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Abstract

We present TabPFN, a trained Transformer model that can do tabular supervised
classification for small datasets in less than a second, needs no hyperparameter
tuning and is competitive with state-of-the-art classification methods. TabPFN is
entailed in the weights of our network, which accepts training and test samples as
a set-valued input and yields predictions for the entire test set in a single forward
pass. TabPFN is a Prior-Data Fitted Network (PFN) and is trained offline once,
to approximate Bayesian inference on synthetic datasets drawn from our prior.
Our prior incorporates ideas from causal learning: It entails a large space of
structural causal models with a preference for simple structures. Afterwards, the
trained TabPFN approximates Bayesian prediction on any unseen tabular dataset,
without any hyperparameter tuning or gradient-based learning. On 30 datasets
from the OpenML-CC18 suite, we show that our method outperforms boosted trees
and performs on par with complex state-of-the-art AutoML systems with a 70×
speedup. This increases to a 3 200× speedup when a GPU is available. We provide
all our code and the trained TabPFN at https://anonymous.4open.science/
r/TabPFN-2AEE. We also provide an online demo at https://huggingface.
co/spaces/TabPFN/TabPFNPrediction.

1 Introduction

Many real-world applications in medicine, finance, research, predictive maintenance or sensor data
modelling rely on strong Machine Learning (ML) algorithms for tabular data. While neural networks
excel on many ML tasks, Gradient-Boosted Decision Trees (GBDT; 14) still dominate the landscape
of supervised ML for tabular data [38], largely due to their short training time and robustness.

However, given that tree-based models are not differentiable, they cannot easily be composed and
jointly trained with other blocks based on Deep Learning (DL). While many recent works try to
address this problem with a native DL approach for tabular classification [2, 39, 18, 20], we go one
step further and simply apply a transformer [42] that itself learned to do classification, completely
bypassing the question of how to train a DL model on a tabular dataset and the issues that arise from
it, such as large computational cost and mitigating overfitting on small datasets [18].
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We propose a radical change to how tabular classification is usually done. We do not fit a new model
from scratch to the training portion of a new dataset. Instead, we replace this step by performing a
single forward pass on a large transformer that has been pre-trained to solve probabilistic classification
tasks which are generated from a prior tabular dataset prior, integrating principles of simplicity and
causal reasoning. Our approach reduces the time to solve a tabular classification task to less than a
second and simplifies the application to a neural network (NN) forward-pass, a stable, differentiable
and highly portable standard procedure.

Our method builds on Prior-Data Fitted Networks (PFNs; 24; see Section 2), which learn the training
and prediction algorithm itself. PFNs approximate Bayesian inference given any prior one can
sample from and yield the posterior predictive distribution (PPD) directly. Thus, PFNs approximate
the probability distributions of classification labels by implicitly weighting all explanations for the
data that are entailed in the prior. While inductive biases in NNs and GBDTs depend on them
being efficient to implement (e.g. through L2 regularization, dropout [40] or limited tree-depth), in
PFNs, one can simply design a dataset-generating algorithm that encodes the desired prior. This
fundamentally changes the way we can design learning algorithms.

[24] demonstrated PPD approximation with PFNs, amongst other experiments, on binary classification
for very small, balanced tabular datasets with only up to 30 training examples and very few features.
We build on this work to create a state-of-the-art model for tabular multi-class classification tasks that
we evaluate on real-world datasets with up to 1 000 training samples, 100 features and 10 classes,
comprising mixed feature types, missing data and unbalanced targets. We focus on small datasets
because (1) small datasets are often encountered in real-world applications, (2) existing DL methods
are most limited in this domain and (3) TabPFN is significantly more expensive to evaluate for large
datasets, detailed in Appendix A.

We design a prior (see Section 3) based on Bayesian Neural Networks (BNNs; Neal 26, Gal 15) and
Structural Causal Models (SCMs; Pearl 27, Peters et al. 31) to model complex feature dependencies
and potential causal mechanisms underlying tabular data. Our prior also takes ideas from Occam's
razor: explanations based on simpler SCMs and BNNs have a higher likelihood. In our prior, we
define the hyperparameters describing our prior's hypotheses via probability distributions, e.g., a
log-scaled Uniform distribution for the average number of nodes in data-generating SCMs. The
resulting PPD implicitly models uncertainty over these hyperparameters, weighting hyperparameters
in explanations of the data by their likelihood given the data and their prior probability. Thus,
obtaining the PPD corresponds to an infinitely large ensemble of hyperparameters, i.e., instantiations
of SCMs and BNNs, in a single forward-pass, and requires no cross-validation or model selection.

Finally, in Section 4, we analyze the performance and behavior of TabPFN on different tasks and
compare it to previous approaches for tabular classification on small datasets. Quantitatively, they
yield much better performance than any individual “base-level” classification algorithm, such as
gradient-boosting via XGBoost [6], LightGBM [19] and CatBoost [32], and in a single second yield
performance competitive to what the best available AutoML frameworks [8, 11] achieves in 5–30
minutes.

2 Background on Prior-Data Fitted Networks

We first provide a brief recap on how PFNs work and refer to [24] for more details.

The Posterior Predictive Distribution for Supervised Learning In the Bayesian framework
for supervised learning, the prior defines a space of hypotheses Φ on the relationship of a set of
inputs x to the output labels y. Each hypothesis ϕ can be seen as a mechanism generating a data
distribution from which we can draw samples forming a dataset. For example, given a prior based on
Structural Causal Models, Φ is the space of Structural Causal Models, a hypothesis ϕ one specific
SCM and a dataset comprises samples generated through the SCM. In practice, a dataset comprises
training data with labels observed and test data where labels are missing or held out to assess
predictive performance. The PPD for a test sample xtest is conditioned on the set of training samples
Dtrain := {(x1, y1), . . . , (xn, yn)} and specifies the distribution of its label p(·|xtest, Dtrain). It
is obtained by integration over the space of hypotheses Φ, where the weight of a hypothesis is
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(a) Architecture and attention mechanism

Done once, offline

Sample synthetic datasets Di

from prior: Di ∼ p(D)

Train TabPFN qθ on synthetic
datasets {D1, . . . , Dn}

Obtain qθ(ytest|xtest, Dreal)
with a single forward pass

Done per real-world dataset, online

Real-world training dataset Dreal

and test point xtest

(b) Prior-fitting and inference

Figure 1: Left (a): Training samples {(x1, y1), . . . , (x3, y3)} are transformed to 3 tokens, which
attend to each other; test samples x4 and x5 attend only to the training samples. Right (b): The PFN
learns to approximate the PPD of a given prior in the offline stage to yield predictions on a new
dataset in a single forward pass in the online stage. Plots based on [24].

determined by its prior probability and the likelihood of the observations given this hypothesis:

p(y|x,D) ∝
∫
Φ

p(y|x,D, ϕ)p(D|ϕ)p(ϕ)dϕ. (1)

While obtaining the PPD is generally intractable, PFNs approximate the PPD, given any prior one
can sample from. A PFN that minimizes its training objective to the global minimum, provably
approximates exactly the PPD, as shown in [24].

