Don’t Memorize; Mimic The Past: Federated Class Incremental Learning
Without Episodic Memory

Sara Babakniya! Zalan Fabian’? Chaoyang He®> Mahdi Soltanolkotabi’ Salman Avestimehr >

Abstract

Deep learning models are prone to forgetting in-
formation learned in the past when trained on
new data. This problem becomes even more pro-
nounced in the context of federated learning (FL),
where data is decentralized and subject to inde-
pendent changes for each user. Continual Learn-
ing (CL) studies this so-called catastrophic for-
getting phenomenon primarily in centralized set-
tings, where the learner has direct access to the
complete training dataset. However, applying CL
techniques to FL is not straightforward due to
privacy concerns and resource limitations. This
paper presents a framework for federated class in-
cremental learning that utilizes a generative model
to synthesize samples from past distributions in-
stead of storing part of past data. Then, clients can
leverage the generative model to mitigate catas-
trophic forgetting locally. The generative model
is trained on the server using data-free methods at
the end of each task without requesting data from
clients. Therefore, it reduces the risk of data leak-
age as opposed to training it on the client’s private
data. We demonstrate significant improvements
for the CIFAR-100 dataset compared to existing
baselines.

1. Introduction

Federated learning (FL) (McMahan et al., 2017; Kone¢ny
et al., 2016) is a decentralized machine learning technique
that enables privacy-preserving collaborative learning. In
FL, multiple users (clients) train a common (global) model
in coordination with a centralized node (server) without

'Department of Computer Science, University of South-
ern California, Los Angeles, USA *Ming Hsieh Department of
Electrical Engineering, University of Southern California, Los
Angeles, USA *FedML. Correspondence to: Sara Babakniya
<babakniy @usc.edu>.

Workshop of Federated Learning and Analytics in Practice, colo-
cated with 40 International Conference on Machine Learning,
Honolulu, Hawaii, USA. Copyright 2023 by the author(s).

sharing personal data. In recent years, FL has attracted
tremendous attention in both research and industry and has
been successfully employed in various fields. Despite its
popularity, deploying FL in practice requires addressing
challenges such as resource limitation and statistical het-
erogeneity (Kairouz et al., 2021). Furthermore, there are
still common assumptions in most FL frameworks that are
far from reality. One such assumption is that the client’s
local data distribution does not change over time. However,
in real-world (Shoham et al., 2019), users’ data constantly
evolve due to changes in the environment or trends. In such
scenarios, the model must rapidly adapt to the incoming
data while preserving performance in the past.

In the centralized setting, such problems have been explored
in continual learning (Shin et al., 2017; Li & Hoiem, 2017).
Despite all the significant progress for the centralized prob-
lems, most methods cannot be directly employed in the FL
setting due to inherent differences between the two settings.
For instance, experience replay (Rolnick et al., 2019) is a
popular approach, where a portion of past data points is
saved to maintain some representation of past distributions
throughout the training. However, deploying experience
replay in FL has resource and privacy limitations. It re-
quires clients to store and keep their data which may not
be possible because of privacy reasons. This can be highly
important, especially in cases for example a service provider
can store its customer’s data for only a short time. Besides,
even storing is possible; such data overhead increase the
memory usage of already resource-limited clients.

To address the above problems, we propose MFCL,
Mimicking Federated Continual Learning. In particular,
MFCL is based on training a generative model in the server
and sharing it with clients to sample synthetic examples of
past data instead of clients storing their data. The generative
model training is data-free in the sense that it only requires
the global model without any form of training data from the
clients. This is specifically important because this step does
not require powerful clients and does not cause any extra
data leakage from them. Finally, our experiments demon-
strate improvement by 20% in average accuracy while re-
ducing the training overhead of the clients.

‘We summarize our contributions below:

Don’t Memorize; Mimic The Past: Federated Class Incremental Learning Without Episodic Memory

* We propose a novel framework to tackle the problem
of federated class incremental learning more efficiently.
Our framework specifically targets applications where
past samples are unavailable.

* We point out potential issues with relying on client-
side memory for FCL, and propose using a generative
model trained by the server in a data-free manner to re-
duce catastrophic forgetting while preserving privacy.

