comprehensive comparison of existing methods regarding these three properties. They further train
a model to predict complexity and quality and iteratively filter out the most diverse points using
embeddings. These approaches typically select data without a validation set. Our work extends this
line of research to both task-agnostic and task-aware settings, selecting data that aligns the most
with downstream tasks to enhance specific model capabilities. Our setting is more similar to Xia
et al. (2024), Liu et al. (2024b) and Li et al. (2024b). However, Xia et al. (2024) selects data based
on the influence on validation loss, which can lead to discrepancies between minimizing loss and
maximizing performance, while we select data based on their influence on validation performance.
Liu et al. (2024b) uses loss-based gradients to measure data distance when optimizing for distribution
alignment and diversity, which can also suffer from the aforementioned discrepancy to some extent.
Li et al. (2024b) utilizes a perplexity-based scoring system to select the most advantageous data for
a defined anchor set, but their methodology is limited to single-turn training data. Another line of
work, exemplified by Bhatt et al. (2024), frames curation as active learning by selecting the most
informative prompts for predicting the label (i.e., generate responses) through uncertainty or diversity
maximization. This active learning paradigm differs from our setting. A more comprehensive review
of data curation methods is provided by Albalak et al. (2024).

H ADDITIONAL ANALYSIS

Unless otherwise specified, the experiments in the section below are conducted on the Llama2-7B
model.

H.1 ADDITIONAL RESULTS OF PASS@k ON HUMANEVAL

We provide additional metrics, specifically pass@1 and pass@10, in Tab. 6. Overall, they align
with our main findings: NICE and NICEAMC generally outperform loss-based influence estimation
(LESS) and baselines, and the subsets selected by NICE and NICEAMC have the potential to
outperform the full dataset. Note that BM25 performs well in terms of pass@1 and pass@10 on
the Mistral-7B model and even outperforms other baselines in the task-agnostic setting with the
Mistral-7B model. Empirically, we observe that BM25 is more likely to select data points that contain
codes. This is likely because BM25 is based on TF-IDF, which assigns higher scores to training data
that is more relevant in terms of word frequency, and certain words appear more frequently than
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Table 6: Additional Results of Pass@k on HumanEval for both task-agnostic and task-aware settings
on Llama2-7B and Mistral-7B. Bold numbers indicate the top-performing selected subset. A purple
cell suggests that NICE outperforms LESS which uses loss-based influence estimation. Underlined
numbers show that the subset selected by our approach exceeds the performance of the full dataset.
Numbers in small font represent standard deviations.

Task-agnostic Setting
Llama2-7B Mistral-7B

Pass@1 Pass@10 Pass@100 Pass@1 Pass@10 Pass@100

Full 7.61 25.52 47.44 29.47 59.68 83.63
Random 8.34±0.34 23.85±0.40 44.30±2.36 29.99±1.37 62.04±1.57 85.56±1.27

RDS 10.00 25.55 45.29 30.31 62.00 84.15
BM25 8.27 24.51 46.19 31.81 62.43 84.09
DSIR 9.53 24.02 42.22 27.71 56.81 79.17
TSDS 10.30±1.58 25.47±1.27 43.68±1.82 27.50±1.47 59.78±1.86 82.78±1.25

LESS 9.24±0.77 26.12±0.17 47.50±1.57 26.85±0.58 60.66±0.39 85.24±0.45

NICE 10.35±1.72 27.37±1.56 48.59±2.08 29.48±0.93 62.05±2.23 85.59±1.41
NICEAMC 9.04±2.35 25.11±1.72 45.10±2.84 29.96±1.95 62.10±1.82 85.67±0.34

Task-aware Setting
Llama2-7B Mistral-7B

Pass@1 Pass@10 Pass@100 Pass@1 Pass@10 Pass@100

Full 13.27 30.30 51.27 33.14 64.09 84.27
Random 11.99±0.22 29.86±0.42 51.91±1.61 33.15±0.76 63.62±1.92 83.34±2.54

