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ABSTRACT

Mixture of Experts (MoE) enables efficient parameter scaling in large language
models by dynamically activating relevant parameter subsets per input token.
Compressing MoE models presents unique challenges due to their inherent spar-
sity. Traditional quantization techniques, which are typically effective for dense
models, prove inadequate when applied to MoE architectures. This paper pro-
poses an efficient MoE quantization algorithm. Specifically, we construct a mixed-
precision quantization search space encompassing different granularities from
expert-level to channel-level. This approach facilitates precise bit-width resource
allocation across model components based on their significance and activation fre-
quency. And then, we leverage evolutionary algorithms to efficiently navigate this
search space, autonomously identifying optimal quantization configurations. The
synergy between adaptive granularity and automated search effectively mitigates
the distinctive quantization challenges inherent to MoE models, culminating in a
fully automated framework for efficient MoE quantization. Experimental results
indicate that our method achieves significant performance improvements across
multiple evaluation tasks, with particularly notable results in low-bit quantization
scenarios. When applied to the Mixtral-8x7b-v0.1 model, our approach outper-
forms the current state-of-the-art by 9.24% , setting a new benchmark in MoE
quantization. Code is available in supplementary materials.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) (Touvron et al. (2023a;b); Reid et al. (2024);
Zhang et al. (2022)) have demonstrated remarkable progress in the field of natural language pro-
cessing. However, the continuous expansion of model scale has concomitantly led to substantial
computational resource requirements. The Mixture of Experts (MoE) (Jacobs et al. (1991); Fedus
et al. (2022); Lepikhin et al. (2020)) architecture has emerged as an innovative paradigm in large
language models, offering efficient parameter scaling through dynamic activation of input-relevant
parameter subsets. By partitioning the parameter space into multiple expert networks and employing
dynamic routing, MoE models facilitate significant performance enhancements while maintaining
relatively low training costs and only marginally increasing computational demands during infer-
ence. (Jiang et al. (2024); Dai et al. (2024)) This approach enables the handling of increasingly
complex tasks while optimizing resource utilization, representing a significant advancement in scal-
ing model capabilities in natural language processing(Rajbhandari et al. (2022); Chen et al. (2022b)).

As large language models continue to grow in size, the importance of model compression becomes
increasingly evident. such as quantization (Frantar et al. (2023); Yuan et al. (2023); Lin et al. (2023);
Shao et al. (2023); Ma et al. (2024)), sparsification (Frantar & Alistarh (2023); Sun et al. (2023);
Zhang et al. (2023)), and knowledge distillation (Hsieh et al. (2023); Gu et al. (2024)), have demon-
strated significant progress in reducing model size and computational requirements while maintain-
ing performance. However, existing compression methods for large models do not necessarily yield
the same effectiveness when applied to Mixture of Experts (MoE) models. The inherent sparsity
characteristics of MoE models present unique challenges for compression Chowdhury et al. (2023).
The dynamic routing mechanism in MoE models refers to the process where input tokens are se-
lectively directed to specific experts based on their content. Shazeer et al. (2017) This leads to
significant variations in the activation frequency of different experts, as some experts may be called
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upon more frequently than others depending on the input distribution. The heterogeneous expert
structure indicates that each expert within the MoE model may have distinct parameters and spe-
cialized functions. Unlike traditional homogeneous neural networks, this heterogeneity implies that
each expert may require a distinct compression strategy, further complicating the compression pro-
cess. Moreover, the sparse computational patterns in MoE models make it difficult to directly apply
conventional compression techniques without impacting model performance Li et al. (2023).

