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ABSTRACT

Federated learning (FL) has emerged as a promising paradigm for fine-tuning
foundation models using distributed data in a privacy-preserving manner. Under
limited computational resources, clients often find it more practical to fine-tune a
selected subset of layers, rather than the entire model, based on their task-specific
data. In this study, we provide a thorough theoretical exploration of selective
layer fine-tuning in FL, emphasizing a flexible approach that allows the clients
to adjust their selected layers according to their local data and resources. We
theoretically demonstrate that the layer selection strategy has a significant impact
on model convergence in two critical aspects: the importance of selected layers
and the heterogeneous choices across clients. Drawing from these insights, we
further propose a strategic layer selection method that utilizes local gradients and
regulates layer selections across clients. Extensive experiments on both image and
text datasets demonstrate the effectiveness of the proposed strategy compared with
several baselines, highlighting its advances in identifying critical layers that adapt
to the client heterogeneity and training dynamics in FL.

1 INTRODUCTION

Foundation models (Bommasani et al., 2021), including BERT (Devlin et al., 2019), GPT (Radford
et al., 2019; Brown et al., 2020), CLIP (Radford et al., 2021; Dosovitskiy et al., 2021), LLaMA (Tou-
vron et al., 2023), and so on (Ramesh et al., 2021; Chowdhery et al., 2023), have attracted considerable
attention due to their exceptional ability in handling complex tasks (Eloundou et al., 2023). When
it comes to practical deployments of these models in specialized fields, fine-tuning with domain-
specific data becomes critical. Nevertheless, the distributed nature of data across various users and
organizations presents a challenge for centralized storage and training, as it may lead to severe privacy
concerns and incur additional transmission costs. Such issues have positioned federated learning
(FL) (McMahan et al., 2017) as a promising paradigm to fine-tune foundation models, aligning model
enhancement with privacy preservation (Chen et al., 2023a; Kuang et al., 2023).

Generally, FL aims to learn a global model through a collaborative process where clients perform
local training and upload the parameter updates to a central server for aggregation. Given that clients
have limited resources (Bonawitz et al., 2019; Imteaj et al., 2022), such as computational power,
communication bandwidth, and available memory, it becomes impractical for them to fine-tune the
entire foundation model. Two kinds of solutions have recently emerged to tackle this challenge.
The first solution employs parameter-efficient fine-tuning techniques (Houlsby et al., 2019; Gao
et al., 2021; Hu et al., 2022; Li & Liang, 2021), which introduces additional modules integrated
into foundation models and updates these modules with domain-specific data while keeping the
parameters of the foundation model frozen. The second one is selective model fine-tuning (Lee et al.,
2019a; Xu et al., 2021; Zhang et al., 2022a; Shen et al., 2021), which only selects an impactful subset
of parameters for optimization to streamline the fine-tuning process under resource constraints.

This study focuses on selective model fine-tuning as it is particularly well-suited to address the
inherent heterogeneity in FL, i.e., the data heterogeneity and device heterogeneity (Yang et al.,
2021; Chai et al., 2019; Li et al., 2022). Specifically, clients involved in FL have non-independent
and identically distributed (non-IID) data and different system resources, leading to the need to
customize fine-tuning strategies to such discrepancies. For example, clients with limited computation
resources may opt to update only a fraction of the model, while those with sufficient resources and
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high-quality data prefer fine-tuning a large portion of the model to enhance performance. Selective
model fine-tuning enables clients to adjust the chosen part of the model to be updated based on their
own capabilities, providing a flexible and advanced solution to mitigating sub-optimal issues induced
by the heterogeneity in FL.

The exploration of selective model fine-tuning within the context of FL, is still in its early stages. Pre-
vious studies (Shen et al., 2021; Xu et al., 2021; Lee et al., 2022; Dun et al., 2022) have concentrated
on designing static strategies for subnetwork selection to improve model fine-tuning performance,
without adequately considering heterogeneity among clients. To fulfill this gap, in this paper, we
provide a comprehensive theoretical analysis on selective model fine-tuning in FL, focusing on a
general scenario where clients are allowed to choose different layers for local training and vary their
choices across different training epochs, called selective layer fine-tuning. Specifically, we formulate
the optimization objective of selective layer fine-tuning in FL, and provide insights on effectively de-
termining critical layers to achieve model convergence. Building on these insights, we further propose
a novel layer selection strategy that leverages local gradients and the regulation of unified selections.

Our main contributions are summarized as follows:

• We study a practical FL setup where clients choose to fine-tune some layers of the model,
with arbitrary layer selection that may vary among clients and across different training
epochs. We theoretically analyze such a training scheme and investigate the impact of
layer selection. The analytical results show that the selected layers affect the convergence
performance with two critical aspects, namely the importance of layers and heterogeneous
choices across clients.

• Building on the theoretical analysis, we formulate the optimization problem of selective
layer fine-tuning considering the limited and diverse resource budgets of clients. Inspired
by the solution to this optimization problem, we propose an effective strategy for selecting
layers for fine-tuning that are well-suited for the local data and available resources at clients.

• We conduct experiments to compare the proposed layer selection strategy with baseline
methods on both image and text datasets. Experimental results demonstrate the superior
performance of the proposed strategy in achieving better model performance, highlighting
that the proposed strategy can find critical layers for fine-tuning while considering the client
heterogeneity and training dynamics in FL1.

2 RELATED WORKS

Various approaches have been proposed to properly select a subset of parameters for fine-tuning foun-
dation models within centralized training, including optimizing a non-structured mask matrix (Lee
et al., 2019a; Xu et al., 2021; Zhang et al., 2022a; Shen et al., 2021; Zaken et al., 2022; Zhang et al.,
2023; Kovaleva et al., 2019; Lee et al., 2019b) and adopting layer-wise selection strategies (Kovaleva
et al., 2019; Lee et al., 2019b; 2022; Kaplun et al., 2023). For example, Lee et al. (2019a) suggest up-
dating the parameters in a stochastic manner based on the Bernoulli distribution, while Kovaleva et al.
(2019); Lee et al. (2019b) showcase that fine-tuning the top few layers achieves competitive model
performance in downstream tasks. Moreover, Lee et al. (2022) propose to select layers according to
their gradient statistics.

Recent studies have extended the selective fine-tuning techniques to FL scenarios (Nguyen et al.,
2022a; Chen et al., 2022; Hilmkil et al., 2021; Zhang et al., 2022b). Specifically, researchers (Lee
et al., 2023; Dun et al., 2022) investigate layer-wise network decomposition to achieve selective
model fine-tuning on clients. However, these works fail to offer methodologies for adaptive and
dynamic layer selection that takes into account the heterogeneous characteristics of clients. In
addition, personalized FL algorithms (Pillutla et al., 2022; Chen et al., 2023b) propose to train
different subnetworks on clients towards better local models. Different from previous studies, we
focus on providing an in-depth understanding of selective layer fine-tuning in FL, considering the
heterogeneity from the perspective of client resources and local data distributions.

