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ABSTRACT

Molecular Relational Learning (MRL) expands the scope of molecular represen-
tation learning by incorporating additional molecules, aiming to understand the
interactions between pairs of molecules. While MRL has shown promising results,
the existing methods have not been able to generalise to real world scenarios. In-
variant learning is pivotal in addressing Out-of-Distribution (OOD) generalization
challenges. However, two major obstacles impede the progress of invariant learn-
ing in MRL: (1) Unlike single-molecular cases, interactions between molecules
introduce added complexity, with a heavy reliance on molecular substructure recog-
nition, often leading to the misspecification of invariant patterns. (2) Accurate
modeling of interactions can effectively improve generalizations. However, previ-
ous methods focus on node interactions, which is limited by the expressiveness of
GNN, and long-range interactions cannot be captured. To address these, we propose
a novel Relational Invariant Learning (RIL) framework that uses a multi-granularity
interaction approach to improve OOD generalization for MRL, and the framework
is denoted as RILOOD. Specifically, we model the environment diversity distri-
bution of molecules by mixup-based Conditional Modeling. Then, we employ a
multi-granularity refinement strategy to learn the Context-Aware Representation,
which is essential for capturing multi-level interaction. We further design an in-
variant learning module to capture the invariant patterns that robustly generalize
across unseen environments. Extensive experiments on molecular datasets show
that our method achieves stronger generalization against state-of-the-art methods
in the presence of various distribution shifts. Our code will be released after our
paper is accepted.

1 INTRODUCTION

Predicting molecular properties in solvent is crucial, given that most chemical and biological processes
occur in solution. Solvent-based molecular property prediction, also referred to as Solute-Solvent
Interaction in Molecule Relational Learning (MRL)(Lim & Jung, 2019; Subramanian et al., 2020;
Panwar et al., 2021; Low et al., 2022; Zhang et al., 2022; Lee et al., 2023a;b), has played a pivotal
role in chemical and biological research, including battery manufacture, pharmaceutical industry
(Chung et al., 2022; Varghese & Mushrif, 2019). It is an evolving field that aims to understand
interactions between solutes and solvents at the molecular-level, allowing for predicting molecular
property through a prior. More importantly, it significantly extends the conventional molecular
property prediction practices by taking solvent molecular as additional inputs, thereby achieving
promising performance and chemical interpretability.

Despite their notable success, existing methods are based on the assumption that training and test
data are sampled from an independent and identical distribution (I.I.D.). However, the real world
is open, diverse, and uncertain. Out-of-Distribution (OOD) refers to scenarios where the test data
or new data encountered by a model significantly differ from the training data. For single molecule,
OOD can occur not only in the molecule structure itself—such as differences in size or scaffold—but
also in the target properties. OOD generalization(Krueger et al., 2021), which seeks to address this
challenge by learning invariant representations across multiple environments (e.g., scaffolds, sizes),
has garnered significant attention. Typically, the privileged substructure remains invariant concerning
a molecular’s properties. However, one important nature of solvated molecules is the non-stationary
property, indicating that its statistical features are changing over solvent. As shown in Fig.1, previous
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Figure 1: A toy example shows the ’solute-solvent interactions’ with distribution shifts when the
underlying environments change (e.g., solvent). A model could mistakenly predict that strong polar
molecules are easily soluble in polar solvents and not true for low polar molecules if it fails to capture
interaction invariant patterns among spurious correlations.

methods would spuriously correlate non-causal factors (‘substructure’) and produce undesired results
under a new environment. Scaffolds and size, etc., are often considered to be irrelevant patterns to
molecular properties, which can be seen as spurious correlations.

Existing works mainly attempt to build effective methods for distribution shifts, from invariant
learning(Wu et al., 2022a), feature disentanglement(Liu et al., 2021), to data augmentation(Sui et al.,
2024; Jia et al., 2024). Thus far, few previous works focus on OOD generalization on MRL. A typical
work(Lee et al., 2023b) is devised to solve the distribution shift problem relies on the identification of
molecule substructure by causal inference. Nevertheless, the complicated molecular pairs interaction,
which are largely underexplored in graph invariant representations, makes it challenging to accurately
distinguish the invariant causal parts from diverse spurious correlations. On the other hand, mis-
specification refers to variant or spurious correlations that cannot be invariant of the any available
environments(e.g., a toy example in Fig. 1). It is hoped that a new approach will be developed to
facilitate the generalization of molecular properties toward open-scenario.

To address these limitations, in this work, we propose a novel Relational Invariant Learning framework
against Out-of-Distribution Generalization in MRL. In contrast to the traditional methods, we present a
novelty framework to capture the invariance in molecular pairs and achieve generalized representation.
Specifically, we first employ GNN to encode molecular, following by the cross-attention module to
map atom-level interaction. Then, we utilize mixup-enhanced Conditional Variational Modeling. We
embrace the strengths of cross-environment invariance by considering a multi-granularity context-
aware interaction and environment diversity inference. Learn interaction invariance(Xie et al., 2024),
which helps to uncover the underlying relationships between molecules in a chemically interpretable
way in latent space.

