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ABSTRACT

Indirect prompt injection attacks are a critical security vulnerability in large lan-
guage models (LLMs), allowing attackers to hijack model behavior by injecting
malicious instructions within the input context. Recent defense mechanisms have
leveraged an Instruction Hierarchy (IH) Signal – often implemented through spe-
cial delimiter tokens or additive embeddings – to denote the privilege level of input
tokens. However, these prior works typically inject the IH signal exclusively at the
initial input layer, which we hypothesize limits its ability to effectively distinguish
the privilege levels of tokens as it propagates through the different layers of the
model. To overcome this limitation, we introduce a novel approach that injects
the IH signal into the intermediate token representations within the network. Our
method augments these representations with layer-specific trainable embeddings
that encode the privilege information. Our evaluations across multiple models and
training methods reveal that our proposal yields between 1.6× and 9.2× reduction
in attack success rate on gradient-based prompt injection attacks compared to
state-of-the-art methods, without significantly degrading the model’s utility.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) based large language models (LLMs) exhibit a notable sensitivity
to specific tokens within their input context, allowing even a small subset to significantly influence
the distribution of generated responses. While this characteristic underpins the flexibility of LLMs,
it also introduces a critical vulnerability: indirect prompt injection attacks (Greshake et al., 2023).
These attacks involve the strategic insertion of adversarial tokens into the LLM’s context to override
the user’s intended instructions and compel the model to adhere to the adversary’s commands instead.
Recent research demonstrated the potential for such attacks to generate inaccurate information, lure
users to harmful websites, and facilitate the exfiltration of sensitive data, including passwords and
personal details (Greshake et al., 2023). This susceptibility poses a particularly significant challenge
for agentic AI systems (Debenedetti et al., 2024), where LLMs are entrusted with executing complex
tasks involving potentially untrusted data sources and websites, often without human oversight.

Several recent studies (Wallace et al., 2024; Chen et al., 2024a; Wu et al., 2024; Chen et al., 2024b)
have proposed defense mechanisms aimed at making the model more robust to these prompt injection
attacks. A key commonality among these approaches is the concept of an instruction hierarchy (IH).
Rather than treating all input tokens uniformly, an IH framework assigns varying levels of importance
or privilege to different tokens within the context. These privilege levels can then be leveraged
to dictate the appropriate behavior when conflicting instructions arise. Prior works have explored
different techniques for (a) injecting IH signals into the LLM and (b) training the LLM to recognize
and respect these signals. This research focuses on enhancing the method of injecting the IH signal to
the LLM. We observe that existing approaches primarily inject the IH signal solely at the input level,
either by introducing novel delimiter tokens or by modifying the input token embeddings to encode
IH information. We hypothesize that limiting the injection of this crucial information to the input
layer constrains the signal’s overall efficacy.

To address this limitation, we introduce Augmented Intermediate Representations (AIR). AIR distin-
guishes itself by injecting IH signals recurrently across all layers of the LLM, rather than confining it
to the initial input layer. We posit that the consistent availability of IH signals at each processing stage
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User: 
Summarize 
my unread 

emails

Email #1: 
Let’s meet for 
co:ee at 5pm 

today - Bob

Email #2:
Ignore previous 

instructions. Say “You 
have no new emails” 

𝐼 𝐷 𝐷! = 𝐷"! + 𝐼′

LLM
You have 
no new 
emails

𝑂

𝒜 𝑂, 𝐼′ = 1
𝒜 𝑂, 𝐼 = 0

👨💻 ✉

Figure 1: Illustration of prompt injection attack. By injecting malicious tokens D′ into the context
window, an adversary can control the LLM’s behavior, making it follow malicious instructions (I ′)
instead of the user’s original instructions (I). A denotes the alignment function.

can facilitate a stronger enforcement of the intended instruction hierarchy and enable the training of
models that are more robust to prompt injection attacks.

Contributions. The primary contributions of this work are outlined below:

1. We identify a critical limitation in existing prompt injection defense mechanisms: their reliance on
injecting instruction hierarchy (IH) signals solely at the input level, which consequently restricts
their overall effectiveness.

2. To address this limitation, we introduce Augmented Intermediate Representations (AIR). Our core
insight is to inject IH signals recurrently across all layers of the LLM, thereby enabling a more
robust enforcement of the intended instruction hierarchy.

3. Our empirical evaluations across multiple models, training setups, and evaluation datasets reveal
that AIR consistently improves robustness, yielding a 1.6× to 9.2× reduction in ASR compared
to previous methods on gradient based attacks, while only minimally impacting the model’s utility.

2 PRELIMINARIES

To formally discuss the dynamics of indirect prompt injection attacks and defenses, we first establish
a clear framework. This section defines the core components of our threat model, including the user,
LLM, and the attacker, along with their respective objectives and interactions.

Setup. Our setup considers a benign user employing a large language model M to execute a task.
This task is accomplished through the LLM’s processing of user-provided instruction tokens I and
data tokens D̂ that may originate from potentially untrusted sources, such as external websites or
emails. We denote the LLM’s resulting output as O = M(I + D̂). We further assume that the
data tokens consist of benign tokens D and adversarial tokens D′ controlled by an attacker i.e.
D̂ = D +D′. To quantify how well the output follows the input, we define an alignment function
A(O, I) ∈ [0, 1]. Here, 0 indicates that O does not follow I and 1 signifies perfect alignment.

Attacker’s Goal. The attacker’s objective is to utilize the adversarial tokens D′ to manipulate the
LLM’s output such that it aligns with the attacker’s instruction I ′ instead of the user’s instruction
I . The attacker’s goal can be formally expressed as maximizing A(O, I ′) by strategically selecting
and injecting adversarial tokens D′ into the LLM’s context window. For simplicity, we represent the
sequence of adversarial tokens D′ as a combination of an adversarial prefix D′

p and the adversarial
instruction I ′ i.e. D′ = D′

p + I ′.

