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Abstract

Automatically math word problem (MWP)
solving is a challenging artificial intelligence
task since a machine should be able to not only
understand a problem comprehensively on lin-
guistics but also the grounded math logic en-
tailed in the problem. Recently, lots of deep
learning models have made great progress in
MWP solving on answer accuracy, they rely
on shallow heuristics to achieve high perfor-
mance, lacking of grounded math logic reason-
ing, which makes them uninterpretable. To ad-
dress this issue and push the research boundary
of MWPs to interpretable MWP solving, we
construct a large-scale and high-quality MWP
dataset named InterMWP which consists of
11,507 MWP data and annotates interpretable
algebraic knowledge formulas as the grounded
linguistic logic of each solving equation and
asks for a solver to output the formulas when
it decides current predicted node is an inner-
node (operator) during expression reasoning.
We further propose a strong baseline called
InterSolver to show the effectiveness of our
constructed dataset and show how to harvest
these logic knowledge by fusing logic knowl-
edge with semantic representation to improve
problem solving and make a step towards pro-
viding interpretability. Experimental results
show that our InterSolver has strong logical
formula-based interpretability while achieving
high answer accuracy simultaneously.

1 Introduction

Automatically math word problem (MWP) solving
is challenging, which aims to transform the short
and math-related narrative into solution equation,
as illustrated in Figure 1 (a). Recently, the task
of MWPs solving has attracted a lot of research
attention. Researchers have proposed several ap-
proaches (Wang et al., 2017; Huang et al., 2018;
Xie and Sun, 2019; Wang et al., 2019; Qin et al.,
2020, 2021) to solving MWPs based on deep learn-
ing model. However, these approaches mainly rely
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Figure 1: Common MWP dataset v.s. InterMWP dataset.
Compared with the common MWP datasets, InterMWP
requires a solver to predict expression tree and the cor-
responding linguistic logic formulas simultaneously for
improving the interpretability of a solver.

on shallow heuristics to achieve high performance,
lacking of grounded math logic reasoning, which
makes them uninterpretable, as shown in (Patel
et al., 2021). All these models can only generate
solution equations directly, but they do not perceive
the grounded linguistic logic implied in the prob-
lem text. For example, as shown in Figurel (b),
the grounded logic in the problem are two alge-
braic knowledge formulas: cost = quantity * price
and parallelogram area = bottom * height where
quantity is equal to parallelogram area in this MWP.
Without logic reasoning, a solver is hard to explain
why it generates such an equation for a solution.

To overcome this dilemma and make a step to-
ward interpretable MWP solving, we construct a
large-scale and high-quality MWP dataset called
InterMWP consisting of 11,507 data samples and
210 different algebraic knowledge formulas. In In-
terMWP, each solution equation is annotated with
interpretable algebraic knowledge formulas in tree
structure as the grounded logic of each solving
equation. As shown in Figure 1, each inner node is
annotated with a interpretable algebraic knowledge
formula which represents the grounded logic for
the subtree with the current node as root ancestor.



With these logic annotations, InterMWP requires
a solver to not only output the solution equation
but also output the knowledge formulas simultane-
ously when it decides the current predicted node
is an inner-node (operator) during expression rea-
soning. Therefore, an MWP solver developed on
InterMWP can output a solution equation while
generating a reasonable formula-based interpreta-
tion.

In this research, we further present a strong
baseline called InterSolver to show the effective-
ness of our constructed dataset and show how
to harvest these logic knowledge by fusing logic
knowledge with semantic representation to improve
problem solving and make a step toward provid-
ing interpretability. Experimental results on In-
terMWP shows that our InterSolver has strong log-
ical formula-based interpretability which achieves
high answer accuracy simultaneously.

Our contributions are three-fold:

* We introduce large-scale and high-quality
MWP dataset called InterMWP which makes
a step towards interpretable MWP solving.

* We develop a strong baseline called Inter-
Solver to show the effectiveness of our con-
structed dataset and show how to harvest these
logic knowledge.

» Experimental results on InterMWP shows that
our InterSolver has strong logical formula-
based interpretability which achieving high
answer accuracy simultaneously.