Our main contributions can be summarized as follows: (1) We propose a novel Relational Invariant
Learning framework, call RILOOD, to solve the OOD generalization on molecular relational learning.
(2) Our method not only preserves the fine-grained interactions between molecules at the molecular-
level, but also captures the global interaction information through multi-granularity context-aware
refinement. (3) We formulate the OOD generalization problem on MRL. Focusing on both invariant
interaction learning and conditional modeling, capturing associations between different distributions
through domain shift. It exhibit robustness and transferability across different data domains.

2 RELATED WORKS

2.1 MOLECULAR RELATIONAL LEARNING

Molecular Relational Learning(Lim & Jung, 2019; Subramanian et al., 2020; Lee et al., 2023a;b;
Pathak et al., 2020), which aims to study the relationship between moleculars, can be divided
into molecular interaction prediction and Drug-Drug Interaction prediction. Molecular interaction
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prediction, i.e. solvent-based molecular property prediction, includes solvent free energy prediction,
solubility prediction, chromophore absorption prediction, and so on. Unlike traditional molecular
property prediction, the model need predict the properties exhibited by the same molecular exposed
to multisolvent. Recent works leverage message-passing network to encode atomic representations
and further improving the interpretability of model using an interaction map(Lee et al., 2023a;b;
Pathak et al., 2020).

2.2 OUT OF DISTRIBUTION GENERALIZATION

Generalizing well-trained method to unseen environment with different data distributions is challeng-
ing and promising problem on machine learning due to wide applicability. Current state-of-the-art
approaches can be roughly categorized into three types. (1) Invariant learning method. There are
plentiful studies in invariant learning without environment labels. However, ZIN(Lin et al., 2022)
argue that it is impossible to identify the invariant features without given environment labels in
Euclidean data, and propose to leverage additional auxiliary information for invariant learning. (2)
Causal inference theories utilize Structural Causal Model (SCM)(Chen et al., 2022; Lu et al., 2021)
or Independent Causal Mechanism (ICM)(Peters et al., 2017; Gui et al., 2024) assumption to filter out
spurious correlation and strengthen the invariant causal patterns. (3) Disentangled learning requires
strong prior assumptions that can effectively separating semantic factors into two categories: (i)
invariant features that consistently predict the label across distributions, and (ii) spurious features
that have unstable correlations with the label. Current methods are mainly to discover and define
the invariant factors in the data collection process, and design effective algorithms based on the
invariance to guide the model to achieve out-of-distribution generalization.

2.3 INVARIANT LEARNING IN MOLECULAR RELATIONAL LEARNING

Current research on invariant learning in MRL prediction is still sparse. Among these works, one
scheme is the identification of the core substructure(Lee et al., 2023a), which involves utilizing the
minimum sufficient information related to the task according to the principle of graph information
bottleneck. Another scheme(Lee et al., 2023b) proposes to learn causal substructure using causal
intervention to solve distribution shift. In OOD scenario, assessing model generalization typically
involved dividing datasets into scenarios like "unseen solvent" or "unseen domain", where the test
set exclusively contained certain bias. However, previous evaluations often remain within the intra-
domain framework, which does not fully align with real-world conditions. Despite invariant learning
success on graph(Wu et al., 2022a; Yang et al., 2022; Li et al., 2022), it still be confined on graph
pairs by two critical limitations: (1) Different from Euclidean data such as image, the environmental
label of the graph is not easy to obtain. The existing environment is handcrafted or rule-based, not
structured, which could provide insufficient information for capturing the fundamental relations across
domains from the casual data-generating perspective. (2) Invariant patterns, spurious correlations are
entangled with shortcuts, and latent invariant representations are not easy to decouple.

3 PRELIMINARIES

We define the uppercase letters (e.g., G) as random variables, the lower-case letters (e.g., g) are samples
of variables, and the blackboard typefaces (e.g., G) denote the sample spaces. Let G = (V, E) ∈ G
denotes as a graph, where V = {v1, v2, ..., vn} is the set of nodes and E ∈ V × V is the set of edges.

3.1 NOTATIONS AND PROBLEM FORMULATION.

The goal of MRL task is to predict the target label Y given the associated input molecule pairs
(G1,G2). It can be formulated as modeling the conditional distribution p(G1|G2).

Problem formulation. Given a dataset D = {((Gi
1,Gi

2), Y
i)}Ni=1, where G1 is solute molecule,

and G2 is solvent molecule, each molecule pairs is associated with a target label Y . N is the total
number of dataset. The objective is to train a model to predict Y based on the input (G1,G2). The
model should effectively learn the relationships between the input features and the target variable,
leveraging the information from both G1 and G2 to accurately predict Y. The model’s performance
will be evaluated based on the RMSE of the predicted output Ŷ in comparison to the true labels Y.

3
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Molecular Representation. We implement our method based on Pathak et al. (2020), which is
a message passing architecture devised for the solute and solvent molecule interaction. Given a
pair of molecules G1 = (V1, E1) and G2 = (V2, E2). We first obtain the node representation of
each molecular as follows: h1 = GCN(V1, E1),h2 = GCN(V2, E2). To capture the inter-molecular
interaction in node-level, the interaction map is constructed as following: I = h1 · hT

2 , where · is
matrix multiplication, I ∈ RN1×N2 . We obtained a representation h̃1 ∈ RN1×D of the solvent’s
interaction on the solute and a representation h̃2 ∈ RN2×D of the solute’s interaction on the solvent
through a shared interaction map according to the following equations: h̃1 = I · h2, h̃2 = IT · h1.
Here, N1 and N2 denote the number of atoms in molecule G1 and G2, respectively. h1 is generated
by concatenating two representation h̃1 and h1, i.e. H1 = concat[h1, h̃1]. The overall graph
representation is obtained using a readout layer Rsolute(H1), which set the READOUT function as
Set2Set(Vinyals et al., 2015).