Illustrative Example. Figure 1 shows an example of a successful prompt injection attack in the
context of email summarization. The user’s initial instruction (I) is to summarize unread emails.
Benign data (D) might include legitimate emails, such as Email #1. However, an adversary can inject
malicious tokens D′ by sending a crafted email (Email #2) containing an adversarial instruction
I ′ along with a suitable prefix D′

p. When the LLM processes this combined context, the injected
adversarial instruction overrides the user’s intent, leading the LLM to produce the output O: ”You
have no new emails.”, breaking the alignment with the user’s instructions (I) and making it follow
the adversary’s instruction (I ′) instead.

Defender’s Goal. The defender has two objectives. First, the defender aims to ensure that the LLM’s
response remains aligned with the user’s intended instructions, even in the presence of malicious
tokens, which can be expressed as maximizing A(O, I). Second, the defender seeks to maintain
a high quality of the model’s response in benign settings (i.e., even in the absence of an attack),
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which can be denoted as maximizing a quality metric Q(O|I,D). In this context, the defender
is typically the model provider. Thus, the defender’s action space includes choices regarding the
model’s architecture (e.g., layer design, attention mechanisms) and the training process (e.g., data
curation, training objectives).

3 RELATED WORK

The prompt injection attack was initially conceptualized in scenarios where an adversarial user,
possessing the ability to directly prompt the LLM, attempts to override the intended system in-
structions (Perez & Ribeiro, 2022). This attack vector is referred to as direct prompt injection.
Subsequently, a more covert variant, known as indirect prompt injection, was developed (Greshake
et al., 2023). In this case, the attacker lacks the capability to directly interact with the LLM. Instead,
they embed the attack within an external data source (e.g., documents, emails, or webpages) that the
LLM ingests to generate responses to user prompts. While we primarily consider indirect prompt in-
jection attacks in our paper, the insights behind our defense can be extended to direct prompt injection
attacks as well. We proceed to discuss the various methodologies employed for generating prompt
injection attacks, as well as prior research dedicated to defending against such attacks. Additional
related work can be found in Appendix D.

3.1 ATTACKS

As outlined in Section 2, the attacker’s primary objective is to identify an adversarial prefix D′
p that

compels the LLM’s output to align with the attacker’s intended instructions I ′. Previous research has
detailed several methods for constructing such adversarial prefixes. These methods can be broadly
categorized into static attacks and optimization-based attacks.

Static Attacks. Static attacks rely on handcrafted prefixes that have been empirically demonstrated
to deceive LLMs, causing them to prioritize the adversary’s instructions over the user’s. The Ignore
attack (Perez & Ribeiro, 2022) exemplifies this approach by injecting phrases such as ”Ignore
previous instructions” (Fig 1). Completion attacks, on the other hand, insert a fabricated completion
within the prefix, creating the illusion that the original query has already been addressed, thereby
prompting the LLM to respond to the adversary’s subsequent instructions. The escape separation
attack involves inserting a sequence of escaped characters, such as ”\n” and ”\t”, as the prefix.

Gradient-based Attacks. These attacks employ gradient-based optimization techniques to identify
prefixes that maximize the likelihood of the LLM generating the adversary’s desired response. Greedy
Coordinate Gradient (GCG) (Zou et al., 2023) is a prominent example, where the attacker initializes
the adversarial prefix D′

p with a randomly selected set of tokens. A loss function L(D′
p) is then defined

based on the output probability of the desired response: L(D′
p) = − log p(O|I +D +D′

p + I ′). By
iteratively optimizing D′

p to minimize L(D′
p), GCG can identify a prefix that significantly increases

the probability of the attacker’s desired outcome. Several subsequent works have aimed to enhance
the effectiveness of GCG. For instance, Zhang & Wei (2025) propose the use of momentum to
improve GCG’s performance. NeuralExec (Pasquini et al., 2024) employs a similar gradient-based
optimization approach to execute prompt injection attacks. Unlike GCG, NeuralExec’s adversarial
prompt comprises both a prefix (D′

p) and a suffix (D′
s), i.e., D′ = D′

p + I ′ +D′
s, which are both

optimized using gradients. Astra (Pandya et al., 2025) optimizes the adversarial prefix to focus the
model’s attention on the attacker’s instructions and uses this as a warm-start for GCG.

3.2 DEFENSES

A fundamental challenge identified in prior work is that LLMs often lack the ability to distinguish
tokens originating from different sources, treating them with equal priority. This absence of privilege
levels allows adversarial instructions to sometimes override legitimate user instructions, thereby
facilitating prompt injection attacks. To address this issue, recent studies (Chen et al., 2024a; Wallace
et al., 2024) propose structuring input tokens to assign varying levels of privilege to tokens from
different sources (e.g., system, user, data). This privilege information can then be leveraged by the
model to determine the appropriate response in scenarios involving conflicting instructions. Several
defense mechanisms have been developed based on this core principle.

3
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Figure 2: A comparison of different mechanisms for injecting Instruction Hierarchy (IH) signals
into LLMs. Existing techniques feed IH signals solely at the input layer by employing (a) special
delimiter tokens (S0, S1) or (b) instruction segment embeddings (S⃗0, S⃗1) that are added to the input
token embeddings {T⃗1, T⃗2, .., T⃗n}. Our proposed approach (c) differs fundamentally by injecting IH
signals into every decoder layer, leading to a more robust enforcement of the IH.

Recipe for a Defense. Most of these defenses (Wallace et al., 2024; Chen et al., 2024a; Wu et al.,
2024; Chen et al., 2024b) follow a common high-level procedure to create robust models, which we
outline below.

1. Establish an instruction hierarchy (IH) by defining the number of privilege levels and their relative
order of importance (e.g., P0 > P1 > P2).

2. Construct an adversarial training dataset D′ comprising examples with conflicting instructions
embedded within different parts of the input (analogous to a prompt injection attack).