While quantization has proven effective and widely adopted in dense model compression, research
on MoE model compression has predominantly focused on model pruning, particularly expert and
layer pruning techniques. Lu et al. (2024) proposed an expert-level pruning method based on router
norm changes, retaining experts with the largest changes in router weights. Chowdhury et al. (2024)
introduced a theoretically-driven approach, demonstrating that prioritizing the removal of experts
with smaller L2 norm changes in their routers after pre-training can guarantee test accuracy under
certain conditions. Some researchers have recognized the need for more comprehensive compres-
sion strategies. For instance, He et al. (2024) proposed a unified MoE compression framework that
combines expert slimming (including pruning and quantization) with expert pruning (such as layer
and block deletion). This approach represents a step towards integrating multiple compression tech-
niques. However, a common limitation of these methods is their static nature, where uniform com-
pression techniques are applied across all experts. This approach fails to account for the dynamic
activation patterns and heterogeneous structure inherent in MoE architectures, potentially leading
to suboptimal compression results. The realm of MoE quantization, in particular, remains largely
unexplored. Li et al. (2024) investigated the assignment of different quantization bit-widths based
on importance judgments at various granularities of MoE structures. Through extensive experiments
to select importance metrics, they pushed compression rates to higher levels. However, the field still
lacks a comprehensive quantization solution specifically tailored to the intricacies of MoE models.

In response to the unique challenges posed by quantizing MoE models (Jiang et al. (2024); Li et al.
(2024)), this paper introduces an innovative and efficient automated quantization algorithm. Our
approach addresses this challenge by constructing a mixed-precision quantization search space that
encompasses a wide range of granularities, from expert-level to channel-level. This design allows
for dynamic and flexible quantization strategies that can adapt to the varying activation patterns
and heterogeneous structure of MoE models. By incorporating different levels of granularity, our
method can better align with the dynamic routing mechanism and diverse expert utilization inherent
in MoE architectures. Consequently, we extend the granularity of quantization configurations to the
internal structures of experts, enabling our search space to capture the dynamic characteristics of
MoE models. This approach allows for efficient exploration of the vast search space, minimizing
quantization model loss under target compression rates. Ultimately, we propose a fully automated,
efficient quantization framework for MoE models that addresses their inherent dynamic nature, pro-
viding a more tailored and effective approach than previous static methods. In conclusion, the key
contributions of this paper are as follows:

• We introduce a novel mixed-precision quantization search space that achieves fine-grained
quantization ranging from expert-level to neuron-level granularity. By extending quanti-
zation configurations to the internal structures of experts, our approach not only captures
the multi-layered characteristics of MoE models but also flexibly integrates with various
importance judgment factors. This integration enables precise allocation of quantization
resources across different structural levels of the model.

• Furthermore, to navigate the complex search space efficiently, we introduce an evolutionary
algorithm-based approach for identifying optimal quantization configurations. This method
enables effective exploration of the vast search space, automatically determining the most
suitable quantization strategy while minimizing model loss under specified compression
rates. The evolutionary algorithm’s ability to handle multi-objective optimization makes it
particularly well-suited for balancing the trade-offs inherent in MoE model quantization.

• Our novel techniques have established new benchmarks in the domain of Mixture-of-
Experts (MoE) quantization. In the realm of mixed-precision quantization, our proposed
method demonstrates remarkable superiority, surpassing existing linear-level quantization
approaches by a substantial 7.9% on the neuron-quantized Mixtral-8x7B-v0.1 model, while
maintaining identical quantization configurations. Through the innovative integration of
evolutionary algorithms, we further enhanced our method’s efficacy, achieving an addi-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

tional 1.34% performance improvement. A key strength of our approach lies in its or-
thogonality to existing LLM quantization methods. This characteristic opens up exciting
possibilities for synergistic combinations, potentially yielding even more significant per-
formance enhancements.

