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ABSTRACT

Deep Generative Models are frequently used to learn continuous representations
of complex data distributions by training on a finite number of samples. For any
generative model, including pre-trained foundation models with Diffusion or Trans-
former architectures, generation performance can significantly vary across the
learned data manifold. In this paper, we study the local geometry of the learned
manifold and its relationship to generation outcomes for a wide range of generative
models, including DDPM, Diffusion Transformer (DiT), and Stable Diffusion 1.4.
Building on the theory of continuous piecewise-linear (CPWL) generators, we
characterize the local geometry in terms of three geometric descriptors - scaling
(ψ), rank (ν), and complexity/un-smoothness (δ). We provide quantitative and
qualitative evidence showing that for a given latent vector, the local descriptors are
indicative of post-generation aesthetics, generation diversity, and memorization by
the generative model. Finally, we demonstrate that by training a reward model on
the local scaling for Stable Diffusion, we can self-improve both generation aes-
thetics and diversity using geometry sensitive guidance during denoising. Website:
imtiazhumayun.github.io/generative_geometry.
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Figure 1: Geometry sensitive diffusion guidance. During the reverse diffusion process, increasing
(top-row) or decreasing (bottom-row) the local scaling, i.e., volume dilation, of denoising trajectories
using geometry reward based guidance with strength ρ, results in increased (top-row) or decreased
(bottom-row) visual complexity. Increasing local scaling results in more background elements
coming into view and a decrease in the focus on the subject, vice-versa when local scaling is
decreased. Here we use a reward model trained on the local scaling computed for 800K Stable
Diffusion (Rombach et al., 2021) latents. More examples in appendix fig. 22, fig. 23, fig. 24.
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1 INTRODUCTION

In recent years, deep generative models have emerged as a powerful tool in machine learning,
capable of synthesizing realistic data across diverse domains (Karras et al., 2019; 2020; Rombach
et al., 2021). However, the performance of such generative models may vary based on the latent
vector or (text-)conditioning used for generation. Recent studies have demonstrated that models like
Stable Diffusion can exhibit generation biases in terms of reduced generation fidelity or diversity,
when certain demographic groups are mentioned in the prompts Zhao et al. (2018); Luccioni et al.
(2023). Especially for 1) models trained with large heterogeneous data distributions, and for 2)
generative models pre-trained on unknown training distributions, the aforementioned observations,
i.e., latent/prompt specific behaviors can become hard to interpret or reason. Since generative models
are essentially approximating a generative function mapping a latent space to the data manifold, one
way to explain downstream performance could be in terms of the characteristics of the approximated
function that can be measured via the model internals, i.e., activations and weights. In this regard, we
pose the following research question:

Research Question. For any deep generative model pre-trained on an arbitrary dataset, how is
the local geometry of the generator function related to downstream generation?

The theory of continuous piecewise-linear generators Balestriero et al. (2020) suggests that a large
class of generative models can be considered continuous piecewise linear (CPWL) operators, implying
that such generative models can be fully characterized in terms of their weights and architecture.
We consider it the framework of choice to find answers to the aforementioned question and propose
using three local geometric descriptors to quantify local characteristics of any pre-trained generative
model:

• Local rank (ν), that characterizes the local dimensionality of the learned manifold.

• Local scaling (ψ), that characterizes the local change of volume by the input output mapping
of the generative model.

• Local complexity (δ), that approximates the un-smoothness of the generative model in
terms of second order changes in the input-output mapping.

Geometric descriptors such as local scaling, complexity or rank, have previously been used to
measure function complexity of Deep Neural Networks (DNN) (Hanin & Rolnick, 2019) and DNN
expressivity (Poole et al., 2016; Raghu et al., 2017), to evaluate the quality of representations learned
with a self-supervised objective (Garrido et al., 2023), for interpretability and visualization of DNNs
(Humayun et al., 2023), to understand the learning dynamics in reinforcement learning (Cohan et al.,
2022), to explain grokking, i.e., delayed generalization and robustness in classifiers (Humayun et al.,
2024), sampling of GAN based generative models (Humayun et al., 2021; 2022b), and maximum
likelihood inference in the latent space (Kuhnel et al., 2018). We provide a more extensive discussion
on related works in appendix B.

Our contributions. In this paper, through rigorous experiments on large image generative models,
we establish correlations between the local geometry of the generative function and the aesthetics
of the generation, the diversity of the generation, and the memorization in the generated samples.
We demonstrate how these qualities manifest differently for different sub-populations of the learned
distribution. We also show that the geometry of the data manifold is heavily influenced by the training
data, which enables applications in out-of-distribution detection and reward modeling to control the
output distribution. Our empirical results lead to the following conclusions.

• C1. We present the first large-scale analysis of the local geometry of foundational text-to-
image latent diffusion models and establish correlations between local geometric descriptors
and downstream aesthetic quality, diversity, and memorization (Sec 4.).

• C2. For small diffusion models and foundational image generative models, we show that the
local geometry on the generative model manifold is distinct from the off-manifold geometry
and can help distinguish the domain of a generative model (Sec. 3).

• C3. By training an auxiliary model on precomputed local geometric descriptors of Stable
Diffusion, we present a novel framework for reward guidance on a diffusion model to
increase/decrease sampling diversity or control aesthetic qualities (Sec 5).
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2 LOCAL DESCRIPTORS OF GENERATIVE MODEL MANIFOLDS

We start by introducing the geometric descriptors we will use in our study and provide insight into
what aspect of the generative model manifold geometry each of the descriptors quantify.

2.1 CONTINUOUS PIECEWISE-LINEAR GENERATIVE MODELS

Consider a generative network G, which can be the decoder of a Variational Autoencoder
(VAE) (Kingma & Welling, 2013), the generator of a Generative Adversarial Network (GAN) (Good-
fellow et al., 2014), or an unrolled denoising diffusion implicit model (DDIM) (Song et al., 2020).
Suppose, G : RE → RD is a deep neural network with L layers, input space dimensionality E and
output space dimensionality D. For any such generator, if the layers comprise affine operations
such as convolutions, skip-connections, or max/avg-pooling, and the non-linearities are continuous
piecewise-linear (CPWL) such as leaky-ReLU Xu (2015), ReLU, or periodic triangle, then the
generator is a continuous piecewise-linear operator (Balestriero & Baraniuk, 2018a; Humayun et al.,
2023). This implies that the G : RE → RD mapping can be expressed in terms of a subdivision of
the input space into linear regions Ω with each region ω from the input domain being mapped to the
output via an affine operation. The continuous data manifold or image of the generator Im(G) can be
written as the union of sets:

Im(G) =
⋃

∀ω∈Ω

{Aωz + bω∀z ∈ ω}, (1)

where, Ω is the partition of the latent space RE into continuous piecewise-linear regions, Aω and
bω are the slope and offset parameters of the affine mapping from latent space vectors z ∈ ω to the
data manifold. For the class of continuous piecewise-linear (CPWL) neural network based generative
models, Ω, Aω , and bω are functions of the neurons/parameters of the network. For a generator with
L layers, Aω and bω can be expressed in closed-form in terms of the weights and the region-wise
activation pattern of neurons for each layer. We refer the readers to Lemma 1 of (Humayun et al.,
2023) for details.

