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Abstract

Supervised fine-tuning (SFT) is a crucial tech-
nique for tailoring the generalization capacity
of Large Language Models (LLMs) to specific
target tasks. This study investigates enhanc-
ing LLMs fine-tuning through the parameter
merging technique. By merging models fine-
tuned with varied data order, we achieve an
enhanced SFT model demonstrating improved
performance and lower validation losses. To
our best knowledge, this is the first introduction
of “parameter-selection merging" technique,
which innovatively merges models by selecting
parameters from one sub-model in each param-
eter dimension, surpassing traditional weighted-
average method across 5 datasets. Furthermore,
this method has also shown superiority in multi-
task merging scenarios, indicating a promising
avenue for future LLM optimizations.

1 Introduction

Thanks to the substantial expansion of training
scale and model size, large language models
(LLMs) have achieved significant breakthroughs
across a broad spectrum of NLP tasks (Radford
et al., 2019; Touvron et al., 2023). For downstream
tasks, supervised fine-tuning (SFT) is a crucial tech-
nique for LLMs, enabling the customization of pre-
trained models for specialized tasks and domains
(Dettmers et al., 2023; Zhao et al., 2023).
Parameter merging, defined as combining mul-
tiple models within the parameter space (Matena
and Raffel, 2022), primarily focuses on integrating
SFT models for different tasks into one capable
of addressing all associated sub-tasks. Numerous
related studies have been conducted in this field.
For example, Wortsman et al. (2022) and Jin et al.
(2022) employed linear matrix transformation for
task adaptability; Yadav et al. (2023) addressed the
issue of sign conflicts across different sub-tasks;
Similarly, Yu et al. (2023a) mitigated task con-
flict by partially removing task-specific parame-

ters; Moreover, Xiao et al. (2023) aimed to maxi-
mally preserve the performance of one primary task
among all tasks; Furthermore, Huang et al. (2023)
investigated the composability of LoRA (Hu et al.,
2021) for enhancing cross-task generalization.

However, compared to merging models from
multiple tasks, which often leads to performance
degradation on individual tasks, the potential of
utilizing the parameter merging technique to en-
hance single-task LLMs has not yet received much
attention. While some studies, such as Wortsman
et al. (2022), have explored merging models fine-
tuned with different settings, these experiments
were predominantly conducted on comparatively
smaller models like BERT (Kenton and Toutanova,
2019) and achieved only modest improvements. To
bridge the gap, this work investigates enhancing
LLM fine-tuning through the parameter merging
technique. Our experiments span various models,
including BERT, TinyLlama, Llama2, and Wiz-
ardModel (Kenton and Toutanova, 2019; Zhang
et al., 2024; Touvron et al., 2023; Luo et al., 2023;
Xu et al., 2023), covering tasks such as SST-2,
SQuAD, Alpaca, GSMS8K, among others (Socher
et al., 2013; Rajpurkar et al., 2016; Taori et al.,
2023; Cobbe et al., 2021). The core contributions
of this paper are summarized as follows:

* We discover that merging sub-models fine-
tuned with different data orders can yield an
enhanced LLM for the target task, achiev-
ing better performance and lower validation
loss. We also observe that the average perfor-
mance gains for Llama models surpass those
for BERT models, suggesting the potential of
this method in large model contexts.

* Introducing “parameter-selection merging"
technique for the first time, which innovatively
merges models by selecting parameters from
one sub-model in each parameter dimension.



Given task ¢

T % E\ |

. 1%¢ Resampling module &}
ST R bif vate [0 = [ i
pre-trained model SFT models i replace [J with[TJor [ +!

)

Figure 1: Illustration comparing two parameter merging
techniques. Weighted-average merging calculates the
weighted sum of all sub-model parameters at each pa-
rameter dimension, whereas parameter-selection merg-
ing selects parameters from a single sub-model. In the
resampling module, parameters from the chosen sub-
model that equals those of the pre-trained model are
replaced with parameters from alternative ones.

This approach not only outperforms the tradi-
tional weighted-average merging method but
also can be further enhanced with a straight-
forward resampling strategy.

* Finally, we conduct experiments showcasing
the effectiveness of parameter-selection merg-
ing in multi-task fusion, demonstrating its gen-
eral applicability across various scenarios.

