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Abstract

The accessibility of geographically dispersed data, enabled by affordable sensors,1

field and numerical experiments, has led to an abundance of data that can be used2

to develop data-driven solutions for scientific problems. Neural Partial Differential3

Equations (PDEs), which employ deep learning (DL) techniques alongside domain4

expertise in PDEs for parameterization, have proven to be effective in capturing5

valuable correlations within spatiotemporal datasets. However, data noise and6

sparsity of measurements coupled with model overparameterization introduce7

aleatoric and epistemic uncertainties. Therefore, quantifying uncertainties propa-8

gated from model inputs to outputs remains a challenge and an essential goal for9

establishing the trustworthiness of these method’s predictions. This work evaluates10

various Uncertainty Quantification (UQ) approaches, which are crucial for both11

Forward and Inverse Problems in scientific applications. Specifically, we inves-12

tigate the effectiveness of Bayesian methods, such as Hamiltonian Monte Carlo13

(HMC) and Monte-Carlo Dropout (MCD), and a more conventional approach,14

Deep Ensembles (DE). To illustrate their performance, we take two canonical15

PDEs: Burger’s equation and the Navier-Stokes equation. Our results indicate that16

these approaches accurately reconstruct flow systems and predict the associated17

parameters. However, it is noteworthy that results derived from Bayesian meth-18

ods, in our observation, tend to display a higher degree of certainty in predictions19

than warranted, as compared to those obtained using the Deep Ensembles (DE)20

method. This elevated certainty in predictions implies that Bayesian techniques21

might underestimate the actual uncertainty present in the data, thereby appearing22

more confident in their predictions than the DE approach.23

1 Introduction24

The abundant geographically dispersed data facilitated by affordable sensors, numerical and field25

experiments, and satellite imagery provided a unique opportunity to tackle ongoing challenges in26

climate change, weather prediction, and resilient urban development. However, due to their relatively27

low sampling density, the spatiotemporal measurements are limited in providing a comprehensive28

view of complex flow systems.29

While conventional deep learning-based approaches provide promising solutions, they often struggle30

to satisfy physical constraints effectively. Physics-Informed Neural Networks (PINNs), as introduced31

by Raissi et al. [2019], incorporate physical constraints within the neural network optimization32

process, leading to improved physical realizability of the solution. However, due to noisy and limited33

data, the accuracy of these models can degrade significantly. [e.g., He and Jiang, 2023]34

Uncertainty quantification (UQ) in scientific machine learning provides promising avenues to tackle35

challenging problem arising due to various factors, such as the stochastic nature of scientific processes,36
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model overparameterization, and data noise. This study aims to compare various UQ techniques,37

including Hamiltonian Monte Carlo (HMC), Monte Carlo Dropouts (MCD), and Deep Ensembles38

(DE) and the robustness of DL techniques. We apply these methods to forward and inverse problems39

in two canonical PDEs - Burger’s and the Navier-Stokes equations, illustrating their performance in40

reconstructing flow systems and predicting unknown parameters from sparse and noisy measurements.41

2 Forward Problems42

Consider a parameterized and non-linear PDE that characterizes the behavior of a physical system,43

defined as44

Lx[u;λ] = f(x, t),x ∈ Ω, t ∈ [0, T ], (1)
where u(x, t) denotes the latent state (aka solution field), the Lx[.;λ] is a general differential operator45

parameterized by λ, f(x, t) is the forcing term which refers to any external influences on the system,46

while Ω ⊂ RD is the bounded domain in a d-dimensional physical space.47

Given this framework and noisy measurements of u(x, t), f(x, t), the goal is to infer the latent state48

u(x, t) of the dynamical system. In forward problems, PINNs as well as their Bayesian variants49

B-PINNs are typically used as surrogates ũ(x, t; θ), to infer either point estimates or posterior50

distributions of this latent state. In the Bayesian framework, the parameters θ of the surrogates have a51

prior distribution P (θ) and its formulation is defined as:52

f̃(x, t; θ) := Lx[ũ(x, t; θ);λ] (2)

P (D|θ) represents the likelihood while the Bayes’ Theorem estimates the final posterior distribution.53

p(θ|D) =
P (D|θ)P (θ)

P (D)
∼= P (D|θ)P (θ) (3)