2 RELATED WORK

2.1 MIXTURE-OF-EXPERTS MODELS

Mixture-of-Experts (MoE) architectures have emerged as a significant innovation in Large Language
Models (LLMs) (Jiang et al. (2024); Dai et al. (2024)), offering a balance between model capacity
and computational efficiency. Originally proposed by Jacobs et al. (1991), MoE has evolved sub-
stantially in the context of deep learning and natural language processing. Shazeer et al. (2017)
pioneered the use of MoE in transformer-based models, demonstrating improved performance on
translation tasks. This work was extended by Lepikhin et al. (2020) with the GShard architecture,
scaling MoE to trillion-parameter models. Fedus et al. (2022) introduced the Switch Transformer,
implementing a sparse gating mechanism for more efficient routing of inputs to experts. The theo-
retical understanding of MoE models has also progressed.Chen et al. (2022b) provided insights into
the generalization capabilities of MoE models, while Chowdhery et al. (2022) offered theoretical
guarantees on the computational efficiency of modern MoE architectures with patch-level routing.
Recently, the Mixtral model by Jiang et al. (2024) demonstrated that MoE can match the perfor-
mance of full-parameter LLMs while using significantly fewer active parameters. This has sparked
interest in MoE compression techniques. Du et al. (2019) proposed expert-choice routing to opti-
mize expert utilization, while Rajbhandari et al. (2022) addressed the memory overhead associated
with storing multiple expert networks. These advancements highlight the potential of MoE for effi-
cient, large-scale language modeling and set the stage for further research in MoE compression (Li
et al. (2023); Chen et al. (2022a)) and optimization.

2.2 POST-TRAINING QUANTIZATION

Post-training quantization (PTQ) (Wei et al. (2022b); Yao et al. (2022); Ashkboos et al. (2024); Liu
et al. (2024)) has emerged as an efficient technique for model compression, particularly beneficial
for LLMs. Unlike quantization-aware training or fine-tuning (Tailor et al. (2020); Ding et al. (2022)
), PTQ operates on pre-trained models without extensive retraining (Liu et al. (2021); Fang et al.
(2020)). In computer vision, AdaRound Nagel et al. (2020) optimizes weight rounding strategies,
BRECQ Li et al. (2021) introduces block-wise reconstruction, and QDROP Wei et al. (2022a) en-
hances performance through activation substitution. For LLMs, GPTQFrantar et al. (2023) uses
approximate second-order information for layerwise quantization, SmoothQuant Xiao et al. (2023)
tackles activation outliers, and AWQ Lin et al. (2023) preserves critical weights’ precision. Om-
niQuant Shao et al. (2023) integrates multiple strategies, combining mixed-precision quantization,
outlier handling, and adaptive rounding. AffineQuant Ma et al. (2024) introduces an affine transfor-
mation to adjust weight distribution, effectively reducing quantization errors. These advancements
have significantly improved LLM deployment efficiency on resource-constrained devices (Kim et al.
(2023); Chen et al. (2024)).

3 METHOD

3.1 PRELIMINARY

The Mixture-of-Experts Architecture. In Mixture-of-Experts (MoE) models based on the Trans-
former architecture (Fedus et al. (2022); Jiang et al. (2024)), the traditional dense Feed-Forward
Network (FFN) sublayer is replaced by an MoE layer comprising N FFN layers and a router G
Shazeer et al. (2017) . These N FFN layers are also called experts{E1,E2, . . . ,En}, Given x ∈ R,
the output y ∈ R is a weighted sum of the selected experts’ output :

y =
∑
i∈K

Gi(x) · Ei(x), (1)
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where K denotes the indices of selected experts, G(x) ∈ R is the gating score vector computed by
the router for all n experts based on the input x. The router employs a Top-K operation to select the
K experts with the highest gating scores. Subsequently, the input is routed only to these selected
experts, resulting in a sparse activation pattern. The computation of K is given by:

K = TopK(Softmax(G(x))). (2)

The expert structure in Mixtral-8x7B-v0.1 Jiang et al. (2024) follows the design of LLaMA Touvron
et al. (2023a). Each expert comprises three layers, defined as:

Expert(x) = Wdown(Wupx⊙ Act(Wgatex)), (3)

where⊙ denotes element-wise multiplication and Act represents the activation function. The expert
structure involves three weight matrices: Wup,Wgate ∈ Rdmid×din and Wdown ∈ Rdout×dmid .

This MoE architecture allows each expert to function as an independent FFN module, significantly
enhancing the model’s capacity without a corresponding increase in computational cost. However,
due to the replication of FFN layers, the primary memory overhead and the increase in model size
in MoE models are attributed to the FFN components.