RDS 12.40 31.34 54.74 33.32 63.23 86.75
BM25 13.66 31.22 52.23 33.58 64.35 84.81
DSIR 11.98 30.43 53.10 32.30 59.07 79.91
TSDS 12.85±0.50 28.15±0.91 49.85±3.17 31.74±1.63 63.04±1.06 85.51±1.28

LESS 13.55±0.28 30.53±0.57 52.67±0.71 34.05±1.28 64.12±0.37 85.26±1.13

NICE 13.43±0.33 31.70±0.66 55.09±1.66 33.61±1.29 65.56±1.32 87.35±1.03
NICEAMC 12.87±0.53 30.39±0.26 50.67±1.24 34.13±0.88 63.91±0.84 84.18±1.63

Table 7: Performance on the HumanEval task under the task-aware setting for models trained on
NICE-selected subsets with different temperatures for generating MC samples. We can decrease the
temperature to improve pass@1 metric, while at the cost of decreased performance on pass@10 and
pass@100.

Model Temperature 1.0 Temperature 1.2
pass@1 pass@10 pass@100 pass@1 pass@10 pass@100

Llama2-7B 14.13 31.21 49.95 13.12 31.41 53.96
Mistral-7B 35.70 63.60 81.04 35.23 63.85 85.69

others in the codes. Consequently, BM25 performs well, especially when the training data contains
data from multiple different domains that are not coding-related. However, this good result does not
transfer to either the Llama2-7B model or the task-aware setting due to two main reasons: 1) BM25
does not use the information from the models, meaning that the same data subset will be selected for
different models. Intuitively, different models require different data to achieve better performance.
Therefore, selecting data using BM25 is sub-optimal; 2) Selection based on the word frequency is not
enough for the task-aware setting. In a task-aware setting, training data points are more relevant to
the task, possibly resulting in comparable BM25 scores for all data points. Consequently, a more
careful selection based on other criteria (i.e., not just word frequency) is needed. Additionally, while
BM25 achieves a 31.81 pass@1 for Mistral-7B, pass@1 is not the sole evaluation criterion in practice,
because there are situations where multiple responses can be generated from the LLM and checked
by a verifier (e.g., test cases). Therefore, for HumanEval, focusing on pass@k with larger k (and
higher accuracy) is more desirable.

Additionally, we argue that NICE can improve pass@1 performance with lower temperature while
sacrificing the performance of pass@10 and pass@100. We analyze the performance on the Hu-
manEval task for models trained on NICE-selected subsets when using different temperatures to
generate MC samples. As shown in Tab. 7, the pass@1 performance on downstream tasks is improved
by using a lower temperature, while at the cost of reduced performance on pass@10 and pass@100
metrics. A lower temperature reduces uncertainty during generation. If the model is good at certain
problems, it increases the probability of answering these problems correctly. However, this reduction
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Table 8: Comparison of asymptotic time complexity and wall-clock time (in GPU hours) for each
stage in data selection. The time for Warmup training with LoRA is measured on H100, and the
others are measured on L40.

Stage Warmup LoRA Training Training Grad Comp Validation Grad Comp Data Selection

Remark NICE = LESS NICE = LESS NICE > LESS NICE = LESS
Asymptotic O(|DW |E) O(|DN |E) LESS: O(|DV |E); NICE: O(|DV |EM) O(|DN ||DV |d)
Compute 3h 48h LESS: 0.11h on avg; NICE: 14.67h on avg <0.02h

in uncertainty comes at the expense of diversity, as the generated responses tend to be very similar to
one another. Consequently, for difficult questions, if all generated responses are incorrect, pass@k
(for larger k) suffers. This trade-off implies that using a lower temperature to generate responses
improves pass@1 performance. When these responses generated under a lower temperature are used
to compute policy gradients for data selection, the resulting selected subset also favors the pass@1
metric, while at a cost of decreased performance on pass@k (for larger k).

H.2 ROBUSTNESS ACROSS VALIDATION SPLITS

Figure 4: Performance of models trained on different NICE-selected subsets using different validation
sets as references. Models trained on NICE-selected subsets consistently outperform those trained
on randomly selected subsets, regardless of the validation set used.

