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Abstract

Supervised fine-tuning (SFT) is a crucial tech-001
nique for tailoring the generalization capacity002
of Large Language Models (LLMs) to specific003
target tasks. This study investigates enhanc-004
ing LLMs fine-tuning through the parameter005
merging technique. By merging models fine-006
tuned with varied data order, we achieve an007
enhanced SFT model demonstrating improved008
performance and lower validation losses. To009
our best knowledge, this is the first introduction010
of “parameter-selection merging" technique,011
which innovatively merges models by selecting012
parameters from one sub-model in each param-013
eter dimension, surpassing traditional weighted-014
average method across 5 datasets. Furthermore,015
this method has also shown superiority in multi-016
task merging scenarios, indicating a promising017
avenue for future LLM optimizations.018

1 Introduction019

Thanks to the substantial expansion of training020

scale and model size, large language models021

(LLMs) have achieved significant breakthroughs022

across a broad spectrum of NLP tasks (Radford023

et al., 2019; Touvron et al., 2023). For downstream024

tasks, supervised fine-tuning (SFT) is a crucial tech-025

nique for LLMs, enabling the customization of pre-026

trained models for specialized tasks and domains027

(Dettmers et al., 2023; Zhao et al., 2023).028

Parameter merging, defined as combining mul-029

tiple models within the parameter space (Matena030

and Raffel, 2022), primarily focuses on integrating031

SFT models for different tasks into one capable032

of addressing all associated sub-tasks. Numerous033

related studies have been conducted in this field.034

For example, Wortsman et al. (2022) and Jin et al.035

(2022) employed linear matrix transformation for036

task adaptability; Yadav et al. (2023) addressed the037

issue of sign conflicts across different sub-tasks;038

Similarly, Yu et al. (2023a) mitigated task con-039

flict by partially removing task-specific parame-040

ters; Moreover, Xiao et al. (2023) aimed to maxi- 041

mally preserve the performance of one primary task 042

among all tasks; Furthermore, Huang et al. (2023) 043

investigated the composability of LoRA (Hu et al., 044

2021) for enhancing cross-task generalization. 045

However, compared to merging models from 046

multiple tasks, which often leads to performance 047

degradation on individual tasks, the potential of 048

utilizing the parameter merging technique to en- 049

hance single-task LLMs has not yet received much 050

attention. While some studies, such as Wortsman 051

et al. (2022), have explored merging models fine- 052

tuned with different settings, these experiments 053

were predominantly conducted on comparatively 054

smaller models like BERT (Kenton and Toutanova, 055

2019) and achieved only modest improvements. To 056

bridge the gap, this work investigates enhancing 057

LLM fine-tuning through the parameter merging 058

technique. Our experiments span various models, 059

including BERT, TinyLlama, Llama2, and Wiz- 060

ardModel (Kenton and Toutanova, 2019; Zhang 061

et al., 2024; Touvron et al., 2023; Luo et al., 2023; 062

Xu et al., 2023), covering tasks such as SST-2, 063

SQuAD, Alpaca, GSM8K, among others (Socher 064

et al., 2013; Rajpurkar et al., 2016; Taori et al., 065

2023; Cobbe et al., 2021). The core contributions 066

of this paper are summarized as follows: 067

• We discover that merging sub-models fine- 068

tuned with different data orders can yield an 069

enhanced LLM for the target task, achiev- 070

ing better performance and lower validation 071

loss. We also observe that the average perfor- 072

mance gains for Llama models surpass those 073

for BERT models, suggesting the potential of 074

this method in large model contexts. 075

• Introducing “parameter-selection merging" 076

technique for the first time, which innovatively 077

merges models by selecting parameters from 078

one sub-model in each parameter dimension. 079
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Figure 1: Illustration comparing two parameter merging
techniques. Weighted-average merging calculates the
weighted sum of all sub-model parameters at each pa-
rameter dimension, whereas parameter-selection merg-
ing selects parameters from a single sub-model. In the
resampling module, parameters from the chosen sub-
model that equals those of the pre-trained model are
replaced with parameters from alternative ones.

