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ABSTRACT

Disentangled representation learning aims to learn a low dimensional representation
of data where each dimension corresponds to one underlying generative factor.
Due to the causal relationships between generative factors in real-world situations,
causal disentangled representation learning has received widespread attention. In
this paper, we first propose a variant of autoregressive flows, called causal flows,
which incorporate true causal structure of generative factors into the flows. Then,
we design a new VAE model based on causal flows named Causal Flows Variational
Autoencoders (CauF-VAE) to learn causally disentangled representations. We
provide a theoretical analysis of the disentanglement identifiability of CauF-VAE by
incorporating supervised information on the ground-truth factors. The performance
of CauF-VAE is evaluated on both synthetic and real datasets, showing its capability
of achieving causal disentanglement and performing intervention experiments.
Moreover, CauF-VAE exhibits remarkable performance on downstream tasks and
has the potential to learn true causal structure among factors.

1 INTRODUCTION

Representation learning aims to create data representations that simplify information extraction for
constructing classifiers or predictors (Bengio et al., 2013). Disentangled representation learning is
an important step towards better representation learning. It assumes that high dimensional data
is generated by low dimensional, semantically meaningful factors, called ground-truth factors.
Thus, disentangled representation learning refers to learning a representation where changes in
one dimension are caused by only one factor of variation in the data (Locatello et al., 2019a). The
common framework for obtaining disentangled representations is Variational Autoencoders (VAE)
(Kingma & Welling, 2013).

Recently, many unsupervised methods of learning disentangled representations with VAE have been
proposed, mainly by imposing independent constraints on the posterior or aggregate posterior of
latent variables z through KL divergence (Higgins et al., 2017; Burgess et al., 2018; Kim & Mnih,
2018; Chen et al., 2018; Kumar et al., 2017; Kim et al., 2019; Dupont, 2018). Later, Locatello et al.
(2019a) proposed that it is almost impossible to achieve disentanglement in an unsupervised manner
without inductive bias. Therefore, some weakly supervised or supervised methods were proposed
(Locatello et al., 2019b; Shen et al., 2022; Yang et al., 2021; Khemakhem et al., 2020a; Locatello
et al., 2020). However, most of them assumed that the generative factors are independent of each
other, while in the real world, the generative factors of interest are likely to have causal relationships
with each other. At this point, the above models can’t achieve disentanglement of causally related
factors (Shen et al., 2022; Träuble et al., 2021). To address this, recent state-of-the-art methods have
focused on causal disentangled representation learning (Shen et al., 2022; Yang et al., 2021; Suter
et al., 2019; Reddy et al., 2022; An et al., 2023; Brehmer et al., 2022; Buchholz et al., 2023; Lippe
et al., 2022; Seigal et al., 2022). However, many of these methods either rely on existing Structural
Causal Models (SCMs) to introduce causal relationships or focus solely on modeling the causal
structure of generative factors in specific scenarios.

Normalizing flows (Rezende & Mohamed, 2015)), particularly autoregressive flows (Huang et al.,
2018), have improved the inference capability of VAEs (Kingma et al., 2016) by approximating the
true posterior distribution more closely. Notably, autoregressive flows have shown promise in learning
causal orders (Khemakhem et al., 2021). Inspired by this application, we develop causal flows that
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can impose causal structure on the variables. In essence, the causal flows incorporate information
about how ground-truth factors are causally related. We then integrate causal flows into the VAE to
help learn the disentangled representations.

In this paper, we first introduce causal flows and then propose a causal disentanglement model, called
CauF-VAE, which combines VAE with causal flows to learn causally disentangled representations.
After encoding the input data by VAE’s encoder and processing it through causal flows, we obtain the
causally disentangled representations, which will be fed into the decoder for the reconstruction of the
original image. Our model avoids imposing restrictions on the causal structure among generative
factors, enabling a more accurate and widely applicable modeling of real-world scenarios. To
theoretically guarantee causal disentanglement, we incorporate supervised information about the
underlying factors.

Our main results are summarized as follows:

1) We introduce causal flows, the improved autoregressive flows that integrate causal structure
information of ground-truth factors.

2) We propose a new VAE model, Causal Flows Variational Autoencoders(CauF-VAE), which
employs the causal flows to learn causally disentangled representations.

3) We theoretically prove that CauF-VAE satisfies disentanglement identifiability1.

