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Abstract

Automatically math word problem (MWP)001
solving is a challenging artificial intelligence002
task since a machine should be able to not only003
understand a problem comprehensively on lin-004
guistics but also the grounded math logic en-005
tailed in the problem. Recently, lots of deep006
learning models have made great progress in007
MWP solving on answer accuracy, they rely008
on shallow heuristics to achieve high perfor-009
mance, lacking of grounded math logic reason-010
ing, which makes them uninterpretable. To ad-011
dress this issue and push the research boundary012
of MWPs to interpretable MWP solving, we013
construct a large-scale and high-quality MWP014
dataset named InterMWP which consists of015
11,507 MWP data and annotates interpretable016
algebraic knowledge formulas as the grounded017
linguistic logic of each solving equation and018
asks for a solver to output the formulas when019
it decides current predicted node is an inner-020
node (operator) during expression reasoning.021
We further propose a strong baseline called022
InterSolver to show the effectiveness of our023
constructed dataset and show how to harvest024
these logic knowledge by fusing logic knowl-025
edge with semantic representation to improve026
problem solving and make a step towards pro-027
viding interpretability. Experimental results028
show that our InterSolver has strong logical029
formula-based interpretability while achieving030
high answer accuracy simultaneously.031

1 Introduction032

Automatically math word problem (MWP) solving033

is challenging, which aims to transform the short034

and math-related narrative into solution equation,035

as illustrated in Figure 1 (a). Recently, the task036

of MWPs solving has attracted a lot of research037

attention. Researchers have proposed several ap-038

proaches (Wang et al., 2017; Huang et al., 2018;039

Xie and Sun, 2019; Wang et al., 2019; Qin et al.,040

2020, 2021) to solving MWPs based on deep learn-041

ing model. However, these approaches mainly rely042

*

*

Craftsman Wang made a parallelogram plaque with a 

bottom of 1.2 meters and a height of 0.5 meters. If the 

cost per square meter is 180 dollars, how much will it 

cost to make this plaque?

logic MWP solver

Cost = price  * quantity

0.5 1.2
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MWP solver
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(a) common MWP solver (b) Logic-enhanced MWP solver
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= bottom * height 

Speed = distance  / time

…

Logic Set

Figure 1: Common MWP dataset v.s. InterMWP dataset.
Compared with the common MWP datasets, InterMWP
requires a solver to predict expression tree and the cor-
responding linguistic logic formulas simultaneously for
improving the interpretability of a solver.

on shallow heuristics to achieve high performance, 043

lacking of grounded math logic reasoning, which 044

makes them uninterpretable, as shown in (Patel 045

et al., 2021). All these models can only generate 046

solution equations directly, but they do not perceive 047

the grounded linguistic logic implied in the prob- 048

lem text. For example, as shown in Figure1 (b), 049

the grounded logic in the problem are two alge- 050

braic knowledge formulas: cost = quantity * price 051

and parallelogram area = bottom * height where 052

quantity is equal to parallelogram area in this MWP. 053

Without logic reasoning, a solver is hard to explain 054

why it generates such an equation for a solution. 055

To overcome this dilemma and make a step to- 056

ward interpretable MWP solving, we construct a 057

large-scale and high-quality MWP dataset called 058

InterMWP consisting of 11,507 data samples and 059

210 different algebraic knowledge formulas. In In- 060

terMWP, each solution equation is annotated with 061

interpretable algebraic knowledge formulas in tree 062

structure as the grounded logic of each solving 063

equation. As shown in Figure 1, each inner node is 064

annotated with a interpretable algebraic knowledge 065

formula which represents the grounded logic for 066

the subtree with the current node as root ancestor. 067
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With these logic annotations, InterMWP requires068