2 Method
2.1 Merge Fine-tuned LL.Ms with Different
Data Order

In this work, we enhance LLM fine-tuning by
merging models fine-tuned with different data or-
ders. As depicted in Figure 1, for a given task ¢,
the method initiates by fine-tuning a pre-trained
LLM multiple times, each with a uniquely ordered
data sequence. Specifically, for various data se-
quences {s},s?,---,sF}, we obtain a set of SFT

k
models {0 pp, 0dpp, -+, 0dpr}. Subsequently,
these variously fine-tuned models are integrated
into a unified model through parameter merging
techniques, yielding the enhanced model @spr 1

2.2 Parameter-Selection Merging

Existing parameter merging techniques can gener-
ally be categorized under “weighted-average merg-
ing" approach. In this work, we introduce a
novel parameter merging approach: “parameter-
selection merging." Figure 1 shows the com-
parison of two merging techniques: weighted-
average merging calculates the weighted sum
of all sub-model parameters at each parame-
ter dimension. Given a set of K sub-models

{01,04,...,0K}, with each model 8; consisting
of parameters 0;1,6; 2, ...,0; q for parameter di-
mension d, weighted-average merging can be rep-
resented by the formula:

K

Omergeaj = »_wibhj, Vi€ {l,...,d} (1)
=1

where 0; ; is the parameter of the i-th sub-model in
dimension d, w; is the weight applied to ¢; ;.

Conversely, parameter-selection merging selects
a parameter from a single sub-model for each di-
mension with probbability p;, represented by the
formula:

Omerged,j = 0;,j with p;, Vj € {1,...,d} ()

where p; is the probability 0; ; is selected. Given
that each sub-model in our method is fine-tuned on
the same training dataset, we assign equal weight
w; and selection probability p; to each sub-model:
w; = %, p; = %, where K is the total number
of sub-models.!

2.3 Resample Strategy

Task Vectors. Let 0, represent the pre-trained
model’s weights and Ospr denote weights after su-
pervised fine-tuning for task ¢. The task vector 7 is
defined to capture task-specific adaptations, calcu-
lated as: T = Ogspr — Opre (Ilharco et al., 2022).
Guided by the intuition to maximize the impact
of task vectors, we introduce a resampling method
within the parameter-selection merging framework
to further improve the merged model performance.
The task vector 7; ; represents task vector of the
i-th sub-model at parameter dimension j. As de-
picted in Figure 1, if 7; ; = 0, indicating no param-
eter change after fine-tuning, a new parameter is
resampled from the pool of all sub-models.? This
procedure can be iterated n times, where n is a
predefined hyperparameter, as formalized below:

0; ; if s #0o0rn =0,
Oy = {0y T 20O =0
Gmerged’ j others,
Specifically, 9n?erged’j equals parameter-selection

merging without resampling module.

! Although Wortsman et al. (2022) explores assigning w;
based on sub-model performance (Greedy Soup), we use equal
weights due to performance disparities arising from training
data order is negligible.

“This strategy allows for parallel operations on tensors by
considering all sub-models during resampling.
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Table 1: Performance comparison between single and merged SFT models across various pre-trained models. The
terms “avg" and “best" denote the average performance across all sub-models and the highest performance observed

among them, respectively.

Method Alp.acaEval GSM8K  GSMS8K-RFT MATH HumanEval Ave A
win-rate acc acc acc pass@ 1

single SFT 24.25 41.29 52.74 10.36 26.82 -

weighted-avg 24.97(+0.72)  44.35(+3.06)  53.29(+0.88)  11.24(+0.55) 26.22(-0.60) +0.92

param-selection 25.66(+1.41) 44.73(+3.44)  53.35(+0.61) 11.37+1.01) 27.43(+0.61) +1.42

.+ resample 25.91(+1.66) 45.26(+3.97) 54.32(+1.58) 12.00(+1.64) 28.05(+1.23) +2.02

Table 2: Performance comparison of weighted-average and parameter-selection merging based on Llama-2-7b.
“weighted-avg" means weighted-average and “param-selection” means parameter-selection merging method.