Architecture PFNs rely on a Transformer [42] that encodes each feature vector and label as a
token, allowing token representations to attend to each other, as depicted in Figure 1a. They accept a
variable length training set Dtrain of feature and label vectors as well as a variable length query set
of feature vectors xtest = {x(test,1), . . . , x(test,m)} and return estimates of the PPD for each query.

Synthetic Prior-fitting During prior-fitting, the PFN is trained to approximate Bayesian inference
given a prior which is specified by a prior sampling scheme p(D) = Eϕ∼p(ϕ)[p(D|ϕ)], which
first samples hypotheses (generating mechanisms) with ϕ ∼ p(ϕ) and then synthetic datasets with
D ∼ p(D|ϕ). We repeatedly sample such synthetic datasets D := (xi, yi)i∈{0,...,n} and optimize the
PFN's parameters θ to make predictions for Dtest ⊂ D with held-out labels ytest and conditioned
on the rest of the dataset Dtrain = D \Dtest. This minimizes the cross entropy loss over sampled
datasets w.r.t to the approximated PPD qθ:

LPFN = − E
{Dtest∪Dtrain}∼p(D)

[qθ(ytest|xtest, Dtrain)] (2)

As demonstrated in [24], minimizing this loss approximates exact Bayesian posterior prediction.
We visualize this in Figure 1b and detail the full training setup in Algorithm 1 in the appendix.
Crucially, this synthetic prior-fitting phase is performed only once for a given prior p(D), learning to
do real-world inference on any new dataset.

Real-World Inference During inference, the trained model is applied to arbitrary real-world
datasets. For a novel dataset with training samples Dtrain and test features xtest, feeding it as an
input to the model trained above yields the PPD qθ(y|xtest, Dtrain) in a single forward-pass. The
PPD class probabilities are then used as predictions for our real-world task. Thus, PFNs perform
training and prediction in one step (similar to prediction with Gaussian Processes) and do not use
gradient-based learning for predicting novel datasets.

3 A Prior for Tabular Data

The performance of our method crucially depends on the specification of a suitable prior, as the PFN
approximates the PPD for this prior. Section 3.1 outlines a fundamental technique for our prior: we
use distributions instead of point-estimates for almost all hyperparameters of our prior. Section 3.2
motivates simplicity in our prior, while Sections 3.3 and 3.4 describe, how we use Structural Causal
Models (SCMs) and Bayesian Neural Networks (BNNs) as fundamental mechanisms generating
diverse data in our prior. Since our SCM and BNN priors only yield regression tasks, we show how
to convert them to classification tasks in Section 3.5. We describe additional refinements to our prior
to reflect tabular data better in Appendix D.2.
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Figure 2: Visualization of graphs generating data in our prior. The inputs x (grey) are mapped to the
output y (grey) with unobserved nodes z (white). Independent noise variables ϵ (not visualized) are
added to all nodes.

3.1 Fundamentally Probabilistic Models

Fitting a model typically requires finding suitable hyperparameters, e.g. the embedding size, number
of layers and activation function for NNs. Commonly, resource-intensive searches need to be
employed to find suitable hyperparameters [23, 50, 9]. The result of these searches, though, is
only a point estimate of the hyperparameter choice. Ensembling over multiple architectures and
hyperparameter settings can yield a rough approximation to a distribution over these hyperparameters
and has been shown to improve performance [48, 44]. This, however, scales linearly in cost with the
number of choices considered.

PFNs allow us to be fully Bayesian about the hyperparameters of our models in a single forward pass.
By defining a probability over the space of hyperparameters in the prior, such as BNN architectures,
the PPD approximated by TabPFN jointly integrates over this space of hyperparameters and respective
model weights. We extend this approach to a mixture not only over hyperparameters but distinct
priors: we mix a BNN and a SCM prior, each of which again entails a mixture of architectures and
hyperparameters.

3.2 Simplicity

We base our priors on a notion of simplicity, such as stated by Occam’s Razor or the Speed Prior [35].
When considering competing hypotheses, the simpler one, e.g. the one requiring fewer parameters, is
to be preferred. Any notion of simplicity, however, depends on choosing a particular criterion that
defines simplicity. In the following, we introduce priors based on SCMs and BNNs where we , in
which simplicity materializes as graphs with few nodes and parameters.

3.3 Structural Causal Prior

It has been demonstrated that causal knowledge can facilitate various ML tasks, including semi-
supervised learning, transfer learning and out-of-distribution generalization [37, 17, 34]. Tabular data
often exhibits causal relationships between columns, and causal mechanisms have been shown to be
a strong prior in human reasoning [43, 45]. Thus, we base our TabPFN prior on SCMs that model
causal relationships [27, 31]. An SCM consists of a collection Z := ({z1, . . . , zk}) of structural
assignments (called mechanisms)

zi = fi(zPAG(i), ϵi), (3)

where PAG(i) is the set of parents of zi (its direct causes) in an underlying DAG G (the causal graph),
fi is a (potentially non-linear) deterministic function and ϵi a noise variable. Causal relationships
in G are represented by directed edges pointing from causes to effects and each mechanism zi is
assigned to a node in G, as visualized in Figure 2.

Relation to Prior Work There are two major ways of incorporating causal reasoning into predic-
tions, causal inference and causal discovery. Here, we outline both and explain how our approach
differs. Causal inference seeks to identify causal relations between the components of a system by the
use of interventions and observational data [28]. Causal discovery seeks to reveal causal information
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(a) Synthetic datasets (b) Actual datasets
Figure 3: Each plot shows two features, where each point represents a sample with colors indicating
the class label. (a) Two synthetic datasets generated by our causal tabular prior. Numeric SCM
outputs are mapped to classes as described in Section 3.5. (b) Two datasets from our validation
datasets: Parkinsons (Left) and Wine (Right).

by analyzing purely observational data [49]. These causal representations are then used to make
predictions on novel samples or to provide explainability. Most existing work focuses on determining
a single causal graph to use for downstream prediction. This can be problematic since most kinds of
SCMs are non-identifiable without interventional data, and the number of compatible DAGs explodes
due to the combinatorial nature of the space of DAGs. While [1] extend this representation to the
space of discrete DAGs, this work is limited to a few subfamilies of SCMs while the computational
complexity is high. Our TabPFN effectively reasons over the full space of hypotheses in our prior, i.e.
a broad family of SCMs, and their respective weights in a single forward pass. We achieve this by
skipping any explicit graph representation in our inference step and approximate the PPD directly.
Thus, we do not perform causal inference or discovery but solve the downstream prediction task
directly. The use of this implicit assumption of causality can be explained by Pearl's "ladder of
causation", an abstraction of inference categories, where each higher rung represents a more involved
notion of inference [29]. At the lowest rung lies association, which includes most of ML. At the
second rung, we find predicting the effect of interventions, i.e. what happens when we influence
features directly. Our work can be considered as "rung 1.5", similar to [21, 22]: we do not seek to
predict the effect of interventions, but make more informed predictions on observational data using
the assumption that causal mechanisms generate the data.

