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ABSTRACT

The goal of an unsupervised image-to-image translation (I2I) is to convert an input
image in a specific domain to a target domain using a neural network trained with
unpaired data. Existing I2I methods usually require a centrally stored dataset,
which can compromise data privacy. A recent proposal of federated cycleGAN
(FedCycleGAN) can protect the data-privacy by splitting the loss between the
server and the clients so that the data does not need to be shared, but the weights
and gradients of both generator and discriminators should be exchanged, demand-
ing significant communication cost. To address this, here we propose a novel fed-
erated contrastive unpaired translation (FedCUT) approach for privacy-preserving
image-to-image translation. Similar to FedCycleGAN, our method is based on the
observation that the CUT loss can be decomposed into domain-specific local ob-
jectives, but in contrast to FedCycleGAN, our method only exchanges weights and
gradients of a discriminator, significantly reducing the band-width requirement. In
addition, by combining it with the pre-trained VGG network, the learnable part of
the discriminator can be further reduced without impairing the image quality, re-
sulting in two order magnitude reduction in the communication cost. Through
extensive experiments for various translation tasks, we confirm that our method
shows competitive performance compared to existing approaches.

1 INTRODUCTION

Unsupervised image-to-image (I2I) translation is to learn image conversion from one domain to
another without matched training data from the two domains. Previous works (Zhu et al., 2017; Liu
et al., 2017; Lee et al., 2018; Huang et al., 2018; Kim et al., 2020; Park et al., 2020; Tang et al.,
2021) have shown great success in generating synthetic images which are realistic, and have been
extended to multi-modal image-to-image translation (Huang et al., 2018), multi-domain image-to-
image translation (Choi et al., 2018; Wu et al., 2019; Choi et al., 2020), and few-shot learning (Liu
et al., 2019). However, most of the existing I2I translation methods are based on generator and
discriminator architecture, which needs an access to a centralizing dataset that contains both input
domain data and target domain data. This training scheme can be sometime against data privacy.

Recently, federated learning (FL) (McMahan et al., 2017) was proposed to protect data privacy by
exchanging parameters of models between a server and clients without transmitting privately sen-
sitive data. Specifically, the process of federated learning can be described in three steps. First,
the server sends parameters of the global model to clients. Each client then trains its local model
using personal data and sends its local update to the central server. Lastly, the server updates the
parameters of the global model using aggregated information from multiple clients. The most rep-
resentative algorithm is FedAvg (McMahan et al., 2017), which has inspired successful follow-up
studies (Smith et al., 2017; Geyer et al., 2017; Zhao et al., 2018; Li et al., 2020; Wang et al., 2020).

Although most previous studies have been designed for classification problems or language model-
ing tasks in federated settings, several recent works have shown the possibility of using federated
learning in generative models (Augenstein et al., 2020; Chen et al., 2020) and domain adaptation
(Peng et al., 2020; Yao et al., 2021). However, there is still a lack of research on federated learning
for unsupervised image-to-image translation, although federated version of unsupervised I2I is quite

1



Under review as a conference paper at ICLR 2022

Figure 1: Comparison of FedCycleGAN and FedCUT.

useful in protecting copyright (Song & Ye, 2021) or medical imaging applications. For example, in
multi-center x-ray computed tomography (CT) imaging studies, the scanner type, radiation dose,
and filter kernels vary depending on each medical institutes, so the image translation to a normal-
ized one is necessary for robust statistical analysis (Vegas-Sánchez-Ferrero et al., 2019; Selim et al.,
2021). In this case, federated I2I is desirable as each participating hospital does not need to share
their data, but still get the normalized ones.

Recently, federated CycleGAN (FedCycleGAN) (Song & Ye, 2021) was proposed to solve unsu-
pervised image-to-image translation in federated learning environment. FedCycleGAN does not
require any private data exchange based on the fact that CycleGAN (Zhu et al., 2017) loss can be
broken down to domain-specific local objectives. Specifically, the server in FedCycleGAN transmits
the parameters of global models, while each client sends its local gradient calculated with its local
data. The server then updates the parameters of global networks using local gradients from clients.
Unfortunately, FedCycleGAN training requires transmission of both generators and discriminators,
which can be a bottleneck in federated learning environment (see Fig. 1(a)).