To help build intuition, without loss of generality lets consider a CPWL toy generator that is trained
on a handcrafted task where the target function f : R2 → R3 is a mapping between R2 and a mixture
of five gaussian functions. Since the learned function is a continuous piecewise-affine spline operator,
we use SplineCAM (Humayun et al., 2023) to analytically compute the function learned by the
generator and visualize the learned manifold, as well as the input space piecewise-linear partition
learned by the generator in Fig. 2 middle-left and left. Each convex region ω bounded by the black
lines, is mapped to Im(G) via per region parameters as described in Equation 1. The input-output
mapping operation by the generator is affine region-wise, therefore any given input space region can
be scaled, rotated or translated with a continuity constraint between regions, while going from the
input to the output. For CPWL generators there are three characteristics of the learned manifold that
can be studied: i) the affine scaling induced per region, ii) the number of dimensions that are retained
after scaling, i.e., local dimensionality of the learned manifold, and iii) the local smoothness of the
CPWL partition. We now introduce local descriptors that can be used to characterize these quantities.

2.1.1 LOCAL SCALING, ψ
We first introduce local scaling as a target descriptor to be used in our study that measures the local
scaling performed on a region ω by a CPWL generator.

Definition 1. For a CPWL manifold produced by generator G, the local scaling ψω is constant
within each region ω, and measures the log-scaling of the volume induced by the affine slope Aω for
all latents z ∈ ω. Local scaling for ω is expressed as

ψω = log(
√
det(AT

ωAω)) =
k∑
i

log(σi)1{σi ̸=0}, (2)

where, {σi}i=k
i=0 , are the non-zero singular values of Aω .

Refering back to the example in Fig. 2, each region on the CPWL manifold (middle-left) and in the
input space (left) is colored by ψω , with darker shades indicating higher ψω . Suppose G has a uniform
latent distribution, meaning every region ω has a uniform probability density in the latent space.
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Latent Domain, Z ∈ R2 Data Manifold,
Im(G) ∈ R3 z ∼ U(Z) x = G(z)

Figure 2: The geometry of a continuous piecewise-linear toy generator. For a CPWL generator
G : R2 → R3, we provide analytically computed visualization of the input space partition, i.e.,
arrangement of linear regions (left) and learned CPWL manifold (middle-left). Each piece for this
example, is colored by the piecewise-constant scaling induced by G. Uniform samples from the latent
domain (middle-right) and generated samples (right) are also presented, colored by the density of the
output distribution estimated using a gaussian kernel density estimator in R3. We see that for any
sample z ∈ ω, the estimated density (↑ green) is inversely proportional to the scaling (↓ green) for
region ω.

Under an injectivity assumption for any input space region ω and S = {Aωz+bω∀z ∈ ω}, according
to Theorem 1. in Humayun et al. (2022a), the output density on S, pS(x) ∝ 1

eψω
. Therefore, local

scaling ψω is proportional to the negative log-likelihood of the generative model for any z ∈ ω. We
can validate this by using a kernel density estimator (KDE) to estimate the density of generated
samples on the data manifold from a uniform latent distribution Fig. 2 In fig. 3 for a toy dinosaur
manifold and fig. 32 for a toy mixture of gaussians, we demonstrate how the local scaling is lower
around the modes of the learned distribution and higher for anti-modes.

2.1.2 LOCAL RANK, ν .
The second descriptor we study is the rank of the region-wise slope matrix Aω , which represents the
dimensionality of the manifold learned by a CPWL generator.

Definition 2. For a CPWL manifold produced by generator G, local rank νω is the exponent of the
Shannon entropy of the spectral distribution of the per-region affine slope Aω and can be expressed
as:

νω = exp

(
−

k∑
i

αi log(αi)

)
(3)

where αi =
σi∑k
i σi

+ ϵ. (4)

Here, {σi}i=k
i=0 are non-zero singular values of Aω and ϵ = 10−30 is a constant. The local rank νω

can be shown to be equivalent to the dimensionality of the tangent space on the data manifold at z.

2.1.3 LOCAL COMPLEXITY, δ
An important geometric notion to characterize any manifold locally is the local smoothness of the
manifold. However, smoothness requires computing the hessian of the input-output mapping making
it computationally intractable for large generative models. We therefore consider local complexity
as a proxy for sharpness of the manifold locally for our study. Based on the notion of complexity
for CPWL neural networks (Hanin & Rolnick, 2019), we can define local complexity of a CPWL
generator as the following.

Definition 3. For a CPWL generator with input partition Ω, the local complexity δz for a P -
dimensional neighborhood of radius r around latent vector z is

δz =
∑

∀ω∩Vz ̸=∅

1ω (5)

where Vz = {x ∈ RE : ||B(x− z)||1 < r}. (6)
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Here, B is an orthonormal matrix of size P ×E with P ≤ E, ||.||1 is the ℓ1 norm operator and r is a
radius parameter denoting the size of the locality to compute δ for. Here we consider a P dimensional
neighborhood instead of the full dimensionality of the latent space to reduce computational complexity.
The sum over regions ω ∈ Vz requires computing Ω ∩ Vz which can be computationally intractable
for high dimensions. A proxy for computing the partition for Vz with small r is counting the
number of non-linearities within Vz , since for small r, the one can assume that the non-linearities
do not fold inside Vz , therefore providing an upper bound on the number of regions according to
Zaslavsky’s Theorem (Zaslavsky, 1975). To compute local complexity, we use the method introduced
by Humayun et al. (2024) for general neural networks. In appendix C we discuss the relationships
between the geometric descriptors and present examples for a VAE trained on MNIST.

2.2 EXTENDING BEYOND CONTINUOUS PIECEWISE-LINEAR GENERATORS

Computing jacobians for large networks. For any latent vector z ∈ ω, Aω can be obtained by
computing the input-output jacobian of the network. Computing the singular values of the full
input-output jacobian is significantly expensive for large networks. Therefore, when computing local
scaling and rank we obtain singular values via randomized SVD Halko et al. (2011). First we obtain a
random projection matrix with orthonormal rows W with shape k × n such that WWT = Ik. Here
n is the dimensionality of the outputs generated by the network. We therefore approximate local
scaling as:

ψ
(trunc)
ω =

∑k
i=1 log(σ

(trunc)
i ), where σ(trunc)

i are the non-zero singular values of WAω .