2 Related Work

2.1 Math Word Problem Solving

In recent years, deep learning-based models (Wang
etal., 2017; Huang et al., 2018; Wang et al., 2018b,
2019; Xie and Sun, 2019; Chiang and Chen, 2019;
Zhang et al., 2020a,b; Qin et al., 2020, 2021) have
been shown impressive performance on solving
MWPs by automatically learning to directly trans-
late a problem text into an expression without any
hand-crafted feature design. All these methods
follow the RNN-based encoder-decoder paradigm
with some different designs. Wang et al. (2017)
make the first attempt to apply a vanilla sequence
to sequence (seq2seq) model to translate the lan-
guage text to a solution expression. Huang et al.
(2018) improved their work by introducing copy

and attention mechanism. Xie and Sun (2019) pro-
posed a tree-structure decoder to decode expression
as prefix order. Furthermore, Zhang et al. (2020b)
improved problem text representation by fusing
quantity-related graph encoder. Hong et al. (2021a)
proposed to train a solver in a weakly supervised
way by constructing pseudo labels during training.
Hong et al. (2021b) also proposed a situation model
for algebra story problems via attributed grammar.
(Qin et al., 2021) proposed multiple auxiliary tasks
to improved problem text representation and the
ability of predicting common-sense constants. (Wu
et al., 2021) enhances math word problem-solving
performance by explicitly incorporating numerical
values into a sequence-to-tree network and apply-
ing a numerical properties prediction mechanism.
However, all these models lack interpretability so
that they can give a reasonable explanation corre-
sponding to the generated expression. To make a
step towards interpretable MWP solving, we build
a novel large-scale interpretable MWP dataset and
propose a linguistic logic-enhanced sequence-to-
tree model for generating both expression tree and
corresponding formula-based interpretation.

2.2 Interpretability of MWP Solvers

Although the prior statistical models with hand-
crafted features can be thought as interpretable due
to the clear alignments between inputs and outputs,
recently proposed deep learning approaches present
new challenges to model interpretability of MWP
solvers (Huang et al., 2016). (Liang et al., 2018)
used pattern-matching to increasing robustness and
interpretability of math word problem-solving mod-
els. (Amini et al., 2019) propose operation-based
formalisms to improve the interpretability. Dif-
ferent from these works, we propose to predict
linguistic logic along with expression construction
so that our approach can explain the grounded rea-
son about the expression generation in general with
general linguistic logic formulas.

3 InterMWP Dataset

3.1 Dataset Collection

Most existing datasets for math word problem solv-
ing mainly consist of 4 parts: problem id, problem
text, solution equation, and final answer, such as
Math23K (Wang et al., 2017), MaWPS (Koncel-
Kedziorski et al., 2016), HMWP (Qin et al., 2020),
and CM17K (Qin et al., 2021). There are no expla-
nation about why the solution equation can solve



the problem, leading to a MWP solver is hard to
give out the reason for constructing the solution
equation. To make a step toward interpretable
MWP solving, we construct a large-scale and
high-quality interpretable MWP dataset called In-
terMWP consisting of 11,507 data samples and 210
different algebraic knowledge formulas. Excepting
from the common 4 attributes as like most existing
datasets, we add extra interpretable formula-based
tree-structure annotation to force a MWP solver
to output solving equation and grounded logic for-
mulas simultaneously in order to make the MWP
solver have a certain interpretability.

Geometric Logics
parallelogram area = bottom x height
rectangular area = length x width

square of the radius = radius x radius

circle area = PI X square of the radius
cuboid volume = bottom area X height
Physical Logics

speed = distance + time

distance = speed X time

time = distance + speed

workload = time X work speed

concentration = solute weight -+ solution weight
Financial Logics

expenses = price X quantity

insurance cost = insurance amount X insurance rate

sales income = cost + profit

income after tares = income be fore taxres — taxes

taxes = tax payable X tax rate

Commonsense Logics

average = total -+ number of units

total = average x number of units

number of units = total + average

segment number = interval points excluding both ends + 1
segment number = interval points including both ends — 1

Table 1: Example logic formulas of different skills.