To overcome this limitation, here we propose a novel federated contrastive unpaired translation
(FedCUT). The key idea of FedCUT is the decomposition of recent contrastive unpaired transla-
tion (CUT) (Park et al., 2020) loss into domain-specific objectives. Specifically, the total loss of
CUT is the sum of the local objective for the input domain and another local objective for the tar-
get domain. Accordingly, client can calculate a domain-specific local objective using its data and
transmit gradient information to the server without sharing personal data. In particular, as shown in
Fig. 1(b), FedCUT only exchanges parameters and local gradients of the discriminator DY , which
require a lower bandwidth than FedCycleGAN. Furthermore, the discriminator architecture can be
further simplified based on a pre-trained classification network such as VGGNet (Simonyan & Zis-
serman, 2015), resulting in two order of magnitude smaller bandwidth requirement compared to the
FedCycleGAN.

Despite the simplification, experimental results show that our method achieves comparable results
compared to existing baselines in various unsupervised image-to-image translation tasks. The main
contribution of this paper is as follows:

1. Based on a novel observation that CUT loss can be decomposed to domain-specific objec-
tives, we propose FedCUT which shows better performance and lower bandwidth require-
ment than those of conventional federated image-to-image translation method.

2. By using a simplified discriminator based on a pre-trained VGG classification network, we
achieve competitive image generation performance in spite of reducing the transmission
overhead by two order of magnitude compared to the existing approach.

2 RELATED WORK

2.1 FEDERATED CYCLEGAN

The goal of CycleGAN is to learn to translate a image from one domain (X ) to a corresponding
output image in another domain (Y). Suppose that PX is a probability distribution of X and PY is
that of Y and x, and y are images from X and Y , respectively. The generator G : X 7→ Y translates
an image from X to an output image in Y . The discriminator DY distinguishes real samples in Y
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and fake samples that are generated by G using samples inX . Similarly, F : Y 7→ X is the generator
that translates an image in Y into a corresponding output in X . The discriminator DX distinguishes
real images in X from fake images that are made by F using images in Y .

In the CycleGAN, the following minmax optimization problem needs be solved:

min
G,F

max
DX ,DY

ℓCycleGAN (G,F,DX , DY ). (1)

Here, the total loss is composed of adversarial loss and the cycle-consistency loss:

ℓCycleGAN (G,F,DX , DY ) = ℓGAN (G,DY ) + ℓGAN (F,DX) + λℓcycle(G,F ) (2)

where the adversarial losses are given by

ℓGAN (G,DY ) = Ey∼PY [logDY (y)] + Ex∼PX [log(1−DY (G(x)))]

ℓGAN (F,DX) = Ex∼PX [logDX(x)] + Ey∼PY [log(1−DX(F (y)))]
(3)

and the cycle-consistency loss is

ℓcycle(G,F ) = Ex∼PX [||F (G(x))− x||1] + Ey∼PY [||G(F (y))− y||1], (4)

The key idea of the FedCycleGAN (Song & Ye, 2021) is the following loss decomposition:

ℓCycleGAN (G,F,DX , DY ) = ℓX (G,F,DX , DY ) + ℓY(G,F,DX , DY ) (5)

where ℓX and ℓY are local objectives that only use data in X and Y domains, respectively:

ℓX (G,F,DX , DY ) = Ex∼PX [logDX(x)] + Ex∼PX [log(1−DY (G(x)))]

+ λEx∼PX [||F (G(x))− x||1] (6)
ℓY(G,F,DX , DY ) = Ey∼PY [log(1−DX(F (y)))] + Ey∼PY [logDY (y)]

+ λEy∼PY [||G(F (y))− y||1] (7)

Accordingly, the client with the data in X domain uses ℓX with its own data, whereas the other
client in Y domain employs the loss ℓY without revealing its data. Then, the server can train the
global models by using the local gradients without accessing the data itself. However, as shown in
Eqs. 6 and 7, each client need knowledge of both generators and discriminators, resulting in high
communication costs.