3 Experiments

3.1 Datasets and Evaluation Metrics

Datasets. Datasets employed in our experiments
for fine-tuning include 3 traditional tasks: SST-2
(Xu et al., 2023) (sentiment classification), MNLI
(Williams et al., 2017) (natural language inference),
and SQuAD (Rajpurkar et al., 2016) (question an-
swering); and 5 tasks desgined for LLMs: Stanford
Alpaca (Taori et al., 2023) (instruction-following),
GSMS8K (Cobbe et al., 2021), GSM8K-RFT (Yuan
et al., 2023) and MATH (Hendrycks et al., 2021)
(mathematical reasoning), and Evol-instruction-
66k (code generating)®.

Evaluation Metrics. We use AlpacaEval (Li et al.,
2023) to evaluate models fine-tuned on Stanford

3For traditional tasks, experiments for decoder-based
models use the version collected by Cheng et al. (2023);
Wang et al. (2023). For MATH, an augmented version
(Yu et al., 2023b) is used and data originally sourced
from GSMSK is excluded. Evol-instruction-66k is ob-
tained from https://huggingface.co/datasets/codefuse-ai/Evol-
instruction-66k.
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Figure 2: Comparison of validation loss between single
and merged SFT models.

Alpaca with GPT-4 to calculate the win-rate. For
models fine-tuned on Evol-instruction-66k, we use
HumanEval (Chen et al., 2021) with pass@1 as
evaluation metric. We use Exact Match (EM) for
SQuAD and use accuracy (acc) for other tasks.

3.2 Experiments Across Different Models

Experiments were conducted using a variety of
pre-trained models: BERT-base (0.11b)*, BERT-
large (0.34b), TinyLlama (1.1b), and Llama-2-7b
(7b), employing the weighted-average method for

%0.11b’ refers to the model having 0.11 billion parameters.


https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k

Method AG News Hellaswag MNLI MRPC SST-2 Winogrande Ave A
acc acc acc acc acc acc

single SFT 94.42 77.20 87.90 85.78 95.53 75.45 -

weighted-avg 74.01 74.10 61.15 7132 90.37 70.17 -12.53

param-selection 77.03 74.13 64.77 67.16 92.66 70.40 -11.67

. + resample 81.28 74.12 64.45 7255 95.30 70.56 - 9.67

Table 3: Performance comparison of weighted-average and parameter-selection merging, based on Llama-2-7b, in

113

the multi-task scenario for traditional tasks.
parameter-selection method.

GSM8K MATH AlpacaEval HumanEval

Method acc acc  win-rate pass@] Ave &
single SFT 63.76 1426  89.29 23.78 -

weighted-avg 58.38 990  72.29 1890 -791
param-selection 57.01  10.1 72.08 14.64 -9.32
. + resample 61.71 11.7  78.70 2622 -3.19

Table 4: Multi-task merging performance comparison
for LLM tasks.

merging. Results, presented in Table 1, demon-
strate that merged models outperform their single
SFT counterparts. Additionally, we compared their
validation loss, as illustrated in Figure 2: at all
training checkpoints, the merged models exhibited
lower loss compared to individual single SFT mod-
els. These experimental outcomes demonstrate the
effectiveness of parameter merging in enhancing
fine-tuning performance. Moreover, as detailed in
Table 1, models with larger parameter sizes exhibit
more pronounced average enhancements, suggest-
ing the method’s potential in large model contexts.

3.3 Weighted-Average vs Parameter-Selection

Experiments conducted based on Llama-2-7b are
used to compare the weighted-average merging
and parameter-selection merging. The results are
presented in Table 2. As shown, compared to
single SFT models, the merged models demon-
strate performance improvements on three main-
stream tasks (instruction-following, mathematical
reasoning, and code-generating), except for a per-
formance decrease observed with the weighted-
average merging on the code-generating task. As
indicated in Table 2, the parameter-selection out-
performs the weighted-average method. Further-
more, by incorporating the resampling module, the
performance parameter-selection can be further im-
proved, yielding an average improvement of 2.02

Due to significant forgetting after merging LLM tasks,
13b models were chosen instead of 7b.

. + resample" means the addition of the resampling module to our

percentage points across five datasets. These results
demonstrate the efficacy of parameter-selection
merging method proposed in this work.