a solver to not only output the solution equation069

but also output the knowledge formulas simultane-070

ously when it decides the current predicted node071

is an inner-node (operator) during expression rea-072

soning. Therefore, an MWP solver developed on073

InterMWP can output a solution equation while074

generating a reasonable formula-based interpreta-075

tion.076

In this research, we further present a strong077

baseline called InterSolver to show the effective-078

ness of our constructed dataset and show how079

to harvest these logic knowledge by fusing logic080

knowledge with semantic representation to improve081

problem solving and make a step toward provid-082

ing interpretability. Experimental results on In-083

terMWP shows that our InterSolver has strong log-084

ical formula-based interpretability which achieves085

high answer accuracy simultaneously.086

Our contributions are three-fold:087

• We introduce large-scale and high-quality088

MWP dataset called InterMWP which makes089

a step towards interpretable MWP solving.090

• We develop a strong baseline called Inter-091

Solver to show the effectiveness of our con-092

structed dataset and show how to harvest these093

logic knowledge.094

• Experimental results on InterMWP shows that095

our InterSolver has strong logical formula-096

based interpretability which achieving high097

answer accuracy simultaneously.098

2 Related Work099

2.1 Math Word Problem Solving100

In recent years, deep learning-based models (Wang101

et al., 2017; Huang et al., 2018; Wang et al., 2018b,102

2019; Xie and Sun, 2019; Chiang and Chen, 2019;103

Zhang et al., 2020a,b; Qin et al., 2020, 2021) have104

been shown impressive performance on solving105

MWPs by automatically learning to directly trans-106

late a problem text into an expression without any107

hand-crafted feature design. All these methods108

follow the RNN-based encoder-decoder paradigm109

with some different designs. Wang et al. (2017)110

make the first attempt to apply a vanilla sequence111

to sequence (seq2seq) model to translate the lan-112

guage text to a solution expression. Huang et al.113

(2018) improved their work by introducing copy114

and attention mechanism. Xie and Sun (2019) pro- 115

posed a tree-structure decoder to decode expression 116

as prefix order. Furthermore, Zhang et al. (2020b) 117

improved problem text representation by fusing 118

quantity-related graph encoder. Hong et al. (2021a) 119

proposed to train a solver in a weakly supervised 120

way by constructing pseudo labels during training. 121

Hong et al. (2021b) also proposed a situation model 122

for algebra story problems via attributed grammar. 123

(Qin et al., 2021) proposed multiple auxiliary tasks 124

to improved problem text representation and the 125

ability of predicting common-sense constants. (Wu 126

et al., 2021) enhances math word problem-solving 127

performance by explicitly incorporating numerical 128

values into a sequence-to-tree network and apply- 129

ing a numerical properties prediction mechanism. 130

However, all these models lack interpretability so 131

that they can give a reasonable explanation corre- 132

sponding to the generated expression. To make a 133

step towards interpretable MWP solving, we build 134

a novel large-scale interpretable MWP dataset and 135

propose a linguistic logic-enhanced sequence-to- 136

tree model for generating both expression tree and 137

corresponding formula-based interpretation. 138

2.2 Interpretability of MWP Solvers 139

Although the prior statistical models with hand- 140

crafted features can be thought as interpretable due 141

to the clear alignments between inputs and outputs, 142

recently proposed deep learning approaches present 143

new challenges to model interpretability of MWP 144

solvers (Huang et al., 2016). (Liang et al., 2018) 145

used pattern-matching to increasing robustness and 146

interpretability of math word problem-solving mod- 147

els. (Amini et al., 2019) propose operation-based 148

formalisms to improve the interpretability. Dif- 149

ferent from these works, we propose to predict 150

linguistic logic along with expression construction 151

so that our approach can explain the grounded rea- 152

son about the expression generation in general with 153

general linguistic logic formulas. 154

3 InterMWP Dataset 155

3.1 Dataset Collection 156

Most existing datasets for math word problem solv- 157

ing mainly consist of 4 parts: problem id, problem 158

text, solution equation, and final answer, such as 159

Math23K (Wang et al., 2017), MaWPS (Koncel- 160

Kedziorski et al., 2016), HMWP (Qin et al., 2020), 161

and CM17K (Qin et al., 2021). There are no expla- 162

nation about why the solution equation can solve 163
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the problem, leading to a MWP solver is hard to164