To collect InterMWP, we sampled 8266 exam-
ples randomly from Math23K and crawled other
3241 examples from web bank! to increase diver-
sity. In total, there are 11,507 data samples in our
InterMWP dataset. With these data, we first manu-
ally summarized the grounded algebraic knowledge
formulas involved in the dataset into four main
categries(Common-sense, Geometry, Physical, and
Finance), such as cost = quantity * price, speed =
distance / time, etc. Some examples are illustrated
in Table 1. We summarized these formulas with
general concepts so that the number of formulas
can be as few as possible while covering various
MWPs as more as possible. In total, there are 210
formulas summarized in InterMWP. Then, 18 well-
trained annotators with undergraduate degrees man-
ually annotated solution equation with grounded
algebraic knowledge formulas in tree-structure by
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assigning each operator (+,-,*,/) with correspond-
ing formula. The annotation procedure is follow-
ing: 1) We use regular expressions to extract the
numbers in the text and do number mapping as
like (Wang et al., 2017); 2) We build the mapping
between the numbers in problem and the numbers
in solution equation; 3) We search adequate logic
formula from 210 algebraic knowledge formulas to
annotate each operator in the expression tree. An
annotated data example is illustrated in Figure ??.

3.2 Superiority of InterMWP Dataset

The superiority of our data set is mainly reflected
in the following two points:

1. Formula variables disambiguation: As the
former Math Word Problem Datasets such as
Math23K (Wang et al., 2017), Alg514 (Kush-
man et al.,, 2014) and MAWPS (Koncel-
Kedziorski et al., 2016)only provide a numeric
expression for each problem, the reference to
the variables in the formula may be ambigu-
ous. An data example of such formula am-
biguous is the problem A shown in Figure 2,
original method in (Wang et al., 2017) cannot
map the two numbers 2’ in the equation to
different positions in the problem. We over-
come this shortcoming by using manpower
to mapping between numbers in problem and
numbers in solution equation.

2. Complete solution set of the test split: The
former metrics to evaluate the accuracy of a
MWP solver is mainly rely on the answer ac-
curacy, but a MWP solver may output a right
answer by generating a wrong formula, as
the problem A shown in Figure 2, the model
happened to calculate the correct answer by
generate a constant number *2’. Besides, the
model output of problem B in Figure 2 can-
not match the original equation although they
are essentially the same. To overcome this
shortcoming, we use manpower to generate as
many solutions as possible for each problem
in the test split.

3.3 Dataset Statistics

The InterMWP dataset consists of 11,507 prob-
lems and is divided into three parts randomly:
9507 training data, 1000 validation data, and 1000
test data. The basic statistics of our InterMWP
dataset is shown in Table 2. Figure 3 illustrates



Problem A: Arope is 2 decimeters long, just
enough to make 2 circles around the table, what
is the perimeter of the table in decimeters?

Nums_map: {NO: 2, N1:2}

Equation: x=2/2

Equation(ours): x = NO /N1
Model Output(wrong): x=NO0/2

Problem B: Xiaozhen walks to school at a
speed of 3.6km/h. She arrives at school 0.25
hours after leaving home. How far is her home
from school?

Nums_map: {NO: 3.6, N1:0.25}
Equation: x = 3.6 * 0.25
Equation(ours): x = [NO * N1, N1* NO]
Model Output(right): x = N1 * NO

Figure 2: Some examples compared between former
MWP benchmarks and InterMWP benchmarks.

the distribution information about word-level ques-
tion length, char-level question length, and expres-
sion tree length. From Figure 3, we can observe
that the lengths of most of questions are adequate,
which are not too long to understand for an MWP
Solver. Besides, most of expression tree contains
less than 3 operators, which suggests that the ques-
tions should not very difficult to reason. However,
the long tail in the distribution requires the MWP
solvers to understand the complex mathematical
relationships in the textual content.