3 FEDERATED CUT

3.1 CONTRASTIVE UNPAIRED TRANSLATION

As a simple but a power alternative to cycleGAN, contrastive unpaired translation (CUT) (Park
et al., 2020) was recently proposed. As shown in Fig. 2(a) and the detailed explanation in the image
caption, CUT is composed of the generator G : X 7→ Y and the discriminator DY . The generator G
consists of the encoder Ge and the decoder Gd and translates the domain of input images X to the
target domain Y . The discriminator DY discriminates a synthetic images G(x) from a real image y
in the target domain Y .

In contrast to cycleGAN, CUT does not require cycle-consistency. Instead, a contrastive loss is
used to impose one-to-one correspondency. Specifically, a multi-layer and patch-wise application
of InfoNCE loss (Oord et al., 2018), dubbed as PatchNCE loss, is employed as a contrastive loss.
The purpose of PatchNCE loss is to match an input patch (positive) and the output patch (query)
at a specific location. Non-corresponding patches are regarded as negatives. To extract meaningful
vectors mapped from query, positive, and negatives, the encoder Ge and a two-layer MLP network
H can be used. As shown in Fig. 2(a), we denotes zl

s+ = Hl(Ge
l(x)) by a feature vector from

an input, where Ge
l is the l-th selected layers from the encoder Ge, Hl is the corresponding MLP,

and s denotes a specific location. Similarly, zls− is a feature vector from a negative, and zl
s =

Hl(Ge
l(G(x))) is a feature vector from an output. Using these feature vectors, PatchNCE loss

ℓPatchNCE can be calculated as follows:

ℓPatchNCE(G,H,X) = Ex∼PX

[
L∑

l=1

Sl∑
s=1

ℓNCE(zl
s, zl

s+, zl
s−)

]
. (8)
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Figure 2: Architectures of (a) FedCUT and (b) VGGNet-based discriminator. In (a), if the y image
is inserted as additional input to DY at the client X , the architecture in client X is equivalent to the
original CUT (Park et al., 2020).

where L is the last index for the selection of layers of the encoder Ge, and Sl is the number of
locations for the l-th selected layers. Furthermore, in order to avoid unnecessary changes, CUT use
ℓPatchNCE(G,H, Y ) using images from target domain Y , which can be seen as the identity loss for
the target domain Y . The total objective for CUT is as follows:

ℓCUT (G,H,DY , X, Y ) = ℓGAN (G,DY , X, Y ) + λXℓPatchNCE(G,H,X)

+ λY ℓPatchNCE(G,H, Y ).
(9)

3.2 DERIVATION OF FEDCUT

In FastCUT, a variant of CUT, λY = 0 is used without imposing the identity loss (Park et al., 2020).
In this case, the total loss for CUT can be decomposed into domain-specific local objectives:

ℓCUT (G,H,DY , X, Y ) = ℓX (G,H,DY , X) + ℓY(DY , Y ) (10)

where ℓX is the X domain-specific local objective and ℓY is the local loss for the target domain Y:

ℓX (G,H,DY , X) = Ex∼PX [log(1−DY (G(x)))] + λXℓPatchNCE(G,H,X) (11)
ℓY(DY , Y ) = Ey∼PY [logDY (y)] (12)

Accordingly, we can develop a federated CUT (FedCUT), where each client calculates its domain-
specific loss using its own data without data exchange as shown in Fig. 2(a). Note that only the
discriminator is shared in Eqs. 11 and 12. Accordingly, the training process for FedCUT is as
follows: the server (the client whose domain is X ) sends the parameters of the discriminator DY to
another client which has data from the target domain Y . Then the client (the client whose domain
is Y) calculates the domain-specific loss ℓY and sends gradient information of the discriminator DY

to the server. Next, the server updates the generator G and the discriminator DY using its domain-
specific loss ℓX and gradients from the client. This process is repeated until the convergence of
networks. Compared to conventional FedCycleGAN that needs to transfer both two generators and
two discriminators, the transmission of the discriminator parameters and gradients is necessary.