4) We empirically show that CauF-VAE can achieve causal disentanglement and perform
intervention experiments on both synthetic and real datasets. Our model exhibits excellent
performance in terms of sampling efficiency and distributional robustness in downstream
tasks, and further experiments indicate its potential to learn true causal structure.

2 BACKGROUND

2.1 VARIATIONAL AUTOENCODERS

Let {xj}Nj=1 denote i.i.d training data, x ∈ Rn be the observed variables and z ∈ Rd be the latent
variables. The dataset X has an empirical data distribution denoted as qX . The generative model
defined over x and z is pθ(x, z) = p(z)pθ(x|z), where θ is the parameter of the decoder. Typically,
p(z) = N (0, I), pθ(x|z) = N (fθ(z), σ

2I), where fθ(z) is a neural network. Then, the marginal
likelihood pθ(x) =

∫
pθ(x, z)dz is intractable to maximize. Therefore, VAE (Kingma & Welling,

2013) introduces a parametric inference model qϕ(z|x) = N (µϕ(x), diag(σ2
ϕ(x)), also called an

encoder or a recognition model, to obtain the variational lower bound on the marginal log-likelihood,
i.e., the Evidence Lower BOund (ELBO):

ELBO(ϕ,θ) = EqX [log pθ(x)−DKL(qϕ(z|x)∥pθ(z|x))]
= EqX

[
Eqϕ(z|x)(log pθ(x, z)− log qϕ(z|x))

]
= EqX

[
Eqϕ(z|x)log pθ(x|z)−DKL(qϕ(z|x)∥p(z))

]
(1)

As can be seen from equation (1), maximizing L(x,ϕ,θ) will simultaneously maximize log pθ(x)
and minimize DKL(qϕ(z|x)∥pθ(z|x)) ≥ 0. Therefore, we wish qϕ(z|x) to be flexible enough
to match the true posterior pθ(z|x). At the same time, based on the third line of equation (1),
which is often used as objective function of VAE, we require that qϕ(z|x) is efficiently computable,
differentiable, and sampled from.

2.2 AUTOREGRESSIVE NORMALIZING FLOWS

Normalizing flows (Rezende & Mohamed, 2015) are effective solutions to the issues mentioned
above. The flows construct flexible posterior distribution through expressing qϕ(z|x) as an expressive
invertible and differentiable mapping g of a random variable with a relatively simple distribution,
such as an isotropic Normal. Typically, g is obtained by composing a sequence of invertible and
differentiable transformations g1, g2, . . . , gK , i.e., g = gK ◦· · ·◦g1, gk : Rd+n → Rd,∀k = 1 . . .K.

1We adopt the definition of disentanglement and model’s identifiability in Shen et al. (2022), which differs
from that in Khemakhem et al. (2020a) in terms of goals and assumptions.
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If we define the initial random variable (the output of encoder) as z0 and the final output random
variable as zK , then zk = gk(zk−1,x),∀k. In this case, we can use g to obtain the conditional
probability density function of zK by applying the general probability-transformation formula
(Papamakarios et al., 2021):

qϕ(zK |x) = qϕ(z0|x)
∣∣det Jg(z0,x)

∣∣ (2)

where det Jg(z0,x) is the Jacobian determinants of g with respect to z0.

Autoregressive flows are one of the most popular normalizing flows(Huang et al., 2018; Papamakarios
et al., 2021; Kingma et al., 2016). By carefully designing the function g, the Jacobian matrix in
equation (2) becomes a lower triangular matrix. For illustration, we will only use a single-step
flow with notation g. Multi-layer flows are simply the composition of the function represented by a
single-step flow, as mentioned earlier. And we will denote the input to the function g as z and its
output as z̃. In the autoregressive flows, g has the following form:

z̃ = g(z,x) =
[
g1(z1;h1) . . . gd(zd;hd)

]T
where hi = ci(z̃<i,x) (3)

where gi, an invertible function of input zi, is termed as a transformer. Here zi stands for the i-th
element of vector z, and ci is the i-th conditioner, a function of the first i− 1 elements of z̃, which
determines part of parameters of the transformer gi. We use neural networks to fit c.

Performing causal inference tasks The ordering of variables in autoregressive flows can be
explained using the Structural Equation Models (SEMs) (Khemakhem et al., 2021; Pearl, 2009a),
due to the similarity between equation (3) and the SEMs. Moreover, we could efficiently learn the
causal direction between two variables or pairs of multivariate variables from a dataset by using
autoregressive flows according to Khemakhem et al. (2021).