Model Quantization. Quantization is an effective model compression technique that reduces model
size and computational complexity by converting high-precision floating-point parameters and ac-
tivations to lower-bit representations. This method significantly decreases the storage requirements
and computational overhead while striving to maintain model performance. The quantization pro-
cess Nagel et al. (2021) can be generally formulated as follows:

Q(x) = s · (clamp([x/s] + zp, 0, 2n − 1)− zp) (4)

where x represents the original floating-point value to be quantized, s is the quantization step size,
zp is the zero point, n is the target bit-width, clamp(·) is a function that restricts values to a specified
range. s defines the interval between quantized levels, directly affecting precision, while zp adjusts
the quantization range to effectively map quantized values to the original floating-point distribution.
These two parameters can be computed using the following formulas:

s =
max(x)−min(x)

2n − 1
, zp =

⌊
−min(x)

s

⌉
(5)

To minimize precision loss in large-scale models, GPTQ Frantar et al. (2023) introduces a layerwise
quantization technique based on approximate second-order information. This method quantizes
weights column by column, subsequently updating the remaining weights based on the OBQ Frantar
& Alistarh (2022) approach until all weights are quantized. The update process for the weight matrix
W is formulated as follows:



Ŵ ←W − δp

δp = −Wp −Q(Wp)

[H−1]p
· [H−1]:,p

εp =
(Wp −Q(Wp))

2

2[H−1]pp

, (6)

where the Hessian matrix H = 2XXT , and [H−1]:,p denotes the p-th column of the inverse Hessian
matrix. δp represents the quantization compensation generated when quantizing the p-th column,
while εp denotes the quantization error.

Outliers in large language models are a critical factor affecting quantization performance (Wei et al.
(2022b); Lin et al. (2023); Ma et al. (2024); Xiao et al. (2023)). To mitigate the issue of excessive
rounding errors for numerous smaller, non-outlier values caused by an overly large scale due to
outliers, an effective approach Shao et al. (2023) is to introduce learnable parameters γ and β to
adjust the maximum and minimum values. Through gradient descent optimization, the optimal
truncation range can be determined using only a small calibration set:

s =
γmax(W )− βmin(W )

2n − 1
, z = −

⌊
βmin(W )

s

⌉
(7)
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Mixed-precision quantization allocate different quantization bit-widths to various layers or modules
within a neural network. HAWQ Dong et al. (2019) is a representative method in mixed-precision
quantization. It utilizes the ratio of the maximum eigenvalue of the Hessian matrix to the parameter
count as a quantization sensitivity indicator, which guides the allocation of appropriate quantization
precision to different modules. Existing mixed-precision quantization methods for MoE models
(Li et al. (2024); He et al. (2024)) have explored strategies that allocate more bits to frequently
utilized experts, initial MoE blocks, or shared experts. While these approaches have demonstrated
some improvement in quantization efficiency, they overlook the finer-grained structural features
within MoE models. In the following section, we introduce a novel, more granular mixed-precision
quantization method. Our approach delves into the internal expert structures, considering multiple
levels of granularity from expert-level to neuron-level, thereby achieving more precise and efficient
allocation of quantization resources.

3.2 NEURON QUANTIZATION

For a MoE expert, a neuron Lo et al. (2024) is defined as the combination of corresponding row vec-
tors from Wup and Wgate, along with the corresponding column vector from Wdown. Consequently,
each expert contains dmid neurons. Based on the definition in Equation 3, the i-th neuron of the e-th
expert in a given Transformer block can be defined as follows:

Neuron(e)
i (x) = W

(e)
down[:,i] · (W

(e)
up [i,:]x⊙ Act(W (e)

gate[i,:]x)), (8)

where e ∈ 1, 2, ..., N and i ∈ 1, 2, ..., dmid. Previous research (Qiu et al. (2024); Geva et al. (2020))
has shown that the projection matrices of experts can be viewed as a key-value system: the col-
umn vectors of Wdown represent potential outputs; the row vectors of Wup generate weights for each
possible output; and the row vectors of Wgate determine the activation of corresponding channels.
Consequently, the neuron structure can be considered as a channel-level micro-expert. This per-
spective allows us to capture the computational characteristics of MoE models at a finer granularity,
providing a foundation for more precise optimization strategies.