3.4 Multi-Task Merging

We also executed experiments on integrating SFT
models for multiple tasks to validate the ef-
fectiveness of the parameter-selection merging.
For traditional tasks, experiments are conducted
on Llama-2-7b with 6 text classification tasks
collected by Cheng et al. (2023); Wang et al.
(2023), and results are presented in Table 3. For
LLM tasks, we use WizardLM-13B (instruction-
following), WizardMath-13B (mathematical rea-
soning), and llama-2-13b-code-alpaca (code gen-
erating) (Chaudhary, 2023) as fine-tuned models,’
wiht results detailed in Table 4. As shown in Ta-
ble 3 and Table 4, parameter-selection method and
the weighted-average method yield similar perfor-
mance. However, when combined with the resam-
pling module, the parameter selection method sig-
nificantly outperforms the average-based method,
achieving 2.86 and 4.72 more percentage points
in performance retention on traditional and LLM
tasks, respectively.

4 Conclusion

In this study, we enhanced LLM fine-tuning
through merging sub-models fine-tuned on diverse
data orders. Importantly, we introduced a novel
merging technique: ‘“‘parameter-selection merg-
ing" for the first time, which outperforms tradi-
tional weighted-average approach. The efficacy
of parameter-selection method indicates that it is
not necessary to incorporate information from all
sub-models at each parameter dimension in param-
eter merging. This discovery broadens the research
landscape for parameter merging, opening up new
avenues for future investigations.



5 Limitations

There are several primary limitations in this study
that remain unexplored:

* Although the parameter merging method en-
hances LLM fine-tuning without adding de-
ployment and inference costs, it needs more
computation to fine-tune multiple sub-models.

* The study mainly centers on merging sub-
models trained on data sequences with differ-
ent order. A broader range of configurations,
such as merging sub-models trained with dif-
ferent learning rates, training steps, or batch
sizes are unexplored. This limitation points to
potential avenues for future research, where
these variables can be systematically studied
to understand their impact on parameter merg-

ing.

The study introduces a novel technique:
parameter-selection merging, that outper-
forms traditional weighted-average merg-
ing in the single-task scenario. However,
many studies focus on merging multi-task
models based on weighted-average formula.
Whether substituting the weighted-average
with parameter-selection can enhance these
methods has not yet been explored.
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A Detailed Experimental Settings
A.1 Basic Settings

For all tasks, we uniformly train 20 sub-models for
merging. For single SFT models, we report the av-
erage results across all sub-models. For parameter-
selection merging models, we conduct 5 experi-
ments with different random seeds and report the
average outcomes. For decoder-based models, the
temperature is set to 0.0 for greedy decoding. Train-
ing of LLMs was conducted using mixed precision
bf16. All experiments are conducted on 8 NVIDIA
Tesla A800 GPUs.

A.2 Hyperparameters

The search space for resampling times n includes
{1 -4, 9}, corresponding to conducting random
sampling 2 - 5, and 10 times in total, respectively.
The hyperparameters used for fine-tuning are de-
tailed in Tables 5 and 6. For multi-task merg-
ing, the resampling times n are set to 9 for tra-
ditional tasks and set to 2 for LLM tasks. For
all experiments, the maximum number of epochs
was set to 3, with model states saved at the end of
each epoch. The checkpoint corresponding to the
highest-performing epoch was reported. Parameter
merging is performed only among models that have
undergone the same number of training steps.

B Computational Complexity of Merging
Process

The model merging process, whether through pa-
rameter selection or weighted averaging, can be
managed on a CPU. Thanks to PyTorch’s parallel
processing capabilities, the merging process can
be completed very fast: merging 10 Llama-2-7b
models on a single CPU approximately takes about
2 minutes. The resampling process would require
time proportional to the number of resampling iter-
ations.



Model BERT-base & BERT-large TinyLlama & Llama-2-7b

Dataset SST-2 MNLI SQuAD |SST-2 MNLI SQuAD AG News Hellaswag MRPC Winogrande
max seq-length | 128 128 512 800 800 800 800 800 800 800
learning rate 2e-5 2e-5 3e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
batch size 32 32 12 128 128 128 128 128 128 128

Table 5: Hyperparameters for training models on traditional tasks.

Dataset AlpacaEval GSMSK GSMSK-RFT MATH HumanEval
max seq-length 1200 800 800 800 1200
learning rate 2e-5 2e-5 2e-5 2e-5 2e-5
batch size 128 64 64 64 128
max epoch 3 3 3 3 3

n 1 1 4 1 4

Table 6: Hyperparameters for training Llama-2-7b on LLM tasks.
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