Method To create a PFN prior based on SCMs, we have to define a sampling procedure of
supervised learning tasks (i.e. datasets). Here, each dataset is based on one randomly sampled SCM
(inducing DAG structure, activation functions, and a deterministic functions fi). Given an SCM, we
sample a set zX of nodes in G, one for each feature in our synthetic dataset, and a node zy from the
causal graph G. These nodes are observed nodes: values of zX will be included in the set of features,
while values from zy will act as targets. For each such SCM and list of nodes zX and zy , n samples
are generated by sampling all noise variables in the SCM n times, propagating these through the
graph and retrieving the values zX and zy for all n instances. Figure 2 depicts an SCM with observed
feature- and target-nodes in grey. In Figure 3b we showcase scatter plots of samples generated by
two distinct SCMs. The resulting features and targets are correlated through the generating DAG
structure. This leads to features conditionally dependent through forward and backward causation,
i.e. targets might be a cause or an effect of features.

In this work, we instantiate a subfamily of DAGs and deterministic functions fi that can be efficiently
sampled from, as described in Appendix D.1. And since efficiently sampling SCMs is the only re-
quirement we have, the instantiated subfamily is very general, including multiple activation functions
and potentially non-Gaussian noise.

When we go back to Equation 1, which describes the PPD, we can understand it in the context of
the SCM prior as follows: The PPD integrates predictions over the space of SCM graph hypotheses,
where the weight of each hypothesis is determined by the likelihood of observing data given this
hypothesis and the likelihood of this hypothesis in our prior.
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3.4 BNN Prior

We also consider a BNN prior as introduced by Müller et al. [24] and mix it with the SCM prior
described above by randomly sampling datasets during PFN training from either one or the other prior
(weighted by hyperparameter Sample SCM vs BNN, see Appendix F.4). To sample a dataset from
the BNN prior, we first sample a NN architecture and its weights. Then, for each data point in the
to-be-generated dataset, we sample an input, x feed it through the BNN with sampled noise variables
and use the output y as a target (see Figure 2).This is a more general setup than in standard BNNs, as
the posterior also considers a distribution over architectures, not only the standard distribution over a
fixed architecture’s weights. The details of this approach can be found in prior work by Müller et al.
[24].

3.5 Multi-class Prediction

So far, the described priors return scalar labels. In order to generate synthetic classification labels,
we need to transform our scalar labels ŷ to discrete class labels y. We do so by simply splitting the
values of ŷ into intervals that map to class labels:

1. We sample the number of classes Nc ∼ p(Nc), where p(Nc) is a distribution over integers.
2. We sample Nc − 1 bounds Bc ∼ p(Bc|Nc, ŷ), where p(Bc|Nc, ŷ) samples a random value

from ŷ.
3. We map each scalar label ŷi to the index of the unqiue interval that contains it: yi ←∑

j [Bj < ŷi], where [·] is the indicator function.

For example, with Nc = 3 classes the bounds Bc = {−0.1, 0.5} would define three intervals
{(−∞,−0.1], (−0.1, 0.5], (0.5,∞)}. Any ŷi would be mapped to the label 0 if it is smaller than
−0.1, to 1 if lies in (−0.1, 0.5] and to 2 otherwise. Finally, we shuffle the labels of classes, i.e. we
remove the ordering of class labels w.r.t. the ranges.

4 Experiments

4.1 Evaluation on Toy Problems

Input data
Nearest

Neighbors Logistic Simple MLP
Gaussian
Process

Decision
Tree Catboost ASKL2 TabPFN

Figure 4: Decision boundaries on toy datasets generated with scikit-learn [30].

We qualitatively compare standard classifiers without hyperparameter tuning to our TabPFN in Figure
4. The top row shows the moons dataset with noise. The TabPFN accurately models the decision
boundary between samples; also, similar to Gaussian processes, its uncertainties are large for points
far from observed samples. The second row shows the circles dataset with noise: TabPFN accurately
models the circle's shape with high confidence anywhere outside the region where samples are mixed.
The third row shows two classes and features from the iris dataset, while the third rows shows two
classes and features from the wine dataset (both included in scikit-learn).
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Figure 5: ROC AUC performance over time. We report mean ROC, mean wins and rank along with
the 95% confidence interval across 5 repetitions for different time budgets (Unlabelled ticks: 1min,
15min).

4.2 Evaluation on Tabular AutoML Tasks

Now, we turn to an empirical analysis of our method for real-world classification tasks. We compare
our method against state-of-the-art ML and AutoML methods for tabular classification.

Datasets As test datasets, we used all datasets from the curated open-source OpenML-CC18
benchmark suite [4] that contain less than 2 000 samples, 100 features and 10 classes. The resulting
set comprises 30 datasets. Additionally, we considered a disjoint set of 150 validation datasets from
OpenML.org [41, 13]. We used the validation datasets to guide the development of our method and
the choice of hyperparameter distributions. We did so by qualitatively comparing the data genereated
by our prior to real data (See Figure 3b) and by quantitatively comparing feature correlations, feature
variance and class distributions. We give a full description of all datasets and how we collected them
in Appendix G.3.

Baselines We compare against five standard ML methods and three state-of-the-art AutoML
systems for tabular data. As ML models we considered two simple and fast baselines, K-nearest-
neighbors (KNNs) and Logistic Regression (LogReg). Additionally, we considered Gaussian Pro-
cesses (GPs) [33] and three popular tree-based boosting methods, XGBoost [7], LightGBM [? ] and
CatBoost [32]. For each ML model, we used 5-fold cross-validation to evaluate randomly drawn
configurations until a given budget was exhausted or 1 000 configurations were evaluated (for the
search spaces, see Appendix G.2). We then refit the configuration with the lowest ROC AUC OVO
error on the whole training set. Where necessary, we imputed missing values with the mean, one-hot
encoded categorical inputs and normalized features. As more complex but also potentially powerful
baselines, we chose three AutoML systems: AutoGluon [8], which combines ML models including
neural networks and tree-based models into a stacked ensemble, Auto-sklearn 2.0 [10, 12] which uses
Bayesian Optimization and combines the evaluated models into a weighted ensemble. 2 We note that
previous works have found that DL baselines do not outperform or match the performance of GBDT
or AutoML methods for small to medium sized tabular data [5, 16, 38]. Furthermore, DL methods
such as TabNet, SAINT, Regularization Cocktails, Non-parametric transformers [2, 39, 18, 20] are
evaluated on much larger datasets, require considerably longer training times and often use custom
parameter tuning and preprocessing. We still evaluate two prominent DL methods: Regularization
Cocktails and SAINT [39, 18].

2Auto-sklearn 2.0 optimizes ROC AUC for binary classification and cross-entropy for multi-class classifica-
tion (as multi-class ROC AUC is not implemented).
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TabPFN We follow the original PFN architecture [24] which uses a Transformer encoder [42] with
a specific attention mask and without positional encodings. We make slight modifications to these
attention masks, yielding faster inference at equal performance. Additionally, we allow our model to
work with datasets that have different numbers of features by zero-padding and scaling the features
linearly. See Appendix F.2 for more information.

In the prior-fitting phase, we train TabPFN once on the prior described in Section 3 for 20 hours on
8 GPUs, yielding a single network that is used for all our evaluations. While this step is expensive,
it is done offline, in advance and only once for the TabPFN, as part of the algorithm development.
During inference, we apply z-normalization and ensemble predictions, with randomly rotated feature
dimensions and permuted labels. Further details and the used hyperparameters can be found in
Appendix F.