This approach not only outperforms the tradi-080

tional weighted-average merging method but081

also can be further enhanced with a straight-082

forward resampling strategy.083

• Finally, we conduct experiments showcasing084

the effectiveness of parameter-selection merg-085

ing in multi-task fusion, demonstrating its gen-086

eral applicability across various scenarios.087

2 Method088

2.1 Merge Fine-tuned LLMs with Different089

Data Order090

In this work, we enhance LLM fine-tuning by091

merging models fine-tuned with different data or-092

ders. As depicted in Figure 1, for a given task t,093

the method initiates by fine-tuning a pre-trained094

LLM multiple times, each with a uniquely ordered095

data sequence. Specifically, for various data se-096

quences {s1t , s2t , · · · , skt }, we obtain a set of SFT097

models {θs1t
SFT ,θ

s2t
SFT , · · · ,θ

skt
SFT }. Subsequently,098

these variously fine-tuned models are integrated099

into a unified model through parameter merging100

techniques, yielding the enhanced model θSFT ↑101

2.2 Parameter-Selection Merging102

Existing parameter merging techniques can gener-103

ally be categorized under “weighted-average merg-104

ing" approach. In this work, we introduce a105

novel parameter merging approach: “parameter-106

selection merging." Figure 1 shows the com-107

parison of two merging techniques: weighted-108

average merging calculates the weighted sum109

of all sub-model parameters at each parame-110

ter dimension. Given a set of K sub-models111

{θ1,θ2, . . . ,θK}, with each model θi consisting 112

of parameters θi,1, θi,2, . . . , θi,d for parameter di- 113

mension d, weighted-average merging can be rep- 114

resented by the formula: 115

θmerged,j =

K∑
i=1

wiθi,j, ∀j ∈ {1, . . . , d} (1) 116

where θi,j is the parameter of the i-th sub-model in 117

dimension d, wi is the weight applied to θi,j . 118

Conversely, parameter-selection merging selects 119

a parameter from a single sub-model for each di- 120

mension with probbability pi, represented by the 121

formula: 122

θmerged,j = θi,j with pi, ∀j ∈ {1, . . . , d} (2) 123

where pi is the probability θi,j is selected. Given 124

that each sub-model in our method is fine-tuned on 125

the same training dataset, we assign equal weight 126

wi and selection probability pi to each sub-model: 127

wi =
1
K , pi =

1
K , where K is the total number 128

of sub-models.1 129

2.3 Resample Strategy 130

Task Vectors. Let θpre represent the pre-trained 131

model’s weights and θSFT denote weights after su- 132

pervised fine-tuning for task t. The task vector τ is 133

defined to capture task-specific adaptations, calcu- 134

lated as: τ = θSFT − θpre (Ilharco et al., 2022). 135

Guided by the intuition to maximize the impact 136

of task vectors, we introduce a resampling method 137

within the parameter-selection merging framework 138

to further improve the merged model performance. 139

The task vector τi,j represents task vector of the 140

i-th sub-model at parameter dimension j. As de- 141

picted in Figure 1, if τi,j = 0, indicating no param- 142

eter change after fine-tuning, a new parameter is 143

resampled from the pool of all sub-models.2 This 144

procedure can be iterated n times, where n is a 145

predefined hyperparameter, as formalized below: 146

θ
(n)
merged,j =

{
θi,j if τi,j ̸= 0 or n = 0,

θ
(n−1)
merged,j others,

(3) 147

Specifically, θ 0
merged,j equals parameter-selection 148

merging without resampling module. 149

1Although Wortsman et al. (2022) explores assigning wi

based on sub-model performance (Greedy Soup), we use equal
weights due to performance disparities arising from training
data order is negligible.