We demonstrate the robustness of NICE across different validation splits and address concerns about
potential overfitting to a specific validation set. In the task-agnostic setting, we randomly selected
an alternative validation set D′

V as a reference and re-selected a subset D′
S . The performance of

models retrained on DS (selected based on the original validation split DV ) and D′
S (selected based

on the new validation split D′
V ) are shown in Fig. 4. Importantly, models trained on the selected

subsets, whether DS or D′
S , consistently outperform models trained on randomly selected subsets.

This verifies the robustness of our approach and confirms that its effectiveness does not depend on a
specific validation split.

H.3 TIME COMPLEXITY ANALYSIS

We provide a comparative analysis of the computational costs between NICE and LESS, an approach
that adopts loss-based influence estimation, showing that NICE remains within a practical computa-
tional range. Tab. 8 lists the asymptotic complexity and wall-clock runtime (the time for warmup
training with LoRA is measured in single H100 GPU hours, others are measured in single L40 GPU
hours) for each stage in the data selection procedure. Tab. 9 highlights the validation gradient com-
putation where NICE differs from LESS. Let E denote the number of epochs (saved checkpoints),
d the dimension of the projected gradients, and M the number of Monte Carlo (MC) samples. Let
|DW |, |DN |, and |DV | denote the warmup, training, and validation set sizes, respectively. When
|DV | and M are small, NICE adds only marginal overhead to LESS (e.g., AlpacaEval).

While NICEAMC utilizing Monte Carlo sampling can indeed increase the computational cost, this
trade-off is justified by our approach not needing validation labels—a key motivation of our work.
NICE fills a gap left by existing loss-based baselines by supporting data selection with unlabeled
validation data in cases where the evaluation metrics are label-independent. Furthermore, we can
observe the performance improvement over other methods in Tab. 3.
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Table 9: Validation gradient computation time across tasks for NICE and LESS in single L40 GPU
hours.

Task M NICE (MC Sampling) NICE (Val Grad) LESS (Val Grad)

AlpacaEval (|DV | = 10) 20 0.17h 0.05h <0.02h
TLDR (|DV | = 322) 20 8h 1.47h 0.08h
RLHF (|DV | = 2192) 20 32h 10h 0.33h
HumanEval (|DV | = 10) 500 5h 2h <0.02h

Table 10: Additional Results on RLHF dataset for Llama2-13B and Llama3-8B. Bold numbers
indicate the top-performing selected subset. A purple cell suggests that NICE outperforms LESS
which uses loss-based influence estimation.

RLHF Llama2-13B Llama3-8B
Task-agnostic Task-aware Task-agnostic Task-aware

Random 2.06±0.04 1.20±0.07 1.97±0.07 1.12±0.06

RDS 1.77 0.70 1.75 0.81
BM25 2.72 1.34 2.84 1.43
LESS 1.52±0.09 1.65±0.04 1.64±0.14 1.65±0.08

NICE 2.87±0.04 1.76±0.04 3.22±0.02 1.99±0.06

H.4 ADDITIONAL RESULTS ON LLAMA3-8B AND LLAMA2-13B

We evaluate NICE against various data selection baselines using the state-of-the-art model, Llama3-
8B (Dubey et al., 2024), and a larger model, Llama2-13B, on the RLHF dataset (see Tab. 10). The
superiority of NICE underscores our method’s generalizability across different model sizes and
state-of-the-art models.

H.5 THE DISCREPANCY BETWEEN NTP LOSS AND EVALUATION METRICS.

We additionally include the NTP loss and performance (i.e., measured by each task’s evaluation
metric here) of the validation set for the remaining three tasks in several training checkpoints. The
results in Fig. 5 are similar to those in Fig. 1: checkpoints with minimal loss (highest negative losses)
do not correspond to checkpoints with the best performance; the performance can continue to increase
even if the loss increases (negative loss decreases).

Figure 5: Discrepancy observed between the NTP loss and performance (as measured by each task’s
evaluation metric) on the checkpoints. The checkpoint with the lowest loss (i.e., most negative) can
exhibit relatively poorer performance. Notably, performance can continue to improve even as the loss
worsens (i.e., the negative loss becomes higher).