3 CAUSAL FLOWS

Motivated by Khemakhem et al. (2021), we propose an extension to the autoregressive flows by
incorporating an adjacency matrix A. The extended flows still involve functions with tractable
Jacobian determinants.

In autoregressive flows, causal order is established among variables z̃1, · · · , z̃d. Given the causal
graph of the variables z̃1, · · · , z̃d, let A ∈ Rd×d denote its corresponding binary adjacency matrix,
Ai,: is the row vector of A and Ai,j is nonzero only if z̃j is the parent node of z̃i, then A corresponding
to the causal order in autoregressive flows is a full lower-triangular matrix. The conditioner can be
written in the form of ci(z̃◦A,x), where ◦ is the element-wise product. If we utilize prior knowledge
about the true causal structure among variables, i.e., if a certain causal structure among variables
is known, then A is still a lower triangular matrix, but some of its entries are set to 0 according to
the underlying causal graph. We can integrate such A into the conditioner, which is also denoted as
ci(z̃ ◦A,x). We will refer to it as the causal conditioner in the following.

We define autoregressive flows that use the causal conditioner as Causal Flows. The transformer
can be any invertible function, and we focus on affine transformer, which is one of the simplest
transformers. Therefore, causal flows g can be formulated as follows:

z̃i = gi(zi;hi) = zi exp(si(z̃ ◦Ai,:,x)) + ti(z̃ ◦Ai,:,x) (4)

where s = [s1, · · · , sd]T ∈ Rd and t = [t1, · · · , td]T ∈ Rd are defined by the conditioner, i.e.,
hi = {si, ti}, while s1 and t1 are constants.

Given that the derivative of the transformer with respect to zi is exp(si(z̃ ◦ Ai,:,x)) and A is
lower-triangular, the log absolute Jacobian determinant is:

log
∣∣det Jg(z,x)∣∣ = d∑

i=1

log exp(si(z̃ ◦Ai,:,x)) =

d∑
i=1

si(z̃ ◦Ai,:,x) (5)

Now, we are able to derive the log probability density function of z̃ using the following expression:

log qϕ(z̃|x) = log qϕ(z|x)−
d∑

i=1

si(z̃ ◦Ai,:,x) (6)
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It is worth emphasizing that the computation of autoregressive flows in equation (3) needs to
be performed sequentially, meaning that z̃<i must be calculated before z̃i. Due to the sampling
requirement in VAE, this approach may not be computationally efficient. However, in causal
disentanglement applications of VAE, the number of factors of interest is often relatively small.
Additionally, we’ve found that using a single layer of causal flows and lower-dimensional latent
variables are enough to lead to better results, so the computational cost of the model is not significantly
affected by sequential sampling.

4 CAUF-VAE: CAUSAL FLOWS FOR VAE DISENTANGLEMENT

This section focuses on addressing the issue of causal disentanglement in VAE. The main approach
is to introduce causal flows into VAE. Moreover, we will incorporate supervised information into
the model to achieve the alignment between latent variables and the ground-truth factors, ultimately
achieving causal disentanglement.

First, we introduce some notations following Shen et al. (2022). We denote ξ ∈ Rm as the underlying
ground-truth factors of interest for data x, with distribution pξ. For each underlying factor ξi, we
denote yi as some continuous or discrete annotated observation satisfying ξi = E(yi|x), where
the superscript i still denotes the i-th element of each vector. Let D = {(xj ,yj ,uj)}Nj=1 denotes
a labeled dataset, where uj ∈ Rk is the additional observed variable. Depending on the context,
the variable u can take on various meanings, such as serving as the time index in a time series, a
class label, or another variable that is observed concurrently (Hyvarinen & Morioka, 2016). We get
ξi = E(yi|x,u), where i = 1, · · · ,m. This is because if u is ground-truth factor y, it is obviously
true, otherwise, ξi = E(yi|x,u) = E(yi|x). We will view the encoder and flows as an unified
stochastic transformation E, with the learned representation z̃ as its final output, i.e., z̃ = E(x,u).
Additionally, in the stochastic transformation E(x,u), we use Ē(x,u) to denote its deterministic
part, i.e., Ē(x,u) = E(E(x,u)|x,u). Now, we adopt the definition of causal disentanglement as
follows:

Definition 1 (Disentangled representation ) Considering the underlying factor ξ ∈ Rm of data x,
E is said to learn a disentangled representation with respect to ξ if there exists a one-to-one function
ri such that Ē(x,u)

i
= ri(ξ

i),∀i = 1, · · · ,m.