To approximate the posterior distribution, we employ both Bayesian methods like HMC and MCD54

as well as deterministic DE approach. HMC is an efficient Markov Chain Monte Carlo (MCMC)55

sampling method that uses concepts from Hamiltonian Dynamics and utilizes momentum variables to56

guide the proposals in the Markov chain, which can lead to faster convergence and better exploration57

of the target distribution. Given the continuous nature of Hamiltonian dynamics, leapfrog integration58

is used as a numerical technique to discretize and update the momentum and position variables in a59

staggered manner over discrete time steps. In our Bayesian methodology, we posit an independent60

Gaussian distribution as the prior P (θ). For HMC, parameters for Burger’s (Navier-Stokes) equation61

include a leapfrog step of 50 (50), an initial time step of 0.1 (0.01), 1000 (5000) burn-in steps, and a62

sampling size of 100 (100). With DE, we assemble an ensemble of PINNs equivalent in number to63

the HMC samples, set at 100 (200). For MCD, we induce variance by sporadically dropping neurons64

at a 1% (1%) dropout rate during each training iteration. To gauge prediction uncertainty, we execute65

100 (200) inferences with HMC. For DE, we acquire 100 (200) predictions from each ensemble66

member, and for MCD, we undertake forward network propagation 100 (200) times, maintaining the67

established dropout rate.68

2.1 1-D Burger’s Equation69

Burger’s equation is a PDE that represents a combination of diffusion and convection processes. It70

has wide applications in various scientific domains, including traffic flow modeling, acoustics, and71

sound propagation, and material transport in porous media. here, we consider a one-dimensional72

Burger’s equation with Dirichlet boundary condition and sinusoidal initial conditions as follows:73

∂u

∂t
+ u · ∇u− 0.01

π
∇2u = 0, x ∈ [−1, 1], t ∈ [0, 1], (4)

74 u(0, x) = −sin(πx),

u(t,−1) = u(t, 1) = 0,

where x and t is the spatial location and time, u(x, t) is the velocity of the fluid, and ∇ and ∇275

represents gradient and Laplacian operators.76

Chebfun package has been employed to exact solution and for more details, please refer Rico-Martinez77

et al. [1994] and Raissi et al. [2019]. Here, we assume an unknown exact solution and instead use78
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Figure 1: One-dimensional Burgers equation - forward problem: comparison of the predicted and
exact solutions corresponding to the three temporal snapshots denoted by t ∈ {0.50s, 0.75s, 0.90s}
from different methods.

noisy sensors to collect 2000 spatiotemporal readings for u and f . The sensor measurements have79

Gaussian noise with scales ϵf and and ϵu as N (0, 0.12). A multilayer perceptron (MLP) neural80

network consisting of eight hidden layers, each comprising 20 neurons with tanh non-linearity is81

employed to approximate the solution.82

The predictive means (µ) and the corresponding two standard deviations (±2σ) using three different83

methods, HMC, MCD, and DE at three distinct time snapshots, particularly t ∈ {0.50s, 0.75s, 0.90s}84

is illustrated in figure 1. From visual inspection, it is evident that both the HMC and DE approaches85

provide reasonably accurate posterior estimations of the variable u at all three time-snapshots.86

Moreover, the error between these predictive means and the actual solution remains predominantly87

within ±2σ. In contrast, the MCD approach exhibits discrepancies from the actual solution across all88

temporal snapshots, although these discrepancies tend to diminish as time progresses. It is noteworthy89

that, for t = 0.50s, a significant portion of the error falls outside the two standard deviation confidence90

intervals. However, as time advances, the performance of the MCD approach noticeably improves. It91

is also important to highlight that all three approaches effectively capture the formation of shocks, a92

challenging task even for classical numerical methods.93

2.2 2-D Navier Stokes Equation94

In our next example, we explore the practical scenario of incompressible fluid flow described by95

the Navier-Stokes equations. These equations are fundamental in science and engineering, with96

applications in various fields like climate prediction, aerodynamics, and blood circulation. An97

incompressible flow past a cylinder case is considered, and the associated governing equation are98

defined as follows:99
∂u

∂t
+ λ1u · ∇u+∇u− λ2∇2u = 0, (5)

100

∇ · u = 0,

where u = {u, v} and p are the 2-D velocity and pressure fields, t is time, and λ = {λ1, λ2} are the101

parameters and for the forward problems λ1 is set to 1 and λ2 to 10−2. Given the multidimensional102

nature of this problem, it offers a challenging testbed for the Bayesian approach to quantify uncertain-103

ties in both the u and p fields. It is important to emphasize that p measurements are not included in104
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(a) Predictive errors for velocity component in x-direction u (top) and y-direction v
(bottom) from different methods at a representative time instant.
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(b) Two standard deviations (σ) for velocity component in x-direction u (top) and
y-direction v (bottom) from different methods at a representative time instant.