* We demonstrate the efficacy of our method in more
realistic scenarios with a larger number of clients and
a more challenging dataset (CIFAR-100).

2. Related Work

Continual Learning. Catastrophic forgetting (McCloskey
& Cohen, 1989) is a fundamental problem: when we train
a model on new examples, its performance on past data
degrades. This problem is investigated in continual learning
(Zenke et al., 2017), and the goal is for the model to learn
new information while preserving its old ones.

Recent works focus on three scenarios, namely task-,
domain- and class-incremental learning (Van de Ven & To-
lias, 2019). In Task-IL, tasks are disjoint, and the output
spaces are separated by task IDs provided during training
and test time. For Domain-IL, the output space is still the
same, but the task IDs are no more provided. Finally, in
Class-IL, new tasks introduce new classes to the output
space, and the number of classes increases incrementally.
Among these scenarios, we focus on Class-IL, which is the
more challenging and realistic, especially in FL. In the FL
applications, there is no task ID available, and it is preferred
to learn a single model useable for all the observed data.

Federated Continual Learning. In Federated Continual
Learning (FCL), the main focus is to adapt the global model
to new data while maintaining knowledge of past data, all
under the standard restrictions of FL. This important prob-
lem has only gained attention very recently, and (Yoon et al.,
2021) is the first paper on this topic. It focuses on Task-IL,
which requires a unique task id per task during inference.
Furthermore, it adapts separate masks per task to improve
personalized performance without preserving a common
global model. This setting is considerably different than
ours as we target class-IL with a single global model that
can classify all the classes seen so far. (Ma et al.) employs
knowledge distillation using a surrogate dataset. (Dong
et al., 2022) relaxes the problem as clients have access to
large memory to save the old examples and share their data
which is different from the standard FL setting. (Jiang et al.,
2021; Priyanshu et al., 2021; Usmanova et al., 2021) explore
the FCL problem in domains other than image classification.

This work focuses on Class-IL for supervised image clas-
sification without memory replay, which has been also dis-

cussed in (Qi et al., 2023; Hendryx et al., 2021). However,
(Hendryx et al., 2021) allows overlapping classes between
tasks and focuses on few-shot learning, which is different
from the standard class-IL. The most closely related work
to ours is (Qi et al., 2023), where authors propose FedCIL.
This work also benefits from methods based on generative
replay to compensate for the absence of old data and over-
come forgetting. In FedCIL, clients train the discriminator
and generator locally. Then, the server takes a consolidation
step after aggregating the updates. In this step, the server
generates synthetic data using all the generative models
trained by the clients to consolidate the global model and
improve the performance. The main difference between this
work and ours is that in our work, the generative model is
trained by the server in a data-free manner which can reduce
clients’ computation and does not require their private data.

Data-Free Knowledge Distillation. Knowledge distillation
(KD)(Hinton et al., 2015) is a popular method to transfer
knowledge from a well-trained teacher model to a (usually)
smaller student model using at least a small portion of train-
ing data. However, in cases that such data is unavailable
(e,g, privacy concerns), a new line of work (Chen et al.,
2019; Haroush et al., 2020) proposes data-free knowledge
distillation. In such methods, a generative model is used as
a training data substitute. This model generates synthetic
data such that the teacher model predicts them as their as-
signed label. Data-free KD has been previously used in
FL (Zhu et al., 2021) as a solution for data heterogeneity.
However, to the best of our knowledge, this is the first work
that adapted such a technique in the context of FCL.

3. Federated Class-IL with MFCL

In federated class-IL, a shared model is trained on 7T tasks.
However, the distributed nature of FL makes it distinct from
the centralized version. In FL, users may join, drop out
or change their data independently. Also, required data or
computation power for some centralized algorithms may
not be available due to privacy and resource constraints.