3.3 DISCRIMINATOR SIMPLIFICATION

If the number of parameters of the discriminator DY can be reduced, communication costs can be
also reduced, but a high capacity of the discriminator DY is also critical for successful training of
the generator G. Accordingly, the standard FedCUT uses the PatchGAN (Isola et al., 2017) structure
for the discriminator DY .

In this paper, inspired by (Sungatullina et al., 2018), we construct a discriminator based on a pre-
trained classification network. Specifically, we construct the discriminator by using the pre-trained
VGGNet (Simonyan & Zisserman, 2015) as the backbone and adding the lightweight network Dlight

consisting of several convolutional layers. The advantage of using a pre-trained classification net-
work is that rich perceptual features can be used to train a discriminator, resulting in a better rep-
resentation power than a randomly initialized discriminator (Sungatullina et al., 2018). As the pre-
trained VGGNet is known to clients and the server, we only need to transmit Dlight for federated
learning, resulting in low communication costs.
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Table 1: Communication cost of federated learning.

Networks to be transmitted Communication cost (byte)

FedCycleGAN G, F , DX , DY 1.80× 108

FedCUT Dlight 4.20× 106

Fig. 2(b) shows the architecture
of the VGGNet-based discrimi-
nator. Pre-trained VGGNet ex-
tracts perceptual features, which
are followed by a downsampling
layer and several convolutional
layers. For downsampling, we
use a 3 × 3 Gaussian filter to prevent the generation of high frequency artifacts. We use pre-trained
VGG16 using ImageNet (Deng et al., 2009), and the parameters of VGGNet are fixed during a train-
ing process. We choose the ’relu3 3’ layer of VGG16 to extract features that are followed by a
lightweight discriminator Dlight.

Table 1 shows communication costs of FedCycleGAN, and FedCUT for in various image-to-image
translations tasks. Communication cost in Table 1 represents the cost for sending parameters of net-
works between a server and a client. Our FedCUT significantly reduces the bandwidth requirement
by two orders of magnitude compared to FedCycleGAN.

4 METHODS

4.1 DATASET

Natural image translation To evaluate the performance of our methods, we first conducted vari-
ous image-to-image translation tasks using three natural image datasets: horse-to-zebra, cat-to-dog,
and cityscapes dataset (Cordts et al., 2016). Horse-to-zebra dataset was used in the original Cycle-
GAN (Zhu et al., 2017) and consists of training images (1067 horse and 1334 zebra images) and test
data (120 horse and 140 zebra images) from ImageNet (Deng et al., 2009). Cat-to-dog dataset is
divided into training data (5153 cat and 4739 dog images) and 500 test images from AFHQ dataset
(Choi et al., 2020). Cityscapes dataset contains cityscapes and corresponding segmentation maps
and consists of 2975 training data and 500 test data. As in the experimental setting of CUT (Park
et al., 2020), we use images with a resolution of 256 × 256 for the training and the test. We use
unpaired images for unsupervised image-to-image translation in all experiments.

CT image translation X-ray computed tomography (CT) is an important imaging system for radi-
ological diagnosis. Since a high dose of radiation carries a risk of cancer, the dose reduction is quite
often used. Unfortunately, a high level of noise in the low-dose CT scan can lead to misdiagnosis
so that low-dose CT noise reduction is an important research topic in the field of medical imag-
ing. Recently, unpaired image translation using cycleGAN was demonstrated effective for low-dose
noise image reduction by converting the denoising problem as an image translation from low-dose
to high-dose CT images (Kang et al., 2019). In our experiment, we assume that one hospital (server)
only has low-dose CT images while another hospital (client) has routine-dose CT scans, and use the
proposed FedCUT to conduct denoising experiment.