3.2 OOD GENERALIZATION.

In this work, we mainly focus on OOD generalization in graph-level prediction tasks. Our aim is to
train the model with limited label to infer the domain distribution from unseen data in Dte.

Problem formulation. Given a molecular pairs datasets, D = {((Gi
1, G

i
2), Y

i)N
tr+te

i=1 } collect
from multiple environments E , which were considered as drawn independently from an identical
distribution Pe, i.e., DID = {(G1, G2) ∈ D | G1 ∈ GID

∧
G2 ∈ GID}. The training and test

datasets are denoted as Dtr = {((Gi
1, G

i
2), Y

i)}Ntr

i=1 and Dte = {((Gi
1, G

i
2), Y

i)}Nte

i=1 . Our goal is to
find an optimal predictor Φ: (G1,G2) −→ Y that performs well on all environments. Formally, the
learning objectives can be formulated as:

min
f

max
e∈E

E((Gi
1,G

i
2),Y i)∼p((G1,G2),Y|N=e)

[
ℓ
(
Φ
(
Gi

1, G
i
2

)
, Y i

)
| e

]
(1)

Definition 1. (Data generation process) The OOD distribution can be sampled according to
DOOD = {(G1, G2) ∈ D | (G1 ∈ GOOD

∧
G2 ∈ GOOD)

∨
(G1 ∈ GOOD

∧
G2 ∈ GID)

∨
(G1 ∈

GID

∧
G2 ∈ GOOD)}. The data generation process is as follows: Let E denote all possible environ-

ments, supp(Ntr) ⊂ supp(E), sampled train data from P ((G1, G2), Y ). Distribution shifts indicate
that Pe((G1, G2), Y ) ̸= P

′

e((G1, G2), Y ), i.e., DTrain = {((Gi
1, G

i
2), Y

i)N
tr

i=1 | e ⊂ supp(Ntr)},
DTest = {((Gi

1, G
i
2), Y

i)N
te

i=1 | e′ ∈ supp(E)\supp(Ntr)}.

4 METHODOLOGY

In this section, we present the details of RILOOD, an Relational Invariant Learning framework,
to solve the Out-of-Distribution generalization on molecular relational learning. An overview of
the proposed method is shown in Fig. 2. We illustrate three key components in RILOOD, i.e.,
Mixup-enhanced Conditional Variational Modeling, Multi-granularity Context-Aware Refinement,
Invariant Ralational Learning Mechanism.

4.1 INVARIANT LEARNING ON RELATIONAL LEARNING.

The goal of the invariant-based approach is to train a predictor that is robust to distribution changes,
i.e., a mapping from molecular pairs to label that does not vary with environment. It is hoped that the
predictor will be able to satisfies the following two properties:

Assumption 1. Given the molecular pairs (G1,G2), each molecular pairs is associated with K
surrounding environments. There exist invariant interaction patterns that can lead to generalized
out-of-distribution prediction across all environment slices. The optimal representation learner Φ(·)
satisfying:

(1) Invariance Property:∀e, e′ ∈ supp(ε), P (Ye | He, e) = P (Ye′ | He′ , e′), where Hi =

Φ(Gi
1,Gi

2) denotes molecular pairs representations, He = Φ(Ge
1 ,Ge

2), H
e′ = Φ(Ge′

1 ,Ge′

2 );

(2) Sufficiency Property:Yi = f(Φ(Ge
1 ,Ge

2)) + ϵ, where f is a predictor, ϵ is a random noise.

4
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Figure 2: Overall the framework of RILOOD.

If the following conditions hold: (1) Φ(G1,G2) ⊥ (G1,G2)\Φ(G1,G2); (2) ∀Φ ∈
supp(E),∃e′ ∈ supp(E) such that P e′(G1,G2,Y) = P e′(Φ(G1,G2),Y)P e′((G1,G2)\Φ(G1,G2))

and P e′(Φ(G1,G2)) = P e(Φ(G1,G2)).

Specifically, We further decompose Φ(·) = g ⊙ h(G1,G2) by two sub-components: (a) a Conditional
Variational AutoEncoder (CVAE) h: infer the distribution of solute H1 ∼ qϕ(H1|z, c) across
environment c; (b) a Multi-granularity Context-Aware Learner g : (H1, H2) −→ H12 aiming to
identify the desired H12. Based on Eq. 1, we can reformulate the OOD problem on molecular pairs
as:

min
f

max
e∈E

E(Gi
1,Gi

2,Y
i)∼p(G1,G2,Y|e)

[
ℓ
(
g ⊙ h

(
Gi
1,Gi

2

)
, Y i

)
| e

]
, (2)

where e denotes the support environments, Φ(·) is the representation learner and ℓ(·, ·) represents a
loss function.