To address the mentioned problems, we propose MFCL.
This algorithm includes two essential parts: first, at the
end of each task, the server trains a generative model with
data-free knowledge distillation methods to learn the rep-
resentation of the seen classes. Second, clients diminish
catastrophic forgetting by generating synthetic images from
the generative model. This way, clients do not require mem-
ories to store old data. Also, since the server trains the
generative model training without additional information,
this step does not introduce new privacy issues. Finally,
MFCL can help mitigate the data heterogeneity problem,
as clients can synthesize samples from classes they do not
own. Here, we explain the two key parts of our algorithm:
server-side (Fig. 1. left) and client-side (Fig. 1. right).

Don’t Memorize; Mimic The Past: Federated Class Incremental Learning Without Episodic Memory

End of Every Task

iz ~N(0, 1)
i ——>| Generator N

Data-free generative model training

Every Round

Update Aggregation

Aggregate

z ~N(0, 1)M—>
(Fm en)

Synthetic Data /

Figure 1. [Left] Aggregation (every round), generator training (end of each task). [Right] Clients train models using synthetic + local data.

3.1. Server-Side: Generative Model

The motivation for deploying a generative model is to syn-
thesize images that mimic the old tasks and to avoid storing
past data. However, training these generators on the client’s
side, where the training data exists, is computationally ex-
pensive and requires a large amount of training data and
can be potentially privacy concerning. On the other hand,
the server has only access to the global model and no data.
‘We propose training a generative model on the server, but
in a data-free manner, i.e., by means of model-inversion
image synthesis (Yin et al., 2020; Smith et al., 2021). In
such approaches, the goal is to synthesize images optimized
with respect to the discriminator (global model). Then, the
generative model is shared with the clients to be later used
in sampling images during local training. To this aim, we
utilize a generative model, G, that takes noise z ~ A (0, 1)
as input and produces a synthetic sample Z. In training this
model, we employ the following training objectives.

Cross Entropy Loss. First, the synthetic data should be
labeled correctly by the current discriminator model (global
model or F). Therefore, we employ cross entropy classifi-
cation loss between its assigned label z and the prediction
of F on synthetic data Z. Note, that noise dimension can
be arbitrary and greater than the current discovered classes
of task ¢, and we only consider the first ¢ dimension here,
where ¢ = 22:1 |V|. Then, we can define this loss as

Lo = CE(argmaz(z[: q]), F(T)). (1)

Diversity Loss. Synthesized images can suffer from a lack
of class diversity, and we utilize information entropy (IE)
(Chen et al., 2019) to solve this. For a probability vec-
tor p = (p1,p2,...,pq), IE is evaluated as H;,f0(p) =
f% >, pilog(p;). Therefore, diversity loss is defined as

Zf)

This loss measures the IE for samples of a batch (batch size
=bs). Maximizing this term encourages the output distribu-
tion of the generator to be balanced for all the classes.

L:div = 1nfo

Batch Statistics Loss. Prior works (Haroush et al., 2020;
Yin et al., 2020; Smith et al., 2021) in the centralized setting
have recognized that the distribution of synthetic images
can drift from real data. We can use batch statistics loss
Lpn to avoid such problems. Specifically, the goal is to
enforce synthetic images to produce similar statistics in all
BatchNorm layers to the ones that are already produced
during training. To this end, we minimize the layer-wise
distances between the two statistics written as

Lpn =

L L
EZKL(N(M,U?),N(M,&?)) 3
=1

Here, L denotes the number of BatchNorm layers in the
model, i; and o; are the mean and standard deviation stored
in BatchNorm layer ¢ of the global model, fi;, 5; are mea-
sured statistics of BatchNorm layer ¢ for the synthetic im-
ages, K L stands for the Kullback-Leibler divergence.

Finally, we can write the training objective of G as (4) where
wg;, and wpy control the weight of each term.

mgin Lee + WaivLaiw + wWBNLBN, 4

3.2. Client-side: Continual Learning

For client-side training, inspired by (Smith et al., 2021),
we distill the stability-plasticity dilemma into three critical
requirements of CL and aim to address them one by one.