Evaluation Protocol For each dataset and method, we evaluated 5 repetitions, each with a different
random seed and a different train- and test split (all methods used the same split given a seed).
To aggregate results across datasets, we report the ROC AUC (one-vs-one (OVO) for multi-class
classification) average, ranks and wins including the 95% confidence interval and compare to the
performance of the baselines with a budget of [30, 60, 300, 900, 3600] seconds3. Our TabPFN is run
using 32 data permutations for ensembling as described above; we also evaluate TabPFN without
permutations, which we label as TabPFN n.e. in Table 1.

Results We present the achieved AUC ROC as a function of budget in Figure 5, demonstrating
that TabPFN is dramatically faster than all the other methods: it makes predictions within a single
second on one GPU that tie with the performance of the best competitors (the AutoML systems)
after training one hour, and that dominate the performance achieved by competitors in 5 minutes.
Unsurprisingly, the simple baselines (LogReg, KNN) already yield results with a small budget but
perform worst overall for larger budgets. Boosted trees (XGBoost, CatBoost) perform better but are
clearly outperformed by the state-of-the-art AutoML systems, Auto-sklearn 2.0 and Autogluon. The
AutoML systems are the best-performing baselines at higher budgets.

The TabPFN without ensembling requires 0.0187s on a GPU or 0.87s on a CPU to predict one dataset.
It performs comparable to the strongest baselines at one minute, yielding a 70× speedup on CPU and
a 3 200× speedup using a GPU. Given more budget (≥ 5 minutes), the strongest baseline achieves
competitive performance with the original TabPFN (including ensembling), which uses a time budget
of 0.42 seconds on a GPU or 16.5s on a CPU. If we compare TabPFN against the 5 minutes required
for the baseline, it yields an 18× speedup on a CPU and a 710× speedup using a GPU.

These times assume that our trained model is in memory (and possibly moved to the GPU) already,
which otherwise required 0.2s for us. We report averaged results in Table 1 and provide further
detailed results, including results per dataset in Appendix C.1.

5 Conclusions & Future Work

We have shown how a single Transformer, the TabPFN, can be trained to do the work of a full
AutoML framework for tabular data and can yield predictions in 0.4 seconds that are competitive
with the performance that the best available AutoML frameworks achieve even after one hour. This
result could disrupt the field of data science since it allows for real-time predictions. It also slashes
the computational expense of AutoML, allowing for affordable, green, AutoML.

TabPFN still has important limitations: the underlying transformer architecture only scales to small
datasets; our evaluations were done on classification datasets with under 1000 training samples, 100
features and 10 classes only, detailed in Appendix A, which motivates work on (1) scaling up to large
datasets. Also, our work motivates a multitude of exciting follow-ups regarding the (2) integration of
TabPFN into existing AutoML frameworks; (3) ensembling to continue making improvements given
more time; (4) studies of out-of-distribution robustness; (5) dataset-dependent choices of the prior;
(6) generalizations to non-tabular data and (7) regression tasks. The almost instant state-of-the-art
predictions of TabPFN are also likely to give rise to (8) novel exploratory data analysis methods,
(9) novel feature engineering methods and (10) novel active learning methods. Our advances in causal

3When comparing methods to each other for a given time budget in Figure 5, we drop methods that take
more than 200% of the requested time budget; some methods also do not use their full budget.
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reasoning warrant follow-ups on (11) approximating the effects of interventions and counterfactuals
considering a distribution of SCMs.
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A Limitations

The runtime and memory usage of the Transformer-based PFN architecture used in this work scales
quadratically with the number of inputs, i.e. training samples passed. Thus, inference on larger
sequences (> 100 000) is hard on current consumer GPUs. A growing number of methods seek to
tackle this issue and report similar performances while scaling linearly with the number of inputs
[47, 3]. These methods can be integrated in the PFN architecture and thus into TabPFN. Furthermore,
in our experiments we limit the number of features to 100 and the number of classes to 10 as described
in Section 4. While this choice is flexible, our fitted TabPFN can not work with datasets that go
beyond these limits.

B Societal Implications

In terms of broader societal impact of this work, we do not see any foreseeable strongly negative
impacts. However, this paper could positively impact the carbon footprint and accessibility of learning
algorithms. The computations required for machine learning research have been doubling every few
months, resulting in a large carbon footprint [36]. Moreover, the financial cost of the computations
can make it difficult for academics, students, and researchers to apply these methods. The decreased
computational time shown by TabPFN translates to gains in CO2 emissions and cost, making it
available to an audience that does not have access to larger scale computing.

C Additional Results

C.1 Detailed Tabular Results

0 0.25 0.5 0.75 1

TabPFN
Autosklearn2

Autogluon
Catboost

XGB
LGBM

Reg. Cocktail

Normalized ROC AUC

Has Categorical Features

False
True
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Normalized ROC AUC

Has Nans in Features
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Normalized ROC AUC

Multiclass

Figure 6: Normalized ROC AUC performance on datasets from the OpenML-CC18 Benchmark,
divided by dataset characteristics. For each plot, we split the datasets into two groups. Left: Blue
bars indicate the performance on datasets, that have categorical features. Middle: Blue bars indicate
more than 20 features, while others have less. Right: Blue bars indicate multiclass datasets, while
others are binary.

In Figure 6, we explore how the kind of dataset evaluated affects the performance of TabPFN,
compared to our baselines. We find, that TabPFN performs much better, when no categorical features
are present. This warrants the extension of our prior, to make it more customized towards categorical
data. We also find, that TabPFN performs better in a multiclass setting and when a relatively large
number of features is provided.

In addition to the results in the main paper in Section 4.2, we report a wide range of performance
values and per dataset results in Table 1.
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Table 1: ROC AUC OVO results on the small OpenML-CC18 for 60 minutes requested time per
dataset and per split. If available, all baselines are given ROC AUC optimization as an objective,
others optimize CE. Overall each method got a time budget of 150 hours, but not all methods used
the full budget.