4.2 MIXUP-ENHANCED CONDITIONAL VARIATIONAL MODELING

The ability to generalise to unseen distributions is guaranteed by a predictor that performs well in
several predefined environments. Theoretically, spurious patterns can be used to infer the underlying
environment. Lin et al. (2022) proposed that environment partitioning can be learned using additional
auxiliary information to separate invariant features. Indeed, we fail to obtain environment labels
of molecular pairs directly. Consequently, we utilize auxiliary information as a condition, such as
solvent, to model the distribution of molecules across domains.

The Conditional Variational AutoEncoder(CVAE) has been widely adopted for modeling condi-
tional distributions in latent environments through multi-label variational inference. We propose
Mixup-based CVAE (MCVAE) specifically designed to model molecular distribution using the paired
solvent information and infer qϕ(z|G1, c) across various environments. At the same time, the uncer-
tainty constraint is added. Assume that the categories of solvent are K, i.e., C = {ck}Kk=1. Each type
of solvent ck is represented as a K-dimensional one-hot column vector ck ∈ {0, 1}K whose k-th
dimension is 1. Mixup techniques generate a variety of environment data to help models generalize to
unseen domains. We obtain the molecular representations H1 and H2 for molecule G1 and molecule
G2 in the previous part. Next, we apply mixup to the obtain augmentation sample as follow:

H̃ = λ ·H1 + (1− λ) ·H2, c = λ · c1 + (1− λ) · c2 (3)

where H̃ is the mixed representation of H1 and H2. c is the mixed label of c1 and c2. λ ∈ [0, 1] is
drawn from a Beta distribution, i.e., λ ∼ Beta(α, α). Specifically, we introduce variational inference
to generate loglikelihood logp(H̃ | c), which can be reformulated as the following variational lower
bound by introducing the approximate posterior distribution q(z, c).

max
θ,ϕ

EH̃∼D

[
Eqϕ(z|H̃,c)

[
log pθ(H̃ | z, c)

]]
, s.t.DKL

(
qϕ(z | H̃, c)||pθ(z | H̃)

)
< ϵ (4)
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By optimizing MCVAE, we aim to infer the molecular distribution of the latent environment, a
novel approach to learning environment-sensitive molecular representations. We minimize the
difference between the approximate distribution q(z|H̃, c) of the latent variable z and the true posterior
probability p(H̃|c, z) for a specific solvent c. Leveraging rich prior knowledge from conditional
encoders, the training objectives are, (1) make the K-group normal distribution output by the encoder
as close as possible to the standard normal distribution; (2) We adopt the Monte Carlo method
by drawing samples z(ℓ)(ℓ = 1, 2, ...,L) from the distribution q(z|c), which make the resampled
solute molecular features as close as possible to the original features. Maximizing the conditional
log-likelihood logpϕ(z|c) leads to an optimal MCVAE by minimizing:

LMCVAE(θ, ϕ; H̃, c) = −KL
(
qϕ(z

(l) | H̃, c)∥pθ(z | H̃)
)
+

1

N

N∑
i=1

[
1

σ(H̃)2
∥z − H̃∥2 + log σ(H̃)2

]
(5)

where z(l) = gϕ

(
H̃, c, ϵ(l)

)
, ϵ(l) ∼ N (0, I)and L is the number of samples. Here, for the regression

task, we introduce an uncertainty constraint to reduce the additional noise introduced by the mixing
technique. Detailed proofs are in Appendix A.1.

4.3 MULTI-GRANULARITY CONTEXT-AWARE REFINEMENT.

In preliminary 3.1, molecular interactions are constructed using cross-attention on node-level features.
However, existing methods are limited by the expressiveness of vanilla GNNs, which tend to be over-
smoothed. Therefore, it is not easy to distinguish subtle differences. Additionally, existing approaches
are grounded in molecular invariant learning, which relies heavily on the core substructures of the
molecule, leading to inherent biases. Motivated by the fact that there are non-chemically bonded
interactions between molecules, we employ self-attention mechanism to identify invariant features.

Consequently, the interactions are modeled utilizing sampled features z(l) and solvent features H2,
and further propose a Multi-granularity Context-Aware Refinement (MCAR) strategy to capture
multi-level interactions at the graph level, including: (1) fine-grained context interactions across each
dimension, and (2) coarse-grained context interactions for each molecular graph. Specifically, let z(l),
H2 denote as solute molecule embedding and solvent molecule embedding, respectively.

Q,K,V = EWQ, EWK , EWV (6)

where E = concat[z(l), H2], WQ,WK ,WV ∈ Rdk are transformation matrices, and dk is the
attention size. We develop the MCAR mechanism by two steps: (1) Capture coarse-grained molecular-
level contexts and fine-grained feature-level contexts to learn context information together; (2) The
invariant patterns are updated by matrix multiplication between coarse-grained features and fine-
grained features.