H.6 COMPARISON OF VALIDATION PERFORMANCE ACROSS FINAL CHECKPOINTS FOR NICE
AND LESS

We plot the validation performance, measured by the reward of the last few checkpoints, for models
trained on NICE-selected subsets and LESS-selected subsets in Fig. 6 for the RLHF dataset. NICE-
selected data optimizes in the direction of increasing validation performance, whereas LESS-selected
data prioritizes loss reduction, which may not necessarily lead to improved validation performance.
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Figure 6: Validation performance, measured by the reward model of the last few checkpoints, for
models trained on subsets selected by NICE and LESS for the RLHF dataset. NICE-selected
data optimizes for improved validation performance, whereas LESS-selected data focuses on loss
reduction, which may not always enhance validation performance.

Figure 7: Standard deviation of different runs w.r.t the number of MC samples. Increasing the number
of MC samples generally lowers the standard deviation across runs, indicating better stability.

H.7 STABILITY OF MC SAMPLING

We provide an ablation study with results in Fig. 7, varying MC samples from 5 to 20 on the RLHF
dataset in the task-agnostic setting for a more in-depth discussion on stability. Results show that
increasing the number of MC samples generally lowers the standard deviation across runs with
different seeds, indicating better stability. The benefit of reduced standard deviation diminishes as
it increases. This validates that our chosen MC (MC=20 for RLHF task) provides a good trade-off,
offering sufficient stability without excessive computation.
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H.8 ON THE ADDITIONAL COST OF NICEAMC

Note that NICEAMC is an optional enhancement—NICE itself does not require GPT-4. We list
the projected GPT-4 cost for NICEAMC in Tab. 11. The costs are low for the majority of the tasks,
except for RLHF, due to its large validation set (which can be addressed by using alternative models
as discussed in the next paragraph).

Table 11: Projected GPT-4 cost for NICEAMC across different tasks. The cost for RLHF is high due
to a large validation set.

Task AlpacaEval TLDR RLHF HumanEval Avg

GPT Cost ($) 1.70 14.26 291.17 6.34 78.37

Use of Open-Source/Smaller LLMs. To reduce cost, we can use high-performing open-source
models. On the RLHF dataset, we use Qwen 2.5-3B/7B-Instruct (Yang et al., 2024) for AMC. Both
outperform NICE. Notably, even a small model like Qwen 2.5-3B-Instruct performs better due to its
better alignment training, despite its smaller size. These models offer comparable performance to
GPT-4 without incurring the additional API cost.

Table 12: Performance on the RLHF dataset using different models for NICEAMC. Qwen models
offer competitive performance without the API cost of GPT-4.

Model NICE NICE AMC (GPT-4) NICE AMC (Qwen2.5 7B) NICE AMC (Qwen2.5 3B)

RLHF 2.82±0.10 3.03±0.02 3.00±0.03 2.97±0.03

I ABLATION STUDIES

Unless otherwise specified, the ablation studies in the section below are conducted on the Llama2-7B
model.

I.1 USING AN ALTERNATIVE WAY TO COMPUTE POLICY GRADIENT

Table 13: Performance comparison between loss-based influence estimation (LESS) and NICE,
which uses different approaches to compute policy gradient in the task-aware setting. PG refers to
using the MC policy gradient as described in Sec. 3.1, while PPO denotes using Proximal Policy
Optimization. Employing policy gradient computed from either policy optimization approach during
data selection results in a better-selected subset compared to loss-based influence estimation.

dataset RLHF HumanEval
LESS 1.62±0.05 52.67±0.71

PG 1.69±0.05 55.09±1.66

PPO 1.73±0.02 52.08±1.31

Besides the vanilla Monte-Carlo policy gradient, we conducted an ablation study of using another
policy optimization methodology to compute the policy gradient used in NICE. We tried computing
the policy gradient using Proximal Policy Optimization (PPO) (Schulman et al., 2017), with results
presented in Tab. 13 for the task-aware setting. These results demonstrate that compared to the
loss-based influence estimation (LESS), which selects training data by optimizing in the direction
of decreasing validation loss, integrating either the MC policy gradient or PPO gradient to select
training data by optimizing in the direction of improving downstream task performance leads to a
better-selected subset. A ”better-selected subset” refers to a subset of training data that, when used
for model training, results in improved performance on downstream tasks.