To conduct the low-dose CT denoising experiment, we utilize AAPM CT dataset as in previous
works (Kang et al., 2017; 2018) made by using CT data from AAPM 2016 Low Dose CT Grand
Challenge (McCollough et al., 2017). We use CT scans from 8 patients for training, while CT scans
from one patient are used for test data. The training data consists 3236 slices and 350 CT slices are
used for the test. The resolution of CT images is 512×512 pixels.

4.2 BASELINES

Natural image translation For comparison, we obtained various image-to-image translation re-
sults using non-federated methods and federated methods, such as (1) CUT (Park et al., 2020), (2)
FastCUT (Park et al., 2020), (3) FedCycleGAN (Song & Ye, 2021), and (4) our FedCUT.

For a fair comparison, we follow the default setting of FastCUT (Park et al., 2020). Specifically, we
use ResNet-based generator (He et al., 2016) and PatchGAN (Isola et al., 2017) as the discriminator
with the LSGAN loss (Mao et al., 2017). The encoder is the half of the generator and we utilize
features from five selected layers to calculate PatchNCE loss as in the setting of CUT (Park et al.,
2020). Only FedCUT uses the different discriminator, as explained in Section 3.3. To train FedCUT,
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Figure 3: Architectures of the generator and feature extractor for PatchNCE loss in our low-dose CT
denoising experiments.

Table 2: Quantitative comparison with various methods for natural image translation tasks.

Horse-to-Zebra Cat-to-Dog Cityscapes

FID ↓ FID ↓ FID ↓ mAP ↑ pixAcc ↑ classAcc ↑
CUT 45.5 76.2 56.4 24.7 68.8 30.7
FastCUT 73.4 94.0 68.8 19.1 59.9 24.3

FedCycleGAN 72.2 98.5 58.3 22.9 66.5 31.8
FedCUT 55.5 75.2 54.8 26.5 72.9 34.5

we use the Adam optimizer (Kingma & Ba, 2014) using β1 = 0.5 and β2 = 0.999 for 200 epochs.
The learning rate is 0.002, which is fixed for the first 150 epochs and then gradually decreases to 0
for the remaining epochs. The batch size is 1. We also use same augmentation strategy of FastCUT
(Park et al., 2020). In particular, we resize an image to 286×286 images and crop a 256×256 image,
which are then flipped horizontally at random. FastCUT use λX = 10 and λY = 0 in Eq. 9. The
hyperparameter of FedCUT was set λX = 1 in Eq. 10 as they gave the optimal performance in our
data set. We utilize Pytorch (Paszke et al., 2019) library and a NVIDIA GeForce RTX 3090 for the
implementation.

CT image translation For performance evaluation in federated setting, for CT image translation
tasks, we compare FedCycleGAN, and FedCUT. We use PatchGAN (Isola et al., 2017) as the dis-
criminator in FedCycleGAN as in the original paper (Song & Ye, 2021), and the VGGNet-based
discriminator in our FedCUT. For a generator, we use U-net (Ronneberger et al., 2015) generator
which shows successful performance in medical image processing. Fig. 3 shows the architecture of
the generator for low-dose CT denoising. We define the encoder as the half of the Unet, from which
features are extracted to compute the PatchNCE loss as shown in as in Fig. 3. For data augmenta-
tion, we crop the patches with the size of 128×128 pixels from 512×512 images. In addition, we
apply horizontal and vertical flip to patches. Other training setting is same as that of natural image
translation experiments.

Note that FedCycleGAN (Song & Ye, 2021) use the identity loss (Zhu et al., 2017) to prevent arti-
facts outside the object in CT images. Instead, we use the background consistency module (BCM)
loss (Du et al., 2020), which preserves the background part of images but does not require generator
transmission.

4.3 EVALUATION METRICS

Natural image translation We adopt the evaluation protocol of CUT (Paszke et al., 2019). To
evaluate the performance of our methods, we calculate Frechet Inception Distance (FID) (Heusel
et al., 2017). For Cityscapes dataset, we pre-train DRN (Yu et al., 2017), which produces semantic
segmentation maps. We then use the pre-trained DRN to produce semantic segmentation maps from
the generated images. Based on ground truths of segmentation maps, we calculate mean average
precision (mAP), average class accuracy (classAcc), pixel-wise accuracy (pixAcc).
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Figure 4: Image-to-image translation results for horse-to-zebra, cat-to-dog, and cityscapes.