The purpose of this definition is to guarantee some degree of alignment between the latent variable
E(x) and the underlying factor ξ in the model. In our approach, we will also supervise each latent
variable with label for each underlying factor, thus establishing such component-wise relationship
between them.

4.1 CAUF-VAE

We now proceed to present the full probabilistic formulation of CauF-VAE. The model’s structure is
depicted in Figure 1. The conditional generative model is defined as follows:

pθ(x, z̃|u) = pf (x|z̃,u)pT,λ(z̃|u) (7)
pf (x|z̃,u) = pf (x|z̃) = pζ(x− f(z̃)) (8)

pT,λ(z̃|u) =

{
Q(z̃≤m)e<T(z̃≤m),λ(u)>

Z(u)

N (0(d−m)×1, I(d−m)×(d−m))
(9)

where θ = (f ,T,λ) ∈ Θ are model parameters. Equation (7) describes the process of generating
x from z. Equation (8) indicates that x = f(z̃) + ζ, where pζ(ζ) = N (0, I) and the decoder f(z̃)
is assumed to be an invertible function, which is approximated by a neural network. As presented
in equation (9), we use the exponential conditional distribution (Pacchiardi & Dutta, 2022) for the
first m dimensions and another distribution (e.g., standard normal distribution) for the remaining
d−m dimensions to capture other non-interest factors for generation , where T : Rd → Rd×l is the
sufficient statistic, λ : Rk → Rd×l is the corresponding parameter, Q : Rd → R is the base measure,
Z(u) is the normalizing constant and < ·, · > denotes the dot product. If d = m, we will only use
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the conditional prior in the first line of (9). When causal relationships exist among the generative
factors of data x, indicating their non-mutual independence, incorporating information u alters the
prior distribution from a factorial distribution to better match the real-world situation.

We define the inference model that utilizes causal flows as follows:

qϕ(z|x,u) = qϵ(z− ϕ(x,u)) (10)
z ∼ qϕ(z|x,u) (11)
z̃ = g(z,x) (12)

qϕ,γ(z̃|x,u) = qϕ(z|x,u)
d∏

i=1

exp(−si(z̃ ◦Ai,:,x)) (13)

Figure 1: Model structure of
CauF-VAE.

where we use γ = (s, t, A) ∈ Γ to denote parameters of
causal flows. Equation (10) indicates that z = ϕ(x,u) + ϵ,
where the probability density of ϵ is qϵ(ϵ) = N (0, I) and
ϕ(x,u) denotes the encoder. Equation (11) and (12) describe
the process of transforming the original encoder output z into
the final latent variable representation z̃ by using causal flows.
Eventually, the posterior distribution obtained by the inference
model is represented by equation (13). Now, the parameters
of stochastic transformation E(x,u) are ϕ and γ.

Now we suppose that the dataset X has an empirical data
distribution denoted by qX (x,u). Our goal turns into maxi-
mizing the variational lower bound on the marginal likelihood
pθ(x|u). When we have labels y, we can add a regularization
term in the objective function to promote the consistency be-
tween ξ and E(x). Therefore, the loss function of CauF-VAE
is formulated as follows:

L(ϕ,γ,θ) = −ELBO(ϕ, γ, θ) + βsupLsup(ϕ,γ)

= −EqX

[
Eqϕ,γ(z̃|x,u)log pf (x|z̃,u)−DKL(qϕ,γ(z̃|x,u)∥pT,λ(z̃|u))

]
+ βsupE(x,y,u) [lsup(ϕ,γ)] (14)

where βsup > 0 is a hyperparameter, lsup(ϕ,γ) =
∑m

i=1 −yilog σ(Ē(x,u)i) − (1 − yi)log (1 −
σ(Ē(x,u)i)) is the cross-entropy loss if yi is the binary label, and lsup(ϕ,γ) =

∑m
i=1(y

i −
Ē(x,u)i)2 is the Mean Squared Error (MSE) if yi is the continuous observation. The loss term Lsup

aligns the factor of interest ξ ∈ Rm with the first m dimensions of the latent variable z, in order to
satisfy the Definition 1 (Locatello et al., 2020; Shen et al., 2022).

4.2 DISENTANGLEMENT IDENTIFIABILITY

We establish the identifiability of disentanglement of CauF-VAE, which confirms that our model can
learn disentangled representations. As we only focus on disentangling the factors of interest, we will,
for simplicity, present our proposition in the case where d = m. Here, we consider the deterministic
part of the posterior distribution as the learned representation.