For any ω, if W forms a basis for the range of Aω then σi ≈ σ
(trunc)
i ∀i = 1, 2. . . k [4]. Therefore

WAω would provide us a low-rank approximation of Aω .

In our experiments we have tried two methods to obtain the projection matrix W 1) by obtaining
the eigenvectors for the covariance matrix for a set of 50K randomly generated samples. This was
suggested in Halko et al. (2011). 2) by performing QR decomposition of a randomly initialized
matrix. We see that the performance difference between methods 1) and 2) are negligible therefore
consider the cheaper alternative 2) and consider a fixed pre-computed W with k=120 for all Aω in
our Stable Diffusion experiments.

Networks with smooth activations. While the descriptors are defined for CPWL mappings, modern
generative models employ a mixture of CPWL and non-CPWL operations. For networks with smooth
activation functions or non-piecewise-linear non-linearities, our descriptors are first order Taylor
approximations. For example, Stable Diffusion employs the GeLU activation function for which we
perform the bulk of our experiments in following sections. Smooth activation functions induce a soft
VQ partitioning of the latent space compared to the hard VQ partitioning induced by a CPWL map
Balestriero & Baraniuk (2018b), retaining much of the local linear structure we expect in CPWL
maps. Recent work has also empirically verified the local linearity for a large class of image based
diffusion models Chen et al. (2024) suggesting the reliability of first-order approximations.

3 CHARACTERIZING THE LOCAL GEOMETRY OF PRE-TRAINED MODELS VIA
DESCRIPTORS

In this section, we explore the geometry of pre-trained generative models by characterizing the
latent space to output manifold mapping in terms of the local geometric descriptors mentioned in the
previous section. We are interested in the following questions: i) How does the on manifold local
geometry vary from the off manifold local geometry? ii) How does the local geometry vary across
the input domain?

3.1 ON AND OFF MANIFOLD GEOMETRY FOR DENOISING DIFFUSION PROBABILISTIC
MODELS

Setup. To study the on and off manifold geometry of diffusion models, we train a denoising diffusion
probabilistic model (DDPM) (Ho et al., 2020) on a toy dataset1 to visualize how the local geometry
varies for 1) different noise levels t, and 2) different training iterations.

1https://jumpingrivers.github.io/datasauRus
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ψt=0.22T δt=0.22T νt=0.22T EM[ψt] − EM̄[ψt] EM[δt] − EM̄[δt] EM[νt] − EM̄[νt]
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Figure 3: Local geometric descriptors computed over the input domain of a DDPM trained on samples
from a toy dinosaur manifold M ∈ R2, conditioned on t = 0.22T (left three columns). Denoising
dynamics of local descriptors (right three columns) for different number of training optimization steps.
For a well trained diffusion model, local descriptors can distinguish between on and off manifold
vectors in the input space. See fig. 15 for more.

t/T ∈ [0.5, 1]

Figure 4: Statistical significance of the
difference between local scaling distribu-
tions for in-domain (blue) vs out-of-domain
(red) datasets when conditioned on different
noise levels for an SD Unet trained on the
CelebAHQ dataset. Here T (a, b) denotes a
t-test between local scaling distributions for
dataset a and dataset b.

In Fig. 3-heatmaps we present the local complexity δtx,
local scaling ψt

x and local rank νtx computed for differ-
ent input space vectors x using the DDPM conditioned
on noise levels t. Here T is the highest noise level in
the forward diffusion process. We also present the dif-
ference between the expected descriptor values on and
off the manifold, EM[Φ]− EM̄[Φ],∀Φ ∈ {ψt, δt, νt} at
different training iterations (right). We consider the set of
input vectors within 0.05 units of the training data as on
manifold M and rest as off the manifold M̄.
Observations. The first observation is that with longer
training, the maximum absolute difference between on and
off manifold local geometry maxt{|EM[Φ]−EM̄[Φ]|} in-
creases. Since with more training we see higher distinction
between the on and off manifold geometry, this difference
can be an indicator of learning in diffusion models. We see
that for well trained models, apart from t > 0.17T , ψt

x and
νtx decreases and δtx increases with decreasing t, ∀x ∈ M.

This means, the likelihood on the manifold increases as noise levels are reduced, the smoothness
decreases and the dimensionality of the manifold decreases as well. The quantity EM[Φ]− EM̄[Φ]
is also minimized at t ≈ 0.17T . This indicates that there can exist a noise level t conditioned on
which diffusion model local scaling, rank and complexity have the highest distinction geometrically
between on and off manifold vectors from the input space. In fig. 4, we see statistically significant
difference between the on vs off manifold geometry at smaller t for Stable Diffusion (SD). These
result indicate that the local geometry can allow directly probing which parts of the input space are
on the learned manifold to possibly perform one step denoising or propose novel guidance schedules.

δ ψ ν Anchors

Figure 5: Geometry of the Stable Diffusion latent space. Geometric descriptors (left, middle-left,
middle-right) visualized on a 2D latent space subspace, that passes through the latent representations
of "a fox", "a cat" and "a dog" (right), denoted via markers on the 2D subspace descriptor. In
Appendix, we provide denoised images for different high/low descriptor regions from the subspace.
We see that in the convex hull of the three anchor latent vectors ψ ↑, ν ↓ and δ ↑. Moreover we see
that in the convex hull, the local rank ν undergoes sharp changes which are not visible towards the
edges of the domain.
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3.2 THE LOCAL GEOMETRY OF LATENT DIFFUSION MODELS

In Sec. 3.1, we see that the local geometry in the input domain of a ddpm can be distinctive of its
learned manifold. In this section we study the local geometry of the Stable Diffusion (SD) latent
space, to explore whether there exists a relationship between the local geometry and the domain of
the SD decoder.

Setup. While in Sec. 3.1 we could visualize the whole input domain of the diffusion model, for
SD we can only visualize a subspace of the SD latent space. We use three prompts "a cat", "a dog"
and "a fox" to generate three latent vectors using the SD diffusion model and consider a 2D slice in
the latent space, going through the three denoised latents as our domain to visualize. Note that since
this is a 2D subspace of the latent space, we can expect part of it to be in-domain for the SD decoder,
whereas part of it would be out-of-domain.
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Figure 6: Local Geometry level sets Ima-
genet prompts. Vendi diversity scores and
RAHF Liang et al. (2024) aesthetic scores
computed for images with classifier free guid-
ance (CFG) 7, 5 and 3. Diversity per level set
increases and then decrease with increased lo-
cal scaling. Aesthetic score slightly increases
and then decreases as well with increased
local scaling.