Current task. To have plasticity, the model needs to learn
the new features in a way that is least biased toward the old
tasks. So, here, the CE loss is computed for the new classes
only by splitting the linear heads and excluding the old ones:

Lhy = CE(Fi(x),y) ify€ Y else. (5)
Previous tasks. To reduce forgetting, we train the model
using synthetic and real data simultaneously. However, the
distribution of the synthetic data differs from the real one,
and it becomes important to prevent the model from dis-
tinguishing between old and new data. To address this
problem, for fine-tuning the decision boundary using the

Don’t Memorize; Mimic The Past: Federated Class Incremental Learning Without Episodic Memory

Average Accuracy | Average forgetting | Training time (s) | Training time (s) Server Runtime (s)
A (%) f(%) T=0 Tr=1

FedAvg 22.27+0.22 78.77 £0.83 ~1.2 ~ 1.2 ~ 1.8

FedProx 22.00+0.31 78.17 £0.33 =~ 1.98 ~ 1.98 ~ 1.8
FedCIL 26.8 £ 0.44 38.19 £0.31 ~ 17.8 ~ 24.5 ~25forT=1,~455forT > 1

FedLwF-2T 22.17+0.13 75.08 £0.72 ~ 1.2 =~ 3.4 ~ 1.8
MFCL (Ours) | 43.87 +£0.12 28.3+0.78 ~ 1.2 ~ 3.7 ~ 330 (once per task), ~ 1.8 O.W.

Oracle 67.12+0.4 —— ~ 1.2 ~12x T ~ 1.8

Table 1. Evaluation on CIFAR-100 dataset.

sampled synthetic data (Z = Sample(G¢_1)), clients freeze
the feature extraction part and only update the classification
head (represented by F;"). This loss can be formulated as
Ly = CE(F{(2),y). ©®)
Finally, to minimize forgetting, the common method is
knowledge distillation over the prediction layer. However,
(Smith et al., 2021) proposed importance-weighted feature
distillation: instead of using the knowledge in the decision
layer, they use the output of the feature extraction part of
the model (penultimate layer). This way, only the more sig-
nificant features of the old model are transferred, enabling
the model also to learn the new features from the new tasks.

This can be written as below where)V is the frozen linear
head of the model trained on the last task WV =]-"tL_ 1)

Licp = IW(FFH@) - WEFES @) @
In summary, the final objective on the client side as
H}__itnl:tCE—‘erTﬁ%T—FwKDﬁi}(Da (®)

wpr and wg p determine the importance of each loss term.

3.3. Algorithm M FCL

For the first task, clients train the model using the L... At
the end of training task ¢ = 1, the server trains the generative
model by optimizing (4). Then, the server freezes and saves
G and the global model (F;_1). This procedure repeats
for all future tasks, with the only difference being that for
t > 1, the server needs to send the current global model
(F¢), the previous task’s final model (F;_1) and G to clients.
Since F;_; and G are fixed during the whole process of
training J;, the server can send them to each client once per
task to reduce the communication cost. To further decrease
this overhead, we can use communication-efficient methods,
such as (Qiu et al., 2022; Babakniya et al., 2022), that highly
compress the model with minor performance degradation.

4. Experiments

Setting. We demonstrate the efficacy of our method on
dataset: CIFAR-100 (Krizhevsky et al., 2009). We use the

baseline ResNet18 (He et al., 2016) as the global model and
ConvNet architecture for G. In our experiments, there are 50
clients in total and 5 randomly sampled participants in every
round. Also, there are 10 non-overlapping tasks (1" = 10),
and for each task, the model is trained for 100 FL rounds.
We use Latent Dirichlet Allocation (o« = 1) (Reddi et al.,
2020) to distribute the data of each task among the clients.
We compare the baselines based on three metrics —average
accuracy, average forgetting and wallclock time— which we
explain more in the appendix. All the results are reported
after averaging over 3 different random seeds.

Baseline. We compare our method with FedAvg (McMahan
etal., 2017), FedProx (Li et al., 2020), FedCIL (Qi et al.,
2023), FedLwF-2T(Usmanova et al., 2021) and Oracle. Fe-
dAvg and FedProx are the two most common aggregation
methods in FL. FedCIL is a GANs-based method where
clients train the discriminator and generator locally to gener-
ate samples from the old tasks. In FedLwF-2T, clients use
two teachers — the global model and their previously trained
local model — to distill their knowledge of the past. Finally,
Oracle as an upper bound: during the training of the #;
task, clients have access to all of their data from ¢t = 1, ..., 4.