Proposition 1 Under the assumptions of infinite capacity for E and f , the solution (ϕ∗,γ∗,θ∗) ∈
argminϕ,γ,θL(ϕ,γ,θ) of the loss function (14) guarantees that Ēϕ∗,γ∗(x) is disentangled with
respect to ξ, as defined in Definition 1.

Proof See Appendix A.2.

It’s important to note that our model utilizes two types of supervised information: extra information u
and the labels y of the ground-truth factors. In our experiments, we set u to be the same as y, so that
we only need to use one type of supervised information. With the help of the supervised information,
we achieve disentanglement identifiability by using the conditional prior and additional regularization
terms, which further guarantees that z̃i is a causal disentangled representation, for 1 ≤ i ≤ m. This
means that the latent variables can capture the true underlying factors successfully.
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(a) Pendulum (b) CelebA(Attractive) (c) CelebA(Smile)

Figure 2: Causal graphs of Pendulum and CelebA. The gray circles represent the causal variables
in the graphs. In Figures (a), (b), and (c), we label the underlying factors we are interested in each
dataset.

5 RELATED WORK

Causally disentangled representation learning based on VAE Recently, achieving causally
disentangled representations by VAE has received wide attention. However, the exploration of related
methods remains relatively limited. The disentangled causal mechanisms investigated in Suter et al.
(2019) and Reddy et al. (2022) assumed that the underlying factors were conditionally independent
given a shared confounder. Our proposed model, in contrast, considers more general scenarios where
the generative factors can exhibit more complex causal relationships. CausalVAE (Yang et al., 2021)
designed a SCM layer to model the causally generative mechanisms of data. DEAR (Shen et al.,
2022) used a SCM to construct prior distribution, and employs Generative Adversarial Networks
(GAN) to train the model. Unlike SCM-based methods, we leverage the intrinsic properties of flow
models to achieve disentanglement and do not rely on external algorithms for training. Later, it has
been proposed that a disentangled decoder needs to be trained (An et al., 2023). However, our main
focus is on representation learning, which means we give greater importance to the disentangled
representations generated by the encoder.

Causal structure in flows We could efficiently learn the causal direction between two variables
by using autoregressive flows. Motivated by this, we design causal flows. In a separate parallel
work, Wehenkel & Louppe (2021) proposed a generalized graphical normalizing flows. They also
utilized a conditioner that incorporated an adjacency matrix. However, we focus on developing
the causal conditioner to incorporate causal structure knowledge into flows for achieving causally
disentangled representation in VAE. Instead, they only explored the relationship between different
flows from Bayesian network perspective and designed a graph conditioner primarily for better
density estimation.

6 EXPERIMENTS

We empirically evaluate CauF-VAE, and demonstrate that the learned representations are causally
disentangled, enabling the model to perform well on various tasks. Our experiments are conducted
on both synthetic dataset and real human face image dataset, and we compare CauF-VAE with some
state-of-the-art VAE-based disentanglement methods.

6.1 EXPERIMENTAL SETUP

We utilize the same datasets as Shen et al. (2022) where the underlying generative factors are causally
related. The synthetic dataset is Pendulum, with four continuous factors whose causal graph of the
factors is shown in Figure 2(a). The training and testing sets consist of 5847 and 1461 samples,
respectively. The real human face dataset is CelebA (Liu et al., 2015), with 40 discrete labels. We
consider two sets of causally related factors named CelebA(Attractive) and CelebA(Smile) with
causal graphs also depicted in Figure 2(b) and 2(c). The training and testing sets consist of 162770
and 19962 samples, respectively.

We compare our method with several representative VAE-based models for disentanglement (Locatello
et al., 2019a), including β-VAE (Higgins et al., 2017), β-TCVAE (Chen et al., 2018), and DEAR
(Shen et al., 2022). We also compare with vanilla VAE (Kingma & Welling, 2013). To ensure a fair
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comparison with equal amounts of supervised information, for each of these methods we use the
same conditional prior and loss term as in CauF-VAE. For comprehensive implementation details and
hyperparameters, please refer to Appendix B.

6.2 EXPERIMENTAL RESULTS

Now, we proceed to evaluate our method from several aspects and provide an analysis of the
corresponding experimental results.