Figure 2: Navier-Stokes equation - forward problem.

the model training; instead, the neural network predicts them based on the governing equation. To105

generate the exact solutions, we leverage the data provided for the work by Raissi et al. [2019], and106

readers are advised to refer to the same for more details. Similar to section 2.1, noisy sensors capture107

5000 spatiotemporal readings for both u and f with Gaussian noise N (0, 0.12). A 10-layer MLP108

network with 20 neurons per layer and a tanh non-linearity is used to approximate the latent variables109

(u, v, and p).110

L1 norm-based error ϵ between the actual and predictive µ values and ±2σ are presented in figure 2a.111

Notably, the DE approach exhibits the closest agreement with the actual solutions. In contrast, the112

ϵHMC and ϵMCD approaches are roughly three times higher than ϵDE for u field. The ϵ consistently113

remains within the ±2σ for all considered methodologies, as illustrated in figure 2b and underscores114

our confidence in the predictions generated using various approaches, as they remain well within the115

established confidence interval.116

3 Inverse Problems117

Inverse problems involve determining a system’s underlying parameters λ and physical properties118

from observable data. This study offers a systematic approach to quantify uncertainties in estimating119
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unknown parameters for the Navier-Stokes equation (5). Similar to the framework described in120

equations [2-3] update this, apart from a surrogate for θ, we also assign a prior distribution for λ,121

which can be independent of the prior for θ. The likelihood is then defined as P (D|θ, λ), and we then122

calculate the joint posterior of [θ, λ]:123

p(θ, λ|D) =
P (D|θ, λ)P (θ, λ)

P (D)
∼= P (D|θ, λ)P (θ, λ) = P (D|θ, λ)P (θ)P (λ) (6)

HMC DE MCD

λ1 (mean ± std) 0.758 ± 0.0 0.957 ± 0.024 0.843 ± 0.075
λ2 (mean ± std) 0.017 ± 2.13e−06 0.014 ± 0.001 0.015 ± 0.058

Table 1: Navier Stokes equation - inverse problem : Predictions for λ1, λ2 using HMC, DE, MCD;
actual values for λ1 = 1.0, λ2 = 0.01

124

The primary objective is to estimate λ = {λ1, λ2} and associated uncertainty based on the limited125

measurements of f and u = [u, v] outlined in section 2.2. To do so, we employ the MLP model126

of ten hidden layers with 40 neurons in each layer and tanh non-linearity. The predicted values of127

λ’s are displayed in Table 1. The DE method has provided relatively precise estimates, reflecting a128

good degree of certainty in its predictions. This suggests that ensemble techniques effectively capture129

these parameters’ underlying distributions. While HMC provides high confidence in its estimates,130

the absence of uncertainty is unrealistic, and this overconfidence could be a sign of the model not131

capturing all sources of uncertainty. MCD provides a broader uncertainty estimation, which might be132

capturing more sources of uncertainties, but it could also be overestimating the uncertainty in the133

parameters. The wider confidence intervals for MCD could either mean that MCD is being more134

cautious or it’s not as effective in pinpointing the true parameter values. These findings underscore the135

effectiveness of the DE approach in not only identifying the unknown parameters but also quantifying136

the uncertainty arising from the sparse and noisy sensor measurements.137

4 Summary138

This study compares and evaluates various UQ approaches, particularly Bayesian and Deep Ensemble139

(DE) techniques. While all approaches, including DE, HMC, MCD, effectively reconstruct flow140

systems and predict unknown parameters for the two examples considered, Bayesian methods141

demonstrate higher certainty in predictions but may underestimate the total uncertainty, thereby142

appearing overly confident. In contrast, while offering more conservative certainty estimates, the DE143

method is computationally taxing. The study underscores the need for balancing predictive certainty,144

computational efficiency, and accuracy when using Bayesian or DE approaches for flow system145

modeling and parameter prediction.146
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