Observations. We observe that 1) In the convex hull
of the three denoised latents used as anchors for the 2D
subspace being visualized, we have higher complexity,
lower rank and higher local scaling. The decoded images
from the convex hull may contain artifacts but are legible
generations. 2) Local rank does not smoothly vary across
the latent space, especially with sharp changes in the local
rank within the convex hull of the anchor latent vectors.
For the lowest rank regions in the convex hull, decoded
images have good fidelity compared to latents with high
uncertainty or complexity. 3) If we move away from the
convex hull, we see that generated images become more
broken and contain heavy artifacts, indicating that such
regions are out-of-domain for the SD decoder. However,
we see that the local scaling is lower in these regions
compared to the convex hull.

4 SECRETS THAT YOUR MANIFOLDS HOLD

Visually complex images have higher local scaling

We selected 20K samples from Imagenet with resolution
higher or equal to 512 × 512, encode the samples using
the SD encoder, and compute the local descriptors for the
SD decoder. In Appendix Fig. 17 each column represents
a local scaling level set, with the ψ for columns increasing
from left to right. Recall that local scaling is proportional to the negative log-likelihood. In Appendix
Fig. 17, we can see that for lower local scaling images we have more modal features in the images,
i.e., the samples have less background elements and are focused on the subject corresponding to the
Imagenet class.

For images with higher local complexity, we see more qualitatively outlier characteristics and
higher visual complexity. For images with higher local rank in Appendix Fig. 19, we see that the
backgrounds have higher frequency elements compared to lower rank images. For higher rank images,

contrast reduction fog gaussian blur glass blur

pixelate zoom blur elastic transform jpeg compression

saturate brightness spatter frost

2.5 1.8 1.1 0.4
1e2

gaussian noise

2.5 1.8 1.1 0.4
1e2

impulse noise

2.5 1.8 1.1 0.4
1e2

shot noise

2.5 1.8 1.1 0.4
1e2

speckle noise

severity 0 severity 1 severity 2 severity 3 severity 4 severity 5

Figure 7: Local scaling is
sensitive to image corruptions.
We use 16 corruptions from
(Hendrycks & Dietterich, 2019)
to corrupt 10K imagenet images
and compute the local geometry
of the SD decoder. We see that SD
local geometry is sensitive to cor-
ruptions, i.e., aesthetic changes
to in-domain images (here Ima-
genet).
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the dimensionality of the manifold is higher locally, therefore allowing more noise dimensions on the
manifold. These results indicate that the local geometry is indeed sensitive to qualitative variations
such as visual complexity of Imagenet images.

Noise corruptions increase and blurring corruptions decrease local scaling

Fig. 7 illustrates the effect of applying 16 different image distortions (originally proposed in
(Hendrycks & Dietterich, 2019)) to 10k ImageNet images. We consider Imagenet as in-domain
for Stable Diffusion and encode them to the SD latent space to compute the geometric descriptors
for the SD decoder. Samples are uniformly distributed over its classes. The plot shows the local
scaling distribution at 6 increasing levels of severity ∈ {0, 1, 2, 3, 4, 5}, with zero corresponding to no
corruptions applied. We observe that corruptions that are associated with reduction of spectral band,
and/or reduction to the color range result in a reduction to the local scaling therefore the negative
log-likelihood. We conjecture that this is due to the averaging effect of such distortions which move
the corrupted images close to the mean of all images. Conversely, distortions known to be associated
with the introduction of high-frequency artifacts are observed to produce an increase in local scaling
therefore uncertainty moving the images away from the mean. The results clearly indicate that the
local geometry is sensitive to aesthetic changes to images introduced via most of the 16 corruptions.

Local Scaling, ψ

0 10 20 30 40 50

120

110

100

90

Memorized Prompts
COCO Prompts

10 20 30 40 50

50

45

40

Local Rank, ν

0 10 20 30 40 50

118.8

119.0

119.2

119.4

119.6

119.8

Memorized Prompts
COCO Prompts

30 35 40 45 50
118.8

119.0

119.2

119.4

119.6

119.8
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0.010

0.015

0.020

0.025 Guidance Scale
0
1
3

5
7.5
9

Denoising steps

Figure 8: Local geometry of denoising trajectories. Geometric descriptors computed for the SD
decoder unconditionally, during 50 stable diffusion denoising steps, for (top) 100 COCO and 100
memorized prompts (Wen et al., 2024) with guidance scale 7.5 and (bottom) 100 COCO prompts
with varying guidance scales. For each prompt or guidance scale, we start from the same seeds.
Shaded region represents 95% confidence interval. We see that the local geometry trajectories are
discriminative of memorization, as well as increased alignment when stronger classifier free guidance
is used.

Memorized and aligned denoising trajectories are locally contracted and smooth.

Classifier-free-guidance is a method for increasing the alignment between the conditioning text-
prompt and generated image Rombach et al. (2021). In Fig. 8-bottom, we see that for higher classifier
free guidance scales during denoising, the avg. local scaling is lower, avg. local rank is lower and the
avg. local complexity is higher. This indicates that for more conditionally aligned images obtained
via classifier-free-guidance of the SD diffusion Unet, the decoder uncertainty is also lower especially
during the final denoising steps. We also compute the local geometric descriptors for denoising
trajectories conditioned on memorized prompts Wen et al. (2024) vs coco captions (Fig.8-top). We
see that the mean local geometry is significantly different for denoising trajectories of 100 memorized
prompts vs 100 random coco prompts. We also see that for higher guidance scales local rank ν is ↓
and local complexity δ is ↓ as well.

Connections with generation diversity and human preference scores.

In fig. 6 we present Vendi score Friedman & Dieng (2023) and human preference score Liang et al.
(2024) (higher is better) aggregates for 50K real and generated Imagenet images with classifier free
guidance scales of 7, 5 and 3. The images are sorted in increasing local scaling ψ bins from left
to right. We see that for local scaling level sets from the lowest to the middle bins, we have an
increase in the diversity of images per bin. For the highest local scaling bins, we get images from
the highest uncertainty modes, i.e., the anti-modes, which result in a drop in the diversity of images
(see Appendix fig. 32 for a toy illustration). We observe similar trends in diversity for an Imagenet

8



Published as a conference paper at ICLR 2025

trained Diffusion Transformer (DiT) Peebles & Xie (2023) discussed in Appendix appendix D.1. For
generated images we see human preference score marginally increasing from left to right. For the
highest local scaling bins, especially for lower CFG, we see a drop in the human preference scores.
For real images, human preference scores have a significantly different trend compared to generated
images. Note that the RAHF human preference model Liang et al. (2024) is trained on synthetic
images and therefore might be less reliable for real images.