Metrics. We evaluate each approach with the following
metrics;

— Accuracy (A'): Accuracy of the model at the end of
task ¢, over all the classes observed so far.

— Average Accuracy (A): Average of all A! for all the T
available tasks.
1 X
A=A ©
t=1
— Forgetting (f?): The difference between the highest
accuracy of the model on task ¢ and its performance at
the end of the training.

el

— Average Forgetting (f): Average of the forgetting over
all the tasks.

~ 1 T—1
f=—=>) [(10)
T—-1 ;

— Wallclock time. This is the time that it takes for the
client or server to perform one round of federated learn-

Don’t Memorize; Mimic The Past: Federated Class Incremental Learning Without Episodic Memory

ing. The time is measured in seconds and averaged
between different clients and rounds. It is worth noting
that all the experiments are done in the same GPU, and
the number could change by changing the hardware.

4.1. Results

Table 1 shows each method’s average forgetting and accu-
racies. FedAvg and FedProx have the highest forgetting
as they are not designed for FCL. Also, high forgetting for
FedLwF-2T indicates that extra teachers cannot be effective
in the absence of old data. FedCIL and MFCL have lower
forgetting and better accuracy. MFCL outperforms FedCIL
because the generative models in FedCIL need to train for a
long time to generate effective synthetic data.

We also compare methods’ compute costs. Some methods
change after learning the first task; therefore, we distinguish
between the cost of the first task and later ones. As depicted,
MECL can significantly improve accuracy and forgetting at
the cost of a slight increase in the clients’ training time for
T > 1 (due to using synthetic data).

The server cost in MFCL is similar to FedAvg except at
the end of each task, where it needs to train the generative
model. This extra computation cost should not be a bottle-
neck because it occurs once per task, and servers usually
have access to better computing power compared to clients.

5. Discussion
5.1. Overheads of generative model

Client-side. Using G on the client side would increase the
computational costs compared to vanilla FedAvg. However,
existing methods in CL often need to impose additional
costs such as memory, computing, or both to mitigate catas-
trophic forgetting. Nevertheless, there are ways to reduce
costs for MFCL. For example, clients can perform inference
once, generate and store synthetic images only for training,
and then delete them all. They can further reduce costs by
requesting that the server generate synthetic images and
send them the data instead of G. Here, we raise two cru-
cial points about the synthesized data. Firstly, there is an
intrinsic distinction between storing synthetic (or G) and ac-
tual data; the former is solely required during training, and
clients can delete them right after the training. Conversely,
the data in episodic memory should always be saved on the
client’s side because once deleted, it becomes unavailable.
Secondly, synthetic data is shared knowledge that can assist
anyone with unbalanced data or no memory in enhancing
their model’s performance. In contrast, episodic memory
can only be used by one client.

Server-side. The server needs to train the G once per task.
It is commonly assumed that the server has access to more

powerful computing power and can compute more infor-
mation faster than clients. This training step does not have
overhead on the client side and, overall, might slow down
the whole process. However, tasks do not change rapidly in
real life, giving the server ample time to train the generative
model before any shifts in trends or client data occur.

Communication cost. Transmitting the generative model
can be a potential overhead for MFCL, as it is a cost that
clients must bear once per task to prevent or reduce catas-
trophic forgetting. However, several possible methods, such
as compression, can significantly reduce this cost while
still maintaining excellent performance. This could be an
interesting direction for future research.

5.2. Privacy of MFCL

Federated Learning, specifically FedAvg, is vulnerable to
different attacks, such as data poisoning, model poisoning,
backdoor attacks, and gradient inversion attacks (Kairouz
et al., 2021; Lyu et al., 2020; Fang et al., 2020; Geiping
et al., 2020; Chen et al., 2022; Li et al., 2020).

MEFCL generally does not introduce any additional privacy
issues and is prone to the same set of attacks as FedAvg.
MEFCL trains the generative model based on the weights of
the global aggregated model, which is already available to
all clients in the case of FedAvg. On the contrary, in some of
the prior work, the clients need to share a locally trained gen-
erative model or perturbed private data, potentially causing
more privacy problems.