I.2 INTRODUCE ADDITIONAL KNOWLEDGE ON LOSS-BASED INFLUENCE ESTIMATION

Tab. 14 shows the performance of LESS using GPT-generated labels (LESS+GPT), which is generally
worse than our approaches and can even be worse than LESS + true labels (LESS). Hence, simply
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using GPT-generated labels with loss-based approaches cannot always address the unavailability of
labels for validation data.

Table 14: Performance of LESS using GPT-generated labels (2nd row) in the task-agnostic setting,
which is generally worse than our approaches and can even be worse than LESS + true labels (1st
row).

Table D Alpaca TLDR RLHF HumanEval
LESS 26.94±2.37 3.37±0.78 1.44±0.07 47.50±1.57

LESS+GPT 27.35±1.86 3.41±0.26 3.03±0.01 43.04±1.39

NICE 27.61±2.12 3.61±0.78 2.82±0.10 48.59±2.08

NICEAMC 30.45±2.39 3.55±0.40 3.03±0.02 45.10±2.84

I.3 EFFECT OF REWARD SCORE

We conduct a simple ablation study to evaluate the effectiveness of the reward score within the context
of the policy gradient methodology. In the task-agnostic setting for the RLHF task, we compare the
performance between the continuous reward score (our current methodology) and a discrete reward
score, where the reward is set to 1 if positive and 0 if non-positive. This discrete reward setup can also
be interpreted as a form of rejection sampling. The subset selected using the continuous reward yields
a model with a performance score of 2.82±0.10, whereas the subset selected using the discrete reward
yields a performance of 2.25±0.12. Although less effective than the original policy gradient method,
the policy gradient with a discrete reward still demonstrates some effectiveness, outperforming both
LESS (1.44±0.07) and random (2.05±0.11) selection strategies. This ablation study highlights that
subsets selected with the guidance of reward scores can produce models with better performance than
those trained on subsets selected by LESS or random sampling.

J QUALITATIVE ANALYSIS

J.1 GENERATED RESPONSES

We present three generated responses from GPT-4 on an AlpacaEval validation data point in Table 15
and Table 16. By comparing the original labels with the GPT-4 responses, particularly in Table 15, we
observe that the generated responses exhibit higher quality and more accurate results. By observing
Tab. 16, we find that the generated responses are not only better in quality, provide richer detail,
and more vivid imagery for monologues, but they also offer diverse responses. These monologues
differ in style and narrative focus, ranging from a grand epic tone to reflective introspection. The first
explores ancient ruins and lost civilizations, the second emphasizes nature and mysticism, and the
last tells mythic tales.

J.2 HIGHEST/LOWEST SCORING TRAINING DATA FOR RLHF TASK IN TASK-AGNOSTIC
SETTING

In a task-agnostic setting, we present the highest- and lowest-scoring training data points in Table 17.
The highest-scoring training data points complete the task effectively and offer additional knowledge,
while the lowest-scoring ones tend to be vague, minimal, or fail to address the task meaningfully.
Considering the RLHF task targets helpfulness, the high-scoring data points can potentially boost
the model’s helpfulness. These qualitative examples show that NICE can effectively identify more
relevant training data by assigning them higher scores.

J.3 HIGHEST/LOWEST SCORING TRAINING DATA FOR RLHF TASK IN TASK-SPECIFIC
SETTING

In a task-specific setting, we present the highest- and lowest-scoring training data points in Table 18.
The lowest-scoring training data points whose last-turn responses are either unhelpful or fail to
provide additional meaningful information, potentially degrading model performance (we only use
the last-turn response during training, as explained in App. A.1). Conversely, the top-scoring examples
offer useful responses and can enrich the model’s knowledge. Overall, NICE effectively filters out
noisy data while favoring high-quality training examples.
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Table 15: We compare three GPT-4-generated responses with the original labels of an AlpacaEval
validation data point, observing that GPT-4 consistently produces higher-quality and more accurate
outputs.