LightGBM CatBoost XGBoost ASKL2.0 AutoGluon TabPFNn.e. TabPFN TabPFN + AutoGluon

balance-scale 0.9938 0.9245 0.9939 0.997 0.9919 0.9965 0.9973 0.9958
mfeat-fourier 0.9786 0.9816 0.9803 0.9826 0.9843 0.9767 0.9811 0.9838
breast-w 0.991 0.9931 0.9896 0.9939 0.9933 0.9931 0.9934 0.994
mfeat-karhunen 0.9979 0.9986 0.9983 0.9975 0.9987 0.9939 0.9978 0.9985
mfeat-morphologica.. 0.9601 0.9629 0.9612 0.9671 0.9698 0.9657 0.9669 0.9722
mfeat-zernike 0.9716 0.9759 0.9735 0.9812 0.9908 0.9812 0.9823 0.9901
cmc 0.7288 0.7256 0.7299 0.7378 0.7331 0.7233 0.7276 0.7336
credit-approval 0.9415 0.9389 0.9422 0.9406 0.9415 0.9253 0.9322 0.9394
credit-g 0.7684 0.7852 0.7853 0.793 0.7941 0.7894 0.7894 0.7948
diabetes 0.8247 0.8383 0.8378 0.8343 0.8391 0.8412 0.841 0.8427
tic-tac-toe 0.9988 0.9992 1 0.9943 1 0.9547 0.9759 0.9992
vehicle 0.9232 0.9302 0.9282 0.9504 0.9416 0.9568 0.9589 0.9538
eucalyptus 0.8931 0.8979 0.9004 0.9132 0.9204 0.9218 0.9245 0.9278
analcatdata_author.. 0.9999 0.9999 0.9997 1 0.9993 1 1 1
analcatdata_dmft 0.5461 0.5589 0.5743 0.5752 0.5657 0.5643 0.579 0.5756
pc4 0.9301 0.9413 0.9291 0.9331 0.9428 0.9298 0.9383 0.944
pc3 0.8178 0.8247 0.8288 0.8265 0.8282 0.8308 0.8373 0.836
kc2 0.8141 0.8323 0.8227 0.8311 0.8242 0.8322 0.8346 0.8321
pc1 0.8321 0.86 0.8489 0.8527 0.8578 0.877 0.8761 0.8739
banknote-authentic.. 1 1 1 1 1 1 1 1
blood-transfusion-.. 0.7144 0.7403 0.7312 0.7504 0.7364 0.753 0.7549 0.7469
ilpd 0.6917 0.7279 0.7171 0.7212 0.723 0.7412 0.7379 0.7326
qsar-biodeg 0.9126 0.9217 0.9191 0.9247 0.9276 0.9345 0.9336 0.9336
wdbc 0.9904 0.9931 0.9904 0.9947 0.9956 0.996 0.9964 0.996
cylinder-bands 0.8556 0.8757 0.8782 0.8718 0.8878 0.8314 0.8336 0.8751
dresses-sales 0.5593 0.5696 0.5823 0.5705 0.5507 0.5333 0.5376 0.5509
MiceProtein 0.9997 0.9999 0.9998 0.9999 1 0.9997 0.9999 1
car 0.9925 0.9955 0.9948 0.998 0.997 0.9926 0.995 0.9972
steel-plates-fault.. 0.9626 0.9655 0.9656 0.9694 0.9666 0.9619 0.9655 0.9687
climate-model-simu.. 0.9286 0.9344 0.9255 0.9291 0.9391 0.9426 0.9415 0.9421

Wins AUC OVO 0 0 2 2 2 4 5 5
Wins Acc. 0 2 2 3 3 0 6 8
Wins CE 0 1 3 1 7 1 6 9

M. rank AUC OVO 6.6167 4.9667 5.4167 4.05 3.7833 4.65 3.7 2.8167
Mean rank Acc. 6.5333 4.9833 5.1833 4.8667 3.8167 4.5333 3.6167 2.4667
Mean rank CE 5.7333 5.6 5.4667 5.8 2.8667 4.6167 3.5333 2.3833

Win/T/L AUC vs Tab.. 5/4/21 9/4/17 6/5/19 10/6/14 13/4/13 4/8/18 –/–/– 15/7/8
Win/T/L Acc vs Tab.. 6/0/24 9/1/20 11/0/19 11/2/17 12/0/18 6/3/21 –/–/– 19/3/8
Win/T/L CE vs TabP.. 6/0/24 8/0/22 8/0/22 8/0/22 20/0/10 1/4/25 –/–/– 23/0/7

Mean AUC OVO 0.884±.012 0.89±.011 0.891±.011 0.894±.01 0.895±.01 0.891±.01 0.894±.01 0.898±.0097
Mean Acc. 0.815±.014 0.818±.011 0.821±.013 0.821±.016 0.83±.012 0.82±.013 0.825±.012 0.834±.011
Mean CE 0.782±.074 0.767±.061 0.758±.047 0.815±.06 0.72±.015 0.742±.021 0.732±.018 0.721±.015

Time Tune + Train (s) 3241 3718 3304 3601 3127 0.0187 0.4197 3127Predict (s) 0.0815 0.0168 0.0685 1.224 21.18

D Details of the TabPFN Prior

D.1 SCM Prior

The Sampling Algorithm We instantiate a subfamily of DAGs that can be efficiently sampled from
by starting with a MLP architecture and dropping weights from it. That is, to sample a dataset with k
features and n samples from our prior we perform the following steps for each dataset:

(1) We sample the number of MLP layers l ∼ p(l) and nodes h ∼ p(h) and sample a graph G(Z,
E) structured like an l-layered MLP with hidden size h.

(2) We sample weights for each Edge Eijas Wi,j ∼ pw(·).
(3) We drop a random set of edges e ∈ E to yield a random DAG.
(4) We sample a set of k feature nodes Nx and a label node Ny from the nodes Z.
(5) We sample the noise distributions p(ϵ) ∼ p(p(ϵ)) from a meta-distribution.This yields an SCM,

with all fi’s instantiated as random affine mappings followed by an activation. Each zi corresponds
to a sparsely connected neuron in the MLP.

With the above parameters fixed, we perform the following steps for each member of the dataset:
(1) We sample noise variables ϵi from their specific distributions.
(2) We compute the value of all z ∈ Z with zi = a((

∑
j∈PAG(i)

Eijzj) + ϵi).
(3) We retrieve the values at the feature nodes Nx and the output node Ny and return them.
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Figure 7: Feature correlation matrices for a real-world (“PC4 Software defect prediction”, left) and a
synthetic (right) dataset, where brighter colors indicate higher correlation.

We sample one activation function a per dataset from {ReLU, Tanh, Identity} [25]. The sampling
scheme for the number of layers p(l) and nodes p(h) is designed to follow a log-normal distributions,
the dropout rate follows a beta distribution and p(p(ϵ)) samples normal distributions with normally
distributed mean and standard deviation.

D.2 Tabular Data Refinements

Tabular datasets comprise a range of peculiarities, e.g. feature types can be numerical, ordinal, or
categorical and feature values can be missing leading to sparse features. We seek to reflect these
peculiarities in the design of our prior as described in the following sections.

D.2.1 Preprocessing

During meta-training, input data is normalized to zero mean and variance and we apply the same
step when evaluating on real data. Since tabular data frequently contains exponentially scaled data,
which is not might not be present during meta-training, we apply power scaling during inference [46].
Thus, during inference on real tabular datasets the features more closely match those seen during
meta-training. We use only training samples for calculating z-statistics, power transforms and all
other preprocessing. We take this preprocessing time is into account when reporting the inference
time of our method.

D.2.2 Correlated Features

Feature correlation in tabular data varies between datasets and ranges from independent to highly
correlated. This poses problems to classical deep learning methods [5]. When considering a large
space of SCMs correlated features of varying degrees naturally arise in our priors. Furthermore,
in real-world tabular data the ordering of features is often unstructured, however adjacent features
are often more highly correlated than others. We use "Blockwise feature sampling" to reflect the
correlation structure between ordered features. Our generation method of SCMs naturally provides a
way to do this. The first step in generating our SCMs is generating a unidirectional layered network
structure in which nodes in one layer can only receive inputs from the preceding layer. Thus, features
in one layer tend to be higher correlated. We use this by sampling adjacent nodes in the layered
network structure in blocks and using these ordered blocks in our set of features. In Figure 7, we
visualize the correlations of such a generated dataset (right) and compare them to a real-world dataset
(left), demonstrating that our prior yields correlation structures similar to those of real datasets.