Total Train Val Test

Questions 11,507 9,507 1,000 1,000
Sentences 16,308 13,456 1,408 1,444
‘Words 316,620 | 261,700 | 27,048 | 27,872

Table 2: Basic statistics of our InterMWP dataset.

There are 210 algebraic knowledge formulas en-
tailed in InterMWP. We list the most and least fre-
quent knowledge formulas with a frequency greater
than 5 in Table 3. It is shown that the distribution
of formulas is not balanced but it is consistent with
real world scene.

formulas %o
Common-sense step 56.37
average per unit = total number / number per unit 4.74
total number = average number per unit X number of units | 4.74
number per unit = total number / average number per unit | 2.83

increased price rate = 1 + price increment ratio 0.06
increased price = original price / increased price rate 0.04

Table 3: Formulas statistics of our InterMWP dataset.
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Figure 3: Dataset Statistics. We show the statistical
characteristics of InterMWP for intuitive observation.
We can observe that out InterMWP has moderate ques-
tion lenght and expression size for MWP solving.

4 InterSolver

4.1 Overview

Our proposed InterSolver takes the problem text
as inputs and translates them into solution expres-
sion in tree-structure and predict which formula
is associated with an math operator for each inner
node in the expression tree. The designed model
architecture is shown in Figure 4. It contains an
encoder module, a logic-enhanced tree-structure
decoder module. We next introduce these modules
in details.

4.2 Encoder

BERT (Devlin et al., 2019) is an efficient pre-
trained language model to encode textual infor-
mation, so we employ an BERTEncoder as our
encoder for learning the MWP representation. The
problem text sequence W is given to the BERTEn-
coder and transformed to the problem presen-
tation Z and a sequence of token embeddings
{Zl, ZQ, cony Zn}I

Z,{Z1,Zs, ..., Zn} = BERT Encoder(W)

ey
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Figure 4: The design of our InterSolver. (a) When a problem preprocessed by number mapping and replacement is
entered, the Bert encoder encodes the problem text as context representation. Then our logic tree decoder generates
an expression tree explicitly in pre-order traversal and predicts which linguistic logic can explain the current operator

choice. (b) The design of our logic-enhanced tree decoder.

4.3 Logic-enhanced Tree-structure Decoder

The decoder is expected to not only output solu-
tion expression tree Y = {Y7,Y5,...,Y,,}, but
also predict the grounded logic formula F' =
{F\, Fs, ..., F};} for each operator in Y. To gen-
erate solution expression tree, we following the
design of the tree decoder in GTS (Xie and Sun,
2019), which predicts the pre-order traversal se-
quence of the expression tree. However, our de-
coder not only output the node of expression tree
but also will predict which grounded logic formula
is associated with current node if it decides current
node is a math operator.

To generate the expression tree, the root node
Groot 18 featured by assigning the problem represen-
tation Z of the BERTEncoder:

Then, the root node g0 is put in stack. The
generator takes the decoding steps given next to
construct the expression tree, such as, predicting
the token of Y; in the solution expression tree Y.

In each step, the prediction module first clas-
sifies the node feature ¢ to one of token in
{Vium U Vop U Veon b Yy = nny(q), where nny
is a two-layer neural network following (Xie and
Sun, 2019). Here, V,um, Vop, and Ve, are the set
of numeric values in problem text, the set of mathe-
matical operators, and the set of constant quantities
which are occur in the solution but not in problem
text. Besides, if the prediction module decides cur-

rent node as an operator, it also predicts a logic
formulas to explain the grounded solving logic un-
der the current node by fusing logic formula em-
beddings obtained from per-trained BERT (Devlin
et al., 2019), token embeddings {71, Zs, ..., Zy }
of current problem, and current node feature ¢ with
attention mechanism (Bahdanau et al., 2015) and
generate a new logic-injected node feature ¢':

a = Attention(q,{Z1, Za, ..., Zn})
{l1,12,...,lx} = Vectorizing({F1, Fa, ..., Fx })
¢, score = Attention(a,{l1,l2,....,lx})
¢ =q+c
2
where {Fi, Fy,...,Fx} is the set of the se-
quences of all formulas, {l1, 2, ..., [k } is the set of
logic embeddings each is generated by averaging
the BERT output vectors of each token in a logic
formula (Vectorizing), score is the predicted log-
its for all formulas. Here, Attention represents the
attention mechanism implemented as following:

n
ct = E ot ih;
i—1

exp(score(sy, h;))
Qi =
b > iy exp(score(sy, hir))

where s; is token embedding Z; or logic embed-
ding /; and h; is node feature g or the attention

3)




result a between node feature ¢ and token embed-
dings {Z1, Za, ..., Zn}.