Question: ”If the endpoints of a line segment are (2, -2) and (10, 4), what is the length of the segment?”
Baseline Response: The length of the line segment is 12 units (generated by text davinci 003).
Generated Response 1: To find the length of a line segment given its endpoints, you can use the distance formula. The distance
formula between two points (x1, y1) and (x2, y2) in the coordinate plane is:

d =
√

(x2 − x1)2 + (y2 − y1)2

For the points given, (x1, y1) = (2,−2) and (x2, y2) = (10, 4). Plugging these into the formula:

d =
√

(10− 2)2 + (4− (−2))2

d =
√

82 + 62

d =
√
64 + 36

d =
√
100

d = 10

Therefore, the length of the line segment is 10 units.
Generated Response 2: To find the length of the line segment with endpoints (2, -2) and (10, 4), we use the distance formula.
The distance d between two points (x1, y1) and (x2, y2) is given by:

d =
√

(x2 − x1)2 + (y2 − y1)2

In this case, the coordinates of the endpoints are (x1, y1) = (2,−2) and (x2, y2) = (10, 4). Substitute these values into the
formula:

x2 − x1 = 10− 2 = 8

y2 − y1 = 4− (−2) = 4 + 2 = 6

Now substitute these differences into the distance formula:

d =
√
82 + 62 =

√
64 + 36 =

√
100

So, the length of the segment is:
d = 10

Therefore, the length of the line segment is 10 units.
Generated Response 3: To find the length of a line segment with endpoints (x1, y1) and (x2, y2), we can use the distance formula,
which is derived from the Pythagorean theorem. The formula is:

d =
√

(x2 − x1)2 + (y2 − y1)2

Given the endpoints of the line segment are (2,−2) and (10, 4), we substitute these coordinates into the formula:

x1 = 2, y − 1 = −2, x2 = 10, y2 = 4

. Now, plug these values into the formula:

d =
√

(10− 2)2 + (4− (−2))2

d =
√

82 + 62

d =
√
64 + 36

d =
√
100

d = 10

Thus, the length of the segment is 10 units.
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Table 16: We present three diverse and vividly detailed generated monologues which answers an
AlpacaEval validation question, demonstrating how GPT-4 can vary tone, style, and narrative focus
in generated responses.