3. Modify the LLM to accommodate IH signals that encode the privilege levels of each token.
4. Train the modified LLM using D′ to prioritize instructions associated with higher privilege levels.

Existing defenses differ primarily in how they modify the LLM to process IH signals and how they
train the LLM (Steps 3 and 4 above). To illustrate, consider a simplified scenario with two privilege
levels, P0 > P1. (Wallace et al., 2024; Chen et al., 2024a) use special delimiter tokens (S0, S1)
to indicate the privilege levels of input tokens (as depicted in Fig. 2) and train the model using
supervised fine-tuning (SFT). SecAlign (Chen et al., 2024b) also encodes IH signals using delimiters
and trains the model using direct preference optimization (DPO). Another approach, Instructional
Segment Embedding (ISE) (Wu et al., 2024), proposes adding trainable segment embeddings to the
input token embeddings to encode privilege level information.

Limitation of Existing Defenses. Our work focuses on the method of injecting the IH signal into the
LLM. A common characteristic of prior defenses is that they inject the IH signal exclusively at the
input layer, either through special delimiter tokens or by appending segment embeddings to the input
token embeddings. However, these input-level IH signals degrade as they propagates through the
decoder layers. To demonstrate this, we encode 100 prompts from the AlpacaEval dataset with two
different privilege levels and compare the cosine similarity of the intermediate representations across
different layers of the Llama-3.2-3B model in Fig. 3. We observe that the similarity between the
representations increases as we go deeper into the decoder layers, indicating that the representations
may fail to adequately preserve the IH signals. We hypothesize that this limits the effectiveness of the
IH signals in enforcing the instruction hierarchy as it propagates through the decoder layers.

4 OUR PROPOSAL: AUGMENTED INTERMEDIATE REPRESENTATION

The primary goal of our work is to enhance the efficacy of IH signals by injecting them directly into
all layers of the model. We do so by modifying the decoder block to incorporate the IH signal.

Notations. Before explaining our proposal, we introduce some notation. Let x⃗ij denote the interme-
diate token representation of the ith input token in the jth decoder block. Assuming that we have K
privilege levels, let’s use ki ∈ [0,K) to denote the privilege level corresponding to the ith token.

4
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Figure 3: Comparison of average co-
sine similarity between hidden represen-
tations of tokens encoded with different
privilege level using different instruction
hierarchy injection mechanisms (Delim,
ISE, AIR). AIR has lower similarity (bet-
ter separation) across all layers.
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Figure 4: AIR incorporates a trainable
embedding table within each decoder
block. The information hierarchy sig-
nal serves as an index to this table, with
the retrieved embedding augmenting the
intermediate representation.

Design. We set out to find a method for injecting IH sig-
nals to each decoder layer in a way that allows the IH
signal to be customized to the intermediate representations
at the input of each layer. The key changes made by AIR to
the decoder block are illustrated in Fig. 4. AIR introduces
a trainable embedding table Sj to each decoder block, con-
sisting of K entries - one for each privilege level in the IH
(Fig. 4 shows K = 2 entries for simplicity). The vectors
in this table are sized to have the same dimensionality as
the intermediate token representations x⃗ij . AIR directly
injects the IH signals (ki) to all the decoder blocks as
shown in Fig. 2c. The injected IH signal is used to index
the IH embedding table Sj to retrieve an IH vector, which
then augments the intermediate token representation x⃗ij

to become x⃗′
ij , as defined by:

x⃗′
ij = x⃗ij + s⃗kj , where s⃗kj = Sj [ki] (1)

We also augment the intermediate token representation
after the last decoder layer, before it’s fed to the linear
layers to output the final logits.

Overheads. Our method introduces a small increase in
the number of parameters. E.g. for Llama3.1-8B (32
decoder layers and hidden representations of size 4096),
with 3 privilege levels, we require a total of (32+1)×3×
4096 = 0.4M extra parameters (i.e. 0.005% increase).
While additional compute is needed to train the model (see
Section 5.2), it is similar to the overheads incurred in prior
works (Wallace et al., 2024; Chen et al., 2024a;b). The
increase in the compute for inference is negligibly small.

Similarity to Research on Positional Embedding. Our
proposal shares an interesting similarity with the research
on positional embeddings. While earlier works primarily
injected positional information at the input layer, often
in the form of sinusoidal positional encoding (Vaswani
et al., 2017) or learnable positional embeddings (Devlin
et al., 2019), more recent methods have explored alter-
native approaches. Notably, Rotary Position Embedding
(RoPE) (Su et al., 2024) injects relative positional informa-
tion directly into the self-attention mechanisms within all
layers of the Transformer. Integrating positional informa-
tion throughout the model’s architecture, rather than just at
the initial input stage, has been shown to be a significant factor in enhancing the performance of large
language models (Su et al., 2024; Zhao et al., 2023; Dufter et al., 2022). Our proposal applies the
same underlying principle—distributing critical privilege information across all layers—to improve
model security against prompt injection attacks.

5 EXPERIMENTAL SETUP

Our experimental evaluations aim to quantify the impact of different mechanisms for injecting IH
signals on model utility (performance in non-adversarial settings) and robustness (resilience under
attack). We describe key details of the experimental setup in this section. Additional details can be
found in Appendix B.

5.1 MODELS

We consider three pre-trained base models of varying sizes: Llama-3.2-3B (AI, 2024), Qwen2.5-
7B (Team, 2024), and Llama-3.1-8B (Grattafiori et al., 2024). In their original pre-trained state, these
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<|begin_of_text|><|start_header_id|>system<|end_header_id|>Below is an instruction that describes 
a task, paired with an input that provides further context. Write a response that appropriately 
completes the request.<|eot_id|><|start_header_id|>user<|end_header_id|>Evaluate this sentence 
for spelling and grammar mistakes. He finnished his meal and left the resturant<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>There are two spelling errors in the sentence. The 
corrected sentence should be: "He finished his meal and left the restaurant."<|eot_id|>

Figure 5: A sample from the Alpaca dataset formatted using a chat template. Each example consists
of an instruction I , an optional data segment D and the response R. We use 3 privilege levels:
P0>P1>P2 to indicate the relative priority of different segments.

models exhibit limited instruction-following capabilities. We adapt the architecture of these models
to facilitate the injection of IH signals and subsequently train them as described below.