give out the reason for constructing the solution165

equation. To make a step toward interpretable166

MWP solving, we construct a large-scale and167

high-quality interpretable MWP dataset called In-168

terMWP consisting of 11,507 data samples and 210169

different algebraic knowledge formulas. Excepting170

from the common 4 attributes as like most existing171

datasets, we add extra interpretable formula-based172

tree-structure annotation to force a MWP solver173

to output solving equation and grounded logic for-174

mulas simultaneously in order to make the MWP175

solver have a certain interpretability.176

Geometric Logics
parallelogram area = bottom× height

rectangular area = length× width

square of the radius = radius× radius

circle area = PI × square of the radius

cuboid volume = bottom area× height

Physical Logics
speed = distance÷ time

distance = speed× time

time = distance÷ speed

workload = time× work speed

concentration = solute weight÷ solution weight

Financial Logics
expenses = price× quantity

insurance cost = insurance amount× insurance rate

sales income = cost+ profit

income after taxes = income before taxes− taxes

taxes = tax payable× tax rate

Commonsense Logics
average = total ÷ number of units

total = average× number of units

number of units = total ÷ average

segment number = interval points excluding both ends+ 1

segment number = interval points including both ends− 1

Table 1: Example logic formulas of different skills.

To collect InterMWP, we sampled 8266 exam-177

ples randomly from Math23K and crawled other178

3241 examples from web bank1 to increase diver-179

sity. In total, there are 11,507 data samples in our180

InterMWP dataset. With these data, we first manu-181

ally summarized the grounded algebraic knowledge182

formulas involved in the dataset into four main183

categries(Common-sense, Geometry, Physical, and184

Finance), such as cost = quantity * price, speed =185

distance / time, etc. Some examples are illustrated186

in Table 1. We summarized these formulas with187

general concepts so that the number of formulas188

can be as few as possible while covering various189

MWPs as more as possible. In total, there are 210190

formulas summarized in InterMWP. Then, 18 well-191

trained annotators with undergraduate degrees man-192

ually annotated solution equation with grounded193

algebraic knowledge formulas in tree-structure by194

1https://damolx.com/

assigning each operator (+,-,*,/) with correspond- 195

ing formula. The annotation procedure is follow- 196

ing: 1) We use regular expressions to extract the 197

numbers in the text and do number mapping as 198

like (Wang et al., 2017); 2) We build the mapping 199

between the numbers in problem and the numbers 200

in solution equation; 3) We search adequate logic 201

formula from 210 algebraic knowledge formulas to 202

annotate each operator in the expression tree. An 203

annotated data example is illustrated in Figure ??. 204

3.2 Superiority of InterMWP Dataset 205

The superiority of our data set is mainly reflected 206

in the following two points: 207

1. Formula variables disambiguation: As the 208

former Math Word Problem Datasets such as 209

Math23K (Wang et al., 2017), Alg514 (Kush- 210

man et al., 2014) and MAWPS (Koncel- 211

Kedziorski et al., 2016)only provide a numeric 212

expression for each problem, the reference to 213

the variables in the formula may be ambigu- 214

ous. An data example of such formula am- 215

biguous is the problem A shown in Figure 2, 216

original method in (Wang et al., 2017) cannot 217

map the two numbers ’2’ in the equation to 218

different positions in the problem. We over- 219

come this shortcoming by using manpower 220

to mapping between numbers in problem and 221

numbers in solution equation. 222

2. Complete solution set of the test split: The 223

former metrics to evaluate the accuracy of a 224

MWP solver is mainly rely on the answer ac- 225

curacy, but a MWP solver may output a right 226

answer by generating a wrong formula, as 227

the problem A shown in Figure 2, the model 228

happened to calculate the correct answer by 229

generate a constant number ’2’. Besides, the 230

model output of problem B in Figure 2 can- 231