Question: ”Write a monologue. Do not offer any explanation or out of character notes. The setting is in the Elder Scrolls
universe.”
Baseline Response: ”Ah, what a glorious day! I can feel the energy of the land, the power of the gods, and the strength
of the people of Tamriel. I can sense the passion of the Nords, the determination of the Dunmer, the inventiveness of the
Argonians, and the wisdom of the Altmer. The air is filled with the sounds of battle, adventure, and hope. I am so proud to
be part of this world, to be a part of the Elder Scrolls. I have seen many things in my travels, but nothing compares to the
freedom and beauty of this land. I am so blessed to be able to share in its secrets and experience its wonders. I can only
hope that I can do something to help protect it and ensure its future.”
Generated Response 1: ”Ah, listen, traveler, to the whispers of this old, timeworn place. What stories the stones of the
Ayleid ruins might tell, if only they could speak! You see, each crumbling arch and broken pathway, each shadow that
dances upon these ancient walls, carries the weight of ages long past, the echoes of a once-mighty civilization now lost to
time and tide.
I have walked these lands, from the high, snowy peaks of Skyrim to the lush, vibrant shores of Summerset Isle, and
everywhere in between. But it is here, amidst the haunting beauty of these ruins, that I feel the pulse of the eternal, the
ceaseless march of history that cares not for the names of kings or the wars of men and mer.
Once, these halls rang with the laughter of the Ayleid, the Heartland High Elves, masters of starlight and stone, whose
magic was said to weave through the very air like threads of gold. They built their cities as high as their ambitions, soaring
and majestic. But pride, ah, pride—it festers, and it corrupts. It led them to cruel dominion over humans, their slaves, who
toiled under an unyielding yoke. The Ayleids’ light dimmed with their mercy, and so their empire fell, as all tyrannies must,
to rebellion and the relentless tides of change.
Generated Response 2: ”Ah, you find me at a peculiar time, friend, beneath the boughs of Eldergleam, where dreams
and reality merge like the river waters at the birthplace of the world. I am but a humble servant of Kynareth, tending to
the whispers and the weeping of the wind through these ancient branches. You seek wisdom, or perhaps power? Both are
dangerous, more so than the sharpest blade or the darkest incantation.
There was a time, not long ago in the eyes of the gods but perhaps many lifetimes in the minds of men, when I wandered
these lands in search of the same. From the chilled breath of Skyrim to the sun-kissed shores of Hammerfell, I walked. I
have slept under the stars that wheel unchanging over the Imperial City, and I’ve faced the dragons’ fury, their breath the
fire of a thousand forges.
But listen well, for here is the heart of what I have learned: Tamriel is a land of relentless change, of cycles that turn
as surely as the moons dance around Nirn. Empires rise and fall, the swords of kings grow dull with rust, and even the
mightiest spells fade into echoes. Yet, the trees, the stones, and the rivers—they remember. They hold the long memory of
the earth, a memory that outlasts the fleeting reigns of mortals.
Do you feel the roots of the Eldergleam? Do you hear their slow, ceaseless whisper? They speak of the Green Pact and
the oaths sworn by the first Bosmer, of the Red Mountain where fire married sky, of the Snow Elves driven deep into the
earth’s dark embrace. They speak of the rise of heroes and the fall of villains, all threads in the grand tapestry woven by the
Aedra and Daedra, each a story bound in the fabric of this world.
Generated Response 3: ”Ah, traveler! Welcome to the warmth of my hearth. Rest your bones by the fire and let the chill
of the Skyrim winds be but a distant memory. You must have many tales of your own, but spare an old Mer a moment to
regale you with a story of the ancient days, a tale passed down through generations to keep alive the spirit of our people.
We begin in the days when the world was young, when the Aedra walked the land and the Daedra toyed with the threads of
fate from their dark realms. In the heart of what you now know as the Rift, there stood an impenetrable forest older than the
snows atop the Throat of the World. And within this forest, hidden by the veils of time and enchantment, was the city of
Falinesti, the wandering city, a marvel of the Elder Scrolls, moving as if alive through the wilds of Tamriel.
Imagine, oh weary traveler, a city on the limbs of the great Elden Tree, roots deep in the earth, branches scraping the
heavens. It was there, in that moving city, that the tale of Aelarion was born. Aelarion, son of no one, a child of the shadows
who could speak with the birds and run as swiftly as the West Wind.
Now, Aelarion was a creature of curiosity and mischief. He would watch the traders come and go, telling tales of distant
lands, of the deserts of Hammerfell and the snows of Skyrim, where you hail from. He became enamored with the tales of
the Dragon Priests, those mighty and fearsome rulers of old. Enthralled by the power they wielded through their masks,
relics gifted by dragons, he dreamt of nothing but to behold such a mask himself.
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Table 17: We list the training data points with the highest or lowest NICE score in a task-agnostic
setting for RLHF task, illustrating that highest-scoring responses are helpful and can convey additional
knowledge. By identifying and promoting these high-scoring samples, NICE-selected subset have
the potential to enhance the model’s overall helpfulness.