It is important to note that the sparse activation nature of MoE models implies significant vari-
ations in the importance and utilization frequency of different experts. Similarly, neuron-level
”micro-experts” face comparable imbalanced activation issues. Current quantization methods for
MoE models Li et al. (2024) typically allocate resources at the expert or linear layer level. These
coarse-grained approaches may not fully exploit the structural properties of MoE models, poten-
tially overlooking intricate differences within experts and leading to information loss. In contrast,
neuron-level quantization offers a more refined and flexible compression strategy. This approach
enables better adaptation to the inherent imbalances in MoE models by capturing the importance of
each computational unit within the MoE structure. As a result, we can allocate more resources to
frequently activated neurons or those with greater influence on the output, thereby improving overall
quantization efficiency.

To ensure consistent and precise intra-neuron computations, uniform quantization bit-width is
applied to each neuron Li et al. (2021). We define a quantization configuration vector b =
[b1, b2, ..., bdmid ], where bi represents the quantization bit-width for the i-th neuron. Specifically,
for per-channel quantization, quantization parameters (scale and zero point) are collected along the
row dimension for Wup and Wgate, while utilizing the column dimension for Wdown. The quantization
parameters for the original floating-point value x to be quantized are computed as follows:

si =
max(x[i,:])−min(x[i,:])

2bi − 1
, zpi =

⌊−min(x[i,:])

si

⌉
, for Wgate and Wup

si =
max(x[:,i])−min(x[:,i])

2bi − 1
, zpi =

⌊−min(x[:,i])

si

⌉
, for Wdown

(9)

The quantization parameters for the entire weight matrix can be represented as the cumulative sum
of the individual neuron parameters:

sneuron = si | i ∈ 1, . . . , dmid, zpneuron = zpi | i ∈ 1, . . . , dmid (10)

5
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Based on the previously defined quantization parametersd and quantization configuration vector b,
the quantization function can be expressed as:

Q(x) = sneuron · (clamp([x/sneuron] + zpneuron, 0, 2b − 1)− zpneuron) (11)

3.3 EVOLUTIONARY ALGORITHMS

Existing quantization configuration allocation methods Li et al. (2024) primarily rely on the inherent
characteristics of MoE modules, such as expert utilization frequency or weight magnitude metrics.
However, these methods exhibit varying performance across different scenarios, making it challeng-
ing to determine a universally optimal strategy. Faced with such a complex decision space, evolu-
tionary algorithms demonstrate significant advantages (Real et al. (2019); Guo et al. (2020); Li et al.
(2021)). Evolutionary algorithms Wang et al. (2019) can effectively explore a vast and diverse con-
figuration space, optimizing quantization strategies by simulating natural selection processes. Their
adaptability enables dynamic strategy adjustment during the search process, effectively avoiding lo-
cal optima. This approach can automatically identify the most suitable quantization configuration
for specific MoE neurons without presuming the superiority of any single importance metric. Given
a fixed total model compression rate Bit, We define the optimization objective of the evaluation
function as follows:

min
c

l∑
i=1

N∑
j=1

L(Êij , cij), s.t. H(c) = Bit, cij ∈ {c1, c2, ..., cm} , (12)

where L(Ê, c) represents the loss of an expert under quantization configuration c. l denotes the
number of layers in the model, N is the number of experts per layer. c(i, j) returns the quantization
bit-width for the j-th expert in the i-th layer. The set {c1, c2, ..., cm} is a predefined collection of
candidate quantization bit-widths. H(·) is defined as the total bit budget function. The evaluation
function returns the negative value of the cumulative error.