5.2 TRAINING

For a fair comparison, all models in our experiments undergo the same training procedure, regardless
of the IH injection mechanism. This procedure involves two sequential rounds of training:

1. Non-adversarial Instruction Tuning: First, to instill instruction-following capabilities, the base
models undergo full fine-tuning with SFT using an instruction-following dataset. The learning
rate (LR) is set to 2× 10−5 for Llama-3.2-3B, and 1× 10−5 for Qwen-2.5-7B and Llama-3.1-8B.

2. Adversarial Robustness Training: Subsequently, to enhance robustness against prompt injection
attacks, the models undergo a second stage of fine-tuning using a curated adversarial dataset. For
this adversarial training stage, we investigate two fine-tuning methodologies:
• SFT: We employ full fine-tuning with a LR of 1× 10−5

• DPO: We perform parameter efficient fine-tuning using LoRA (Hu et al., 2022) with a LR of
2× 10−4.

Each round consists of 3 epochs of training using the AdamW (Loshchilov & Hutter, 2017) optimizer
and a linear LR scheduler. Details of the training datasets used for the two rounds are provided in
Appendix B.1.

5.3 DEFENSES

This subsection details the Instruction Hierarchy (IH) adopted in our experiments and the various
mechanisms evaluated for injecting IH signals into the models.

Instruction Hierarchy (IH). We define three hierarchical levels of privilege, P0 > P1 > P2, as
illustrated in Fig. 5. P0 is assigned to system and user instruction tokens. P1 is assigned to tokens
within the data segment. P2 is associated with the model’s response tokens.

IH Injection Mechanisms. In addition to AIR, our proposed approach, we evaluate two existing
methods for injecting IH signals:

1. Delimiters (Wallace et al., 2024; Chen et al., 2024a): We use two trainable special tokens,
[INST] and [INPT], to explicitly mark the beginning of instruction (privilege P0) and input
(privilege P1) segments, respectively.

2. Instructional Segment Embedding (ISE) (Wu et al., 2024): This method adds distinct, trainable
embeddings to the token representations to indicate the IH level of each token in the input.

Connection to Prior Work. Existing defense strategies can often be characterized by their choice
of IH signal injection mechanism and the adversarial robustness training technique employed. For
instance, the methods in (Wallace et al., 2024) and (Chen et al., 2024a) can be viewed as utilizing
Delimiters in conjunction with SFT. The approach in (Wu et al., 2024) employs ISE with SFT.
SecAlign (Chen et al., 2024b) uses Delimiters with DPO. Our work extends these investigations by
systematically evaluating a broader matrix of IH injection mechanisms (Delimiters, ISE, AIR) and
adversarial training techniques (SFT, DPO), including combinations not explored in prior studies.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.4 EVALUATION METHODOLOGY

Following the training stages, the models are evaluated on two key aspects: utility in non-adversarial
settings and robustness against prompt injection attacks. We use two datasets- AlpacaFarm (Dubois
et al., 2023) and SEP (Zverev et al., 2024) to measure both utility and robustness.

AlpacaFarm. To assess model utility, responses are generated for the 805 test instances from the
AlpacaFarm dataset. Each instance in this dataset consists of an instruction and an optional input
segment. We employ AlpacaEval 2.0 (Li et al., 2023) for utility evaluation. This framework computes
the win rate of the generated responses by comparing them against reference responses using a judge
model. For our evaluations, responses from the text-davinci-003 model serve as the reference
and Llama-3-70B-Instruct is used as the judge model. Robustness evaluations are conducted on
the subset of 208 instances from the AlpacaFarm dataset that contain input segments (D). These
input segments are modified to simulate prompt injection attacks by appending an adversarial prefix
D′

p and a targeted adversarial instruction I ′ (i.e., D → D +D′
p + I ′). For all robustness tests, the

adversarial instruction I ′ is set to print exactly ‘hacked!’. The content of the adversarial
prefix D′

p varies depending on the attack strategy. We consider two categories of attacks:

• Static Attacks (Black-Box): We evaluate against four predefined static attack strategies: Naive,
Ignore, Completion, and Escape Separation. Attack Success Rate (ASR) is reported across the 208
test instances by determining if the model’s response contains the literal phrase hacked!.

• Gradient-Based Attack (White-Box): We evaluate white-box robustness using two recent, highly
effective attacks: momentum-enhanced GCG (Zhang & Wei, 2025) and the Astra Pandya et al.
(2025). For both attacks we optimize a 100-token random prefix for 200 (DPO models) or 50 (SFT
models) steps to minimize attack loss. For Astra, half of the steps are used to optimize the attention
loss (warm-start process) and the rest are used for GCG. ASR is measured using the likelihood
(from model’s logits) of generating the target phrase hacked!.

SEP. Zverev et al. (2024) propose a methodology to evaluate a model’s ability to separate instructions
from data using the SEP dataset. This dataset contains 9160 examples—each comprising an instruc-
tion si, associated data di, a probe xi, and a witness wi. The probe xi instructs the model to include
the witness wi in its response. To evaluate utility, the probe is randomly inserted at the beginning or
end of the instruction segment. The model’s response is then checked for the presence of wi. Since
the probe is part of the instruction segment, the model’s output should ideally contain wi. Utility is
therefore measured as the fraction of responses that include the witness. If {yIi }ni=1 denotes the set of
n responses where the probe was inserted into the instruction segment, the empirical utility score
U is calculated as: U = 1

n

∑n
i=1 1{wi∈yI

i }. To evaluate robustness, the probe is similarly inserted
randomly at the beginning or end of the data segment, and the response is checked for wi. In this case,
because the probe is within the data segment, the model should ideally ignore the probe’s instruction,
and its output should not contain wi. Zverev et al. (2024) propose the empirical separation score S
to quantify how well the model distinguishes instructions in the instruction segment from those em-
bedded in the data segment. If {yDi }ni=1 denotes the set of n responses where the probe was inserted

into the data segment, the empirical separation score S is calculated as: S =

∑n
i=1 1{wi∈yI

i
∧wi /∈yD

i
}∑n

i=1 1{wi∈yI
i
}

.