Dataset Dialogue
Training data points with the highest NICE score

Flan V2 User: Detailed Instructions: In this task, you’re given an ambiguous question (which can be answered in
more than one way). Your task is to provide one question which clarifies the input question and it has one
unique answer, and also provide an answer to the generated question. Generated question and answer should
be separated with a new line. Problem: When was free health care introduced in Canada? Solution:
Assistant: When was nationalized public health care introduced in Canada?
1947

Flan V2 User: Q: In this task, you’re given an ambiguous question (which can be answered in more than one way).
Your task is to provide one question which clarifies the input question and it has one unique answer, and also
provide an answer to the generated question. Generated question and answer should be separated with a new
line.
Who got the biggest NBA contract right now?
Assistant: Who has the biggest NBA contract salary in the 2016-2017 season?
LeBron James

DOLLY User: Task: What team did Bobby Orr play for in his 5th season?
Input: Robert Gordon Orr OC (born March 20, 1948) is a Canadian former professional ice hockey player,
widely acknowledged as one of the greatest of all time. Orr used his ice skating speed, scoring, and play-
making abilities to revolutionize the position of defenceman. He played in the National Hockey League
(NHL) for 12 seasons, the first 10 with the Boston Bruins, followed by two with the Chicago Black Hawks.
Orr remains the only defenceman to have won the league scoring title with two Art Ross Trophies. He holds
the record for most points and assists in a single season by a defenceman. Orr won a record eight consecutive
Norris Trophies as the NHL’s best defenceman and three consecutive Hart Trophies as the league’s most
valuable player (MVP). Orr was inducted into the Hockey Hall of Fame in 1979 at age 31, the youngest to be
inducted at that time. In 2017, Orr was named by the National Hockey League as one of the ”100 Greatest
NHL Players” in history.
Output:
Assistant: Bobby Orr played for the Boston Bruins in his 5th season in the National Hockey League (NHL).
He played in the NHL for 12 seasons, the first 10 with the Boston Bruins, followed by two with the Chicago
Black Hawks.

Training data points with the lowest NICE score
Flan V2 User: Translate ” .” to Finnish?

Assistant: .
DOLLY User: Is tap water safe to drink in Japan?

Assistant: Yes, tap water is safe to drink in Japan.
OASST User: I have trouble staying on track when I need to do schoolwork. What are some ways that I can keep

myself on track?
Assistant: Getting rid of anything that distracts you could be helpful.
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Table 18: We show the training data points with the highest or lowest NICE score in a task-specific
setting for RLHF task, demonstrating that top-scoring samples enrich model knowledge while
low-scoring ones can be noizy. This filtering capability helps NICE retain data likely to improve
downstream task performance.

Training data points with the highest NICE score
User: Mustard seems pretty common these days, in most people’s refrigerators. When did people start using
mustard as a condiment on foods, I’m curious about its history.
Assistant: I don’t really know about mustard, so I found an article that you might like, in which the author writes,
“Mustard is known to have originated in India but was long ago used as a condiment in ancient China and Egypt.”
Here’s a quote from that article that sounds relevant: “It appears that mustard was used as an ingredient in cooking
in several ancient civilizations, including those of India, China, and Egypt. In fact, the oldest known picture of
mustard is a carving of a jar on the wall of a tomb in ancient Egypt. This artifact, which dates to the 15th century
B.C., shows the Egyptians enjoying a dish that may well have included mustard as a condiment.” I’d be happy to
read that article for you if you want.
User: What are some good stretches I should do before going to the gym?
Assistant: Stretches are an important part of a workout regimen. They get the blood flowing through the body and
help you limber up for movement, which is essential for doing yoga. What types of stretching are you looking to do?
User: I was hoping you could tell me.
Assistant: Well, before every workout you should do some dynamic stretches, which will bring circulation to the
muscles, and some static stretches, which will make the muscles more flexible and less susceptible to injury.
User: Ok, which stretches specifically?
Assistant: Ok, what about calf raises?
User: Can you teach me how to make candles?
Assistant: Sure, just follow these directions and it should be easy!

Training data points with the lowest NICE score
User: How fast can trains go?
Assistant: That depends on the kind of train, the length of the train, the density of the track, the grade, and the
direction of the train.
User: What about coal trains?
Assistant: I’m not sure what you mean by “coal trains.”
User: What’s the best brand of TV?
Assistant: I’m not sure what you mean by “best brand.”
User: How can I make my clothes whiter?
Assistant: You can use vinegar to “bleach” the clothes.
User: Vinegar can bleach clothes?
Assistant: Yes.
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