L(Ê, c) is computed based on the quantization loss of each weight, utilizing the method proposed in
GPTQ. For each expert in the MoE model, the total loss is the sum of the ε from three linear layers
(Wup, Wgate, and Wdown):

L(Êij , cij) =
∑

Wup,Wgate,Wdown

εcij , (13)

where ε is defined as in Equation 6. In our experimental setup, we define the set of candidate
quantization bit-widths as {2, 2.5, 3, 3.5, 4}. Specifically, 2 represents 2-bit quantization for all
neurons in the expert, 2.5 indicates 4-bit quantization for 25% of neurons and 2-bit quantization for
the remaining 75%, and so forth, with 4 representing 4-bit quantization for all neurons. When the
quantization configuration is set to 2.5, we utilize the magnitude of weight outliers as a selection
criterion to determine which 25% of neurons are allocated 4-bit quantization. The choice of 2-bit
and 4-bit quantization is motivated by their prevalent use in practical deployments, offering a balance
between model compression and computational efficiency.

In the process of accumulating errors for the evaluation functionLi et al. (2021), real-time computa-
tion of L(Ê, c) during the quantization process is impractical. This limitation primarily stems from
the use of large language models with billions of parameters. Conducting comprehensive quantiza-
tion and error calculations for each potential quantization configuration would result in exponential
growth of computation time, rendering the optimization process prohibitively slow. Moreover, real-
time quantization and evaluation of each configuration demand substantial computational resources,
posing significant challenges even in high-performance computing environments. Additionally, the
quantization process exhibits a cascading effect across transformer blocksFrantar et al. (2023). The
computation of the Hessian matrix H for a given linear layer depends on the output of the preced-
ing block as input. Consequently, layers positioned later in the network tend to accumulate higher
errors. This phenomenon introduces a bias in evolutionary algorithms, which tend to allocate higher
bit-widths to the later layers to mitigate the cumulative error propagation.

To address the aforementioned challenges, we employ a pre-computation error method. During this
process, we individually assess each expert within every transformer block of the model. Specif-
ically, we maintain 32-bit floating-point precision for all layers preceding the target block, while

6
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Algorithm 1 Evolutionary Mixed-Precision Quantization for MoE (EMQ-MoE)
Require: Population size P , max generations G, mutation rate µ, number of experts Ne, elitism rate re,

tournament size ts, top individuals rate rt, target bit budget B
Ensure: Best mixed precision quantization configuration
1: Initialize population P0 with P individuals, each having Ne balanced genes
2: E ← Precompute errors() ▷ Precompute errors for each expert
3: best individuals← []
4: for g = 1 to G do
5: Evaluate population(Pg−1, E)
6: Sort Pg−1 by fitness (descending order)
7: best individuals← Select top individuals(Pg−1, rt)
8: new population← Select elite individuals(Pg−1, re) ▷ Elitism
9: while |new population| < P do

10: parent1← Tournament selection(Pg−1, ts)
11: parent2← Tournament selection(Pg−1, ts)
12: child← Crossover(parent1, parent2)
13: Mutate(child, µ)
14: Balance genes(child,B) ▷ Adjust quantization to meet target bit budget
15: new population← new population ∪ {child}
16: end while
17: Pg ← new population
18: end for
19: Get the best fitted entry from best individuals
20: return Best mixed precision quantization configuration

applying various quantization configurations solely to the expert under evaluation. We compute and
store quantization errors separately for each expert’s linear layers. This pre-computation strategy
significantly enhances the efficiency of the evolutionary algorithm and provides a more equitable
and accurate foundation for error estimation. Building upon this pre-computation error method,
we design an evolutionary algorithm that leverages these pre-computed errors to efficiently search
for an optimal mixed-precision quantization configuration. Our algorithm presented in Algorithm
1, synthesizes principles from genetic algorithms with domain-specific optimizations tailored for
mixed-precision quantization in MoE models. It leverages evolutionary mechanisms to iteratively
refine quantization schemes, incorporating problem-specific heuristics to enhance convergence to-
wards optimal configurations.

Table 1: Zero-Shot Task Performance of Mixtral-8x7B using Automated Fine-Grained MoE Quan-
tization with GPTQ

Model Bits Granularity Level Method
Accuracy (%) ↑

PIQA HellaSwag WinoGrande OBQA COPA Avg.