6.2.1 CAUSALLY DISENTANGLED REPRESENTATIONS

To qualitatively verify that CauF-VAE indeed learns causally disentangled representations, we conduct
intervention experiments. Intervention experiments involve performing the "do-operation" in causal
inference (Pearl, 2009b). Taking a single-step causal flow as an example, we demonstrate step by
step how our model performs "do-operation". First, given a trained model, we input the sample x
into the encoder, obtaining an output z. Assuming we wish to perform the "do-operation" on z̃i, i.e.,
do(z̃i = c), we follow the approach in Khemakhem et al. (2021) by treating equation (4) as SEMs.
Specifically, we set the input and output of z̃i to the control value c, while other values are computed
iteratively from input to output. Finally, the resulting z̃ is decoded to generate the desired image,
which corresponds to generating images from the interventional distribution of factor z̃.

We perform intervention experiments by applying the "do-operation" to m− 1 variables in the first
m dimensions of the latent variables, resulting in the change of only one variable. This operation,
which has been referred to as "traverse", aims to test the disentanglement of our model (Shen et al.,
2022). Figures 3 and 4 show the experimental results of the CauF-VAE and DEAR on Pendulum
and CelebA(Smile). We observe that when traversing a latent variable dimension, CauF-VAE has
almost only one factor changing, while DEAR has multiple factors changing. This is clearly shown
by comparing "traverse" results of the third row for shadow length in Figures 3(a) and 3(b), as well as
the second row for gender in Figures 4(a) and 4(b). Therefore, our model can better achieve causal
disentanglement.

(a) Traverse of CauF-VAE (b) Traverse of DEAR

Figure 3: Results of traverse experiments on Pendulum. Each row corresponds to a variable that we
traverse on, specifically, pendulum angle, light angle, shadow length, and shadow position.

(a) Traverse of CauF-VAE (b) Traverse of DEAR

Figure 4: Results of traverse experiments on CelebA(Smile). Each row corresponds to a variable that
we traverse on, specifically, smile, gender, cheek bone, mouth open, narrow eye and chubby.
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To demonstrate our model’s capability to perform interventions hence generating new images beyond
the dataset, we conduct "do-operations" on individual latent variables. Figure 5 illustrates these
operations, with each row representing an intervention on a single dimension. In Figure 5(a), we
observe that intervening on the pendulum angle and light angle produces changes in shadow length in
accordance with physical principles. However, intervening on shadow length has minimal impact
on these two factors. Similarly, as seen in Figure 5(b), intervening on gender influences narrow eye
appearance, but the reverse is not true. This demonstrates that intervening on causal factors affects the
resulting effects, but not the other way around. Hence, our latent variables have effectively learned
factor representations, attributed to the design of the causal flows, which incorporate A. Additional
traversal and intervention results are presented in Appendix C.

(a) Intervene factors of Pendulum (b) Intervene factors of CelebA(Smile)

Figure 5: Results of intervention on only one variable for both Pendulum and CelebA(Smile). The
image in the upper left corner of (a) and (b) are the test data we consider respectively.

6.2.2 DOWNSTREAM TASKS

To further illustrate benefits of causally disentangled representations, we consider its impact on
downstream tasks in terms of sample efficiency and distributional robustness. We introduce two
downstream prediction tasks to compare our model with baseline models. First, for Pendulum, we
normalize factors to [−1, 1] during preprocessing. Then, we manually create a classification task:
if pendulumangle > 0 and light angle > 0, the target label y = 1; otherwise, y = 0. For the
CelebA(Attractive), we adopt the same classification task as in Shen et al. (2022). We employ
multilayer perceptron (MLP) to train classification models, where both the training and testing sets
consist of the latent variable representation z̃ and their corresponding labels y.

Sample Efficiency We adopt the statistical efficiency score defined in Locatello et al. (2019a) as
a measure of sample efficiency, which is defined as the classification accuracy of 100 test samples
divided by the number of all (Pendulum)/10,000 test samples (CelebA). The experimental results
are presented in Table 1. Table 1 shows that CauF-VAE achieves the best sample efficiency and test
accuracy on both datasets, except for the test accuracy of all test samples of Pendulum where β-VAE
is the best. However, on the complex CelebA dataset, CauF-VAE significantly outperforms β-VAE.
We attribute the superiority of our model to our modeling approach, i.e., leveraging the fitting ability
of flows, especially causal flows that greatly enhance the encoder’s ability to learn semantically
meaningful representations.

Table 1: Test accuracy and sample efficiency of different models on Pendulum and CelebA datasets.
Mean±standard deviations are included in the Table.