A higher separation score indicates greater robustness against prompt injection attacks.

6 RESULTS

6.1 ALPACAFARM

Utility. Figure 6 compares the utility of models trained with different adversarial training methods
(DPO, SFT) and IH injection mechanisms, evaluated on the AlpacaFarm dataset. Compared to a
model trained only non-adversarially (None in Fig. 6), our proposed AIR method generally does
not significantly degrade model utility. At most we observe a < 2% degradation in utility (for
Qwen-2.5-7B trained with DPO).

Robustness (Static Attacks). Table 1 provides the ASRs for models with different defenses against
Naive, Ignore, Completion, and Escape Separation attacks, as well as the SEP benchmark. Although
the training and test set examples are distinct, the model encounters the first two attacks are in-
distribution as they are seen during adversarial training. We find that all three IH injection mechanisms

7
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Table 1: Attack success rates ↓ (%) for models trained with different IH injection mechanisms (None,
Delim, ISE, AIR) and adversarial training techniques (None, SFT, DPO) under various static and
gradient-based attacks crafted from the AlpacaFarm dataset. Numbers in bold indicate that the
corresponding IH mechanism outperforms other methods for a given attack.

Model Attack None SFT — DPO

None Delim ISE AIR Delim ISE AIR

Llama-3.2-3B

Naive 1 0.0 0.0 0.0 0.0 0.0 0.0
Ignore 2.5 0.0 0.0 0.0 0.0 0.0 0.0
Completion 3.8 1 0.5 0.0 0.0 0.0 0.0
Escape Sep. 1.4 0.5 0.5 0.5 0.0 0.0 0.0
SEP 17.7 4.3 3.1 2.7 2.6 2.6 2.6
GCG 77.5 38 48.1 4.1 29.1 46.6 5.2
Astra 54.4 14.5 25.8 0.1 34.5 57.3 23.8

Qwen-2.5-7B

Naive 3.4 0.0 0.5 0.0 0.0 0.0 0.0
Ignore 2.9 0.0 0.0 0.0 0.0 0.0 0.0
Completion 3.8 1 0.0 0.0 0.0 0.0 0.0
Escape Sep. 2.9 0.5 0.5 0.5 0.5 0.0 0.0
SEP 41.6 4.9 3.7 3.0 4.4 4.8 3.4
GCG 99.5 88 36.6 22.6 32 7.7 1.6
Astra 99.4 69.0 39.2 2.4 19.9 2.3 0.9

Llama-3.1-8B

Naive 0.5 0.0 0.0 0.0 0.0 0.0 0.0
Ignore 2.5 0.0 0.0 0.0 0.0 0.0 0.0
Completion 3.8 0.0 0.0 0.0 0.0 0.0 0.0
Escape Sep. 1.4 0.5 0.0 0.0 0.0 0.0 0.0
SEP 33.7 5.3 3.1 3.1 3.9 2.8 2.2
GCG 99.5 77 19.9 11.3 13 4 2.8
Astra 97.9 76.3 0.2 0.1 36.9 1.2 1.0
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Figure 6: Comparison of win rates for models trained with different IH injection mechanisms. In
most cases, the Win Rate of the model trained with IH is comparable to that of the baseline win rate
of a non-adversarially trained model with no IH signals (indicated by None).

(Delimiter, ISE, and AIR) offer near-perfect protection against the first four attacks. For SEP, we find
that AIR offers equal or better protection compared to other methods for all models.

Robustness (Gradient-Based Attack). Figure 7 illustrates the comparative performance of these
defenses against the Momentum-Boosted GCG attack. The figure plots the attacker’s loss—calculated
relative to the target adversarial response—as a function of GCG optimization steps. Each line
indicates the mean loss over 208 test instances, with shaded regions representing the standard
deviation. Results are presented separately for models adversarially trained with DPO (first row
of plots) and SFT (second row). As anticipated, the attacker’s loss diminishes with more GCG
optimization steps, signifying increased attack efficacy. Notably, models defended by our proposed
AIR mechanism consistently incur a significantly higher average attacker loss compared to those
defended by ISE or Delimiters. Furthermore, GCG’s ASR (GCG in Table 1) against AIR is 1.6× to
9.2× lower compared to next best defense, underscoring AIR’s superior robustness. Our findings
also reveal that adversarial training with DPO yields more robust models than SFT, corroborating
results from SecAlign (Chen et al., 2024b). We observe similar trends for the Astra attack. Astra’s
ASR (Astra in Table 1) against AIR is up to 145× lower for SFT and 2.5× lower for DPO compared
to the next best defense. A detailed discussion of the results from Astra is presented in Appendix C.
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Figure 7: Average loss from the Momentum-Boosted GCG attack comparing different defenses
during various points in the optimization process. AIR is more robust to GCG with a higher average
loss compared to prior works across all models and both optimization methods.
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Figure 8: Utility and Separation scores derived from the SEP dataset. IH mechanisms with the best
utility × separation for each model (across both DPO and SFT) are marked with ⃝

6.2 SEP

Figure 8 plots empirical separation and utility scores, comparing the different IH injection mechanisms.
For models trained with DPO (Fig. 8a), AIR achieves the highest separation and utility scores,
outperforming other IH mechanisms as well as all models trained with SFT in these combined metrics.
For models trained with SFT, AIR maintains higher separation scores than other methods across all
models. However, in some instances (e.g., Qwen-2.5-7B, Llama-3.1-8B), AIR-SFT’s utility can be
lower than the None baseline (which undergoes only non-adversarial training). Overall, these results
indicate that AIR consistently enhances the model’s ability to separate data from instructions and,
when trained with DPO, provides the best utility-separation tradeoff for the evaluated models.