not match the original equation although they 232

are essentially the same. To overcome this 233

shortcoming, we use manpower to generate as 234

many solutions as possible for each problem 235

in the test split. 236

3.3 Dataset Statistics 237

The InterMWP dataset consists of 11,507 prob- 238

lems and is divided into three parts randomly: 239

9507 training data, 1000 validation data, and 1000 240

test data. The basic statistics of our InterMWP 241

dataset is shown in Table 2. Figure 3 illustrates 242
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Problem A: A rope is 2 decimeters long, just 

enough to make 2 circles around the table, what 

is the perimeter of the table in decimeters?

Nums_map: {N0 : 2,  N1 : 2}

Equation: x = 2 / 2

Equation(ours): x = N0 / N1

Model Output(wrong): x = N0 / 2  

Problem B: Xiaozhen walks to school at a 

speed of 3.6km/h. She arrives at school 0.25 

hours after leaving home. How far is her home 

from school?

Nums_map: {N0 : 3.6,  N1 : 0.25}

Equation: x = 3.6 * 0.25

Equation(ours): x = [N0 * N1, N1* N0]

Model Output(right): x = N1 * N0

Figure 2: Some examples compared between former
MWP benchmarks and InterMWP benchmarks.

the distribution information about word-level ques-243

tion length, char-level question length, and expres-244

sion tree length. From Figure 3, we can observe245

that the lengths of most of questions are adequate,246

which are not too long to understand for an MWP247

Solver. Besides, most of expression tree contains248

less than 3 operators, which suggests that the ques-249

tions should not very difficult to reason. However,250

the long tail in the distribution requires the MWP251

solvers to understand the complex mathematical252

relationships in the textual content.253

Total Train Val Test
Questions 11,507 9,507 1,000 1,000
Sentences 16,308 13,456 1,408 1,444

Words 316,620 261,700 27,048 27,872

Table 2: Basic statistics of our InterMWP dataset.

There are 210 algebraic knowledge formulas en-254

tailed in InterMWP. We list the most and least fre-255

quent knowledge formulas with a frequency greater256

than 5 in Table 3. It is shown that the distribution257

of formulas is not balanced but it is consistent with258

real world scene.

formulas %
Common-sense step 56.37

average per unit = total number / number per unit 4.74
total number = average number per unit × number of units 4.74
number per unit = total number / average number per unit 2.83

...
increased price rate = 1 + price increment ratio 0.06

increased price = original price / increased price rate 0.04

Table 3: Formulas statistics of our InterMWP dataset.
259

(a) Question length distribution

(b) Expression tree length distribution

Figure 3: Dataset Statistics. We show the statistical
characteristics of InterMWP for intuitive observation.
We can observe that out InterMWP has moderate ques-
tion lenght and expression size for MWP solving.

4 InterSolver 260

4.1 Overview 261

Our proposed InterSolver takes the problem text 262

as inputs and translates them into solution expres- 263

sion in tree-structure and predict which formula 264

is associated with an math operator for each inner 265

node in the expression tree. The designed model 266

architecture is shown in Figure 4. It contains an 267

encoder module, a logic-enhanced tree-structure 268

decoder module. We next introduce these modules 269

in details. 270

4.2 Encoder 271

BERT (Devlin et al., 2019) is an efficient pre- 272

trained language model to encode textual infor- 273

mation, so we employ an BERTEncoder as our 274

encoder for learning the MWP representation. The 275

problem text sequence W is given to the BERTEn- 276

coder and transformed to the problem presen- 277

tation Z̄ and a sequence of token embeddings 278

{Z1, Z2, ..., Zn}: 279

Z̄, {Z1, Z2, ..., Zn} = BERTEncoder(W )
(1) 280
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[SEP]
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entered, the Bert encoder encodes the problem text as context representation. Then our logic tree decoder generates
an expression tree explicitly in pre-order traversal and predicts which linguistic logic can explain the current operator
choice. (b) The design of our logic-enhanced tree decoder.