5 GUIDING GENERATION USING GEOMETRY AS A REWARD

In the previous sections, we have presented qualitative and quantitative evidence, establishing the
connection between geometric descriptors and downstream generation. Among the three descriptors
we find that local complexity has the highest sensitivity to aesthetic changes in images due to
corruptions (fig. 7), and correlates with visual complexity (fig. 17). We also observe in fig. 6 higher
local scaling level sets for samples generated using a classifier free guidance scale of 7.5, have higher
diversity while maintaining higher predicted human preference scores. Based on these results, we
wish to explore whether local scaling can be used to guide generation.

L
oc

al
Sc

al
in

g

0 2 4 6 8
200

180

160

140

120

100

No guidance
800k
400k
200k
50k

V
en

di
Sc

or
e

0 2 4 6 8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

No guidance
800k
400k
200k
50k

H
um

.P
re

f.
Sc

or
e

0 2 4 6 8

0.65

0.70

0.75

0.80

0.85

0.90

No guidance
800k
400k
200k
50k

Pre-guidance local scaling level set →

Figure 9: Guidance via reward models trained with increasing number
of training samples. We observe that even with when only 50K samples
are used in training, reward models can increase generation diversity, local
scaling and human preference scores. Here we present the change of vendi
score, average local scaling and average aesthetic score for pre-guidance
local scaling level sets increasing from left to right on the x-axis.

Recently proposed
instance-level uni-
versal guidance
method (Bansal et al.,
2023), can effectively
influence the latents in
the reverse process of
a latent diffusion mod-
els to produce desired
changes. Directly
using local scaling
to guide generation
using such methods,
require calculating the
input-output Hessian
since local scaling is
a first-order measure
that requires comput-

ing the input-output jacobian. To avoid computing the Hessian we train a reward model as a proxy
and use the reward model gradients directly. Instead of training on continuous local scaling values in
a regression task, we transform it into a local scaling level set classification task. We discretize the
range of local scaling values into 5 bins and use the bin indices as training labels.

Data preparation. We obtain training data for the reward model by i) sampling N images from
Imagenet and encoding them to the Stable Diffusion latent space ii) adding noise using the forward
diffusion process up to randomly chosen noise levels iii) for each latent computing the local scaling
descriptor.

To evaluate the performance of the reward model and dependency of the reward model on the number
of training samples, we train multiple models forN = 50K, 200K, 400K, 800K . For evaluation, we
generate 2560 samples using the dreambooth live subject prompt templates Ruiz et al. (2023), with
Imagewoof Howard (2019) dogs as subjects. While Imagewoof dog classes are present in Imagenet
therefore possibly in the training data, the dreambooth prompt templates contain a variety of settings
that are not generally present in Imagenet, e.g., ‘a <subject> on top of pink fabric’.

Evaluation Setup. We first sample Stable diffusion without any reward guidance and with classifier-
free guidance of 7.5 to obtain baseline samples. We partition the range of local scaling values obtained
for the baseline samples into n = 10 bins fig. 9, where each bin contains images from a local scaling
level set. Following that we use the same seed and prompts as the baseline samples to generate
images using reward guidance to increase local scaling. For each bin or pre-guidance local scaling
level set, we compare between the baseline samples and corresponding reward guided generations
in the following three axes: i) change of local scaling ii) change of vendi (diversity) score iii) the
change of human preference score (RAHF Liang et al. (2024) aesthetic score).
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Figure 10: Reward guidance on stable diffusion. Local scaling reward guidance increases from left
to right in each picture (left-panel) and decreases left to right in each picture (right-panel), with the
first image showing no reward guidance. We observe maximizing the reward leads to sharper details,
improved sharpness and contrast, and higher diversity in the images. Decreasing the local scaling
leads to minimized uncertainty, resulting in a noticeable blurring effect and loss of details especially
in the background of the image.

Results. In fig. 9, we present the mean local scaling per bin with 95% confidence interval. Here the
blue line represents the mean pre-guidance local scaling values, increasing from left to right. In fig. 9,
we present vendi scores and average predicted human preference scores. For any bin, we present
results for the reward guidance scale that maximizes the local scaling. We see that even for a model
trained with 50K samples, we can have a considerable increase in the local scaling, diversity and
aesthetic score for most of the bins. Changes in local scaling, vendi and aesthetic scores are higher
for the lower pre-guidance local scaling level set bins compared to the higher pre-guidance local
scaling level set bins.

Our experiments reveal that maximizing local scaling in the manifold of a stable diffusion model
directly correlates with adding texture to the generated images. Moreover, this approach reduces
the likelihood on the manifold for single images. By optimizing the local scaling descriptor, the
generative model is guided towards producing more varied and textured outputs.

This approach is notable because traditional methods for diversity guidance generally function at the
distribution level. Our method, however, focuses on maximizing the inherent diversity as preserved
by the model within its learned manifold, effectively steering the generated images towards the
extremities of the distribution. This instance-level intervention allows for a more detailed and precise
enhancement of diversity, presenting a novel approach to guiding generative models.

As seen from Fig. 10 (left-panel) maximizing the reward results in added details in form of sharpening
the image, adding texture and contrast. We also observe that if we move towards minimizing the
reward, the images tend to loose fine-grained details as seen in Fig. 10 (right-panel). Please refer to
the supplementary material for more visual results.

6 CONCLUSION & FUTURE DIRECTIONS

In this paper, we present empirical evidence that the local geometric descriptors – local scaling
(ψ), local rank (ν) and local complexity (δ) - can effectively characterize the local geometry and
distinguish between downstream qualitative aspects of generated samples such as generation quality,
aesthetics, diversity, and memorization. Such descriptors only utilize the model’s architecture and
weights to characterize the behavior of generative models. We acknowledge two main limitations that
warrant further investigation. First, the geometry of the learned manifold is inherently influenced
by the training dynamics of the model. A deeper understanding of this relationship is needed to
fully leverage geometric analysis for models. Second, the computational complexity of our method,
particularly the calculation of the Jacobian matrix, may pose a practical challenge, especially for
large-scale models. Future work should explore more efficient algorithms or approximations to
address this limitation.
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A COMPUTATION TIMES FOR LOCAL DESCRIPTORS

The computation times for the local scaling and local rank computation (since both require one
randomized SVD computation for one latent vector) ends up being 3929s for 1000 samples. For local
complexity we require 113s for 1000 samples. All the estimates are for a JAX implementation of
Stable Diffusion on TPUv3.