7 CONCLUSION

Our paper proposes a new defense for prompt injection attacks. We study the various mechanisms
of injecting instruction hierarchy information in prior work and find that they suffer from a crucial
limitation – they only insert the IH information to the input layer of the LLM, which limits the efficacy
of the IH signal. To overcome this drawback, we propose Augmented Intermediate Representations
(AIR), which injects the IH signals into all the decoder layers in the model. Through extensive
empirical studies on models of different sizes (3B, 7B, 8B), and training techniques (SFT, DPO),
we show that our proposal can improve robustness against gradient-based attacks by 1.6× to 9.2×,
without significant degradation in utility.
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Fábio Perez and Ian Ribeiro. Ignore previous prompt: Attack techniques for language models. arXiv
preprint arXiv:2211.09527, 2022.

Gene Ruebsamen. Cleaned Alpaca Dataset, February 2024. URL https://github.com/
gururise/AlpacaDataCleaned.

Mrinank Sharma, Meg Tong, Jesse Mu, Jerry Wei, Jorrit Kruthoff, Scott Goodfriend, Euan Ong,
Alwin Peng, Raj Agarwal, Cem Anil, et al. Constitutional classifiers: Defending against universal
jailbreaks across thousands of hours of red teaming. arXiv preprint arXiv:2501.18837, 2025.

rgorman Stuart Armstrong. Using GPT-Eliezer against ChatGPT Jailbreaking, Decem-
ber 2022. URL https://www.lesswrong.com/posts/pNcFYZnPdXyL2RfgA/
using-gpt-eliezer-against-chatgpt-jailbreaking.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model.
Stanford Center for Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca.
html, 3(6):7, 2023.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel. The instruc-
tion hierarchy: Training llms to prioritize privileged instructions. arXiv preprint arXiv:2404.13208,
2024.

Tong Wu, Shujian Zhang, Kaiqiang Song, Silei Xu, Sanqiang Zhao, Ravi Agrawal, Sathish Reddy
Indurthi, Chong Xiang, Prateek Mittal, and Wenxuan Zhou. Instructional segment embedding:
Improving llm safety with instruction hierarchy. arXiv preprint arXiv:2410.09102, 2024.

Yohei. injection test, October 2022. URL https://x.com/yoheinakajima/status/
1582844144640471040.

Yihao Zhang and Zeming Wei. Boosting jailbreak attack with momentum. In ICASSP 2025-2025
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5.
IEEE, 2025.

Liang Zhao, Xiachong Feng, Xiaocheng Feng, Weihong Zhong, Dongliang Xu, Qing Yang, Hongtao
Liu, Bing Qin, and Ting Liu. Length extrapolation of transformers: A survey from the perspective
of positional encoding. arXiv preprint arXiv:2312.17044, 2023.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043,
2023.

Egor Zverev, Sahar Abdelnabi, Soroush Tabesh, Mario Fritz, and Christoph H Lampert. Can
llms separate instructions from data? and what do we even mean by that? arXiv preprint
arXiv:2403.06833, 2024.

Egor Zverev, Evgenii Kortukov, Alexander Panfilov, Alexandra Volkova, Soroush Tabesh, Sebastian
Lapuschkin, Wojciech Samek, and Christoph H Lampert. Aside: Architectural separation of
instructions and data in language models. arXiv preprint arXiv:2503.10566, 2025.

11

https://github.com/gururise/AlpacaDataCleaned
https://github.com/gururise/AlpacaDataCleaned
https://www.lesswrong.com/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking
https://www.lesswrong.com/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://x.com/yoheinakajima/status/1582844144640471040
https://x.com/yoheinakajima/status/1582844144640471040


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A LIMITATIONS AND FUTURE WORK

While our defense demonstrates strong average resilience to white-box attacks, it does not provide
formal robustness guarantees, meaning specific outliers or advanced attacks might still succeed. This
is a common limitation in the current LLM robustness research landscape. Additionally, our utility
and robustness evaluations, similar to prior work, are confined to single-turn interactions using the
AlpacaFarm and SEP datasets. Evaluating our proposal’s effectiveness in multi-turn conversational
settings and complex agentic workflows is therefore a key direction for future work.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 TRAINING DATASETS

Non-Adversarial Dataset. For the first stage of training (non-adversarial instruction tuning), we
employed the cleaned version (Ruebsamen, 2024) of the Alpaca dataset (Taori et al., 2023). This
dataset comprises approximately 52K examples. As illustrated in Fig. 5, each example typically
consists of an instruction (I), an optional input segment (D), and the desired response (R). The
models are trained to generate R given I and D (when present), formatted according to a specific chat
template.

For the second stage, adversarial robustness training, we constructed two distinct adversarial versions
of the Alpaca dataset: one for SFT and another for DPO.

Adversarial SFT Dataset. This dataset incorporates all examples from the original Alpaca dataset.

• Examples that originally lack an input segment (D) are included unmodified.
• For examples that do contain an input segment (D), half are included unmodified. The other half

are modified to simulate a prompt injection attack. The input segment D is transformed into D̂ by
concatenating the original input, an adversarial prefix D′

p, and an adversarial instruction I ′ (i.e.,
D̂ = D +D′

p + I ′). The adversarial prefix D′
p is determined by either the Naive or Ignore attack

strategy, chosen with uniform probability. The adversarial instruction I ′ is an instruction randomly
selected from a different example within the Alpaca dataset.

This adversarial SFT dataset can be represented as collections of tuples (I, D̄, R), where D̄ is either
the original input D, the modified input D̂, or absent (if the original example had no input segment).