4.3 Logic-enhanced Tree-structure Decoder281

The decoder is expected to not only output solu-282

tion expression tree Y = {Y1, Y2, ..., Ym}, but283

also predict the grounded logic formula F =284

{F1, F2, ..., Fk} for each operator in Y . To gen-285

erate solution expression tree, we following the286

design of the tree decoder in GTS (Xie and Sun,287

2019), which predicts the pre-order traversal se-288

quence of the expression tree. However, our de-289

coder not only output the node of expression tree290

but also will predict which grounded logic formula291

is associated with current node if it decides current292

node is a math operator.293

To generate the expression tree, the root node294

qroot is featured by assigning the problem represen-295

tation Z̄ of the BERTEncoder:296

Then, the root node qroot is put in stack. The297

generator takes the decoding steps given next to298

construct the expression tree, such as, predicting299

the token of Yi in the solution expression tree Y .300

In each step, the prediction module first clas-301

sifies the node feature q to one of token in302

{Vnum ∪ Vop ∪ Vcon}: Yi = nnt(q), where nnt303

is a two-layer neural network following (Xie and304

Sun, 2019). Here, Vnum, Vop, and Vcon are the set305

of numeric values in problem text, the set of mathe-306

matical operators, and the set of constant quantities307

which are occur in the solution but not in problem308

text. Besides, if the prediction module decides cur-309

rent node as an operator, it also predicts a logic 310

formulas to explain the grounded solving logic un- 311

der the current node by fusing logic formula em- 312

beddings obtained from per-trained BERT (Devlin 313

et al., 2019), token embeddings {Z1, Z2, ..., Zn} 314

of current problem, and current node feature q with 315

attention mechanism (Bahdanau et al., 2015) and 316

generate a new logic-injected node feature q′: 317

a = Attention(q, {Z1, Z2, ..., Zn})
{l1, l2, ..., lK} = V ectorizing({F1, F2, ..., FK})

c, score = Attention(a, {l1, l2, ..., lK})
q′ = q + c

(2) 318

where {F1, F2, ..., FK} is the set of the se- 319

quences of all formulas, {l1, l2, ..., lK} is the set of 320

logic embeddings each is generated by averaging 321

the BERT output vectors of each token in a logic 322

formula (V ectorizing), score is the predicted log- 323

its for all formulas. Here, Attention represents the 324

attention mechanism implemented as following: 325

ct =

n∑
i=1

αt,ihi

αt,i =
exp(score(st,hi))∑n

i′=1 exp(score(st,hi′))

(3) 326

where st is token embedding Zi or logic embed- 327

ding li and hi is node feature q or the attention 328
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result a between node feature q and token embed-329

dings {Z1, Z2, ..., Zn}.330

4.3.1 Training Objective331

Given the training dataset D={(W 1, Y 1, F 1),332

(W 2, Y 2, F 2), · · · ,(WN , Y N , FN ) }, we mini-333

mize the following loss function:334

L(Y, F |W ) =
∑

(W,Y,F )∈D

[− log p(Y |W )

+ λ× (− log p(F |W ))]

(4)335

where336

p(Y |W ) =
m∏
t=1

prob(yt|qt, ct,W )

p(F |W ) =

k∏
t=1

prob(ft|qt, ct,W )