4.3.1 Training Objective
Given the training dataset D={(W1! Y1 F1),

(W2 Y2 F%), ... (WN YN FN) }, we mini-
mize the following loss function:
LOGEW) = > [~logp(Y|W)
(W,Y,F)eD “4)

+ A x (—log p(F|W))]

where

p(Y|W) = Hprob(yt\qt, c,, W)

o 5)
p(F|W) = [ [ prob(filat, e, W)

t=1

where m denotes the size of Y, and q; and c; are
the hidden state vector and its context vector at the
t-th node. We set A as 0.1 empirically.

Discussion Although our model can output ex-
pression along with corresponding formula-based
interpretation for the MWP problems that has dif-
ferent logic formula uncovered by training set, our
solver still can act as existing deep learning-based
MWP solvers to generate expression with uncer-
tain logic formulas, making our solver has ability
to handle unseen problems.

5 Experiments

5.1 Experimental Setup

Datasets. We only conduct experiments on our
InterMWP with train-valid-test split, since there is
no existing MWP dataset with interpretation.
Baselines. We compare our InterSolver with 5
state-of-the-art models: Math-EN (Wang et al.,
2018a): a seq2seq model with equation normaliza-
tion for reducing target space. GROUPATT (Li
et al., 2019): a math word problem solver borrow-
ing the idea of multi-head attention from Trans-
former (Vaswani et al., 2017). GTS (Xie and
Sun, 2019): a tree-structured neural network in
a goal-driven manner to generate expression trees.
Graph2Tree (Zhang et al., 2020b): an enhanced
GTS with quantity graph. GTS(BERT): a strong
baseline we constructed by replacing RNN encoder
with BERTEncoder(Devlin et al., 2019) in GTS.
Evaluation Metric. Following prior works (Wang
et al., 2017; Xie and Sun, 2019; Zhang et al.,

2020b), we use answer accuracy as the evalua-
tion metric: if the calculated value of the predicted
expression tree equals the true answer, it is thought
as correct since the predicted expression is equiv-
alent to the target expression. However, answer
accuracy will overestimate the ability of reason-
able expression generation of a MWP solver, so
we also introduce formula accuracy to evaluate
whether the generated expression is one of a set of
reasonable expressions that we annotate a MWP by
listing all possible solution equation manually on
test set. Moreover, to measure the effectiveness of
the linguistic logic, we introduce logic accuracy:
For each data sample, if the predicted solution ex-
pression is correct and the whole predicted linguis-
tic logic is equivalent to the target linguistic logic,
we consider this sample’s logic is correct.

i (Yi = ;)(Fi =F) ()

logic acc =

In order to analyze the accuracy of fine-grained
logic, we propose a scoring mechanism named
logic score to evaluate the node-level logic predic-
tion performance. On the premise that the predicted
expression is correct, we evaluate each sample’s
node-level logic accuracy.

logic score =
L'.

N i (Fy
LS =y
1=1

L;

= Fij)] @)

where the F; represents the jth logic node for ith
data sample, and the L; represents the length of F;.
Implementation Details. We use Pytorch? to im-
plement our model on Linux with an NVIDIA
RTX2080Ti GPU card. All those words with fewer
than 5 occurrences are converted into a special
token [UNK]. In InterSolver, the size of word em-
beddings and all hidden states for other layers are
all set as 768, following the configuration of BERT-
base (Devlin et al., 2019). In the decoder, the size
of word embeddings and all hidden states for other
layers are set as 128 and 768, respectively. In each
epoch, all training data is shuffled randomly, and
then cut into mini-batches.