2This strategy allows for parallel operations on tensors by
considering all sub-models during resampling.
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Model Method
SST-2 MNLI SQuAD

Avg ∆
acc acc EM

BERT-base
avg / best 91.93 / 92.66 83.99 / 84.15 81.07 / 81.36

+ 0.54 / 0.15
merged 92.09(+0.16/-0.57) 84.28(+0.29/+0.13) 82.25(+1.18/+0.89)

BERT-large
avg / best 93.44 / 93.92 86.42 / 86.65 84.15 / 84.56

+ 0.60 / 0.15
merged 94.04(+0.60/-0.12) 86.38(-0.04/-0.27) 85.39(+1.24/+0.83)

TinyLlama
avg / best 94.81 / 95.64 85.46 / 85.81 80.53 / 81.46

+ 1.42 / 0.72
merged 95.76(+0.95/+0.12) 86.64(+1.18/+0.83) 82.66(+2.13/+1.20)

Llama-2-7b
avg / best 95.09 / 96.56 88.84 / 89.28 84.53 / 85.31

+ 1.86 / 0.96
merged 96.79(+1.70/0.23) 90.37(+1.53/+1.09) 86.87(+2.34/+1.56)

Table 1: Performance comparison between single and merged SFT models across various pre-trained models. The
terms “avg" and “best" denote the average performance across all sub-models and the highest performance observed
among them, respectively.

Method
AlpacaEval GSM8K GSM8K-RFT MATH HumanEval

Avg ∆
win-rate acc acc acc pass@1

single SFT 24.25 41.29 52.74 10.36 26.82 -
weighted-avg 24.97(+0.72) 44.35(+3.06) 53.29(+0.88) 11.24(+0.55) 26.22(-0.60) + 0.92

param-selection 25.66(+1.41) 44.73(+3.44) 53.35(+0.61) 11.37(+1.01) 27.43(+0.61) + 1.42
. + resample 25.91(+1.66) 45.26(+3.97) 54.32(+1.58) 12.00(+1.64) 28.05(+1.23) + 2.02

Table 2: Performance comparison of weighted-average and parameter-selection merging based on Llama-2-7b.
“weighted-avg" means weighted-average and “param-selection" means parameter-selection merging method.

3 Experiments150

3.1 Datasets and Evaluation Metrics151

152

Datasets. Datasets employed in our experiments153

for fine-tuning include 3 traditional tasks: SST-2154

(Xu et al., 2023) (sentiment classification), MNLI155

(Williams et al., 2017) (natural language inference),156

and SQuAD (Rajpurkar et al., 2016) (question an-157

swering); and 5 tasks desgined for LLMs: Stanford158

Alpaca (Taori et al., 2023) (instruction-following),159

GSM8K (Cobbe et al., 2021), GSM8K-RFT (Yuan160

et al., 2023) and MATH (Hendrycks et al., 2021)161

(mathematical reasoning), and Evol-instruction-162

66k (code generating)3.163

164

Evaluation Metrics. We use AlpacaEval (Li et al.,165

2023) to evaluate models fine-tuned on Stanford166

3For traditional tasks, experiments for decoder-based
models use the version collected by Cheng et al. (2023);
Wang et al. (2023). For MATH, an augmented version
(Yu et al., 2023b) is used and data originally sourced
from GSM8K is excluded. Evol-instruction-66k is ob-
tained from https://huggingface.co/datasets/codefuse-ai/Evol-
instruction-66k.
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Figure 2: Comparison of validation loss between single
and merged SFT models.