Note that to train a reward model, we require the descriptors to be computed only once for each
pre-trained model. If we compute the local scaling for 100k samples we require 173.1 TPU v3
hours which is equivalent to 54.58 V100 hours (according to Appendix A.3 Dhariwal & Nichol
(2021)). Compared to 79,000 A100 hours required for Stable Diffusion training2, 24000 hours with
enterprise level optimization3, the computation required for the descriptors and reward model training
is significantly small. The computation time for the local descriptors can be further reduced by using
a smaller k for our projection matrix W , or by using non-jacobian based methods, e.g., estimating
the local scaling by measuring the change of volume for a unit norm ℓ1-ball in the input space. We
leave exploration of these directions for future work.

B RELATED WORKS

Local geometry pre-diffusion. Early applications of the local geometry of generative models
involved improving the generation performance and/or utility of generative models via geometry
inspired methods. For example, in Rifai et al. (2011) the authors proposed regularizing the contraction
of the local geometry to learn better representations in autoencoders trained on MNIST and CIFAR10.
The regularization penalty is employed via the norm of the input-output jacobian in Rifai et al. (2011),
is an upper bound for local scaling presented in our paper. In Arvanitidis et al. (2017) the authors
provided visualizations on the curvature of pre-trained VAE latent spaces and proposed using an
auxiliary variance estimator neural network to regularize the latent space geometry during generation.
In Kuhnel et al. (2018) the authors perform latent space statistical inference problems, e.g., maximum
likelihood inference, by training a separate neural network to approximate the Riemannian metric. In
Humayun et al. (2022a) the authors proposed a novel latent space sampling distribution based on
the latent space geometry that allows uniformly sampling the learned data manifold of continuous-
piecewise affine generators. The authors showed downstream benefits with fairness and diversity for
such latent space samplers. While most of these methods discuss pre-diffusion architectures, their
results are early demonstrations of how the local geometry can affect downstream generation. also
employ auxiliary Neural Networks to model an intrinsic property of a pre-trained generator, similar
to how we propose using a reward model for Stable Diffusion.

Local intrinsic dimensionality of diffusion models. The local geometry of diffusion models and
possible applications have garnered significant interest in recent years. In Stanczuk et al. (2022)
the authors propose a method to compute the intrinsic dimensionality of diffusion models using
the assumption that the score field is perpendicular to the data manifold. For any vector x on
the data manifold, the method requires computing the dimensionality of the score field around x
and subtracting it from the ambient dimension. To do that, the authors perform one step of the
forward diffusion process k times for x, denoise the k noisy samples using the diffusion model and
compute the rank of the data matrix containing denoised samples to obtain the intrinsic dimensionality.
Compared to this method, we compute the dimensionality directly via a random estimation of the
input-output jacobian SVD. We do not require any assumption on the score function vector field being
perpendicular to the data manifold, which may not hold for a diffusion model that is not optimally
trained or highly complex training datasets like LAION.

In Kamkari et al. (2024) the authors compute rank using the method proposed in Stanczuk et al. (2022)
and show that local intrinsic dimensionality can be used for out-of-distribution (OOD) detection. This
is analogous to our analysis in Sec 3 on the local geometry on or off the manifold. We can see that the
intuition authors provided in Kamkari et al. (2024) for diffusion models trained on smaller models
and datasets e.g., FMNIST, MNIST, translate to larger scale models like Stable Diffusion trained on
LAION as we have presented fig. 5, fig. 17 and Sec 4. Especially in fig. 7, we show that creating OOD
samples with corruptions on Imagenet data (in-distribution), we can have an increase or decrease

2https://www.mosaicml.com/blog/training-stable-diffusion-from-scratch-costs-160k
3https://www.databricks.com/blog/stable-diffusion-2
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in negative-log likelihood (estimated via local scaling), with decrease for blurring corruptions and
increase in noising corruptions.

Concurrent work Kamkari et al. (2024) has also shown the relationship between the intrinsic dimen-
sionality (local rank) of Stable Diffusion scale models and the texture/visual complexity of generated
images. We believe our analysis is much more holistic with three different geometric properties being
measured compared to only local dimensinality. We i) show quantitatively how diversity measured
via vendi score is higher for higher local scaling and rank values (fig. 6). We have explored how
rank and scaling evolves continuously across the latent space in fig. 5. We have presented how the
geometry distribution varies as we continually perturb images via noise or blurring operations fig. 7
And finally in Sec 5 we have presented a method to guide generation using the local geometry to
obtain downstream generation benefits.

Misc. Apart from the aforementioned works, Kadkhodaie et al. (2023) show that the emergence of
generalization in diffusion models – when two networks separately trained on the same data learn
the same mapping – can be attributed to the eigenspectrum and eigenvectors of the input-output
jacobian. While we do not study the training dynamics of the local geometric descriptors in our
paper, Kadkhodaie et al. (2023) suggests that the local geometry can be an important indicator of
memorization and generalization emergence in diffusion models. In Manor & Michaeli (2023) the
authors use the posterior principal components of a denoiser for uncertainty quantification. This
work suggests that components with larger eigenvalues result in larger uncertainty which is directly
related to the local scaling descriptors as it measures the product of non-zero singular values. While
in Manor & Michaeli (2023) the authors propose using it for only a single image denoiser, we show
that it generalizes for any diffusion model including Stable Diffusion scale text-to-image diffusion
models.

C CORRELATIONS BETWEEN THE THREE DESCRIPTORS

Local scaling characterizes the change of volume by the affine slope Aω going from the latent space
to the data manifold. Local rank characterizes the number of dimensions retained on the manifold
after the network locally scales the latent space. Both local rank and scaling quantify first order
properties of the CPWL operator. Local complexity approximates the ‘number of unique affine
maps’ within a given neighborhood Humayun et al. (2024) by computing the number of CPWL
knots intersecting an ℓ1 ball in the input/latent space. Therefore local complexity is a measure of
‘un-smoothness’ and quantifies local second-order properties of a CPWL operator.

Correlations between local scaling ψ and local rank ν. By definition, local scaling and local rank
are correlated, since both characterize the change of volume by the network input-output map at any
input space linear region – also evident in eq. (2) and eq. (3). Local scaling is also upper bounded by
local rank, ψω ≤ σνω

0 where σ0 is the largest singular value of Aω . The correlation is evident for our
low dimensional DDPM setting presented in fig. 3, local rank and local scaling are highly correlated
in their spatial distribution. There are indications suggesting that the correlations persists throughout
training as can be seen in fig. 3 rightmost column top and bottom. However in fig. 5, we can see that
in the high-dimensional Stable Diffusion latent space, local scaling and rank are correlated but local
rank has sharper changes spatially compared to local scaling.