D.2.3 Generating irregular functions

In real-world data, some features are consistently more important than others. While a random
network weight initialization leads to slightly different feature importances, the average effect of
input features regresses to the mean when the hidden dimensionality increases. We amplify differences
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by sampling a weight parameter for each input feature and multiplying all outgoing weights by this
factor. In the prior, we randomly sparsify connections of the graph. Thus hidden variables and the
output node are influenced by fewer parameters per step, yielding more irregular patterns, as a larger
number of parameters once again regresses to the mean. Here, we extend sparsification to blocks
of variables, leading to some groups of variables interacting more strongly. We also extend the
way noise variables are sampled. Instead of sampling Gaussian noise at each node from the same
distribution, we first sample noise means and standard deviations for each node and then sample from
this distribution. Also, we generate input data x, which is distributed non-uniformly, as observed in
real-world data. We sample the input variables x, that are propagated through our network, from a
mix of distributions such as the Gaussian, Zipfian and Multivariate Distribution.

D.2.4 Nan Handling

To model missing values in our prior, we introduce missing values probabilistically during prior
training. For each dataset, we sample a binary decision variable M , indicating whether it will contain
missing features and next sample a fraction fm of missing values. If M is positive, we drop out
a fraction fm of feature values uniformly at random. We introduce a binary missing value mask,
indicating the positions of missing values, and pass it to our model alongside the feature embedding.
We append this mask during meta-training on synthetic data and inference on actual datasets.

D.2.5 Categorical Features

Tabular data often includes not only numeric features but also discrete categorical ones. A categorical
feature can be ordered, i.e. the categories represent binned degrees of some underlying variable, or
shuffled. We introduce categorical features by picking a random fraction pcat (a hyperparameter) of
categorical features per dataset. Analogous to transforming numeric class labels to discrete multiclass
labels, we convert dense features to discrete ones. Also analogous to multiclass labels, we pick a
shuffling fraction of categorical features pscat where we reshuffle categories. For details see 3.5. Our
experiments regarding categorical features, however, showed no significant improvement. Finding
more appropriate ways of handling categorical features could be a line of future research.

E Details of Prior-Data Fitted Network Algorithm

Algorithm 1 describes the training method proposed by Müller et al. [24] for PFNs.

Algorithm 1: Meta-Training of a PFN [24]
Input :A prior distribution over datasets p(D), from which samples can be drawn and the

number of samples K to draw
Output :A model qθ that will approximate the PPD
Initialize the neural network qθ;
for j ← 1 to K do

Sample D ∪ {(xi, yi)}mi=1 ∼ p(D);
Compute stochastic loss approximation ℓ̄θ =

∑m
i=1(− log qθ(yi|xi, D));

Update parameters θ with stochastic gradient descent on∇θ ℓ̄θ;
end

F Setup of our method

F.1 Transformer Hyperparameters

We considered only PFN Transformers with 12 layers, embeddings size 512, hidden size 1024 in
feed-forward layers, and 4-head attention. For each training we tested a set of 3 learning rates,
{.001, .0003, .0001}, and used the one with the lowest final training loss. The resulting model
contains 25.82 M parameters.
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F.2 PFN Architecture Adaptations

Attention Adaption The original PFN architecture [24] uses a single multi-head self-attention
module [42] to compute the attention between all the training examples, as well as, the attention from
validation examples to training examples. We replaced this, with two modules that share weights,
one which computes self-attention among the training examples and the other that only compute
cross-attention from validation examples to training examples. Conceptually, that is equivalent to
using a slightly different self-attention mask than the original architecture, which allowed everything
to attend to itself (the diagonal is 1), like in this example

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 0 1

 . (4)

We remove the attention to themselves for validation examples. In terms of the example above:
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0

 . (5)

Information about the state of the current position, does still flow through the residual branch, though.

Flexible Encoder Datasets have unequal numbers of input dimensions (features), while PFNs use
an encoder layer that accepts fixed dimensional inputs. Here we explain how datasets with different
numbers of dimensions can be modelled with a single PFN: We draw the number of dimensions of
a dataset during training uniformly at random up to 100. Our encoder changes to accomodate this
training and inference with different numbers of features by zero-padding datasets where the number
of features k is smaller than the maximum number of features K and scaling these features by K

k , s.t.
the magnitude stays the same.

F.3 TabPFN Training

We trained our final model for 18 000 steps with a batch size of 512 datasets. That is our TabPFN is
trained on 9 216 000 synthetically generated datasets. This training takes 20 hours on 8 GPUs (Nvidia
RTX 2080 Ti). Each dataset had a fixed size of 1024 and we split it into training and validation
uniformly at random. We generally saw that learning curves tended to flatten after around 10 million
datasets and where generally very noisy. Likely, this is because our prior generates a wide variety of
different datasets.

F.4 Prior Hyperparameters

G Details for Tabular Experiments

Here we provide additional details for the experiments conducted in Section 4 in the main paper.

G.1 Hardware Setup

All evaluations, including the baselines, ran on a compute cluster equipped with Intel(R) Xeon(R)
Gold 6242 CPU @ 2.80GHz using 1 CPU with up to 6GB RAM. For evaluation using our TabPFN,
we additionally use a RTX 2080 Ti.

G.2 Baselines

We provide the search space used to tune our baselines in Table 3. For CatBoost and XGBBoost, we
used the same ranges as Shwartz-Ziv and Armon [38] with the following exceptions: For CatBoost we
removed the hyperparameter max_depth since it is not in documentation, for CatBoost and XGBBoost,
we set the range for n_estimators to be in [100, 4000]. The search spaces for the KNN, GP and
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Table 2: Overview of our prior hyperparameter distribution.
Sampling Minimum Maximum
distribution p(ψ)

MLP weight dropout Beta 0.1 5.0 0.9

Choices

Sample SCM vs BNN Choice [True, False]
Share Noise mean for nodes Choice [True, False]
Input feature scaling enabled Choice [True, False]
Sample y from last MLP layer Choice [True, False]
MLP Activation Functions Choice [Tanh, ReLU, ELU]

MLP Activation Functions Choice , Identity, Threshold]

Blockwise Dropout Choice [True, False]
Keep SCM feature order Choice [True, False]
Sample feature nodes blockwise Choice [True, False]
GP noise Choice [1e-05, 0.0001, 0.01]

Max Mean Min Mean Round HP Min

MLP #layers Trunc. Normal 6 1 True 2
MLP #hidden nodes per layer Trunc. Normal 130 5 True 4
Gaussian Noise Std. Trunc. Normal 0.3 0.0001 False 0.0
MLP Weights Std. Trunc. Normal 10.0 0.01 False 0.0
SCM #nodes at layer 1 Trunc. Normal 12 1 True 1
GP outputscale Trunc. Normal 10.0 0.00001 False 0
GP lengthscale Trunc. Normal 10.0 0.00001 False 0

Logistic Regression baselines were designed from scratch and we used the respective implementation
from scikit-learn [30]. For CatBoost and AutoSklearn we pass the position of categorical features to
the classifier (AutoGluon automatically detects categorical feature columns). We normalize inputs for
Logistic Regression, GP and KNN to the range [0, 1] using MinMax Scaling.