(5)337

where m denotes the size of Y, and qt and ct are338

the hidden state vector and its context vector at the339

t-th node. We set λ as 0.1 empirically.340

Discussion Although our model can output ex-341

pression along with corresponding formula-based342

interpretation for the MWP problems that has dif-343

ferent logic formula uncovered by training set, our344

solver still can act as existing deep learning-based345

MWP solvers to generate expression with uncer-346

tain logic formulas, making our solver has ability347

to handle unseen problems.348

5 Experiments349

5.1 Experimental Setup350

Datasets. We only conduct experiments on our351

InterMWP with train-valid-test split, since there is352

no existing MWP dataset with interpretation.353

Baselines. We compare our InterSolver with 5354

state-of-the-art models: Math-EN (Wang et al.,355

2018a): a seq2seq model with equation normaliza-356

tion for reducing target space. GROUPATT (Li357

et al., 2019): a math word problem solver borrow-358

ing the idea of multi-head attention from Trans-359

former (Vaswani et al., 2017). GTS (Xie and360

Sun, 2019): a tree-structured neural network in361

a goal-driven manner to generate expression trees.362

Graph2Tree (Zhang et al., 2020b): an enhanced363

GTS with quantity graph. GTS(BERT): a strong364

baseline we constructed by replacing RNN encoder365

with BERTEncoder(Devlin et al., 2019) in GTS.366

Evaluation Metric. Following prior works (Wang367

et al., 2017; Xie and Sun, 2019; Zhang et al.,368

2020b), we use answer accuracy as the evalua- 369

tion metric: if the calculated value of the predicted 370

expression tree equals the true answer, it is thought 371

as correct since the predicted expression is equiv- 372

alent to the target expression. However, answer 373

accuracy will overestimate the ability of reason- 374

able expression generation of a MWP solver, so 375

we also introduce formula accuracy to evaluate 376

whether the generated expression is one of a set of 377

reasonable expressions that we annotate a MWP by 378

listing all possible solution equation manually on 379

test set. Moreover, to measure the effectiveness of 380

the linguistic logic, we introduce logic accuracy: 381

For each data sample, if the predicted solution ex- 382

pression is correct and the whole predicted linguis- 383

tic logic is equivalent to the target linguistic logic, 384

we consider this sample’s logic is correct. 385

logic acc =

∑N
i=1(Ŷi = Yi)(F̂i = Fi)

N
(6) 386

In order to analyze the accuracy of fine-grained 387

logic, we propose a scoring mechanism named 388

logic score to evaluate the node-level logic predic- 389

tion performance. On the premise that the predicted 390

expression is correct, we evaluate each sample’s 391

node-level logic accuracy. 392

logic score =

1

N

N∑
i=1

(Ŷi = Yi)[

∑Li
j=1(F̂ij = Fij)

Li
]

(7) 393

where the Fij represents the jth logic node for ith 394

data sample, and the Li represents the length of Fi. 395

Implementation Details. We use Pytorch2 to im- 396

plement our model on Linux with an NVIDIA 397

RTX2080Ti GPU card. All those words with fewer 398

than 5 occurrences are converted into a special 399

token [UNK]. In InterSolver, the size of word em- 400

beddings and all hidden states for other layers are 401

all set as 768, following the configuration of BERT- 402

base (Devlin et al., 2019). In the decoder, the size 403

of word embeddings and all hidden states for other 404

layers are set as 128 and 768, respectively. In each 405

epoch, all training data is shuffled randomly, and 406

then cut into mini-batches. 407

InterSolver is initialized by pre-trained BERT- 408

wwm (Cui et al., 2020) for chineses. Our Inter- 409

Solver is optimized by ADAM optimizor (Kingma 410

and Ba, 2015) with β1 = 0.9, β2 =0.999, and ϵ = 411

1e−8. The mini-batch size is set as 32. The initial 412

2http://pytorch.org
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Model value acc formula acc logic acc logic score
Math-EN 62.6 58.3 - -

Group-Attn 63.9 60.2 - -
GTS 69.6 64.1 - -

Graph2Tree 71.4 66.7 - -
GTS(Bert) 80.9 75.0 - -

InterSolver(ours) 81.8 75.8 67.4 69.87

Table 4: Various accuracies of different models on In-
terMWP.