InterSolver is initialized by pre-trained BERT-
wwm (Cui et al., 2020) for chineses. Our Inter-
Solver is optimized by ADAM optimizor (Kingma
and Ba, 2015) with 81 = 0.9, 8 =0.999, and € =
le~®. The mini-batch size is set as 32. The initial

Zhttp://pytorch.org



Model | value acc | formula acc |logic acc |logic score Model | Commonsense | Geometric | Physical | Financial
Math-EN 62.6 58.3 - - Math-EN 56.8 54.0 86.1 58.0
Group-Attn 63.9 60.2 - - Group-Attn 58.7 53.9 58.9 60.2
GTS 69.6 64.1 - - GTS 62.9 57.6 63.1 61.7
Graph2Tree 71.4 66.7 - - Graph2Tree 64.8 59.3 64.9 66.1
GTS(Bert) 80.9 75.0 - - GTS(Bert) 73.8 70.00 74.2 73.9
InterSolver(ours)| 81.8 75.8 67.4 69.87 InterSolver(ours) 74.3 68.3 742 | 754

Table 4: Various accuracies of different models on In-
terMWP.

fine-tuning learning rate is set as le™> and le™*
for pretrained BERTEncoder and tree-decoder and
then decreases to half every 25 epochs. To pre-
vent overfitting, we set the dropout rate as 0.5 and
weight decay as 1e~®. Finally, we use the beam
search algorithm to generate expression trees and
predict logic formulas.

5.2 Main Results

The main results are shown in Table 4. After inject-
ing logic representation into our InterSolver, we
increase the value accuracy of InterMWP from 80.9
to 81.8, and the formula accuracy is increased from
75.0 to 75.8, which shows that our InterSolver has
stronger generalization ability than GTS(Bert). The
improvement in the accuracy of traditional indica-
tors shows that the logic formulas of our dataset
helps MWPsolver to further solve the problem. Be-
sides, our model acquired logical interpretability
during training that other models do not have, our
model achieve 67.4 on logic accuracy and 69.87
on logic score.

Overall, the experimental results shows the supe-
riority of our proposed InterSolver model in both
solving ability and interpretability, and the effec-
tiveness of logic formula for solving MWPs.

5.3 Ablation on different o

We conduct experiments on different « to investi-
gate the influences of different weights on answer
accuracy. The results are shown in Table 5. From
the results, we can observe that InterSolver is sen-
sitive to different «, but it can achieve the best
performance when « equals to 0.1. Therefore, we
choose 0.1 as the default hyper-parameter.

o 000005010 0.15 | 0.20
InterSolver | 80.9 | 81.4 | 81.8 | 80.2 | 80.6

Table 5: Ablation on different cv.

Table 6: Formula accuracy on different logic skills.

Commonsense | Geometric | Physical | Financial
584 | 603 | 615 | 601

Table 7: InterSolver’s logic accuracy on different logic
skills.

5.4 Analysis on different logic classes

We also analyze the performance of our InterSolver
on the four different skills(Commonsense, Geomet-
ric, Physical and Financial). As shown on Table 6.
We evaluate the formula accuracy of baseline mod-
els compared with our InterSolver on the samples
contained different logic class. Our InterSolver
surpassed baselines model on three ascepts: Com-
monsense, Physical and Financial. Moreover, we
also evaluated the logic accuracy of InterSolver on
the four logic skills, the result is shown on Table
7. The result shows that InterSolver acquired good
interpretability in these logic skills.