Correlations between local complexity δ and rank ν. There also exist correlations between
local complexity and local rank due to the continuity of CPWL maps – between two neighboring
linear regions ω1 and ω2, the corresponding slope matrices Aω1 and Aω2 differ by at most one row.
Therefore between two neighboring regions ω1 and ω2, |νω1

− νω2
| <= 1. Informally, the local

rank in a neighborhood V is lower bounded by the number of non-linearities in neighborhood V .
This is evident in the empirical results presented in fig. 3 and fig. 5. In both figures, for input space
neighborhoods with higher local complexity, we see a decrease in local rank. However, we do not
observe sharp changes in local complexity as we observe in local rank in fig. 5. In fig. 3 we see that
local rank is more discriminative of the data manifold compared to local complexity. Their training
and denoising dynamics differ significantly as seen in fig. 3 rightmost column.

Qualitative and quantitative results on correlations. We train a beta-VAE unconditionally on
MNIST and present in Fig. 11 samples from increasing local descriptor level sets from left to right
along the columns. In Fig. 12, we present joint distributions of local scaling, complexity, rank and
mean squared reconstruction error for training and test samples. We see that while local scaling,
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complexity and rank have some linear correlation, the classwise distribution in fig. 12 is very different
between the three. We also present in fig. 13 the vendi score for increasing local scaling level sets
and evidence that the population means for the descriptors don’t follow the same pattern between
sub-populations.
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Figure 11: Joint distributions for local scaling and MSE, local rank and MSE, local complexity and
MSE, local scaling and local complexity, and local scaling and local rank. We observe that local
complexity is linearly correlated wth MSE, with higher complexity images incurring higher error.
Local scaling, rank and complexity have correlations between them as well.
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Figure 12: Level sets of data manifold descriptors for a Beta-VAE trained unconditionally on MNIST.
From left to right, we present training samples (top row) and generated samples (bottom row)
for linearly increasing level sets of local scaling (ψ) from [−80,−42], local complexity (δ) from
[0, 120] and local rank (ν) from [1.5, 5.5]. Not all level sets had an equal number of samples from
training/generated distributions. We see that for higher ψ, we have more outlier samples whereas
for lower ψ we have modal samples. For increasing δ we see that the quality of generated samples
decreases and the diversity of samples is reduced as well. For higher ν digits become more regularly
shaped.
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Figure 13: (Left panel) Vendi score (Friedman & Dieng, 2023) calculated for samples from different
local descriptor level sets of a Beta-VAE. We take upto 150 samples from each level set and compute
vendi score seperately for the MNIST train dataset, test dataset and generated samples. (Right
panel) Sub-population differences of local descriptors in training data. We see that the order of
sub-population means for the three classes, are not the same for all three descriptors.

D ADDITIONAL EXPERIMENTS

D.1 LOCAL SCALING FOR TRANSFORMER BASED DIFFUSION MODEL

Since we are based on the CPWL formulation of NNs, our framework would generalize to models
of any scale and any architecture with CPWL non-linearities. Empirically we have shown it to
generalize for non-CPWL architectures like Stable Diffusion v1.4 and DDPM that employs non
CPWL non-linearities such as attention, GeLU and much more. We have performed additional
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experiments with a DiT-XL Peebles & Xie (2023) trained on Imagenet-256. For the DiT we compute
the descriptors for the transformer network, conditioned on noise level t = 0 , i.e., zero noise level.
We generate 5120 images conditioned on Imagewoof Howard (2019) classes and present in fig. 14,
increasing local scaling level sets from left to right. We see that similar to fig. 17 from the, DiT
exhibits a qualitative correlation between visual complexity and local scaling. For additional analysis
we repeat the Stable Diffusion experiments on the relation between diversity and local scaling for
DiT. We see that similar to Stable Diffusion, for increasing local scaling level sets, the diversity of
images increase and then drop for the highest local scaling level sets.
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Figure 14: Left: Vendi score and membership counts for increasing local scaling level sets, computed
for a DiT transformer. We see that similar to Stable Diffusion, local scaling increases from lower
to higher local scaling level sets, then drops for very high local scaling level sets. Right: Generated
samples from each level set in the left panel. Sample sets from higher local scaling level sets, tend to
be more diverse.
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Figure 15: Local geometric descriptors computed over the input domain of a pre-trained toy
diffusion model trained to produce samples from a dinosaur manifold M ∈ R2. Descriptors are
computed by conditioning the diffusion model on noise level t. We consider the set of input vectors
within 0.05 units of the training data as on manifold M and rest as off the manifold M̄. We present the
difference between the expected descriptor values on and off the manifold, EM[Φ]− EM̄[Φ],∀Φ ∈
{ψt, δt, νt} at different training iterations (right). We also present the descriptor computed over
[−6, 6]2 for different noise levels t after 125000 training iterations (rest). We observe that ψt is
lower, δt is higher and νt is lower on the manifold than off the target manifold for lower noise levels,
especially after the model is considerably trained. This indicates that for well trained diffusion model,
i.e., learned manifold M̂ ≈ M, local descriptors can distinguish between on and off manifold vectors
in the input space.

D.2 VAE TRAINING DYNAMICS FOR MNIST

Setup. We train a Variational Auto Encoder (VAE) on the MNIST dataset with width 128
and depth 5 for both encoder and decoder. We add Gaussian noise with standard deviation
{0, 0.0001, 0.001, 0.01, 0.1} to the training data. Initialization was not kept fixed. In Fig. 16, we
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present plots showing the training dynamics of local complexity and scaling, averaged over all test
dataset points from MNIST.
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Figure 16: Training dynamics of geometric
descriptors for a VAE trained on MNIST
with additive noise. As training progresses
local complexity δ increases and local scaling
ψ decreases suggesting an increase in expres-
sivity and decrease in uncertainty on the data
manifold. At latter time-steps, ψ ↓ and δ ↑
if noise std. is increased.

Observations. By increasing the noise we control the puffiness of the target manifold. We observe
that as the noise standard deviation is increased there is 1) increase in δ indicating the manifold
becomes less smooth 2) decrease in local scaling indicating that the uncertainty decreases. We can
also observe an initial dip in both local complexity and local scaling. This is similar to what was
observed for discriminative models in (Humayun et al., 2024) where a double descent behavior
was reported in the local complexity training dynamics of classification models. Based on these
results, contrary to the observation in (Humayun et al., 2024), generative models do not have a double
descent in local complexity however we do observe a double ascent in local scaling. Our observations
suggest that the training dynamics need to be taken into account, when comparing the local manifold
geometry between two separately trained models.

E ENTROPY DIFFERENCE BETWEEN TWO REGIONS

Suppose we have an injective G : Z → X mapping learned by a CPWL generator G. Any linear
region ω in the latent space CPWL partition Ω is mapped to a unique region on the output manifold.
We define S as:

S = G(z)∀z ∈ ω = Aωz +bω ∀z ∈ ω

The change of volume from ω → S is
√
det(Aω

TAω). Therefore for any latent z and output
x = G(z):

pG(x) =
∑

∀ω∈Ω
pZ(z)√

det(Aω
TAω)

⊮z∈ω

For any z1 ∈ ω1 the sum from the above equation can be ignored, since for all other regions the value
would be zero.