1The source codes are available at https://anonymous.4open.science/r/fed_selected_
tune/.
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Figure 1: An overview of selective layer fine-tuning in FL. The colored layers are selected for fine-tuning.

3 PROBLEM FORMULATION

Federated learning We consider an FL system with a central server and N clients (denoted by
the set N = {1, . . . , N}), where each client has a private dataset Di consisting of di = |Di| data
instances. The server owns a pretrained foundation model θ ∈ RP , containing P trainable parameters
and L layers with the index set L = {1, 2, . . . , L}. The server aims to fine-tune this foundation
model based on the clients’ datasets D = {Di}i∈N but does not directly access these datasets. The
learning goal is formally given as:

min
θ∈RP

f(θ) =

N∑
i=1

αifi(θ), (1)

where αi =
di∑N

j=1 dj
denotes the relative sample size, and fi(θ) =

1
di

∑
ξ∈Di

Fi(θ; ξ) denotes the

local training objective of client i. Here we use Fi(θ; ξ) to define the (possibly non-convex) loss
function computed by the model θ on data sample ξ. The training process of FL is divided into
T training epochs. In each epoch t ∈ [T ], the server chooses a subset of clients St, and sends the
up-to-date global model θt to these clients for local training.

Selective layer fine-tuning in FL An overview of selective layer fine-tuning in FL is illustrated in
Figure 1. Due to resource limitations, clients tend to update some of the layers in the local training
process rather than the entire global model. Formally, we define a masking vector mt

i ∈ {0, 1}L for
each client i. The l-th element mt

i(l) equals 1 if the l-th layer is selected to be updated in the t-th
training epoch, and mt

i(l) = 0 otherwise. Accordingly, the selected layer set of client i is denoted by
Lt
i ≜ {l ∈ L|mt

i(l) = 1}, and the set for all selected layers in the t-th training epoch is denoted by
Lt =

⋃
i∈St Lt

i. The choice of selected layer sets has a substantial effect on training performance,
which will be discussed in detail later.

After determining the selected layer set Lt
i, clients initialize the local model according to the global

model sent by the server, i.e., θt,0i = θt, and train the local model for τ local steps using the mini-
batch SGD algorithm (McMahan et al., 2017; Wang et al., 2020; Karimireddy et al., 2020). For
local step k ∈ [τ ], client i samples a batch of data instances ξt,ki , and calculates the gradients for the
selected layers, which is given as2:∑

l∈Lt
i

gi,l(θ
t,k
i ; ξt,ki ) =

∑
l∈Lt

i

∇lFi(θ
t,k
i ; ξt,ki ). (2)

Notably, the local gradient calculation pertains solely to the layers within the subset Lt
i. Afterward,

the local model is updated with the learning rate η:

θt,ki = θt,k−1
i − η

∑
l∈Lt

i

gi,l(θ
t,k−1
i ; ξt,k−1

i ),∀k ∈ {1, 2, . . . , τ}. (3)

2∇lF (θ) represents the gradient of a function F (θ) w.r.t. the parameters of the l-th layer in model θ.

3
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Algorithm 1 Selective Layer Fine-tuning in FL

Input: The pre-trained global model θ0
for t = 0, 1, . . . , T − 1 do

Sample a set of clients St;
Broadcast the up-to-date global model θt and selected layer set Lt

i to clients St;
for each client i in St do

Compute the gradients w.r.t. layers Lt
i and update the model for τ steps; {▷ Equation (3)}

Upload the accumulated updates ∆t
i to the server; {▷ Equation (4)}

end for
Compute the global update ∆t; {▷ Equation (5)}
Update the global model θt; {▷ Equation (6)}

end for
Return: The global model θT

The accumulated model update in local training is summarized as:

∆t
i =

1

η
(θt,0i − θt,τi ) =

τ−1∑
k=0

∑
l∈Lt

i

gi,l(θ
t,k
i ; ξt,ki ). (4)

After local training, clients upload their model updates ∆t
i, i ∈ St to the server. The server performs

federated aggregation among these model updates and optimizes the global model accordingly:

∆t =
∑
l∈Lt

∑
i∈St

wt
i,l

τ−1∑
k=0

gi,l(θ
t,k
i ; ξt,ki ), (5)

and
θt+1 = θt − η∆t. (6)

Inspired by previous studies (McMahan et al., 2017; Li et al., 2020), the aggregation weights in
selective layer fine-tuning are defined based on the data ratio and the masking vectors, which are
formally given as:

wt
i,l =

{
di∑

{j∈St|mt
j
(l)=1} dj

, if mt
i(l) = 1,

0, otherwise.
(7)

The details of the training process are summarized in Algorithm 1.

4 WHICH LAYERS SHOULD BE SELECTED FOR FINE-TUNING?

The aforementioned training process provides substantial flexibility in selective layer fine-tuning,
namely, clients are allowed to select different layers for local training and adjust their choices in
different training epochs. Such flexibility enables clients to tailor their local training to their data and
resources, providing feasible solutions for handling the heterogeneity in FL.

However, without a well-designed strategy for layer selection, the optimization of the global model
in FL could be severely hindered, potentially leading to a suboptimal solution or even failure in
convergence. As a result, researchers have proposed several useful strategies for layer selection in
recent years, including:

• All clients select the same layer set for fine-tuning (Pillutla et al., 2022; Lee et al., 2019a;
Zhang et al., 2022a; 2023; Lee et al., 2019b), i.e., Lt

i = Lt
j ,∀i ̸= j;

• Clients fix their selections across different training epochs (Arivazhagan et al., 2019; Chen
et al., 2023b), i.e., Lt1

i = Lt2
i ,∀t1, t2 ∈ [T ].

These strategies for layer selection are proposed based on the insights drawn from experts’ experience,
serving as special instantiations of the selected layer sets Lt

i. It is worth noting that these experience-
driven strategies might not consistently yield optimal results in various FL applications, particularly
considering client heterogeneity. This leads to an essential question: How to effectively determine the
task-specified layer selection strategy among a large search space of possible options? In the rest of
this section, we provide a theoretical analysis to answer this question.

4
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4.1 THEORETICAL ANALYSIS

Following previous theoretical analysis in FL (Wang et al., 2020; Karimireddy et al., 2020; Li et al.,
2020), we begin with some necessary assumptions.

Assumption 4.1. (γ-Smoothness) There exists a constant γ > 0 such that for any θ, θ′ ∈ RP ,
∥∇fi(θ)−∇fi(θ

′)∥2 ≤ γ∥θ − θ′∥2,∀i ∈ N .

For analyzing the effect of each layer on the model convergence, we give several assumptions for the
gradient with respect to each layer l.

Assumption 4.2. (Unbiased and variance-bounded stochastic gradient) The stochastic gradient
gi,l(θ

t; ξti) on a randomly sampled batch of data ξti is an unbiased estimate of the full-batch gradient,
i.e., E[gi,l(θt; ξti)] = ∇lfi(θ

t). Besides, there exist constants σl > 0,∀l ∈ L such that ∥gi,l(θt; ξti)−
∇lfi(θ

t)∥2 ≤ σ2
l ,∀i ∈ N and

∑
l∈Lt

σ2
l ≤ σ2.