CT image translation To evaluate the denoising performance of methods, we calculate the peak
signal-to-noise ratio (PSNR) and the structural similarity index metric (SSIM) (Wang et al., 2004).
In addition, we compare the communication costs of the individual methods.

5 EXPERIMENTAL RESULTS

5.1 QUALITATIVE AND QUANTITATIVE EVALUATION

Natural image translation Fig. 4 shows qualitative results for various image-to-image translation
tasks. Surprisingly, our FedCUT shows visually pleasing results while other methods sometimes
make unrealistic results. In particular, CUT creates artificial structures around the animal’s mouth
that are different from the sources, while FedCUT maintains the input contents and produces the
appearance similar to the target domain. Overall FedCUT produces more realistic image details
compared to other methods. These properties may be due to the use of rich perceptual features that
give networks a better chance of learning desirable statistics. Table 2 shows quantitative results of
various methods. FedCUT performs better than other methods on cat-to-dog and Cityscapes tasks
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Figure 5: Low-dose CT denoising results. Intensity range is (-160, 240) [HU] (Hounsfield Unit).

Table 3: Quantitative comparison for low-dose CT denoising.

PSNR [dB] ↑ SSIM ↑ Communication cost (byte)

Input 32.5132 0.7411 ·
FedCycleGAN 34.2794 0.8218 2.34× 108

FedCUT 35.7753 0.8113 4.20× 106

and has a lower FID than FastCUT and FedCycleGAN on horse-to-zebra task. This may be also
thanks to the rich texture features from the pre-trained VGGNet.

CT image translation Fig. 5 shows qualitative results for low-dose CT denoising. While FedCy-
cleGAN sacrifices fine structures of images, our method shows better denoising results preserving
details. In addition, as shown in Table 3, quantitative results confirmed that our methods achieve
higher PSNR values than FedCycleGAN. Although VGG is pre-trained with ImageNet, which has
different domain data from CT images, FedCUT still shows the highest PSNR. This shows that
features learned from natural images can also offer useful features for solving problems in medi-
cal imaging (Ciompi et al., 2015; Altaf et al., 2019). Although FedCycleGAN produces the best
SSIM score, the communication cost is impractical in a federated learning environment. However,
our FedCUT requires much less communication costs compared to FedCycleGAN, making it more
suitable for use in a federated learning environment.

5.2 ABLATION STUDY

Different discriminator architecture To investigate the change in performance when using dif-
ferent discriminator structures, we also performed image translation tasks with FedCUT using Patch-
GAN (FedCUTPatchGAN ). Note that PatchGAN is used in the original CUT (Park et al., 2020).
Table 4 shows performance comparisons when using different discriminators. We find that our Fed-
CUT performs better than FedCUTPatchGAN on horse-to-zebra, cat-to-dog, and CT denoising tasks
with lower communication costs.
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Table 4: Ablation study using different discriminators.

Horse-to-Zebra Cat-to-Dog Cityscapes CT denoising Communication

FID ↓ FID ↓ FID ↓ mAP ↑ pixAcc ↑ classAcc ↑ PSNR [dB] ↑ SSIM ↑ cost (byte)

FedCUTPatchGAN 59.6 82.2 50.5 26.0 72.1 36.1 35.2415 0.8048 1.11× 107

FedCUT 55.5 75.2 54.8 26.5 72.9 34.5 35.7753 0.8113 4.20× 106

Different VGG features We also conduct image translation tasks with FedCUT using various
features from different layers of VGG16. Table 5 shows results when using different VGG features
such as ’relu3 1’, ’relu3 2’, and our default ’relu3 3’. Our FedCUT achieves the highest scores in
natural image translation tasks. Although FedCUTrelu3 2 produces better PSNR and SSIM values
than FedCUTdefault in the CT denoising task, which implies that different VGG features need to be
selected for high performance depending on the application. our FedCUT using ’relu3 3’ can be
applied for general purposes, as it shows better performance than FedCycleGAN on all tasks in our
experiment with lower communication cost.