Oc = Attention(Q,K,V) = Softmax

(
Pℓ

QKT

√
dk

)
V Pw ∈ Rf×d

Of = PReLU (WLhl + bl) ∈ R1×d

Hc = Oc ◦Of ∈ Rf×d

(7)

where Q, K, V are given by Eq. 6, and Pℓ ∈ Rdk×dk , PW ∈ Rdk×dv are the two additional linear
projections. Self-attention is suitable for extracting relationships between molecules, while fine-
grained interactions can be used to extract contextual information from different instances using a
simple linear layer. Each layer of the MLP is obtained as follows: hl+1 = PReLU(Wlhl + bl).
To enhance effective feature extraction, maximizing mutual information allows for the retention of
important features while minimizing redundancy and noise. We maximize the mutual information
between E and Ĥinv. E is the global feature of merging solute and solvent and is dominated by
spurious correlations, while Ĥinv is the context-aware feature dominated by invariant correlations.

max
fc,w

I
(
Ĥinv;Y

)
, s.t.Ĥinv ∈ argmax

Ĥinv=w(E),|Ĥinv|≤E

I
(
Ĥinv;E | Y

)
(8)
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Finally, contrastive learning provides a practical solution for the approximation, the learning objective
is defined as

LMI = − 1

M

M∑
i=1

log
exp(sim(Ĥinv, E

i))

exp(sim(Ĥinv, Ei)) +
∑M

j=1,j ̸=i exp(sim(Ĥinv, Ej))
(9)

4.4 INVARIANT RELATIONAL LEARNING MECHANISM

Optimization Objective. Eq. 2 clarifies the training objective of OOD generalization. However,
directly optimizing Eq. 2 is not impracticable. Specifically, we jointly optimize objectives:

L = Linv + αLMCVAE + βLMI (10)

where α and β are weight hyperparameters for LMCVAE and LMI , respectively. The Linv calculates
the loss between the model prediction given the pair of input graphs, i.e., (G1, G2), and the target.
Proposition 1. Given observed environment label c, our goal is to build a model pθ(H̃|c, z) that
learns the feature H̃ ∈ RNx conditioned on c. Optimizing Eq. 12 letting z show sufficient predictive
power, and allowing model satisfy Sufficient in Assumption 1. Minimizing Eq. 9 can encourage the
model to satisfy the Invariance in Assumption 1.

5 EXPERIMENTS

In this section, we conduct extensive experiments to answer the research questions:

• RQ1: How to evaluate the effectiveness of the model in OOD scenarios?
• RQ2: How effective is RILOOD in discovering invariant features and improving generalization?

5.1 EXPERIMENTAL SETTINGS

Datasets. We use six datasets to evaluate our method. Specifically, the Minnesota Solvation Database
(MNSolv)(Marenich et al., 2012), QM9Solv(Ward et al., 2021), CompSolv(Moine et al., 2017),
ZhangDDI(Zhang et al., 2017b), ChChMiner(Marinka Zitnik et al., 2018) and DeepDDI(Ryu et al.,
2018). The detailed statistics and descriptions are given in Appendix B. More experiments are
provided in Appendix C.

Baselines. We compare our method with the state-of-the-art methods, and adopt 7 baselines:
GCN (Kipf & Welling, 2016), CIGIN(Pathak et al., 2020), CGIB(Lee et al., 2023a), CMRL(Lee et al.,
2023b), ERM(Vapnik, 2013), GroupDRO (Sagawa et al., 2019) and MixUp(Zhang et al., 2017a).

Metrics. We choose widely-used metrics in previous works, the performance of the molecular
interaction prediction task is evaluated in terms of RMSE(Pathak et al., 2020) and MAE(Fang
et al., 2024). Lower error indicate better prediciton performance. AUROC(Lee et al., 2023b), and
Accuracy(Lee et al., 2023b) for DDI prediction.

5.2 MAIN RESULTS (RQ1)

5.2.1 REAL-WORLD DATASET

To evaluate the generalization performance of our method, we conducted extensive experiments on
three datasets to verify the effectiveness of our proposed method. To explore the possibilities of
more environments, i.e. different shifts, we also evaluate performance on different settings: Scaffold,
Size, Assay and Solvent. The overall results are summarized in Tab. 1, and we have the following
observations:

The results indicate that our method consistently outperforms baseline models, achieving superior
performance across all datasets. Conventional methods have limitation as they rely on the core-
substructure to generalize, which proves to be an spurious features in molecular pairs relation. The
marked improvement in RILOOD can be attributed to its capacity for multi-grained interaction and
invariant pattern recognition, which effectively enables the model to adapt to distribution shifts.
Further discussions on applying this method to i.d. setting are available in the Appendix C Tab. 3.
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Table 1: Performance comparison with baselines on 3 out-of-distribution real-world datasets from
MNSolv, CompSolv, QM9Solv in terms of RMSE. Different dataset splits by specific shift. The
best and the runner-up results are highlighted in bolded and underlined respectively.

Method MNSolv↓ CompSolv↓ QM9Solv↓
Solvent Scaffold Assay Size Scaffold Solvent Scaffold

GCN 0.8921±0.024 1.2752±0.022 0.9117±0.011 0.7644±0.024 0.9598±0.024 0.9115±0.024 1.0319±0.024

CIGIN 0.7662±0.017 1.3649±0.021 0.5299±0.003 0.5574±0.002 0.6383±0.005 0.7503±0.053 0.8642±0.012

ERM 0.7503±0.026 1.3478±0.013 0.5319±0.011 0.5360±0.002 0.6334±0.003 0.7471±0.053 0.7261±0.005

GroupDRO 0.7839±0.003 1.4322±0.031 0.6587±0.006 0.5857±0.013 0.7459±0.012 0.8259±0.007 0.8503±0.021

MixUp 0.7135±0.011 1.3843±0.012 0.5405±0.022 0.5772±0.026 0.5604±0.017 0.7227±0.003 0.7490±0.002