The non-IID data owned by clients causes diverse gradients. In the following assumption, we state
the diversity of each layer’s gradient.

Assumption 4.3. (Gradient diversity) There exist constants κl > 0,∀l ∈ L such that
∥∇lf(θ

t)−∇lfi(θ
t)∥2 ≤ κ2

l ,∀i ∈ N .

Here we first consider a case where τ=1 to simplify the analysis without affecting the insights on
layer selection. The detailed analysis for the generalized case, i.e., τ >1, is provided in Appendix A.3.

Compared with the theoretical analysis for the standard FL settings (Wang et al., 2021; Li et al.,
2020), there exist three additional challenges in selective layer fine-tuning. Firstly, since each client
only updates some layers during the local training process, the aggregated gradient is no longer an
unbiased estimate of the local gradient ∇fi(θ

t), i.e.,

E[∆t
i] =

∑
l∈Lt

i

∇lfi(θ
t) ̸= ∇fi(θ

t), (8)

where the inequality holds unless all layers are selected for fine-tuning, i.e., Lt
i = L. Secondly, since

a certain layer may not be selected by all the clients, the aggregated gradient of this layer is not equiv-
alent to the gradient computed based on the global loss function (

∑
l∈Lt

∇lf(θ
t)), which is given as:

E[∆t] =
∑
l∈Lt

∑
i∈St

wt
i,l∇lfi(θ

t) ̸=
∑
l∈Lt

∇lf(θ
t), (9)

where the inequality holds unless all clients select the same subset of layers. Last but not least,
the aforementioned gaps vary across different training epochs, making it rather complicated in the
theoretical analysis.

To link the aggregated and desired gradients, we define a surrogate objective function representing
the underlying loss function optimized by the clients, which is given as:

ht
l(θ) ≜

∑
i∈St

wt
i,lfi(θ). (10)

In essence, the layer-wise gradient of this objective function represents the update of the aggregated
global update ∆t. This relationship is elaborated in the following lemma.

Lemma 4.4. With Assumption 4.2, we have:

E[∆t] =
∑
l∈Lt

∇lh
t
l(θ

t), (11)

where the expectation is with respect to mini-batch data sampling.

Proof. We rewrite both sides of Equation (11) by using the definitions in Equations (5) and (10), and
apply Assumption 4.2 to obtain the result.

5
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As aforementioned, the underlying loss function ht
l(θ) deviates from the desired global loss func-

tion f(θ), which hinders the optimization of the global model and may lead to suboptimal model
performance. Such deviation can be quantified by the difference between the underlying update∑

l∈Lt
∇lh

t
l(θ

t) and the global gradient ∇f(θt), i.e.,

Et ≜

∥∥∥∥∥∇f(θt)−
∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2

. (12)

The term Et can be further decomposed using the Jensen’s inequality into two parts:

Et ≤ 2

∥∥∥∥∥∇f(θt)−
∑
l∈Lt

∇lf(θ
t)

∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥∑
l∈Lt

∇lf(θ
t)−∇lh

t
l(θ

t)

∥∥∥∥∥
2

2

. (13)

Remark 4.5. These two terms in the right-hand side (RHS) of (13) can be interpreted as follows: (i)
The first term is the difference between the gradient w.r.t. all layers and the gradient w.r.t. the selected
layers. The value of this term becomes smaller when the selected layers have larger gradients;
(ii) The second term represents the mismatch between the desired gradient computed by all clients
(i.e., ∇lf(θ

t) =
∑

i∈N αi∇lfi(θ
t)) and the underlying update computed by partial clients (i.e.,

∇lh
t
l(θ

t) =
∑

i∈St
wt

i,l∇lfi(θ
t)), resulting from different layer choices among clients. If some layer

is selected by all clients, its corresponding term in this term can be diminished.

For a better understanding, the following lemma shows an upper bound for the value of Et.
Lemma 4.6. With Assumption 4.3, we have:

Et ≤ 2

[∥∥∥∥∥ ∑
l/∈Lt

∇f(θt)

∥∥∥∥∥
2]

︸ ︷︷ ︸
Et,1

+2
∑
l∈Lt

χwt,l∥ακ
2
l︸ ︷︷ ︸

Et,2

, (14)

where χwt,l∥α ≜
∑

i∈N
(wt

i,l−αi)
2

αi
.

The proofs can be found in Appendix A.1.

Next we aim to analyze the impact of layer selection on the convergence of the global model.
Following previous studies (Bottou et al., 2018; Wang et al., 2020), we consider an algorithm to
have achieved convergence if it converges to a stationary point of the global loss function, namely,
if its expected squared gradient norm mint∈[T ] E

[
∥∇f(θt)∥22

]
is zero. The following theorem and

corollary show the convergence of the proposed selective layer fine-tuning framework for FL.

Theorem 4.7. Define a constant C ≜ 1− 4ηL > 0. With Assumptions 4.1-4.3, we have:

min
t∈[T ]

E
[∥∥∇f(θt)

∥∥2
2

]
≤ 2

ηCT

[
f(θ0)−f(θ∗)

]
+

2γη

C
σ2 +

1

T

T∑
t=1

(
1

γηC
+2

)
(Et,1+Et,2), (15)

where θ∗ = argminθ∈RP f(θ) is the best model with the minimal loss.

The proofs can be found in Appendix A.2.

Corollary 4.8. With the commonly selected learning rate η = O
(

1√
T

)
, the RHS of (15) except the

last term becomes zero as T → ∞. Therefore, FL with selective layer fine-tuning may only oscillate
around a stationary point of the global loss function with a non-zero error floor O(Et,1 + Et,2).

According to Theorem 4.7 and Corollary 4.8, the training performance of the global model is degraded
by the increase of Et,1 + Et,2, in the following aspects:

• The term Et,1 indicates that it might lead to a suboptimal global model if layers with large
gradient norms were not selected for fine-tuning.

• The term Et,2 shows that the consistent selections among clients promote the convergence
of the global model. Specifically, if the l-th layer has large gradient diversity κl, implying
significant objective bias among clients, reducing the weight divergence χwt,l∥α helps to
alleviate this term.

6
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These findings highlight that the layer selection strategy that minimizes both terms can achieve
better convergence of the global model. However, minimizing these two terms simultaneously may
lead to contradictory selection decisions. Moreover, the optimal solution for minimizing the sum of
Et,1 + Et,2 is inaccessible, since the ground-truth values are intractable in practice. To resolve these
challenges, in the next subsection, we propose a strategy to adaptively select layers for clients and
promote the learning performance of the global model.

4.2 LAYER SELECTION STRATEGY

Based on the above analysis, we need to determine the selected layer sets {Li
t} that minimize the

values of Et,1 and Et,2. As both terms are hard to compute directly, we first design an approach to
estimate their values.