G.3 Used Datasets

To construct and evaluate our method, we use three disjoint sets of datasets. Our test-set (see Table 4),
a subset of the OpenML-CC18 benchmark suite [4] and a meta-set (see Table 5 and 6), which we
collected from OpenML.org [41]. These are licensed under the BSD 3-Clause license.

For the test-set, we considered all datasets in the OpenML-CC18 benchmark suite with less than 2 000
samples, 100 features or 10 classes, which leaves us with 30 datasets that represent small, tabular
datasets. For the meta-set, we considered all datasets on OpenML.org and applied the following
filtering procedure: We dropped all datasets that are in the test-set and all datasets with more than
1 000 samples, 100 features or 10 classes. We also manually checked for overlaps and removed
datasets where the number of features, classes and samples was identical to a dataset in the test-set.
Furthermore, we manually dropped FOREX (since it is a time series dataset) and artificially created
datasets, such as Univ and Friedman datasets. The remaining meta-set then contains of 150 datasets.

H Code

Our code alongside notebooks to reproduce our experiments and pretrained models are available at
https://anonymous.4open.science/r/TabPFN-2AEE.

We also created two demos. One to experiment with the TabPFNs predictions (https://
huggingface.co/spaces/TabPFN/TabPFNPrediction) and one to check cross-validation ROC
AUC scores on new datasets (https://huggingface.co/spaces/TabPFN/TabPFNEvaluation)
both of them run on a weak CPU, thus it can require a little bit of time. Both demos are based on a
scikit-learn interface that makes using the TabPFN as easy as an scikit-learn SVM.
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Table 3: Hyperparameter spaces for baselines. All, except LightGBM, adapted from Shwartz-Ziv and
Armon [38].

baseline name type log range

LogReg
penalty cat (l1, l2, none) -
max_iter int [50, 500] -
fit_intercept cat (True, False) -
C float [e−5, 5] -

KNN n_neighbors int [1, 16] -

GP params_y_scale float [0.05, 5.0] yes
params_length_scale float [0.1, 1.0] yes

CatBoost

learning_rate float [e−5, 1] yes
random_strength int [1, 20] -
l2_leaf_reg float [1, 10] yes
bagging_temperature float [0, 1.0] yes
leaf_estimation_iterations int [1, 20] -
iterations int [100, 4000] -

XGBoost

learning_rate float [e−7, 1] yes
max_depth int [1, 10] -
subsample float [0.2, 1] -
colsample_bytree float [0.2, 1] -
colsample_bylevel float [0.2, 1] -
min_child_weight float [e−16, e5] yes
alpha float [e−16, e2] yes
lambda float [e−16, e2] yes
gamma float [e−16, e2] yes
n_estimators int [100, 4000] -

LightGBM

num_leaves int [5, 50] yes
max_depth int [3, 20] yes
learning_rate float [e−3, 1] -
n_estimators int 50, 2000 -
min_child_weight float [e−5, e4] yes
reg_alpha float [0, 1e-1, 1, 2, 5, 7, 10, 50, 100] yes
reg_lambda float [0, 1e-1, 1, 5, 10, 20, 50, 100] yes
subsample float [0.2, 0.8] -
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Table 4: Datasets used for the evaluation.
Name #Feat. #Cat. #Inst. #Class. #NaNs Minor. Class Size OpenML ID

balance-scale 5 1 625 3 0 49 11
mfeat-fourier 77 1 2000 10 0 200 14
breast-w 10 1 699 2 16 241 15
mfeat-karhunen 65 1 2000 10 0 200 16
mfeat-morphological 7 1 2000 10 0 200 18
mfeat-zernike 48 1 2000 10 0 200 22
cmc 10 8 1473 3 0 333 23
credit-approval 16 10 690 2 67 307 29
credit-g 21 14 1000 2 0 300 31
diabetes 9 1 768 2 0 268 37
tic-tac-toe 10 10 958 2 0 332 50
vehicle 19 1 846 4 0 199 54
eucalyptus 20 6 736 5 448 105 188
analcatdata_auth... 71 1 841 4 0 55 458
analcatdata_dmft 5 5 797 6 0 123 469
pc4 38 1 1458 2 0 178 1049
pc3 38 1 1563 2 0 160 1050
kc2 22 1 522 2 0 107 1063
pc1 22 1 1109 2 0 77 1068
banknote-authenti... 5 1 1372 2 0 610 1462
blood-transfusion-... 5 1 748 2 0 178 1464
ilpd 11 2 583 2 0 167 1480
qsar-biodeg 42 1 1055 2 0 356 1494
wdbc 31 1 569 2 0 212 1510
cylinder-bands 40 22 540 2 999 228 6332
dresses-sales 13 12 500 2 835 210 23381
MiceProtein 82 5 1080 8 1396 105 40966
car 7 7 1728 4 0 65 40975
steel-plates-fault 28 1 1941 7 0 55 40982
climate-model-simu... 21 1 540 2 0 46 40994
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Table 5: Meta-Datasets used for tuning the prior.
Name #Feat. #Cat. #Inst. #Class. #NaNs Minor. Class Size OpenML ID