CGIB 0.8312±0.017 2.2118±0.024 0.3916±0.043 0.3886±0.025 0.5476±0.026 1.4525±0.013 0.7894±0.006

CMRL 0.8063±0.012 2.1524±0.032 0.3865±0.014 0.3777±0.023 0.6672±0.013 1.4425±0.016 0.7894±0.002

Ours 0.6784±0.007 1.0780±0.013 0.3676±0.017 0.3660±0.022 0.5209±0.014 0.7001±0.001 0.6991±0.003

Solvent Scaffold Assay Sizes
(c)

0.2

0.3

0.4

0.5

0.6

0.7
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c

w/ MCAR
w/o MCAR
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Figure 3: (a) Performance under different spurious correlation levels. We set the strength of spurious
correlation as r = Number of samples with spurious feature

Number of samples , where training set with higher r will have stronger
spurious correlations with underlying environments; (b) Results on three DDI datasets with OOD
shifts. We conducted comparison experiment with three SOTA methods; (c) Effects of different inter-
action patterns(w/ MCAR is multi-grained interaction pattern; w/o MCAR is node-level interaction
pattern).

5.2.2 SYNTHETIC DATASET

We employ different shift strategies tailored to specific datasets, introducing spurious features to
create synthetic datasets. We first consider the distribution shift caused by polarity bias w.r.t. eps.
The invariant feature is Ĥinv ∈ R, where P(Y |Ĥinv) is a constant, indicating a stable correlation
between Y and Ĥinv. Our goal is to learn a model that relies solely on Ĥinv. We use eps to control
the degree of spurious correlation. The correlation of molecular-pairs and label Y with eps=78 is
unstable, counted as E. i.e., P(Y |E) is unstable, P(Y |Ĥinv) is stable. More detail can be seen in
Appedix C Fig. 5. Following(Li et al., 2022; Wu et al., 2022b), the spurious correlation is injected by
controlling the variant distribution. Therefore, we manually construct spurious relations of different
degrees between C and label Y in the training set. We set r={0.25, 0.33, 0.5, 0.75}. The results
are reported in Fig. 3(a). As r grows larger, the performance of all the methods tends to increase
since there exists a larger degree of distribution shift. Nevertheless, our proposed method is able to
maintain the most relatively stable performance.

5.2.3 GENERALIZATION ON GRAPH CLASSIFICATION.

To explore the applicability of our method to other molecular pair data and its potential application
in classification tasks, we evaluated its performance on the DDI dataset.The results are reported in
Fig. 3(b). RILOOD outperforms previous methods in OOD scenarios as predicted by DDI dataset.
This superior performance can be attributed to RILOOD’s ability to generalize, effectively transferring
knowledge from molecular-pair interactions to molecular with similar interaction patterns and new
scaffolds. This transferability ensures that the model remains robust despite distribution shifts.
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Table 2: Ablation study on CompSolv-∗ and MNSolv-∗ by RMSE. We show the results of our method
that performs best among baselines on all CompSolv-∗ and MNSolv-∗ datasets, for comparison.

Method CompSolv↓ MNSolv↓
Size Scaffold Solvent Assay Solvent Scaffold

Baseline [B] 0.5881±0.010 0.6383±0.011 0.5215±0.007 0.5299±0.023 0.7662±0.016 1.2648±0.018

B + ERM loss [E] 0.5360±0.013 0.5919±0.012 0.4864±0.023 0.5319±0.017 0.7263±0.026 1.3478±0.011

B + MCAR [M] 0.5623±0.009 0.5842±0.003 0.4914±0.004 0.4993±0.005 0.7115±0.003 1.2191±0.012

M + Linv [Min] 0.5598±0.003 0.5444±0.022 0.5196±0.003 0.5483±0.003 0.7279±0.002 1.2005±0.003

Min + LMI [MM] 0.5764±0.002 0.5269±0.013 0.4980±0.010 0.5230±0.001 0.6946±0.008 1.2360±0.002

Min + LCV AE [MC] 0.5482±0.010 0.5351±0.027 0.4753±0.023 0.5188±0.020 0.7026±0.013 1.1329±0.011

w/o MCAR 0.6057±0.009 0.6641±0.013 0.4834±0.001 0.5215±0.013 0.7285±0.003 1.3929±0.002

Ours 0.3660±0.007 0.5209±0.014 0.4689±0.006 0.3676±0.007 0.6784±0.007 1.0780±0.013

(a)

Training set Test set

(b)

Original MCAR

(c)

Original MCAR

Figure 4: Visualization of the extracted features on training and validation set when the model
achieves the best performance on the validation set. (a) The feature distribution of the training set
and the test set; (b) Effect of MCAR on solute molecular feature distribution; (c) Effect of MCAR on
global feature (solute + solvent) distribution.

5.3 IN-DEPTH ANALYSIS (RQ2)

We conduct ablation study by removing the following modules: Multi-granularity Context-Aware
Refinement (MCAR) is train by downstream task (M); contrastive loss (Min); condition distribution
modeling loss(MC); the removal of MCAR (w/o MCAR); the model is joint-train by Eq. 10 (Ours).
The results are presented in Tab. 2. We can observe from the results in Tab. 2 that (1) MCAR plays an
important role, especially in invariant learning, which retains not only the original cross-attention but
also multilevel attention. (2) Condition modeling plays an important role, but the performance gains
of LCVAE and LMI are much less than for joint training. (3) The removal of MCAR incurs detriment
to the overall performance, which illustrates the effectiveness of context interaction.