To minimize Et,1, we prefer selecting layers with larger gradients, which can be achieved by maxi-
mizing the value of

∑
l∈Lt

∥∇lf(θ
t)∥22. Since the norm of the global gradient ∇lf(θ

t) is unknown,
we estimate it by using the sum of stochastic local gradients, expressed as

∑
i∈St ∥gi,l(θt; ξti)∥22.

Meanwhile, forcing the same layer selection among clients can reduce the value of χwt,l∥α and thus
alleviate the term Et,2. For this purpose, we introduce the regularization term

∑
j ̸=i ∥mt

i −mt
j∥1 into

the optimization objective. Therefore, the selection of layers is determined by solving the following
optimization problem:

(P1)
max
{mt

i}

∑
i∈St

∑
l∈Lt

i

∥gi,l(θt; ξti)∥22 −
λ

2

∑
i∈St

∑
j ̸=i

∥mt
i −mt

j∥21,

s.t. R(mt
i) ≤ Rt

i, ∀i ∈ St.

Here λ ≥ 0 is a weighting constant. Specifically, a large λ forces consistent selection across clients,
while λ = 0 allows for independent choices among clients. The constraint in Problem (P1) ensures
that the total cost of the selected layers meets the clients’ local resource budgets Rt

i , and the cost
function R(·) is typically a linear function of mt

i.

Solving Problem (P1) further gives an effective layer selection strategy for clients. At the beginning
of a training epoch, each participating client i ∈ St evaluates the current global model θt on a batch
of local data and obtains the layer-wise gradient gi,l(θt; ξti),∀l ∈ L. Subsequently, clients upload
the norms of these gradients ∥gi,l(θt; ξti)∥2,∀l ∈ L, which are L-dimensional vectors, to the server.
With these values, the server can optimize the selected layer sets for clients by solving Problem (P1).

In general, the proposed layer selection strategy leads to client-specific layer sets, determined based
on the estimated gradient norms. Meanwhile, a hyper-parameter λ is used to regulate the extent to
which clients are encouraged to select the same layer. In the next section, we empirically demonstrate
the benefits of the proposed strategy in effectively identifying critical layers and achieving better
model performance than existing methods.

4.3 DISCUSSIONS ON COMPUTATIONAL AND COMMUNICATION COSTS

In this section, we provide discussions on the computational and communication costs, considering a
case where each client selects R layers to fine-tune a model with a total of L layers.

Computational costs Since both the proposed method and full model fine-tuning require the same
forward operations, we focus on comparing the computational costs of backward operations among
different methods. For simplicity, we assume each layer requires b FLOPs of backward operations.
The average computational costs of the proposed layer selection method are calculated as:

Costours = b(L− 1)︸ ︷︷ ︸
Select

+ bRτ︸︷︷︸
Fine-tune

= b(Rτ + L− 1), (16)

where τ represents the local training steps. For comparison, fully fine-tuning a model requires the
computational costs of:

Costfull = bLτ =
Lτ

Rτ + L− 1
Costours. (17)

As a result, the proposed method takes a much lower computational cost than full model fine-tuning,
and the cost reduction is proportional to the number of layers and local training steps.
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Meanwhile, the layer selection step in the proposed method introduces slightly additional costs of
L−R
τL Costfull, which can be further reduced by evaluating the model on a smaller volume of data or

making the selection decision at a lower frequency.

Communication costs The communication costs are determined by the transmitted bits during
the training process. The proposed method only needs to transmit the selected layers, whose
communication costs are much lower than those of full model fine-tuning that needs to upload the
entire model. For example, assuming that different layers have the same number of parameters, the
communication cost of the proposed method is R

L of full model fine-tuning.

To summarize, the computational and communication costs of the proposed method are much lower
than those of full model fine-tuning. More empirical evidence can be found in Section 5.3.

5 EXPERIMENTS

5.1 SETTINGS

Datasets & Models We conduct a series of experiments on several widely-used image classification
datasets, including CIFAR-10 (Krizhevsky & Hinton, 2009) and DomainNet (Peng et al., 2019), text
classification dataset, i.e., XGLUE-NC (Liang et al., 2020), and five benchmark question-answering
(QA) datasets, including SCIQ (Welbl et al., 2017), OpenbookQA (Mihaylov et al., 2018), PIQA (Bisk
et al., 2020), ARC-Easy and ARC-Challenge (Bhakthavatsalam et al., 2021) datasets. More details of
the adopted datasets can be found in in Appendix B.1.

As for the splitting of datasets, inspired by previous studies (Zhu et al., 2021; Kim et al., 2023),
we consider two commonly observed data heterogeneity among clients: (i) Label skew: adopting
Dirichlet distribution to allocate data samples of the CIFAR-10 dataset; (ii) Feature skew: adopting
naturally domain shift on the DomainNet, XGLUE-NC, and QA datasets. Specifically, each QA
dataset is equally divided into two subsets, with each client possessing one subset of samples from
one of the five datasets. We adopt the CLIP model (Radford et al., 2021) for image classification
tasks and the multi-lingual XLM-Roberta-Base (Conneau et al., 2019) model on the XGLUE-NC
dataset. In addition, we train a LLaMA-2-7B (Touvron et al., 2023) model on the QA dataset.

Server & Clients In the experiments, we set up an FL system with a central server and N = 100
clients. In each training epoch, the server randomly selects a subset of 20 clients, and broadcasts
the up-to-date model to these clients for local training. Besides, there are N = 10 clients in the
QA task and five clients are randomly chosen for training in each epoch. The resource budgets of
clients are limited, which are quantified as the maximum number of layers they can fine-tune in the
local training. For example, we use Ri = 1 to indicate that the resource of client i cannot afford
fine-tuning more than 1 layer. The resource budgets can be identical or heterogeneous among clients.

Baselines We compare the proposed layer selection strategy with several competitive baselines,
including: (i) Top (Kovaleva et al., 2019; Lee et al., 2019b): Clients only fine-tune the top few layers
(near the output) based on their task-specific data; (ii) Bottom (Lee et al., 2022): Clients only fine-
tune the bottom few layers (near the input) based on their task-specific data, which can be beneficial
for the tasks with input-shift; (iii) Both (Xiao et al., 2023): Clients fine-tune an equal proportion
of both the top and bottom layers, which shows the effectiveness for large language models; (iv)
SNR (Mahsereci et al., 2017): Clients fine-tune the layers with higher signal-to-noise ratio (SNR)
values, defined as the ratio of the mean of gradient elements to their variance; (v) RGN (Cheng et al.,
2023; Lee et al., 2022): Clients fine-tune the layers with higher relative gradient norm (RGN) values,
defined as the ratio of gradient norm to the parameter norm; (vi) Moreover, we consider Full model
fine-tuning, i.e., training the entire model, as the performance benchmark. More implementation
details can be found in Appendix B.2.

5.2 COMPARISONS

We conduct experiments with the identical resource scenario and the heterogeneous resource scenario.