Alpaca with GPT-4 to calculate the win-rate. For 167

models fine-tuned on Evol-instruction-66k, we use 168

HumanEval (Chen et al., 2021) with pass@1 as 169

evaluation metric. We use Exact Match (EM) for 170

SQuAD and use accuracy (acc) for other tasks. 171

3.2 Experiments Across Different Models 172

Experiments were conducted using a variety of 173

pre-trained models: BERT-base (0.11b)4, BERT- 174

large (0.34b), TinyLlama (1.1b), and Llama-2-7b 175

(7b), employing the weighted-average method for 176

4‘0.11b’ refers to the model having 0.11 billion parameters.
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Method
AG News Hellaswag MNLI MRPC SST-2 Winogrande

Avg ∆
acc acc acc acc acc acc

single SFT 94.42 77.20 87.90 85.78 95.53 75.45 -
weighted-avg 74.01 74.10 61.15 71.32 90.37 70.17 - 12.53
param-selection 77.03 74.13 64.77 67.16 92.66 70.40 - 11.67
. + resample 81.28 74.12 64.45 72.55 95.30 70.56 - 9.67

Table 3: Performance comparison of weighted-average and parameter-selection merging, based on Llama-2-7b, in
the multi-task scenario for traditional tasks. “. + resample" means the addition of the resampling module to our
parameter-selection method.

Method
GSM8K MATH AlpacaEval HumanEval

Avg ∆
acc acc win-rate pass@1

single SFT 63.76 14.26 89.29 23.78 -
weighted-avg 58.38 9.90 72.29 18.90 - 7.91
param-selection 57.01 10.1 72.08 14.64 - 9.32
. + resample 61.71 11.7 78.70 26.22 - 3.19

Table 4: Multi-task merging performance comparison
for LLM tasks.

merging. Results, presented in Table 1, demon-177

strate that merged models outperform their single178

SFT counterparts. Additionally, we compared their179

validation loss, as illustrated in Figure 2: at all180

training checkpoints, the merged models exhibited181

lower loss compared to individual single SFT mod-182

els. These experimental outcomes demonstrate the183

effectiveness of parameter merging in enhancing184

fine-tuning performance. Moreover, as detailed in185

Table 1, models with larger parameter sizes exhibit186

more pronounced average enhancements, suggest-187

ing the method’s potential in large model contexts.188

3.3 Weighted-Average vs Parameter-Selection189

Experiments conducted based on Llama-2-7b are190

used to compare the weighted-average merging191

and parameter-selection merging. The results are192

presented in Table 2. As shown, compared to193

single SFT models, the merged models demon-194

strate performance improvements on three main-195

stream tasks (instruction-following, mathematical196

reasoning, and code-generating), except for a per-197

formance decrease observed with the weighted-198

average merging on the code-generating task. As199

indicated in Table 2, the parameter-selection out-200

performs the weighted-average method. Further-201

more, by incorporating the resampling module, the202

performance parameter-selection can be further im-203

proved, yielding an average improvement of 2.02204

5Due to significant forgetting after merging LLM tasks,
13b models were chosen instead of 7b.

percentage points across five datasets. These results 205

demonstrate the efficacy of parameter-selection 206

merging method proposed in this work. 207

3.4 Multi-Task Merging 208

We also executed experiments on integrating SFT 209

models for multiple tasks to validate the ef- 210

fectiveness of the parameter-selection merging. 211

For traditional tasks, experiments are conducted 212

on Llama-2-7b with 6 text classification tasks 213

collected by Cheng et al. (2023); Wang et al. 214

(2023), and results are presented in Table 3. For 215

LLM tasks, we use WizardLM-13B (instruction- 216

following), WizardMath-13B (mathematical rea- 217

soning), and llama-2-13b-code-alpaca (code gen- 218

erating) (Chaudhary, 2023) as fine-tuned models,5 219

wiht results detailed in Table 4. As shown in Ta- 220

ble 3 and Table 4, parameter-selection method and 221

the weighted-average method yield similar perfor- 222

mance. However, when combined with the resam- 223

pling module, the parameter selection method sig- 224

nificantly outperforms the average-based method, 225

achieving 2.86 and 4.72 more percentage points 226

in performance retention on traditional and LLM 227

tasks, respectively. 228

4 Conclusion 229

In this study, we enhanced LLM fine-tuning 230

through merging sub-models fine-tuned on diverse 231

data orders. Importantly, we introduced a novel 232

merging technique: “parameter-selection merg- 233

ing" for the first time, which outperforms tradi- 234

tional weighted-average approach. The efficacy 235

of parameter-selection method indicates that it is 236

not necessary to incorporate information from all 237

sub-models at each parameter dimension in param- 238

eter merging. This discovery broadens the research 239

landscape for parameter merging, opening up new 240

avenues for future investigations. 241
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5 Limitations242