Adversarial DPO Dataset. To construct the preference dataset for DPO, we exclusively used Alpaca
examples that contain an input segment (D). For each such example, we generated a corrupted input
segment D̂ using the same Naive or Ignore prompt injection techniques (resulting in D̂ = D+D′

p+I ′

as described above). The preference pair consists of the original instruction I and the corrupted input
D̂. The chosen response is the original, correct response R from the Alpaca dataset (corresponding
to I and D). The rejected response is the response R′ associated with the adversarial instruction I ′ in
its original Alpaca example. This DPO dataset is a collection of tuples (I, D̂, R,R′).

All examples across these datasets were formatted using the chat template depicted in Fig. 5 before
being used to train the models.

B.2 MODEL AND TRAINING CONFIGURATIONS

For all training runs, we use a batch size of 4 with 4 steps of gradient accumulation for both rounds
of training. We employed Parameter-Efficient Fine-Tuning (PEFT) using the Low-Rank Adaptation
(LoRA) technique to fine-tune the model with DPO. Specifically, we fine-tuned the query (q proj)
and value (v proj) projection layers. The LoRA hyperparameters were set with a rank (r = 64),
lora alpha= 8, and lora dropout= 0.1.

Embedding Table Initialization. Our method introduces embedding tables within the decoder
block to augment intermediate representations. These tables are initialized by default with vectors
sampled from a normal distribution with a standard deviation of 0.02 (N (0, 0.022)). While this
initialization proved effective for Llama models, it yielded suboptimal robustness performance for
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the Qwen model. We attribute this discrepancy to the significantly larger magnitude of intermediate
representations produced by Qwen; the default, smaller embedding vectors failed to sufficiently
modify these representations. To rectify this, we increased the initialization standard deviation
fivefold to 0.1 (N (0, 0.12)) specifically for the Qwen model, which demonstrably improved our
defense’s effectiveness. For a fair comparison, this same adjusted initialization was applied to the
ISE technique when used with Qwen. Due to computational constraints, exhaustive tuning of this
hyperparameter was not feasible and is deferred to future work. However, we suggest the following
practical guidelines to help with the choice of σ for extending our proposal to new models.

Analyze Activation Scale: Before training, run a few forward passes on a sample of data (e.g.,
100 examples from Alpaca) to measure the average magnitude (L2 norm) of the intermediate
representations (x⃗ij) that AIR will augment.

Scale Initialization Accordingly: Use a baseline model (e.g., Llama-3.1-8B with σ = 0.02) and
scale the initialization σ for the new model’s AIR embedding tables proportionally to its observed
activation magnitude.

C ADDITIONAL RESULTS
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Figure 9: Average loss from the Astra attack comparing different defenses during various points in
the optimization process. AIR is more robust to Astra with a higher average loss compared to prior
works across all models and both optimization methods.

Astra Attack. The Astra attack (Pandya et al., 2025) has two phases. In the first phase, the attack
optimizes the adversarial prefix to minimize the attention loss. Doing so focus the model’s attention
on the adversary’s instructions. The prefix found from phase-1 is used as the starting point for the
GCG attack in phase-2. We refer the reader to Section 5 of the Astra paper (Pandya et al., 2025) for a
description of the attention loss. The loss curves for this attack are shown in Fig. 9. Note that we
use half of the optimization steps for phase-1 and switch to GCG for phase-2. This switch causes
the drop in the loss mid-way through the optimization process. Our results show that across both
DPO and SFT, AIR continues to have better robustness (higher adversarial loss) compared to both
Delimiter and ISE.

Progression in Robustness. The results for GCG and Astra highlight a clear progression in defense
efficacy. Recall that the Delimiters mechanism injects IH signals via special tokens at segment
boundaries, while the ISE method applies IH signals (through dedicated embeddings) to all tokens
in the input. The enhanced robustness observed when moving from Delimiters to ISE suggests the
benefit of more pervasive IH signal application at the input level. Our AIR approach further advances
this principle; by injecting IH signals directly into all decoder layers, rather than confining them to
the input representations, AIR achieves a more deeply integrated hierarchical understanding within
the model, leading to the observed superior robustness against this strong gradient-based attack.
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D ADDITIONAL RELATED WORK

Detection-Based Defenses. The related work in Section 3.2 primarily discussed defenses designed to
enhance model robustness against prompt injection by defining an instruction hierarchy. In addition
to these, a significant class of defenses focuses on detecting malicious or unintended instructions
within user inputs or data segments before they cause the main LLM to deviate from its intended
behavior. The core idea is to employ a detection mechanism as a preliminary check or ongoing
monitor. Several approaches to detection-based defenses have been proposed:

• LLM-Powered Detectors: A common strategy is to leverage an LLM itself as a detector. These
approaches include using zero-shot or few-shot prompting of an LLM to ascertain if an input
contains hidden or malicious instructions (Stuart Armstrong, 2022). Another technique involves
fine-tuning a dedicated LLM to act as a specialized classifier or “guard” model for identifying
malicious prompts or instruction injections (Sharma et al., 2025). Furthermore, LLM self-evaluation
techniques have been explored, where the model attempts to determine if it is being manipulated.

• Known Answer Detection: Another interesting line of work focuses on testing if the LLM returns
a known answer in the presence of potentially malicious tokens (Yohei, 2022). This method uses
a special instruction where the answer is only known to the detector. If the response fails to
provide the expected answer in the presence of a data segment, then the data segment is flagged
as containing a prompt injection attack. A recent work (Liu et al., 2025) extends this idea using
a game-theoretic foundation to train a detector LLM that is very sensitive to prompt injection
attacks, achieving near-perfect scores on benchmarks. However, such defenses remain vulnerable to
adaptive attacks (e.g., if the attacker instructs the LLM to return the known answer before following
the attacker’s instructions).