Pendulum CelebA
Model 100(%) All(%) Sample Eff 100(%) 10000(%) Sample Eff

CauF-VAE 99.00±0 99.43±0.34 99.57±0.34 81.00±1.73 81.54±1.76 99.34±0.27

DEAR 88.00±0 88.55±0.04 98.63±1.33 61.00±3.60 68.50±0 89.05±5.26

β-VAE 98.67±1.15 99.59±0.07 98.94±0.92 62.33±5.69 68.49±0.02 91.01±8.28

β-TCVAE 97.67±1.15 99.38±0.48 98.27±0.79 75.33±3.21 78.72±4.93 95.83±4.10

VAE 98.33±0.58 99.48±0.39 98.72±0.37 60.33±2.89 68.50±0 88.08±4.21
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Distributinal robustness To assess distributional robustness, we modify the controllable synthetic
Pendulum dataset during training to inject spurious correlations between the target label and some
spurious attributes. We choose background_color ∈ {blue(+), white(−)} as a spurious feature.
Specifically, the target label and the spurious attribute of 80% of the examples are both positive or
negative, while those of 20% examples are opposite. For instance, in the manipulated training set,
80% positive examples in Pendulum are masked with a blue background. But in the test set, we do
not inject this correlation, rusulting in a distribution shift. The results are summarized in Table 2.

Table 2: Distributional robustness of differ-
ent models.

Model TestAvg(%) TestWorst(%)
CauF-VAE 97.83±1.18 94.70±3.41

DEAR 80.40±0.47 64.50±2.67

β-VAE 96.48±2.06 90.05±5.44

β-TCVAE 96.57±1.33 90.27±3.74

VAE 95.14±3.46 88.81±5.44

The results include average and worst-case test accu-
racy, evaluating overall classification performance and
distributional robustness. Worst-case accuracy iden-
tifies the group with the lowest accuracy among four
groups categorized based on target and spurious binary
labels. It often involves opposing spurious correlations
compared to training data. The classifiers trained using
CauF-VAE representations demonstrate significant su-
periority over the baseline models in both evaluation
metrics. Notably, CauF-VAE experiences a smaller
decrease in worst-case accuracy compared to average
accuracy, indicating robustness to distributional shifts.

6.2.3 EXPLORING THE POTENTIAL FOR LEARNING THE STRUCTURE OF A

Figure 6: Super-graph of Pendulum.

Apart from the aforementioned applications, CauF-
VAE has the potential to learn true causal relationships
between factors. As shown in Figure 7(a)-7(d), for
Pendulum, when our model A adopts the super-graph
shown in Figure 6, though the corresponding A is ini-
tialized randomly around 0, it gradually approaches the
true causal structure during the training process. If we
use a threshold of 0.2 and prune edges in the causal
graph with values below this threshold, we obtain Fig-
ure 7(e), which corresponds to the true causal structure.
For details, see Appendix C.

(a) Original A (b) After 20 epochs (c) After 50 epochs (d) After 80 epochs (e) Final A

Figure 7: The learned weighted adjacency matrix A given a super-graph on Pendulum. (a)-(d)
illustrate the changes in A as the training progresses. (e) represents A after edge pruning.

7 CONCLUSION

This paper focuses on learning causally disentangled representations where the underlying generative
factors are causally related. We introduce causal flows that incorporate causal structure information of
factors, and propose CauF-VAE, a powerful model for learning causally disentangled representations.
By adding additional supervised information, our model theoretically achieves disentanglement
identifiability. To the best of our knowledge, our method is the first to achieve causal disentanglement
without relying on complex Structural Causal Models (SCMs), while also not limiting the causal
graph of factors. This suggests an interesting direction for future work. A potential step is to deeply
explore the data to learn low-dimensional representations of causal factors. Additionally, designing
unsupervised models that can do this can also be considered as future reasearch.

9



Under review as a conference paper at ICLR 2024

REFERENCES

SeungHwan An, Kyungwoo Song, and Jong-June Jeon. Causally disentangled generative variational autoencoder.
arXiv preprint arXiv:2302.11737, 2023.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco S Cohen. Weakly supervised causal representation
learning. Advances in Neural Information Processing Systems, 35:38319–38331, 2022.

Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, and Pradeep
Ravikumar. Learning linear causal representations from interventions under general nonlinear mixing. arXiv
preprint arXiv:2306.02235, 2023.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. Understanding disentangling in β-vae. arXiv preprint arXiv:1804.03599, 2018.

Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentanglement in
variational autoencoders. Advances in neural information processing systems, 31, 2018.