fine-tuning learning rate is set as 1e−5 and 1e−4413

for pretrained BERTEncoder and tree-decoder and414

then decreases to half every 25 epochs. To pre-415

vent overfitting, we set the dropout rate as 0.5 and416

weight decay as 1e−5. Finally, we use the beam417

search algorithm to generate expression trees and418

predict logic formulas.419

5.2 Main Results420

The main results are shown in Table 4. After inject-421

ing logic representation into our InterSolver, we422

increase the value accuracy of InterMWP from 80.9423

to 81.8, and the formula accuracy is increased from424

75.0 to 75.8, which shows that our InterSolver has425

stronger generalization ability than GTS(Bert). The426

improvement in the accuracy of traditional indica-427

tors shows that the logic formulas of our dataset428

helps MWPsolver to further solve the problem. Be-429

sides, our model acquired logical interpretability430

during training that other models do not have, our431

model achieve 67.4 on logic accuracy and 69.87432

on logic score.433

Overall, the experimental results shows the supe-434

riority of our proposed InterSolver model in both435

solving ability and interpretability, and the effec-436

tiveness of logic formula for solving MWPs.437

5.3 Ablation on different α438

We conduct experiments on different α to investi-439

gate the influences of different weights on answer440

accuracy. The results are shown in Table 5. From441

the results, we can observe that InterSolver is sen-442

sitive to different α, but it can achieve the best443

performance when α equals to 0.1. Therefore, we444

choose 0.1 as the default hyper-parameter.

α 0.00 0.05 0.10 0.15 0.20
InterSolver 80.9 81.4 81.8 80.2 80.6

Table 5: Ablation on different α.

445

Model Commonsense Geometric Physical Financial
Math-EN 56.8 54.0 86.1 58.0

Group-Attn 58.7 53.9 58.9 60.2
GTS 62.9 57.6 63.1 61.7

Graph2Tree 64.8 59.3 64.9 66.1
GTS(Bert) 73.8 70.00 74.2 73.9

InterSolver(ours) 74.3 68.3 74.2 75.4

Table 6: Formula accuracy on different logic skills.

Commonsense Geometric Physical Financial
58.4 60.3 61.5 60.1

Table 7: InterSolver’s logic accuracy on different logic
skills.

5.4 Analysis on different logic classes 446

We also analyze the performance of our InterSolver 447

on the four different skills(Commonsense, Geomet- 448

ric, Physical and Financial). As shown on Table 6. 449

We evaluate the formula accuracy of baseline mod- 450

els compared with our InterSolver on the samples 451

contained different logic class. Our InterSolver 452

surpassed baselines model on three ascepts: Com- 453

monsense, Physical and Financial. Moreover, we 454

also evaluated the logic accuracy of InterSolver on 455

the four logic skills, the result is shown on Table 456

7. The result shows that InterSolver acquired good 457

interpretability in these logic skills. 458

5.5 Analysis on difference logic formulas 459

Logics GTS(Bert) InterSolver
Common-sense step 75.1 75.4

total number = average number
per unit × number of units 75.5 74.1

total number = number of units
× average number per unit 75.3 74.3

average number per unit =
total number ÷ number of units 73.5 75.9

number of unit = total number
÷ average number per unit 77.1 75.7

expenses = quantity × price 72.0 74.0
expenses = price × quantity 72.0 74.0

distance = time × speed 72.3 69.0
distance = speed × time 72.3 68.0

work speed = worklaod ÷ time 69.0 73.8

Table 8: Formula accuracy on the top-10 logic formulas
with the most occurrences in the test split

We also analyze the value accuracy and formula 460

accuracy of different logic formulas by selecting 461

the top-10 logic formulas with the most occur- 462

rences in the dataset for comparision, the results is 463

shown on Table 8. From the results, we can observe 464

that InterSolver can outperform GTS(Bert) on most 465

of top-10 logics. This shows that predicting expres- 466
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Problem Equation GTS(Bert) InterSolver

A ribbon is cut every 1.4 decimetres

to make 1 bow. A total of 27 bows are 

made. There is 1.2 decimetres left. 