breast-cancer 10 10 286 2 9 85 13
colic 27 20 368 2 1927 136 25
dermatology 35 34 366 6 8 20 35
sonar 61 1 208 2 0 97 40
glass 10 1 214 6 0 9 41
haberman 4 2 306 2 0 81 43
tae 6 3 151 3 0 49 48
heart-c 14 8 303 2 7 138 49
heart-h 14 8 294 2 782 106 51
heart-statlog 14 1 270 2 0 120 53
hepatitis 20 14 155 2 167 32 55
vote 17 17 435 2 392 168 56
ionosphere 35 1 351 2 0 126 59
iris 5 1 150 3 0 50 61
wine 14 1 178 3 0 48 187
flags 29 27 194 8 0 4 285
hayes-roth 5 1 160 3 0 31 329
monks-problems-1 7 7 556 2 0 278 333
monks-problems-2 7 7 601 2 0 206 334
monks-problems-3 7 7 554 2 0 266 335
SPECT 23 23 267 2 0 55 336
SPECTF 45 1 349 2 0 95 337
grub-damage 9 7 155 4 0 19 338
synthetic_control 61 1 600 6 0 100 377
prnn_crabs 8 2 200 2 0 100 446
analcatdata_lawsuit 5 2 264 2 0 19 450
irish 6 4 500 2 32 222 451
analcatdata_broadwaymult 8 5 285 7 27 21 452
analcatdata_reviewer 8 8 379 4 1418 54 460
backache 32 27 180 2 0 25 463
prnn_synth 3 1 250 2 0 125 464
schizo 15 3 340 2 834 163 466
profb 10 5 672 2 1200 224 470
analcatdata_germangss 6 5 400 4 0 100 475
biomed 9 2 209 2 15 75 481
rmftsa_sleepdata 3 1 1024 4 0 94 679
diggle_table_a2 9 1 310 9 0 18 694
rmftsa_ladata 11 1 508 2 0 222 717
pwLinear 11 1 200 2 0 97 721
analcatdata_vineyard 4 2 468 2 0 208 724
machine_cpu 7 1 209 2 0 56 733
pharynx 11 10 195 2 2 74 738
auto_price 16 2 159 2 0 54 745
servo 5 5 167 2 0 38 747
analcatdata_wildcat 6 3 163 2 0 47 748
pm10 8 1 500 2 0 246 750
wisconsin 33 1 194 2 0 90 753
autoPrice 16 1 159 2 0 54 756
meta 22 3 528 2 504 54 757
analcatdata_apnea3 4 3 450 2 0 55 764
analcatdata_apnea2 4 3 475 2 0 64 765
analcatdata_apnea1 4 3 475 2 0 61 767
disclosure_x_bias 4 1 662 2 0 317 774
bodyfat 15 1 252 2 0 124 778
cleveland 14 8 303 2 6 139 786
triazines 61 1 186 2 0 77 788
disclosure_x_tampered 4 1 662 2 0 327 795
cpu 8 2 209 2 0 53 796
cholesterol 14 8 303 2 6 137 798
chscase_funds 3 1 185 2 0 87 801
pbcseq 19 7 1945 2 1133 972 802
pbc 19 9 418 2 1239 188 810
rmftsa_ctoarrivals 3 2 264 2 0 101 811
chscase_vine2 3 1 468 2 0 212 814
chatfield_4 13 1 235 2 0 93 820
boston_corrected 21 4 506 2 0 223 825
sensory 12 12 576 2 0 239 826
disclosure_x_noise 4 1 662 2 0 329 827
autoMpg 8 4 398 2 6 189 831
kdd_el_nino-small 9 3 782 2 466 274 839
autoHorse 26 9 205 2 57 83 840
stock 10 1 950 2 0 462 841
breastTumor 10 9 286 2 9 120 844
analcatdata_gsssexsurvey 10 6 159 2 6 35 852
boston 14 2 506 2 0 209 853
fishcatch 8 3 158 2 87 63 854
vinnie 3 1 380 2 0 185 860
mu284 11 1 284 2 0 142 880
no2 8 1 500 2 0 249 886
chscase_geyser1 3 1 222 2 0 88 895
chscase_census6 7 1 400 2 0 165 900
chscase_census5 8 1 400 2 0 193 906
chscase_census4 8 1 400 2 0 194 907
chscase_census3 8 1 400 2 0 192 908
chscase_census2 8 1 400 2 0 197 909
plasma_retinol 14 4 315 2 0 133 915
visualizing_galaxy 5 1 323 2 0 148 925
colleges_usnews 34 2 1302 2 7830 614 930
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Table 6: Meta-Datasets used for tuning the prior (continued).
Name #Feat. #Cat. #Inst. #Class. #NaNs Minor. Class Size OpenML ID

disclosure_z 4 1 662 2 0 314 931
socmob 6 5 1156 2 0 256 934
chscase_whale 9 1 228 2 20 111 939
water-treatment 37 16 527 2 542 80 940
lowbwt 10 8 189 2 0 90 941
arsenic-female-bladder 5 2 559 2 0 80 949
analcatdata_halloffame 17 2 1340 2 20 125 966
analcatdata_birthday 4 3 365 2 30 53 968
analcatdata_draft 5 3 366 2 1 32 984
collins 23 3 500 2 0 80 987
prnn_fglass 10 1 214 2 0 76 996
jEdit_4.2_4.3 9 1 369 2 0 165 1048
mc2 40 1 161 2 0 52 1054
mw1 38 1 403 2 0 31 1071
jEdit_4.0_4.2 9 1 274 2 0 134 1073
PopularKids 11 5 478 3 0 90 1100
teachingAssistant 7 5 151 3 0 49 1115
lungcancer_GSE31210 24 3 226 2 0 35 1412
MegaWatt1 38 1 253 2 0 27 1442
PizzaCutter1 38 1 661 2 0 52 1443
PizzaCutter3 38 1 1043 2 0 127 1444
CostaMadre1 38 1 296 2 0 38 1446
CastMetal1 38 1 327 2 0 42 1447
KnuggetChase3 40 1 194 2 0 36 1448
PieChart1 38 1 705 2 0 61 1451
PieChart3 38 1 1077 2 0 134 1453
parkinsons 23 1 195 2 0 48 1488
planning-relax 13 1 182 2 0 52 1490
qualitative-bankruptcy 7 7 250 2 0 107 1495
sa-heart 10 2 462 2 0 160 1498
seeds 8 1 210 3 0 70 1499
thoracic-surgery 17 14 470 2 0 70 1506
user-knowledge 6 1 403 5 0 24 1508
wholesale-customers 9 2 440 2 0 142 1511
heart-long-beach 14 1 200 5 0 10 1512
robot-failures-lp5 91 1 164 5 0 21 1520
vertebra-column 7 1 310 3 0 60 1523
Smartphone-Based... 68 2 180 6 0 30 4153
breast-cancer-... 10 10 277 2 0 81 23499
LED-display-... 8 1 500 10 0 37 40496
GAMETES_Epistasis... 21 21 1600 2 0 800 40646
calendarDOW 33 21 399 5 0 44 40663
corral 7 7 160 2 0 70 40669
mofn-3-7-10 11 11 1324 2 0 292 40680
thyroid-new 6 1 215 3 0 30 40682
solar-flare 13 13 315 5 0 21 40686
threeOf9 10 10 512 2 0 238 40690
xd6 10 10 973 2 0 322 40693
tokyo1 45 3 959 2 0 346 40705
parity5_plus_5 11 11 1124 2 0 557 40706
cleve 14 9 303 2 0 138 40710
cleveland-nominal 8 8 303 5 0 13 40711
Australian 15 9 690 2 0 307 40981
DiabeticMellitus 98 1 281 2 2 99 41430
conference_attendance 7 7 246 2 0 31 41538
CPMP-2015-... 23 1 527 4 0 78 41919
TuningSVMs 81 1 156 2 0 54 41976
regime_alimentaire 20 17 202 2 17 41 42172
iris-example 5 1 150 3 0 50 42261
Touch2 11 1 265 8 0 27 42544
penguins 7 3 344 3 18 68 42585
titanic 8 5 891 2 689 342 42638

Table 7: Evaluation datasets for model generalization experiments.
Name #Feat. #Cat. #Inst. #Class. #NaNs Minor. Class Size OpenML ID

KDDCup09_appetency 231 39 50000 2 8024152 890 1111
airlines 8 5 539383 2 0 240264 1169
bank-marketing 17 10 45211 2 0 5289 1461
nomao 119 30 34465 2 0 9844 1486
adult 15 9 48842 2 6465 11687 1590
covertype 55 45 581012 7 0 2747 1596
numerai28.6 22 1 96320 2 0 47662 23517
connect-4 43 43 67557 3 0 6449 40668
jungle_chess_2pcs.̇. 7 1 44819 3 0 4335 41027
APSFailure 171 1 76000 2 1078695 1375 41138
albert 79 53 425240 2 2734000 212620 41147
MiniBooNE 51 1 130064 2 0 36499 41150
guillermo 4297 1 20000 2 0 8003 41159
riccardo 4297 1 20000 2 0 5000 41161
volkert 181 1 58310 10 0 1361 41166
dionis 61 1 416188 355 0 878 41167
jannis 55 1 83733 4 0 1687 41168
helena 28 1 65196 100 0 111 41169
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