Feature Visualization. To further explore the superiority of our method and understand how multi-
granularity context-aware representation remains invariant, we use the t-SNE algorithm to visualize
the molecular interactions when the model performs best. For comparison, we also visualized the
baseline. As show in Fig. 4, it turns out that (a) The majority of solute molecules in the test set
originate from a distinct distribution compared to those in the training set. (b) MCAR has the capacity
to enhance the distribution of features, rendering the learning of a more diverse set of features feasible.
(c) MCAR is better equipped to capture domain-invariant interaction features, thereby enhancing the
model’s performance in the unseen domain.

6 CONCLUSION

In this paper, we propose an Relational Invariant Learning framework to solve out-of-distribution in
molecular relational learning. Three tailored modules are jointly optimized to train the model
and learn the representation of invariant molecules in diverse environments. Mixed-enhanced
molecular representations are used for variational modeling of diverse environments, further capturing
invariant interaction patterns through multi-granularity context-aware refinement strategy. Extensive
experiments and theoretical analysis prove the superiority of our method.
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A PROOFS

In this section, we provides detailed proofs in Section4.

A.1 PROOF OF EQUATION12

Considering that the solute features H1 and solvent features H2 in graph-level generated from baseline
model are not independent due to the node interaction. Assumed that the solute representations H1

sampled under specific environment and the condition label is c, the mixed representation H̃ of solute
and solvent, c, and G1 and Gc are independent, respectively. Then, we have:

L(θ, ϕ; H̃, c) = Eqϕ(z|H̃,c)[log pθ(H̃|z, c)]−DKL(qϕ(z|H̃, c)∥pθ(z|H̃)) (11)

Here, the aim of learning is to find the best parameter θ that maximizes the log-likelihood logpθ(H̃|c).
We can derive a tractable variational lower bound known as Evidence Lower BOund (ELBO). Specif-
ically, find the parameters of p(z|c) by minimizing the distance between p(z|c) and q(z|H̃, c) by KL
divergence. Further, we try to maximize the variational lower bound of the log-likelihood logpθ(H̃|c).
Specifically, an auxiliary distribution qϕ(z|H̃, c) is introduced to approximate pθ(z|H̃, c), due to the
intractability of the true posterior distribution pθ(H̃|z, c).

max
θ,ϕ

EG1∼D

[
Eqϕ(z|H̃,c)

[
log pθ(H̃ | z, c)

]]
s.t.DKL

(
qϕ(z | H̃, c)||pθ(z|H̃)

)
< ϵ (12)

The threshold ϵ is primarily to ensure that the learned latent representation z remains faithful to the
true underlying distribution of the data. We refer the auxiliary proposal distribution qϕ(z|H̃, c) a
recognition model and the conditional distribution pθ(H̃|c, z) a generative model. By leveraging
approximate posterior inference and reparameterization technique, the prior can effectively capture
environmental information from the posterior distribution, thereby facilitating posterior alignment.

logpθ(H̃|c) = −KL(qϕ(z|H̃, c)||pθ(z|H̃)) + Eqϕ(z|H̃,c)

[
log pθ(H̃ | z, c)

]
(13)

where KL(·||·) is Kullback-Leibler divergence between two distributions. For the regression task, we
introduce an uncertainty constraint on the RMSE. Therefore, the reconstructed term is rewritten as:

LMCVAE(θ, ϕ; H̃, c) = −KL
(
qϕ(z

(l) | H̃, c)∥pθ(z | H̃)
)
+

1

N

N∑
i=1

[
1

σ(H̃)2
∥z − H̃∥2 + log σ(H̃)2

]
(14)

B DATASETS

• MNSolv 1 contains 3,037 experimental free energies of solvation or transfer energies of 790
unique solutes and 92 solvents.

• QM9Solv2 contains solvation energies of 130,258 molecules taken from the QM9 dataset com-
puted in five solvents(acetone, ethanol, acetonitrile, dimethyl sulfoxide, and water) via an implicit
solvent model. We consider 5,000 experimental free energies of solvation or transfer energies of
1000 unique solutes and 5 solvents.

• Compsolv3 dataset is proposed to show how solvation energies are influenced by hydrogen-
bonding association effects. We consider 3,548 combinations of 442 unique solutes and 259
solvents in the dataset following previous work.

1https://conservancy.umn.edu/bitstream/handle/11299/213300/
MNSolDatabase_v2012.zip?sequence=12&isAllowed=y

2https://acdc.alcf.anl.gov/mdf/detail/solv_ml_v1.2
3https://www.sciencedirect.com/science/article/pii/S0378381210003675

12

https://conservancy.umn.edu/bitstream/handle/11299/213300/MNSolDatabase_v2012.zip? sequence=12&isAllowed=y
https://conservancy.umn.edu/bitstream/handle/11299/213300/MNSolDatabase_v2012.zip? sequence=12&isAllowed=y
https://acdc.alcf.anl.gov/mdf/detail/solv_ml_v1.2
https://www.sciencedirect.com/science/article/pii/S0378381210003675
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Figure 5: Spurious correlation from dielectric constant eps.