Taking negative log and expectation on both sides the conditional entropy becomes

H(pG(x1); z ∈ ω1) = H(pZ(z1)) + log(
√
det(Aω1

TAω1))

For a uniform latent distribution and two regions ω1 and ω2, substituting the second term above with
ψω1

H(pG(x1); z1 ∈ ω1) − H(pG(x2); z2 ∈ ω2) = ψω1
− ψω2

F BROADER IMPACT STATEMENT

Our proposed framework for assessing and guiding generative models through manifold geometry
offers several potential benefits to society. By providing a more objective and automated approach,
we can significantly reduce the cost and time associated with human evaluation, making the auditing
and mitigation of biases in large-scale models more accessible and efficient. This has implications
for promoting fairness and equity in AI systems, particularly in domains where biases can have
significant societal consequences.

Furthermore, our approach can empower researchers and practitioners to better understand the
relationship between the geometry of learned representations and various aspects of model behavior,
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such as generation quality, diversity, and bias. This deeper understanding can inform the development
of more robust and reliable generative models, leading to advancements in various fields, including
art, design, healthcare, and education.

However, we recognize that our approach is not without limitations and potential risks. While it can
be a valuable tool for identifying and mitigating biases, it should not and cannot fully replace human
annotators, especially in high-risk domains where human judgment and contextual understanding are
crucial. Our method focuses on reducing costs and improving the auditing process, but it should not
be used as a standalone approach.

Moreover, the increased automation enabled by our approach raises concerns about the potential
displacement of human annotators, leading to job losses and economic disruptions. While our method
addresses some aspects of model evaluation, it is not comprehensive and cannot assess all facets of
model behavior. Therefore, it should be used with caution and in conjunction with other evaluation
methods, including human expertise.

G EXTRA FIGURES

Increasing ψ

Figure 17: Local Scaling is sensitive to natural image variations. ImageNet images ordered along
the columns (from left to right), with increasing local scaling ψ of the Stable Diffusion decoder
learned manifold. We observe that ImageNet samples with lower values of ψ contain simpler
backgrounds with modal representation of the object category. Conversely for higher ψ we have
increasing diversity both in background and foreground features.
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Figure 18: Images generated during 50 diffusion denoising steps for top to bottom, COCO prompts
generated with guidance scale 1,5,9 and memorized prompts generated with guidance scale 7.5.
Higher guidance scale images, as well as memorized images, tend to resolve faster during the
denoising process.
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Low local rank, ν ↓ High local rank, ν ↑

Figure 19: Influence of the local rank descriptor value on overall image perception. Images with
the lowest (left) and highest (right) local rank ν from a set of 20000 randomly sampled ImageNet
dataset samples. Low rank images contain simpler textures for every class compared to the high
rank samples. This is because for images with higher local rank, the learned manifold is higher
dimensional therefore allowing higher independent degrees of variations locally for the generated
images.

Low local scaling, ψ ↓ High local scaling, ψ ↑

Figure 20: Influence of the local scaling descriptor.Imagenet images with high and low local scaling
for the stable diffusion decoder. Each coordinate in both left and right image grids, correspond to the
same imagenet class.
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Figure 21: 2D Data Manifold Geometry, A toy Example. After 11395 optimization steps. Geometry
of a diffusion model input-output mapping, trained to on a toy 2D distribution. Local scaling lower
around data manifold, local complexity higher around manifold, rank is lower around manifold as
well. t=50 has considerably low variance in local scaling showing that final timestep has a diminishing
change of density.
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Figure 22: Reward guidance on stable diffusion (maximizing the reward).We observe a significant
increase in both background detail and artifact diversity within the generated images.

a
A

us
tr

al
ia

n
te

rr
ie

rw
ith

a
ci

ty
in

th
e

ba
ck

gr
ou

nd

ρ = 0 ρ = 1 ρ = 2 ρ = 3

a
A

us
tr

al
ia

n
te

rr
ie

rw
ith

a
ci

ty
in

th
e

ba
ck

gr
ou

nd

ρ = 0 ρ = −1 ρ = −3 ρ = −5

Figure 23: Controlling mage diversity with local scaling. Using Reward guidance to increase (top
row) and decrease diversity (bottom row) using same initial seed.
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Figure 24: Controlling mage diversity with local scaling.Using Reward guidance to increase (top
row) and decrease diversity (bottom row) using same initial seed.

Figure 25: Decoded images (right) using 20 latents (left) from the 2D subspace, with highest ψ. Each
image bounding box (right) is color coded according to the corresponding latent vector (left).
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Figure 26: Decoded images (right) using 20 latents (left) from the 2D subspace, with lowest ψ.
Each image bounding box (right) is color coded according to the corresponding latent vector (left).
Selected latents lie outside the domain of the VQGAN latent space.

Figure 27: Decoded images (right) using 20 latents (left) from the 2D subspace, with highest ν.
Each image bounding box (right) is color coded according to the corresponding latent vector (left).
Selected latents lie outside the domain of the VQGAN latent space.
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Figure 28: Decoded images (right) using 20 latents (left) from the 2D subspace, with lowest ν. Each
image bounding box (right) is color coded according to the corresponding latent vector (left).

Figure 29: Decoded images (right) using 20 latents (left) from the 2D subspace, with highest δ. Each
image bounding box (right) is color coded according to the corresponding latent vector (left).

Figure 30: Decoded images (right) using 20 latents (left) from the 2D subspace, with lowest δ. Each
image bounding box (right) is color coded according to the corresponding latent vector (left).
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Figure 31: UMAP visualization of the aggregated local geometry descriptors (local smoothness,
local rank, and local complexity). This reveals distinct, non-overlapping clusters, clearly separating
the Imagenet, Imagenet Corrupted with Gaussian Noise, and Chest X-ray datasets. This visual
evidence underscores the effectiveness of aggregating the descriptors to capture unique patterns
within each dataset, demonstrating its ability to provide a meaningful and interpretable representation
of the underlying data

Training Samples Generated Samples Local scaling, ψt=.18T

Figure 32: Highest local scaling level sets are anti-modes. In all of our experiments, we have
observed that samples from the highest local scaling level sets have lower vendi score. We repeat
the experiments from Fig. 15 for a mixture of nine gaussians. We see that the regions between the
gaussian modes inside the domain of the data, i.e., the anti-modes, have higher local scaling, with the
highest local scaling values at the center of the anti-modes.
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