There are several primary limitations in this study243

that remain unexplored:244

• Although the parameter merging method en-245

hances LLM fine-tuning without adding de-246

ployment and inference costs, it needs more247

computation to fine-tune multiple sub-models.248

• The study mainly centers on merging sub-249

models trained on data sequences with differ-250

ent order. A broader range of configurations,251

such as merging sub-models trained with dif-252

ferent learning rates, training steps, or batch253

sizes are unexplored. This limitation points to254

potential avenues for future research, where255

these variables can be systematically studied256

to understand their impact on parameter merg-257

ing.258

• The study introduces a novel technique:259

parameter-selection merging, that outper-260

forms traditional weighted-average merg-261

ing in the single-task scenario. However,262

many studies focus on merging multi-task263

models based on weighted-average formula.264

Whether substituting the weighted-average265

with parameter-selection can enhance these266

methods has not yet been explored.267
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A Detailed Experimental Settings 408

A.1 Basic Settings 409

For all tasks, we uniformly train 20 sub-models for 410

merging. For single SFT models, we report the av- 411

erage results across all sub-models. For parameter- 412

selection merging models, we conduct 5 experi- 413

ments with different random seeds and report the 414

average outcomes. For decoder-based models, the 415

temperature is set to 0.0 for greedy decoding. Train- 416

ing of LLMs was conducted using mixed precision 417

bf16. All experiments are conducted on 8 NVIDIA 418

Tesla A800 GPUs. 419

A.2 Hyperparameters 420

The search space for resampling times n includes 421

{1 - 4, 9 }, corresponding to conducting random 422

sampling 2 - 5, and 10 times in total, respectively. 423

The hyperparameters used for fine-tuning are de- 424

tailed in Tables 5 and 6. For multi-task merg- 425

ing, the resampling times n are set to 9 for tra- 426

ditional tasks and set to 2 for LLM tasks. For 427

all experiments, the maximum number of epochs 428

was set to 3, with model states saved at the end of 429

each epoch. The checkpoint corresponding to the 430

highest-performing epoch was reported. Parameter 431

merging is performed only among models that have 432

undergone the same number of training steps. 433

B Computational Complexity of Merging 434

Process 435

The model merging process, whether through pa- 436

rameter selection or weighted averaging, can be 437

managed on a CPU. Thanks to PyTorch’s parallel 438

processing capabilities, the merging process can 439

be completed very fast: merging 10 Llama-2-7b 440

models on a single CPU approximately takes about 441

2 minutes. The resampling process would require 442

time proportional to the number of resampling iter- 443

ations. 444

445

446

447

448
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Model BERT-base & BERT-large TinyLlama & Llama-2-7b
Dataset SST-2 MNLI SQuAD SST-2 MNLI SQuAD AG News Hellaswag MRPC Winogrande

max seq-length 128 128 512 800 800 800 800 800 800 800
learning rate 2e-5 2e-5 3e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
batch size 32 32 12 128 128 128 128 128 128 128

Table 5: Hyperparameters for training models on traditional tasks.

Dataset AlpacaEval GSM8K GSM8K-RFT MATH HumanEval

max seq-length 1200 800 800 800 1200
learning rate 2e-5 2e-5 2e-5 2e-5 2e-5
batch size 128 64 64 64 128
max epoch 3 3 3 3 3
n 1 1 4 1 4

Table 6: Hyperparameters for training Llama-2-7b on LLM tasks.
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