• Abraham4 dataset is a collection of data published by the Abraham research group at College
London. We consider 6,091 combinations of 1,038 unique solutes and 122 solvents following
previous work.

• Combisolv5 contains all the data of MNSol, FreeSolv, CompSolv, and Abraham, resulting in
10,145 combinations of 1,368 solutes and 291 solvents.

C ADDITIONAL EXPERIMENTS

C.1 IMPLEMENTATION AND OPTIMIZATION DETAILS.

The proposed method is implemented on a single NVIDA 3090 GPUs with PyTorch. Following
the CIGIN(Pathak et al., 2020), we use the same 3-layer GCN and MPNN as feature extractor for
solute molecule and solvent molecule, respectively. More details about backbone can be found in
Sec.3.1. During the training, the solute features were incorporated with node interaction features,
which is the dot-production similarity between solute node features and solvent node features. Here,
we using graph-level solute features and solvent features as input in our method. We select 168 for
the dimension (dz) of latent variables. The learning rate was decreased on plateau by a factor of 10−3

from 10−3 to 10−5.

C.2 GENERALIZATION ANALYSIS.

C.3 HYPERPARAMETER SENSITIVITY ANALYSIS

We analyze the sensity of the hyperparameters α and β, which act as the trade-off for loss in
Eq.10. In general, the approximate posterior distribution is difficult to approximate the true posterior
distribution, resulting in the reconstruction loss being tens to thousands of times that of the supervised
loss. In order to balance the rate of decline between individual losses, we performed a hyperparameter
sensitivity experiment. The hyperparameter {α is chosen from 10−7, 10−6, 10−5, 10−4, 10−3},
and in addition, β is chosen from {10−8, 10−7, 10−6, 10−5, 10−4}. Our experiment is conduct on
MNSolvation and CompSolv datasets due the diversity and representativeness of their data. Our
results experiences a significant ascend when α1 is large.

4https://www.sciencedirect.com/science/article/pii/S0378381210003675
5https://ars.els-cdn.com/content/image/1-s2.0-S1385894721008925-mmc2.

xlsx
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Table 3: Performance on molecular interaction prediction task (regression) in terms of RMSE.

Model Chromophore MNSolv CompSolv Abraham CombiSolv
Absorption Emission Lifetime

GCN 25.75 31.87 0.866 0.675 0.389 0.738 0.672
GIN 24.92 32.31 0.829 0.669 0.331 0.648 0.595
CIGIN 19.32 25.09 0.804 0.607 0.363 0.472 0.451
CGIB 18.11 23.90 0.771 0.538 0.276 0.390 0.422
CMRL 17.93 24.30 0.776 0.551 0.255 0.374 0.421
Ours 17.70 25.61 0.706 0.489 0.246 0.309 0.209

Table 4: RMSE result of property prediction task on real-world datasets without/with OOD shifts of
domain.

Dataset MNSolv CompSolv QM9Solv
Model w/o OOD w/ OOD w/o OOD w/ OOD w/o OOD w/ OOD

CIGIN 0.6070 0.7662 0.3630 0.5215 0.6932 0.7503
CGIB 0.5380 0.8312 0.4159 0.5678 0.3654 1.4525
CMRL 0.5510 0.8063 0.3363 0.8072 0.3649 1.4425
ERM 0.5837 0.7503 0.5290 0.6917 0.6164 0.7471
Mixup 0.5802 0.7135 0.4393 0.5405 0.4268 0.7227

Ours 0.4891 0.6784 0.3497 0.5147 0.30141 0.7001

As shown in Fig.6 and Fig.6, we can draw a conclusion that α and β plays a role in balancing
the trade-off between modeling the environment and invariant learning. In conclusion, different
combinations of hyperparameters lead to varying task performance, and we follow the tradition of
reporting the best task performance with standard deviations.
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Figure 6: Sensitivity analysis of the hyperparameter (a)α and (b)β on CompSol datasets. The
solid line shows the average RMSE in the testing stage and the light blue area represents standard
deviations. The dashed line represents the average RMSE of the best-performed baseline.
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Figure 7: Sensitivity analysis of the hyperparameter (a)α and (b)β on MNSolvation datasets. The
solid line shows the average RMSE in the testing stage and the light blue area represents standard
deviations. The dashed line represents the average RMSE of the best-performed baseline.

Table 5: Hyperparameter specifications.

Embedding Batch Epochs Hyperparameter
Dim (d) Size (K) lr α β

Absorption 42 32 100 1e-3 1e-3 1e-3
Emission 42 256 100 1e-3 1e-3 1e-3
Lifetime 42 32 100 1e-3 1e-4 1e-3
MNSolv 42 32 200 1e-3 1e-5 1e-5

CompSolv 42 256 500 1e-3 1e-6 1e-3
Qm9Solv 42 256 500 1e-3 1e-4 1e-4
Abraham 42 256 500 1e-3 1e-6 1e-6

CombiSolv 42 256 500 1e-3 1e-4 1e-3
ZhangDDI 300 512 200 1e-3 1e-3 1e-3
ChChMiner 300 512 200 1e-3 1e-4 1e-4
DeepDDI 300 512 200 1e-4 1e-4 1e-4
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