Mixtral-8x7B

fp16 - - 82.54 83.99 76.32 46.80 93.00 76.53

4 bit

Static
81.28 81.46 76.09 46.40 90.00 75.05

3 bit 80.69 81.02 75.93 44.20 91.00 74.56

2 bit 64.15 48.53 52.01 30.80 74.00 53.90

2.54 bit Expert
Random 60.14 46.60 58.59 33.00 68.00 52.26

Frequency 66.21 56.62 58.33 32.00 76.00 57.83

2.54 bit Linear
Random 68.19 57.36 60.74 35,80 78.67 60.15

Weight Outlier 68.23 57.04 62.19 35.80 83.00 61.25

2.54 bit Neuron (Ours)
Weight Outlier 76.12 71.60 68.27 40.80 89.00 69.15

evolutionary 76.55 71.60 69.69 43.60 91.00 70.49
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4 EXPERIMENTS

4.1 SETTINGS

Implementation Details. The implementation details of our proposed method are as follows. In
alignment with prevailing quantization methodologies for large language models (Frantar et al.
(2023); Lin et al. (2023); Shao et al. (2023); Ma et al. (2024)), we employ a calibration set consist-
ing of 128 samples, each comprising 2048 tokens, extracted from the WikiText2 Merity et al. (2016)
training corpus. Our quantization strategy implements asymmetric group quantization with a group
size of 128. We apply 4-bit precision quantization to all attention-related layers while maintaining
the router in its full-precision state. The evolutionary algorithm’s hyperparameters are configured as
follows: a population size of 400 individuals is maintained across a maximum of 300 generations.
We implement a mutation rate of 0.07 and employ an elitism strategy, preserving the top 7 individu-
als in each generation. The tournament selection process utilizes a tournament size of 5. To ensure
consistency across all experimental conditions, we constrain the overall model bit-width to 2.54 bits
Li et al. (2024).

Baseline. All experiments were conducted on the Mixtral-8x7B-v0.1 model Jiang et al. (2024)).
Our method successfully quantizes this multi-billion parameter model, with all GPTQ Frantar et al.
(2023) experiments completed on a single NVIDIA RTX 3090 GPU with 24GB memory and all
OmniQuant Shao et al. (2023) experiments on a single NVIDIA A800 GPU with 80GB memory,
demonstrating its efficiency and scalability. We compare our approach against baselines Li et al.
(2024) including expert-level random allocation, frequency-based allocation, and other quantization
parameter distribution methods.

Evaluation. To assess the efficacy of our automated fine-grained quantization approach for MoE
models, we conducted evaluations across five zero-shot tasks: PIQA Bisk et al. (2020), HellaSwag
Zellers et al. (2019), WinoGrande Sakaguchi et al. (2019), COPA Gordon et al. (2012), and Open-
bookQA Mihaylov et al. (2018). We utilized the lm-eval-harness Gao et al. (2021) framework to
obtain individual task accuracies and the overall average accuracy. This comprehensive evaluation
strategy enables us to gauge the impact of our quantization method on various aspects of model
performance, providing insights into its generalization capabilities across diverse natural language
understanding tasks.

4.2 RESULT

Table 1 presents the results of our evaluation of the Mixtral-8x7B-v0.1 model Jiang et al. (2024) us-
ing our proposed automatic fine-grained MoE quantization method with GPTQ Frantar et al. (2023)
across multiple zero-shot tasks. The ”Granularity Level” column indicates the level at which quanti-
zation bits are allocated in mixed-precision quantization, while the ”Method” column denotes the bit
allocation strategy. In the study by Li et al. (2024), the expert-level ”Frequency” method allocates
4 bits to the top 25% most frequently used experts in each Transformer block, with the remaining
experts receiving 2 bits. The linear-level ”Weight Outlier” method quantizes the 25% linear layers
with the highest weight anomalies across all Wup, Wgate, and Wdown layers in the entire model
to 4 bits, leaving the rest at 2 bits. Our method demonstrates significant improvements. When the
granularity level is refined to neuron-level quantization, the ”Weight Outlier” method, applied to all
neurons, achieves a 7.9% performance boost (69.15% vs. 61.25%). This result strongly supports
the efficacy of fine-grained mixed-precision quantization. Furthermore, by employing evolutionary
algorithms to estimate quantization errors, our optimal quantization configuration allocation method
yields an additional 1.34% improvement compared to the standalone ”Weight Outlier” allocation
method (70.49% vs. 69.15%) .