Identical resource scenario We first consider clients with identical computational resources, i.e.,
clients select the same number of layers (Ri = R,∀i ∈ N ) for fine-tuning. The experimental results
are shown in Table 1. From the model performance (accuracy) on the CIFAR-10 and DomainNet
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Table 1: Test accuracy (%) on both image and text datasets, where each client selects R layers for fine-tuning.
The best results are highlighted in bold.

CIFAR-10 DomainNet XGLUE-NC QA

R = 1 R = 2 R = 1 R = 2 R = 1 R = 2 R = 1 R = 2

Full 95.43 90.27 82.11 65.98

Top 93.09 93.61 87.86 88.32 69.86 77.05 63.90 64.44
Bottom 27.38 32.81 13.80 18.63 40.43 40.60 64.18 64.60
Both - 94.96 - 85.48 - 74.65 - 64.41
SNR 94.47 90.49 86.38 87.67 69.11 79.92 63.80 64.58
RGN 92.69 89.48 88.80 87.19 74.06 79.48 63.73 64.70

Ours 95.47 96.05 89.37 89.64 74.95 80.39 64.71 65.03

Table 2: Test accuracy (%) on both image and text datasets, where clients have different resources (Ri ∈ [1, 4]).
The best results are highlighted in bold.

CIFAR-10 DomainNet XGLUE-NC QA

Full 95.43 90.27 82.11 65.98

Top 91.22 89.29 78.17 64.10
Bottom 27.38 23.10 50.92 64.51
Both 89.91 86.27 73.01 64.64
SNR 75.72 87.34 78.24 64.51
RGN 93.83 88.19 79.36 64.56

Ours 95.57 89.39 80.18 65.80

datasets, we observe that the proposed strategy demonstrates notable superiority over partial layer
fine-tuning baselines. Specifically, fine-tuning only one layer of the CLIP model achieves comparable
performance with tuning the entire model, since the CLIP model is sufficiently powerful to extract
useful features and thus requires less training on task-specific data. This also reveals that selective
layer fine-tuning well meets the performance requirement within the resources of clients.

On text datasets, including XGLUE-NC and QA, the proposed layer selection strategy and RGN
demonstrate similar performance, both surpassing other baseline methods (especially Top and Both)
by noticeable margins. One potential explanation for this phenomenon could be that they result in
similar layer selections, indicating that updating layers with higher relative gradient norms is more
beneficial than other strategies, which is consistent with previous study (Lee et al., 2022). Moving a
forward step, the proposed method adopts a flexible and dynamic layer selection strategy instead of
fixed strategies, which leads to competitive performance.

Heterogeneous resource scenario Further, we conduct experiments with heterogeneous clients, i.e.,
clients have different local resources and thus tend to select different numbers of layers for fine-tuning.
Such a heterogeneous resource scenario is more practical (Yang et al., 2021; Chai et al., 2019) and
brings additional challenges for selective layer fine-tuning. Inspired by previous studies (Wang et al.,
2020; Nguyen et al., 2022b), the number of layers to be fine-tuned, denoted as Ri for client i, is
sampled from a truncated half Normal distribution within [1, 4].

The experimental results are shown in Table 2, from which we observe that the proposed strategy
consistently shows superiority over all the baseline methods on all the datasets. Compared with
baselines, the proposed strategy allows clients to flexibly determine the proper number of layers to
be tuned and effectively find the most important layers. This advantage arises from enabling clients
with sufficient resources to prioritize the selection of more critical layers instead of being restricted
to layers in fixed positions. Overall, these experimental results demonstrate the advantage of the
proposed strategy when handling heterogeneity in real-world FL applications.

5.3 FURTHER DISCUSSIONS

Visualization of selected layers For a better understanding on the proposed layer selection strategy,
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Figure 2: Visualization of selected layers (Ri ∈ [1, 4]).

Table 3: Comparisons of computational and communication costs when fine-tuning the CLIP model on the
CIFAR-10 (R = 1). The numbers in brackets represent the costs of the proposed layer selection strategy.

Computational cost (TFLOPs) Ratio Transmission (MBits) Ratio

Full Model Fine-tuning 8.47 100% 2,811 100%
Proposed Method 2.24 (1.51) 26% (17%) 234 8.33%
Proposed (Sel. Period=2) 1.46 (0.75) 17% (9.5%) 234 8.33%
Proposed (Sel. Batch=1) 0.99 (0.30) 12% (3.4%) 234 8.33%

we visualize the selected layers on different datasets in Figure 2. When fine-tuning the CLIP model
on the CIFAR-10 dataset, it can be observed that the focus is primarily on updating a few top layers,
indicating that the low-level features (related to middle and bottom layers) are transferable from
pre-trained data to downstream tasks. In comparison, the DomainNet dataset, characterized by
a significant domain shift, necessitates extensive tuning of the middle layers in the CLIP model.
Furthermore, on the XGLUE-NC dataset, we observe a clear progression of selected layers for
fine-tuning, with a shift from the top layers progressively down to the bottom layers. Such a pattern
is markedly different from the trend observed in the image datasets. One possible reason lies in
the intrinsic differences between the modalities of text and image data. These results highlight the
necessity for adaptive layer selection and adjustment strategies in FL to accommodate varying dataset
properties and domain shifts.

Comparisons regarding computational and communication costs We compare the computational
costs (in TFLOPs) and communication costs (in transmitted MBits) of the proposed method with
full model fine-tuning when adopting the CLIP model on the CIFAR-10. For the proposed method,
we consider fine-tuning only one layer, as it is sufficient to achieve comparable accuracy with full
model fine-tuning according to Table 1. The results in Table 3 evidence a substantial decrease in
both computational and communication requirements when utilizing the proposed method. Besides,
we can observe that the layer selection strategy takes as low as 3.4% of the computational costs.
These experimental results demonstrate that the proposed method significantly reduces both the
computational and communication costs compared to full model fine-tuning.

6 CONCLUSIONS

In this paper, we study a practical FL setting for fine-tuning foundation models, where clients are
allowed to optimize a subset of layers using their task-specific data. We carefully consider the
impact of both data heterogeneity and device heterogeneity across clients, providing a comprehensive
theoretical analysis of the optimization objective of selective layer fine-tuning and global model
convergence. The theoretical analysis offers insights into how the selected layers influence global
model training and highlights the role of layer importance and client heterogeneity. We further
propose a novel strategy for layer selection that considers the local data and available resources
at clients. The experimental results demonstrate that the proposed strategy outperforms baseline
strategies in improving the global model training performance and even matches full model fine-
tuning performance in some scenarios, showing the potential for more efficient and tailored real-world
FL applications of the proposed layer selection strategy.
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Reproducibility statement The assumptions and proofs of theoretical results in this work are
given in Section 4.1 and Appendix A.1. The experimental settings are described in Section 5.1
and Appendix B. The source codes are available at https://anonymous.4open.science/
r/fed_selected_tune/.
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Mogren. Scaling federated learning for fine-tuning of large language models. In International
Conference on Applications of Natural Language to Information Systems, pp. 15–23, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference on Machine Learning (ICML), pp. 2790–2799,
2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In The Tenth Interna-
tional Conference on Learning Representations (ICLR), 2022.

Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M. Hadi Amini. A survey on federated
learning for resource-constrained IoT devices. IEEE Internet of Things Journal, 9(1):1–24, 2022.

Gal Kaplun, Andrey Gurevich, Tal Swisa, Mazor David, Shai Shalev-Shwartz, and Eran Malach.
Less is more: Selective layer finetuning with subtuning. arXiv preprint arXiv:2302.06354, 2023.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
Proceedings of the 37th International conference on machine learning (ICML), pp. 5132–5143,
2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yeachan Kim, Junho Kim, Wing-Lam Mok, Jun-Hyung Park, and SangKeun Lee. Client-customized
adaptation for parameter-efficient federated learning. In Anna Rogers, Jordan L. Boyd-Graber, and
Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics, pp. 1159–1172,
2023.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. Revealing the dark secrets of
bert. arXiv preprint arXiv:1908.08593, 2019.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
[Online]. Available: https://www.cs.toronto.edu/˜kriz/cifar.html, 2009.

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie,
Yaliang Li, Bolin Ding, and Jingren Zhou. Federatedscope-llm: A comprehensive package for
fine-tuning large language models in federated learning. arXiv preprint arXiv:2309.00363, 2023.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang. Mixout: Effective regularization to finetune
large-scale pretrained language models. In International Conference on Learning Representations
(ICLR), 2019a.

Jaejun Lee, Raphael Tang, and Jimmy Lin. What would elsa do? Freezing layers during transformer
fine-tuning. arXiv preprint arXiv:1911.03090, 2019b.

Sunwoo Lee, Tuo Zhang, and A Salman Avestimehr. Layer-wise adaptive model aggregation for
scalable federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pp. 8491–8499, 2023.

Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and Chelsea
Finn. Surgical fine-tuning improves adaptation to distribution shifts. In International Conference
on Learning Representations (ICLR), 2022.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos:
An experimental study. In 38th IEEE International Conference on Data Engineering (ICDE), pp.
965–978, 2022.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of fedavg on non-iid data. In 8th International Conference on Learning Representations (ICLR),
Addis Ababa, Ethiopia, 2020.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing, pp. 4582–4597, 2021.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. FedBN: Federated learning
on non-iid features via local batch normalization. In 9th International Conference on Learning
Representations (ICLR), 2021.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming Gong, Linjun Shou,
Daxin Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang, Rahul Agrawal, Edward Cui, Sining
Wei, Taroon Bharti, Ying Qiao, Jiun-Hung Chen, Winnie Wu, Shuguang Liu, Fan Yang, Daniel
Campos, Rangan Majumder, and Ming Zhou. XGLUE: A new benchmark datasetfor cross-lingual
pre-training, understanding and generation. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 6008–6018, 2020.

Maren Mahsereci, Lukas Balles, Christoph Lassner, and Philipp Hennig. Early stopping without a
validation set. arXiv preprint arXiv:1703.09580, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
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A CONVERGENCE ANALYSIS: FULL PROOFS

A.1 USEFUL LEMMAS

A.1.1 ONE-ROUND LOSS DECAY

Lemma A.1. With Assumption 4.1, we have:

E[f(θt+1)]− E[f(θt)] ≤ 1

2γ
Et + E

〈∑
l∈Lt

∇lh
t
l(θ

t), θt+1 − θt

〉
︸ ︷︷ ︸

T1

+γ E
[∥∥θt+1 − θt

∥∥2]︸ ︷︷ ︸
T2

. (18)

Proof. We begin with analyzing the loss decay by using γ-smoothness in Assumption 4.1 as follows:

E[f(θt+1)]− E[f(θt)] (19)

≤E⟨∇f(θt), θt+1 − θt⟩+ γ

2
E[
∥∥θt+1 − θt

∥∥2] (20)

=E

〈
∇f(θt)−

∑
l∈Lt

∇lh
t
l(θ

t) +
∑
l∈Lt

∇lh
t
l(θ

t), θt+1 − θt

〉
+

γ

2
E[
∥∥θt+1 − θt

∥∥2] (21)

=E

〈
∇f(θt)−

∑
l∈Lt

∇lh
t
l(θ

t), θt+1 − θt

〉
︸ ︷︷ ︸

T0

+E

〈∑
l∈Lt

∇lh
t
l(θ

t), θt+1 − θt

〉
︸ ︷︷ ︸

T1

+
γ

2
E
[∥∥θt+1 − θt

∥∥2]︸ ︷︷ ︸
T2

.

(22)

By Young’s inequality, we upper bound the term T0 as:

T0 =E

〈
∇f(θt)−

∑
l∈Lt

∇lh
t
l(θ

t), θt+1 − θt

〉
(23)

≤ 1

2γ
E

∥∥∥∥∥∇f(θt)−
∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2


︸ ︷︷ ︸
Et

+
γ

2
E
[∥∥θt+1 − θt

∥∥2] (24)

=
1

2γ
Et +

γ

2
T2. (25)

Plugging (25) back into (22) gives the result in (18).

A.1.2 ANALYZING Et: PROOF OF LEMMA 4.6

In this subsection, we prove the result in Lemma 4.6.

We begin with decomposing the term Et using the Jensen’s inequality as:

Et ≤ 2 ∥∇f(θt)−
∑
l∈Lt

∇lf(θ
t)∥22︸ ︷︷ ︸

Ẽt,1

+2 ∥
∑
l∈Lt

∇lf(θ
t)−∇lh

t
l(θ

t)∥22︸ ︷︷ ︸
Ẽt,2

. (26)

For the first term Ẽ1,t, we directly obtain:

Ẽ1,t = E

∥∥∥∥∥∇f(θt)−
∑
l∈Lt

∇lf(θ
t)

∥∥∥∥∥
2
 = E


∥∥∥∥∥∥
∑
l/∈Lt

∇lf(θ
t)

∥∥∥∥∥∥
2
 . (27)
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Afterwards, we derive the value of Ẽ2,t as follows:

Ẽ2,t =E

∥∥∥∥∥∑
l∈Lt

∇lf(θ
t)−

∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
 (28)

=E

∥∥∥∥∥∑
l∈Lt

∑
i∈N

αi∇lfi(θ
t)−

∑
l∈Lt

∑
i∈St

wt
i,l∇lfi(θ

t)

∥∥∥∥∥
2
 (29)

=E

∥∥∥∥∥∑
l∈Lt

∑
i∈N

αi∇lfi(θ
t)−

∑
l∈Lt

∑
i∈N

wt
i,l∇lfi(θ

t)

∥∥∥∥∥
2
 (30)

=
∑
l∈Lt

E

∥∥∥∥∥∑
i∈N

wt
i,l − αi
√
αi

√
αi

(
∇lfi(θ

t)−∇lf(θ
t)
)∥∥∥∥∥

2
 (31)

≤
∑
l∈Lt

[∑
i∈N

(wt
i,l − αi)

2

αi

][∑
i∈N

αiE
[∥∥∇lfi(θ

t)−∇lf(θ
t)
∥∥2]] (32)

≤
∑
l∈Lt

χwt,l∥ακ
2
l . (33)

where (32) follows the Cauchy–Schwarz inequality and (33) applies Assumption 4.3.