Table 5: Ablation study using different VGG features.

Horse-to-Zebra Cat-to-Dog Cityscapes CT denoising

FID ↓ FID ↓ FID ↓ mAP ↑ pixAcc ↑ classAcc ↑ PSNR [dB] ↑ SSIM ↑
FedCUTrelu3 1 60.7 93.9 55.4 24.0 70.6 33.2 35.7632 0.8105
FedCUTrelu3 2 63.9 84.7 82.0 22.1 69.3 30.6 36.0510 0.8256
FedCUT 55.5 75.2 54.8 26.5 72.9 34.5 35.7753 0.8113

6 CONCLUSIONS

In this paper, we propose a federated contrastive unpaired translation for privacy-preserving image-
to-image translation (FedCUT). Thanks to the decomposition of the CUT loss into domain-specific
local objectives, our framework can be used for unsupervised image-to-image translation without
sharing data between a server and clients. Furthermore, FedCUT only requires the transmission of
parameters of a discriminator, which requires low communication costs compared to the previous
method. In addition, by using simplified discriminator based on a pre-trained VGGNet, FedCUT
reduces communication costs by two order of magnitude while increasing the performance. Our
experiments show that our method produces results that are comparable or even outperform the
existing methods in several tasks despite the low communication costs.
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A APPENDIX

A.1 ALGORITHM 1: FEDCUT

Algorithm 1: FedCUT
Input : total number of rounds (epochs) K, learning rate η
Output: generator G(·; θG), MLP network H(·; θH), discriminator DY (·; θDY

)

1 Initialize θG, θH , θDY
in server X ;

2 for each round k = 1, 2, ..., K do
3 gθDY,real

← GetLocalGradientFromClient (θ(k−1)
DY

);
4 bX ← (sample batch from server X ) ;
5 gθDY,fake

← ∇θDY
ℓX (G,DY , bX );

6 θDY

(k) ← θDY

(k−1) − η(gθDY,real
+ gθDY,fake

) ;

7 θG
(k) ← θG

(k−1) − η∇θGℓX (G,H,DY , bX) ;
8 θH

(k) ← θH
(k−1) − η∇θH ℓX (G,H, bX) ;

9 end
10 return G(·; θG), H(·; θH), DY (·; θDY

)

11 GetLocalGradientFromClient (θDY
):

12 bY ← (sample batch from client Y) ;
13 gθDY,real

← ∇θDY
ℓY(DY , bY ) ;

14 return gθDYreal

Algorithm 1 describes the training process of FedCUT. In the first step, the server initializes the
parameters of the generator G(·; θG), MLP network H(·; θH), and the discriminator DY (·; θDY

).
For each round k in training, the server sends current parameters of the discriminator θ

(k−1)
DY

to
the client. The client then calculates local gradient using its personal data and transmits gradients
gθDYreal

to the server. Next, the server calculates the gradients gθDY,fake
for the discriminator using

12
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fake samples. Then, we can update the parameters of the discriminator θDY

(k) using gθDY,real
and

gθDY,fake
, which is followed by updating parameters of the generator and MLP network: θG(k) and

θH
(k). The training round is repeated until the convergence of networks.

A.2 ADDITIONAL RESULTS

We show additional results for natural image translation tasks and low-dose CT denoising task.
Fig. 6 shows results for horse-to-zerbra. Fig. 7 shows translation results on cat-to-dog task. Fig. 8
shows results for cityspaces dataset. Fig. 9 shows denoising results for low-dose CT images.

Figure 6: Additional results for horse-to-zebra.
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Figure 7: Additional results for cat-to-dog.
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Figure 8: Additional results for Cityscapes.
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Figure 9: Additional results for low-dose CT denoising. Intensity range is (-160, 240) [HU]
(Hounsfield Unit).
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