4.3 ABLATION STUDY

Performance of Neuron Quantization on Advanced Method. As shown in Table 2, we replicated
the expert-level and linear-level approaches proposed by Li et al. (2024) using OmniQuantShao et al.
(2023), and compared them with our fine-grained neuron quantization method. The results demon-
strate that applying our method at an average bit-width of 2.54 enhances the model’s performance to
72.66%. While the relative improvement on the OmniQuant baseline is less pronounced compared
to the GPTQ results, it remains statistically significant. This finding underscores the efficacy of our
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Table 2: Zero-Shot Task Performance of Mixtral-8x7B using Automated Fine-Grained MoE Quan-
tization with GPTQ

Model Bits Granularity Level Method
Accuracy (%) ↑

PIQA HellaSwag WinoGrande OBQA COPA Avg.

Mixtral-8x7B

fp16 - - 82.54 83.99 76.32 46.80 93.00 76.53

2.54 bit Expert Frequency 78.62 76.81 71.67 43.80 88.00 71.78

2.54 bit Linear Weight Outlier 79.00 77.03 71.82 45.20 89.00 72.41

2.54 bit Neuron (Ours) Weight Outlier 79.05 77.05 72.22 44.00 91.00 72.66

method even when applied to more advanced quantization techniques, thus validating its robustness
and generalizability across different quantization frameworks.

4.4 CONCLUSION

This paper presents an automated fine-grained quantization method for Mixture-of-Experts (MoE)
models, designed to overcome the limitations of current quantization techniques when applied to
MoE architectures. As LLMs continue to grow, model compression becomes increasingly impor-
tant, especially for MoE models with dynamic routing mechanisms. However, the sparsity and
heterogeneity of MoE models pose challenges for traditional quantization, which is typically devel-
oped for dense models. Current compression methods mainly focus on pruning, such as expert and
layer pruning, with relatively little attention given to quantization in MoE models.

To address these challenges, we propose a mixed-precision quantization search space that spans from
the expert-level to the neuron-level, allowing for flexible bit-width allocation. This approach adapts
to the varying activation patterns and structures in MoE models, improving quantization accuracy.
Additionally, we introduce an evolutionary algorithm-based search mechanism to efficiently explore
quantization configurations, minimizing quantization loss while adhering to a specified compression
rate.

Our experiments show that the proposed method significantly improves MoE model performance
across various tasks, particularly in low-bit quantization scenarios. Compared to existing linear
quantization techniques, our approach achieves a 7.9% performance improvement at the neuron
level, with an additional 1.34% gain through evolutionary algorithms. These results highlight the
effectiveness of fine-grained mixed-precision quantization, particularly in optimizing resource al-
location for MoE models. Furthermore, our method is orthogonal to existing LLM quantization
techniques, enabling potential synergies with other compression methods.

In summary, this work introduces an innovative, automated quantization framework for MoE models
that captures their dynamic characteristics and enables precise, granular quantization configurations.
By extending quantization to the neuron level, our approach offers new strategies for compressing
MoE models and establishes new benchmarks across multiple tasks. This framework holds promise
for both academic research and practical deployment of large language models, providing a novel
path for efficient model compression.

4.5 LIMITATIONS

Despite the promising results, our work has some limitations. Due to resource constraints, we were
unable to conduct extensive experiments across a wide range of models. This limits the general-
izability of our findings, and further evaluations on different MoE models are necessary to fully
validate the effectiveness of our approach. Additionally, current model deployment frameworks do
not yet support neuron-level quantization, which restricts the practical application of our method.
Future research is needed to develop deployment techniques that can fully exploit the potential of
fine-grained, neuron-level quantization, allowing for more efficient real-world implementations of
MoE models.
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