By substituting the RHS of (27) and (33) into (26), we complete the proof.

A.2 CONVERGENCE ANALYSIS FOR SINGLE-STEP CASE

In this subsection, we consider τ = 1 and prove Theorem 4.7.

We derive the value of T1 as follows:

T1 = E

〈∑
l∈Lt

∇lh
t
l(θ

t),−η
∑
l∈Lt

∇lh
t
l(θ

t)

〉
= −ηE

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
 . (34)

Afterwards, we give an upper bound for the term T2 as follows:

T2 =

∥∥∥∥∥η ∑
l∈Lt

∑
i∈St

wt
i,lgi,l(θ

t; ξti)

∥∥∥∥∥
2
 (35)

≤η2E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+ η2σ2, (36)

where (36) follows Assumption 4.2.

Using the result in Lemma A.1, we have:
E[f(θt+1)]− E[f(θt)]

≤ 1

2γ
Et − ηE

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+ γ

η2E
∥∥∥∥∥∑

l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+ η2σ2

 (37)

=
1

2γ
Et − η(1− γη)E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+ γη2σ2. (38)

We define a constant C ≜ 1− γη > 0 and arrange the terms in (38) as follows:

E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
 ≤ 1

ηC

[
E[f(θt)]− E[f(θt+1)]

]
+

1

2γηC
Et +

γη

C
σ2. (39)
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By Jensen’s inequality, we have:

E
[∥∥∇f(θt)

∥∥2] (40)

=E

∥∥∥∥∥∇f(θt)−
∑
l∈Lt

∇lh
t
l(θ

t) +
∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
 (41)

≤2E

∥∥∥∥∥∇f(θt)−
∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+ 2E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
 (42)

=2Et + 2E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
 . (43)

Combining (39) and (43) gives:

E
[∥∥∇f(θt)

∥∥2] ≤ 2

ηC

[
E[f(θt)]− E[f(θt+1)]

]
+

(
1

γηC
+ 2

)
Et +

2γη

C
σ2. (44)

We sum up both sides of (44) over t = 0, 1, . . . , T − 1 and divide them by T to obtain the following
result:

1

T

T∑
t=1

E
[∥∥∇f(θt)

∥∥2]
≤ 2

ηCT

[
E[f(θ0)]− E[f(θT )]

]
+

1

T

T∑
t=1

(
1

γηC
+ 2

)
Et +

2γη

C
σ2 (45)

≤ 2

ηCT

[
f(θ0)− f(θ∗)

]
+

1

T

T∑
t=1

(
1

γηC
+ 2

)
Et +

2γη

C
σ2 (46)

≤ 2

ηCT

[
f(θ0)− f(θ∗)

]
+

2γη

C
σ2 +

1

T

T∑
t=1

(
1

γηC
+ 2

)
(Et,1 + Et,2). (47)

A.3 CONVERGENCE ANALYSIS FOR MULTI-STEP CASE

Consider the general case where τ > 1. We characterize the convergence in the following theorem
and note that the impact of Et,1 + Et,2 is similar to that in Theorem 4.7.

Theorem A.2. Let C ′ ≜ 1−4ητ−8η2γ2τ(τ−1)−32η3γ2τ2(τ−1) > 0 and Aτ ≜ η+2η2γ2τ(τ−
1) + 8η3γ2τ2(τ − 1). With Assumptions 4.1-4.3, we have:

1

T

T∑
t=1

E
[∥∥∇f(θt)

∥∥2] ≤ 2

ητC ′T

[
f(θ0)− f(θ∗)

]
+

4Aτ

C ′ σ2 +
1

T

T∑
t=1

(
1

ητγC ′ + 2

)
(Et,1 + Et,2).

(48)

Proof. In Lemma A.1, the term T1 is related to client drift caused by multiple local SGD steps, which
can be upper bounded as follows:

T1

=− η

τ−1∑
k=0

E

〈∑
l∈Lt

∇lh
t
l(θ

t),
∑
l∈Lt

∑
i∈N

wt
i,l∇lfi(θ

t,k
i )

〉
(49)

=− η

τ−1∑
k=0

E

〈∑
l∈Lt

∇lh
t
l(θ

t),
∑
l∈Lt

∇lh
t
l(θ

t)

〉
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+ η

τ−1∑
k=0

E

〈∑
l∈Lt

∇lh
t
l(θ

t),
∑
l∈Lt

∇lh
t
l(θ

t)−
∑
l∈Lt

∑
i∈N

wt
i,l∇lfi(θ

t,k
i )

〉
(50)

≤− η

2

τ−1∑
k=0

E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+

η

2

τ−1∑
k=0

E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)−
∑
l∈Lt

∑
i∈N

wt
i,l∇lfi(θ

t,k
i )

∥∥∥∥∥
2


(51)

=− ητ

2
E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+

η

2

τ−1∑
k=0

E

∥∥∥∥∥∑
l∈Lt

∑
i∈N

wt
i,l∇lfi(θ

t)−
∑
l∈Lt

∑
i∈N

wt
i,l∇lfi(θ

t,k
i )

∥∥∥∥∥
2


(52)

≤− ητ

2
E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+

ηγ2

2

τ−1∑
k=0

E

∥∥∥∥∥∑
l∈Lt

∑
i∈N

wt
i,l

(
θt − θt,ki

)∥∥∥∥∥
2


︸ ︷︷ ︸
T4

, (53)

where (51) uses the inequality ⟨a,b⟩ ≤ ∥a∥2

2 + ∥b∥2

2 , and (53) follows Assumption 4.1.

Then we analyze the term T2 as follows:
T2

≤η2E

∥∥∥∥∥
τ−1∑
k=0

∑
l∈Lt

∑
i∈N

wt
i,l∇lfi(θ

t,k
i )

∥∥∥∥∥
2
+ η2τσ2 (54)

≤η2τ

τ−1∑
k=0

E

∥∥∥∥∥∑
l∈Lt

∑
i∈N

wt
i,l∇lfi(θ

t,k
i )−

∑
l∈Lt

∑
i∈N

wt
i,l∇lfi(θ

t) +
∑
l∈Lt

∑
i∈N

wt
i,l∇lfi(θ

t)

∥∥∥∥∥
2


+ η2τσ2 (55)

≤2η2τ

τ−1∑
k=0

E

∥∥∥∥∥∑
l∈Lt

∑
i∈N

wt
i,l∇lfi(θ

t,k
i )−

∑
l∈Lt

∑
i∈N

wt
i,l∇lfi(θ

t)

∥∥∥∥∥
2


+ 2η2τ

τ−1∑
k=0

E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+ η2τσ2 (56)

≤2η2γ2τ

τ−1∑
k=0

E

∥∥∥∥∥∑
l∈Lt

∑
i∈N

wt
i,l

(
θt,ki − θt

)∥∥∥∥∥
2
+ 2η2τ2E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+ η2τσ2 (57)

=2η2γ2τT4 + 2η2τ2E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+ η2τσ2, (58)

where (54) follows Assumption 4.2, (55)-(56) apply the Jensen’s inequality, and (57) follows As-
sumption 4.1.