Emilien Dupont. Learning disentangled joint continuous and discrete representations. Advances in Neural
Information Processing Systems, 31, 2018.

Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation of disentangled
representations. In International conference on learning representations, 2018.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed,
and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational framework.
In International conference on learning representations, 2017.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive flows. In
International Conference on Machine Learning, pp. 2078–2087. PMLR, 2018.

Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning and
nonlinear ica. Advances in neural information processing systems, 29, 2016.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational autoencoders and
nonlinear ica: A unifying framework. In International Conference on Artificial Intelligence and Statistics, pp.
2207–2217. PMLR, 2020a.

Ilyes Khemakhem, Ricardo Monti, Diederik Kingma, and Aapo Hyvarinen. Ice-beem: Identifiable conditional
energy-based deep models based on nonlinear ica. Advances in Neural Information Processing Systems, 33:
12768–12778, 2020b.

Ilyes Khemakhem, Ricardo Monti, Robert Leech, and Aapo Hyvarinen. Causal autoregressive flows. In
International conference on artificial intelligence and statistics, pp. 3520–3528. PMLR, 2021.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on Machine Learning,
pp. 2649–2658. PMLR, 2018.

Minyoung Kim, Yuting Wang, Pritish Sahu, and Vladimir Pavlovic. Relevance factor vae: Learning and
identifying disentangled factors. arXiv preprint arXiv:1902.01568, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved
variational inference with inverse autoregressive flow. Advances in neural information processing systems, 29,
2016.

Justin B Kinney and Gurinder S Atwal. Equitability, mutual information, and the maximal information coefficient.
Proceedings of the National Academy of Sciences, 111(9):3354–3359, 2014.

Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational inference of disentangled latent
concepts from unlabeled observations. arXiv preprint arXiv:1711.00848, 2017.

Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, and Stratis Gavves. Citris: Causal
identifiability from temporal intervened sequences. In International Conference on Machine Learning, pp.
13557–13603. PMLR, 2022.

10



Under review as a conference paper at ICLR 2024

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In Proceedings
of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf, and Olivier
Bachem. Challenging common assumptions in the unsupervised learning of disentangled representations. In
International conference on machine learning, pp. 4114–4124. PMLR, 2019a.

Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, and Olivier
Bachem. Disentangling factors of variation using few labels. arXiv preprint arXiv:1905.01258, 2019b.

Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michael Tschannen.
Weakly-supervised disentanglement without compromises. In International Conference on Machine Learning,
pp. 6348–6359. PMLR, 2020.

Lorenzo Pacchiardi and Ritabrata Dutta. Score matched neural exponential families for likelihood-free inference.
J. Mach. Learn. Res., 23(38):1–71, 2022.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan.
Normalizing flows for probabilistic modeling and inference. The Journal of Machine Learning Research, 22
(1):2617–2680, 2021.

Judea Pearl. Causal inference in statistics: An overview. Statistics surveys, 3:96–146, 2009a.

Judea Pearl. Causality. Cambridge university press, 2009b.

Abbavaram Gowtham Reddy, Vineeth N Balasubramanian, et al. On causally disentangled representations. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8089–8097, 2022.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International conference
on machine learning, pp. 1530–1538. PMLR, 2015.

Anna Seigal, Chandler Squires, and Caroline Uhler. Linear causal disentanglement via interventions. arXiv
preprint arXiv:2211.16467, 2022.

Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, and Tong Zhang. Weakly supervised disentan-
gled generative causal representation learning. Journal of Machine Learning Research, 23:1–55, 2022.

Raphael Suter, Djordje Miladinovic, Bernhard Schölkopf, and Stefan Bauer. Robustly disentangled causal
mechanisms: Validating deep representations for interventional robustness. In International Conference on
Machine Learning, pp. 6056–6065. PMLR, 2019.

Frederik Träuble, Elliot Creager, Niki Kilbertus, Francesco Locatello, Andrea Dittadi, Anirudh Goyal, Bernhard
Schölkopf, and Stefan Bauer. On disentangled representations learned from correlated data. In International
Conference on Machine Learning, pp. 10401–10412. PMLR, 2021.

Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural networks. Advances in neural informa-
tion processing systems, 32, 2019.

Antoine Wehenkel and Gilles Louppe. Graphical normalizing flows. In International Conference on Artificial
Intelligence and Statistics, pp. 37–45. PMLR, 2021.

Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. Causalvae: Disentangled
representation learning via neural structural causal models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9593–9602, 2021.

11