5.5 Analysis on difference logic formulas

Logics GTS(Bert) | InterSolver
Common-sense step 75.1 75.4
total number = average nurpber 755 74.1
per unit X number of units
total number = number of uplts 75.3 743
X average number per unit
average number per unit =
total number <+ number of units 733 759
nu.mber of unit = total numl.)er 771 757
-+ average number per unit
expenses = quantity x price 72.0 74.0
expenses = price X quantity 72.0 74.0
distance = time X speed 723 69.0
distance = speed x time 72.3 68.0
work speed = worklaod = time 69.0 73.8

Table 8: Formula accuracy on the top-10 logic formulas
with the most occurrences in the test split

We also analyze the value accuracy and formula
accuracy of different logic formulas by selecting
the top-10 logic formulas with the most occur-
rences in the dataset for comparision, the results is
shown on Table 8. From the results, we can observe
that InterSolver can outperform GTS(Bert) on most
of top-10 logics. This shows that predicting expres-



Problem Equation GTS(Bert) InterSolver
Aribbon is cut every 1.4 decimetres NO * N2 + N3,
to make 1 bow. A total of 27 bows are N2 * NO + N3, Total = average x @_'
made. There is 1.2 decimetres left. N3 + NO * N2, NO * N1 + N3 number of units @
How many decimetres is this ribbon N3 + N2 * NO
originally? )4 v 4
Trees were planted on one side of a 30 NO/(N1-1)
meter long road. A total of 4 trees ?:;rsg_e;":i:t/s }-—C Segment number =
were planted from beginning to end NO/(N1-1)-1 g Interval points
(planting at both ends). What is the including both ends-1
distance between two adjacent trees in @ @
meters? x® v 4
What is the area of a parallelogram NO * N1 ®_. Parallelogram area =
with a base of 6 cm and a height of 4 N1*NO (NO * N1) / N2 bottom xheight
cm? V4 @ @
The Changsha-Guangzhou railway is NO/N2-N1
728km long, and a truck runs 71km (NO - N1*N2)/N2 NO /N2
per hour from Guangzhou to (NO—N2*N1) /N2 — Speed = opposite
Changsha. A train of passenger cars Speed = @_’ speed-speed
drove from Changsha to Guangzhou distance /time @ @
at the same time, and the two cars @
met in 4 hours. What was the speed
of this train? X V

Figure 5: Case study on GTS(Bert) and InterSolver.(Note that the results are represented as infix traversal of
expression trees which is more readable than prefix traversal.)

Logics Accuracy
Common-sense step 67.2
total number = average number per unit
. 56.1
x number of units
total number = number of units 561
X average number per unit )
average number per unit = total number
. . 56.6
- number of units
number of unit = total number 600
- average number per unit )
expenses = quantity X price 56.0
expenses = price X quantity 56.0
distance = time X speed 66.0
distance = speed X time 66.0
work speed = worklaod + time 45.2

Table 9: Logic accuracy on the samples contain top-10
logic formulas with the most occurrences in the test split

sion prediction and logic jointly can inject extra
knowledge into MWP solver to improve problem
solving. Furthermore, we also investigate the logic
accuracy of the top-10 logic formulas, as shown in
Table 9. We can conclude that our InterSolver can
achieve acceptable accuracy, but there is still room
for improvement.

5.6 Case Study

Finally, we conduct a case analysis and provide
four cases in Figure 5. Benefiting from our an-
notated node-level logic formulas in InterMWP
dataset, our InterSolver not only is more accurate
on predicting operations, constants and number

word, but also can extract correct logic reasoning
procedure during expression tree generation. Mean-
while, GTS(Bert) is more likely to predict error ex-
pression. In summary, our InterSolver has gained
a certain degree of interpretability while improv-
ing the accuracy of math word problem solving,
showing the superiority of our InterMWP and In-
terSolver.

6 Conclusion

In this paper, we construct an interpretation math
word problem dataset InterMWP which consists
of 11,507 MWP data and annotates interpretable
algebraic knowledge formulas as the grounded lin-
guistic logic of each solving equation and asks for
a solver to output the formulas when it decides
current predicted node is an inner-node (operator)
during expression reasoning. In InterMWP, we not
only disambiguate the mapping between variables
of formulas and the numbers in problem text, but
also give a full solution equations test set to evalu-
ate the accuracy of MWP solver’s output. Besides
that, we also propose a strong baseline called Inter-
Solver which injects linguistic logic to improve the
performance of MWP solving along with formula-
based explanation generation. We conduct exper-
iments on InterMWP to validate the effectiveness
of our InterSolver.
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