Following Lemma 22 in (Pillutla et al., 2022), T4 can be upper bounded as:

T4 ≤
τ−1∑
k=0

E

∥∥∥∥∥∑
l∈Lt

∑
i∈N

wt
i,lθ

t − θt,ki

∥∥∥∥∥
2
 (59)

≤8η2τ2(τ − 1)E

∥∥∥∥∥∑
l∈Lt

∑
i∈N

wt
i,l∇lfi(θ

t)

∥∥∥∥∥
2
+

∑
l∈Lt

∑
i∈N

wt
i,l4η

2τ2(τ − 1)σ2
l (60)

=8η2τ2(τ − 1)E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+ 4η2τ2(τ − 1)σ2. (61)
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Plugging (54),(58) and (61) back into (18), we have the following result:

E[f(θt+1)]− E[f(θt)] (62)

≤ 1

2γ
Et −

ητ

2
E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+

ηγ2

2
T4 + 2η2γ2τT4 + 2η2τ2E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+ η2τσ2

(63)

=
1

2γ
Et −

ητ

2
(1− 4ητ)E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+ η2τσ2 +

(
ηγ2

2
+ 2η2γ2τ

)
T4 (64)

=
1

2γ
Et −

ητ

2
(1− 4ητ)E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+ η2τσ2

+

(
ηγ2

2
+ 2η2γ2τ

)8η2τ2(τ − 1)E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
+ 4η2τ2(τ − 1)σ2

 (65)

=
1

2γ
Et −

ητ

2

[
1− 4ητ − 8η2γ2τ(τ − 1)− 32η3γ2τ2(τ − 1)

]
E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2


+
(
η2τ + 2η3γ2τ2(τ − 1) + 8η4γ2τ3(τ − 1)

)
σ2. (66)

Let C ′ ≜ 1 − 4ητ − 8η2γ2τ(τ − 1) − 32η3γ2τ2(τ − 1) > 0 and Aτ ≜ η + 2η2γ2τ(τ − 1) +
8η3γ2τ2(τ − 1). We have:

E

∥∥∥∥∥∑
l∈Lt

∇lh
t
l(θ

t)

∥∥∥∥∥
2
 ≤ 2

ητC ′

[
E[f(θt)]− E[f(θt+1)]

]
+

1

ητγC ′ Et +
2

C ′Aτσ
2. (67)

Using the result in (43), we have:

E
[∥∥∇f(θt)

∥∥2] ≤ 4

ητC ′

[
E[f(θt)]− E[f(θt+1)]

]
+

(
1

ητγC ′ + 2

)
Et +

4Aτ

C ′ σ2. (68)

We sum up both sides of (68) over t = 0, 1, . . . , T − 1 and divide them by T to obtain the following
result:

1

T

T∑
t=1

E
[∥∥∇f(θt)

∥∥2]
≤ 2

ητC ′T

[
E[f(θ0)]− E[f(θT )]

]
+

1

T

T∑
t=1

(
1

ητγC ′ + 2

)
Et +

4Aτ

C ′ σ2 (69)

≤ 2

ητC ′T

[
f(θ0)− f(θ∗)

]
+

1

T

T∑
t=1

(
1

ητγC ′ + 2

)
Et +

4Aτ

C ′ σ2 (70)

≤ 2

ητC ′T

[
f(θ0)− f(θ∗)

]
+

4Aτ

C ′ σ2 +
1

T

T∑
t=1

(
1

ητγC ′ + 2

)
(Et,1 + Et,2). (71)

B EXPERIMENTAL DETAILS

We implement all methods with PyTorch and run experiments on Nvidia V100 GPUs. For fair
comparisons, we adopt the same training epochs and hyper-parameters for all methods.
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B.1 TRAINING TASKS

To evaluate the methods in various scenarios with different non-IID patterns, we consider two image
classification tasks and two text classification tasks.

Table 4: Summary of datasets.

Dataset Data Type Non-IID Type Partition

CIFAR-10 Image Label skew Dir(0.1)
DomainNet Image Feature skew Domain
XGLUE-NC Text Feature skew Domain

QA Text Feature skew Domain

The image classification tasks include:

• CIFAR-10 (Krizhevsky & Hinton, 2009): In this training task, we consider the label-skewed
case where P (yi) is different among clients. Following previous works (Li et al., 2022), we
adopt Dirichlet allocation with concentration parameter α = 0.1 among clients.

• DomainNet (Peng et al., 2019): DomainNet contains six domains of data samples, including
clipart, real, sketch, infograph, painting, and quickdraw. In this training task, we consider
the varying feature case where P (xi|yi) is different among clients. Following (Li et al.,
2021), each client is allocated random samples from only one domain.

On both tasks, we fine-tune a CLIP Vision Transformer (CLIP) model (Radford et al., 2021).

Besides, we fine-tune an XLM-Roberta-Base model on the following text dataset:

• XGLUE-NC (Liang et al., 2020): This is a news classification task consisting of 10 classes.
The news texts comprise five languages (English, Spanish, French, German, and Russian).
We allocate one random language to each client, which naturally introduces domain shift
among clients.

In addition, we evaluate a LLaMA-2-7B model on the QA datasets.

• QA: The QA datasets consist of four commonly used question-answering datasets, i.e.,
SCIQ (Welbl et al., 2017), OpenbookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020),
ARC-Easy and ARC-Challenge (Bhakthavatsalam et al., 2021). The datasets are transformed
into classification tasks where the model determines the correct answer for each question
and corresponding choices. We allocate the samples from one random dataset to each client,
indicating the domain shift among clients.

B.2 IMPLEMENTATION DETAILS

The CLIP model is pre-trained on the DataComp dataset and is adapted from https://github.
com/openai/CLIP; the XLM-Roberta-Base model is adapted from https://huggingface.
co/xlm-roberta-base; the LLaMA-2-7B model is adapted from https://huggingface.
co/meta-llama/LLaMA-7b-chat-hf. In all training tasks, we freeze the embedding layers
of the model and fix the classifier as commonly selected layers (Lee et al., 2019b). The values of
adopted hyperparameters are summarized in Table 5. For the proposed method, we tune the value of
λ from {1, 5, 10, 100, 500, 1000}.
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Table 5: Implementation details.

Dataset CIFAR-10 DomainNet XGLUE-NC QA

Model CLIP CLIP XLM-Roberta-Base LLaMA-2-7B
Batch size 64 64 32 16
Learning rate 0.01 0.01 0.01 2e-5
Local steps∗ 5 1 -1 -1
Total epochs 50 30 20 2
λ 1000 10 10 5
∗The local steps -1 means clients iterate all training samples (i.e., one single local training epoch).
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