How many decimetres is this ribbon 

originally?

N0 * N2 + N3,

N2 * N0 + N3,

N3 + N0 * N2,

N3 + N2 * N0

N0 * N1 + N3

N0 N2


+

N3

Common-sense step
Total = average ×
number of units

Trees were planted on one side of a 30 

meter long road. A total of 4 trees 

were planted from beginning to end 

(planting at both ends). What is the 

distance between two adjacent trees in 

meters? 

N0 / (N1 - 1)

N0 / (N1 - 1) – 1

N1 1

−
/

N0

Average=total / 

number of units
Segment number = 

interval points 

including both ends-1

What is the area of a parallelogram 

with a base of 6 cm and a height of 4 

cm? 

N0 * N1

N1 * N0 (N0 * N1) / N2
N0 N1

 Parallelogram area = 

bottom×height

The Changsha-Guangzhou railway is 
728km long, and a truck runs 71km 
per hour from Guangzhou to 
Changsha. A train of passenger cars 
drove from Changsha to Guangzhou 
at the same time, and the two cars 
met in 4 hours. What was the speed 
of this train?

N0 / N2 – N1

(N0 – N1 * N2) / N2

(N0 – N2 * N1) / N2

N0 / N2

N0 N2

/

−

N1

Speed = opposite 

speed-speed 
Speed = 

distance / time

Figure 5: Case study on GTS(Bert) and InterSolver.(Note that the results are represented as infix traversal of
expression trees which is more readable than prefix traversal.)

Logics Accuracy
Common-sense step 67.2

total number = average number per unit
× number of units 56.1

total number = number of units
× average number per unit 56.1

average number per unit = total number
÷ number of units 56.6

number of unit = total number
÷ average number per unit 60.0

expenses = quantity × price 56.0
expenses = price × quantity 56.0

distance = time × speed 66.0
distance = speed × time 66.0

work speed = worklaod ÷ time 45.2

Table 9: Logic accuracy on the samples contain top-10
logic formulas with the most occurrences in the test split

sion prediction and logic jointly can inject extra467

knowledge into MWP solver to improve problem468

solving. Furthermore, we also investigate the logic469

accuracy of the top-10 logic formulas, as shown in470

Table 9. We can conclude that our InterSolver can471

achieve acceptable accuracy, but there is still room472

for improvement.473

5.6 Case Study474

Finally, we conduct a case analysis and provide475

four cases in Figure 5. Benefiting from our an-476

notated node-level logic formulas in InterMWP477

dataset, our InterSolver not only is more accurate478

on predicting operations, constants and number479

word, but also can extract correct logic reasoning 480

procedure during expression tree generation. Mean- 481

while, GTS(Bert) is more likely to predict error ex- 482

pression. In summary, our InterSolver has gained 483

a certain degree of interpretability while improv- 484

ing the accuracy of math word problem solving, 485

showing the superiority of our InterMWP and In- 486

terSolver. 487

6 Conclusion 488

In this paper, we construct an interpretation math 489

word problem dataset InterMWP which consists 490

of 11,507 MWP data and annotates interpretable 491

algebraic knowledge formulas as the grounded lin- 492

guistic logic of each solving equation and asks for 493

a solver to output the formulas when it decides 494

current predicted node is an inner-node (operator) 495

during expression reasoning. In InterMWP, we not 496

only disambiguate the mapping between variables 497

of formulas and the numbers in problem text, but 498

also give a full solution equations test set to evalu- 499

ate the accuracy of MWP solver’s output. Besides 500

that, we also propose a strong baseline called Inter- 501

Solver which injects linguistic logic to improve the 502

performance of MWP solving along with formula- 503

based explanation generation. We conduct exper- 504

iments on InterMWP to validate the effectiveness 505

of our InterSolver. 506
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