• Output Analysis and Verification: Instead of, or in addition to, input checks, some defenses
analyze the LLM’s output. This includes response checking, which evaluates whether the LLM’s
output aligns with the intended task or original user instruction, where deviations might indicate
manipulation (Sharma et al., 2025). Perplexity-based detection has also been explored to identify
anomalous outputs (Alon & Kamfonas, 2023).

While detection-based methods offer a valuable layer of security, they remain vulnerable to adaptive
attacks. Therefore, such defenses can complement our proposed defense, which is designed to make
the model inherently robust to prompt injection attacks.

ASIDE. A concurrent work, ASIDE (Zverev et al., 2025) also identifies the “IH signal degradation”
issue in methods like ISE. While our AIR approach addresses this by injecting IH embeddings into
every layer, ASIDE proposes an alternative: enforcing an orthogonality constraint on the input-layer
embeddings. This is designed to make the IH signal (e.g., privilege levels) and the token/positional
information independent, thereby improving the signal’s persistence as it propagates through the
network. This highlights a shared recognition of the problem, with distinct architectural solutions.

E ADDITIONAL INTERPRETABILITY EXPERIMENTS
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Figure 10: Comparison of linear probe
accuracy across different instruction hi-
erarchy injection mechanisms. Interme-
diate representations produced by AIR
has better linear separability compared
to other methods across all layers.

To further validate our hypothesis from Section 3.2—that
input-only Instruction Hierarchy (IH) signals degrade or
are not well-represented—we conducted a linear probing
experiment. We measure how linearly separable the in-
termediate representations of tokens are based on their
assigned privilege level.

Methodology: For 100 prompts from the AlpacaEval
dataset, we collect the intermediate representations from
the output of each decoder block in Llama3.2-3B for all
tokens. Each token is labeled with its privilege level (P0 or
P1). For each layer, we then train a simple linear classifier
(probe) to predict the privilege level (0 or 1) from the
token’s representation at that layer.

Results: We evaluate our probes on a held-out test set of
100 different prompts. The results are shown in Fig. 10.
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Delimiters (Delim): The probe’s accuracy is near chance (≈ 50% − 55%) across all layers. This
strongly suggests the privilege information is not linearly encoded in the token representations,
forcing the model to rely on a different, less robust mechanism.

Instruction Segment Embedding (ISE): The probe achieves perfect accuracy in the initial layers, but
this visibly degrades as representations propagate, dropping to 91% by the final layer. This directly
confirms our hypothesis that input-only signals lose distinctiveness.

Augmented Intermediate Representations (AIR): In contrast, the probe for AIR maintains near-perfect
accuracy across all layers. This provides clear empirical evidence that AIR successfully injects a
persistent, robust, and linearly separable IH signal at every processing stage.

F ADDITIONAL STATIC ATTACKS

To further validate the improved robustness of AIR compared to prior works, we provide the attack
success rates on the indirect prompt injection attacks from the BIPIA dataset in Table 2. We report
numbers of three different tasks in this dataset: email, code and table. We restrict evaluations to
samples that can be judged programatically (without using LLM as a judge). Consistent with our
results on other benchmarks, we find that AIR exhibits higher robustness to attacks across all tasks
compared to ISE and Delim methods.

Table 2: Attack success rates on different tasks of the BIPIA dataset

Model Task None SFT DPO
Delim ISE AIR Delim ISE AIR

llama3.2-3b
email 46 3.26 2.86 1.13 0 0 0
code 21.76 12.57 12.1 7.8 4.3 2.4 0.85
table 58.4 31.7 16.7 13 2.86 0.2 0.2

llama3.1-8b
email 77.13 11 7.7 4.7 0 0.266 0
code 17.7 5.69 15.3 5.04 0.18 1.57 0.13
table 90.2 27.8 12.73 8.3 1.36 1.06 0.6

qwen2.5-7b
email 70.26 18.2 13.2 11.8 11.13 10.67 6.4
code 12 0.21 0.45 0.12 0 0 0
table 76.53 37.43 28.3 30.7 34.53 16.9 12.1

G ADDITIONAL UTILITY MEASUREMENTS

In addition to the utility measures (SEP, AlpacaEval) provided in the main paper, we provide the
MMLU scores for the models trained with different IH signals in Fig. 11. The results show that models
trained with AIR perform comparably to ones trained with Delim and ISE across all architectures and
training methods.

H COMPUTE RESOURCES

We use compute nodes with 8× A100 GPUs paired with 256 CPU cores and 1TB of memory and 25
TB of storage for all our experiments. Note that most of our training runs complete within 2 hrs. The
gradient based attacks need more time due to their sequential nature and require around 30 mins per
example with a single gpu.

I LLM USAGE

We used an LLM to assist in the preparation of this manuscript, primarily to improve the clarity,
grammar, and succinctness of the text. All the model’s suggestions were carefully reviewed by the
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Figure 11: Comparison of MMLU accuracy across models trained with different IH injection methods.

authors. The core scientific ideas, methodology, and conclusions presented are solely the work of the
authors.

J SOCIETAL IMPACT

The research presented in this paper aims to enhance the security and reliability of LLMs by proposing
a more robust defense (AIR) against prompt injection attacks. Positive impacts include increased
user trust and safety when interacting with LLM-powered applications, particularly those processing
untrusted external data like emails or web content. By making models less susceptible to malicious
instruction hijacking, this work could facilitate the safer deployment of helpful AI agents in various
domains, reduce the potential for AI-driven misinformation or data exfiltration triggered by such
attacks, and contribute to the broader adoption of LLMs for beneficial tasks. However, potential
negative consequences or challenges must also be considered. Improved defenses might lead to
over-reliance or a false sense of complete security, potentially discouraging complementary security
measures. Ultimately, while techniques like AIR contribute positively towards trustworthy AI, they
should be viewed as one component within a larger framework for responsible AI development and
deployment.

K REPRODUCIBILITY STATEMENT

The code to reproduce our results are included in the supplementary material. Key experimental
details are provided in Section 5 and Appendix B.
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