For FedAvg, various solutions and defenses, such as dif-
ferential privacy or secure aggregation (Wei et al., 2020;
Bonawitz et al., 2016), are proposed to mitigate the effect
of such privacy attacks. One can employ these solutions in
the case of MFCL as well. Particularly, in MFCL, the server
does not require access to the individual client’s updates and
uses the aggregated model for training. Therefore, training
a generative model is still viable after incorporating these
defense mechanisms.

MFCL benefits from Batch Statistics Loss (£ g) in training
the generative model. However, some defense mechanisms
suggest not sharing local Batch Statistics with the server.
While training the generative model without the £ is still
possible; it can reduce the accuracy. Addressing this is an
interesting future direction.

6. Conclusion

This work presents a federated Class-IL framework while
addressing resource limitations and privacy challenges. We
exploit generative models trained by the server in a data-free
fashion, obviating the need for the client’s memory.

Don’t Memorize; Mimic The Past: Federated Class Incremental Learning Without Episodic Memory

References

Babakniya, S., Kundu, S., Prakash, S., Niu, Y., and Aves-
timehr, S. Federated sparse training: Lottery aware
model compression for resource constrained edge. arXiv
preprint arXiv:2208.13092, 2022.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMabhan, H. B, Patel, S., Ramage, D., Segal, A., and
Seth, K. Practical secure aggregation for federated learn-
ing on user-held data. arXiv preprint arXiv:1611.04482,
2016.

Chen, C.-L., Babakniya, S., Paolieri, M., and Golubchik,
L. Defending against poisoning backdoor attacks on
federated meta-learning. ACM Transactions on Intelligent
Systems and Technology (TIST), 13(5):1-25, 2022.

Chen, H., Wang, Y., Xu, C., Yang, Z., Liu, C., Shi, B., Xu,
C., Xu, C., and Tian, Q. Data-free learning of student
networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 3514-3522, 2019.

Dong, J., Wang, L., Fang, Z., Sun, G., Xu, S., Wang, X.,
and Zhu, Q. Federated class-incremental learning. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10164-10173, 2022.

Fang, M., Cao, X, Jia, J., and Gong, N. Local model poi-
soning attacks to {Byzantine-Robust} federated learning.
In 29th USENIX security symposium (USENIX Security
20), pp. 1605-1622, 2020.

Geiping, J., Bauermeister, H., Droge, H., and Moeller, M.
Inverting gradients-how easy is it to break privacy in
federated learning? Advances in Neural Information
Processing Systems, 33:16937-16947, 2020.

Haroush, M., Hubara, 1., Hoffer, E., and Soudry, D. The
knowledge within: Methods for data-free model com-
pression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8494—
8502, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Hendryx, S. M., KC, D. R., Walls, B., and Morrison, C. T.
Federated reconnaissance: Efficient, distributed, class-
incremental learning. arXiv preprint arXiv:2109.00150,
2021.

Hinton, G., Vinyals, O., Dean, J., et al.
the knowledge in a neural network.
arXiv:1503.02531, 2(7), 2015.

Distilling
arXiv preprint

Jiang, Z., Ren, Y., Lei, M., and Zhao, Z. Fedspeech:
Federated text-to-speech with continual learning. arXiv
preprint arXiv:2110.07216, 2021.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1-2):1-210, 2021.

Konec¢ny, J., McMahan, H. B., Yu, F. X., Richtarik, P,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future directions.
IEEE Signal Processing Magazine, 37(3):50-60, 2020.

Li, Z. and Hoiem, D. Learning without forgetting. /EEE
transactions on pattern analysis and machine intelligence,
40(12):2935-2947, 2017.

Lyu, L., Yu, H., and Yang, Q. Threats to federated learning:
A survey. arXiv preprint arXiv:2003.02133, 2020.

Ma, Y., Xie, Z., Wang, J., Chen, K., and Shou, L. Continual
federated learning based on knowledge distillation.

McCloskey, M. and Cohen, N. J. Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, pp. 109-165. Elsevier, 1989.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273—1282. PMLR, 2017.

Priyanshu, A., Sinha, M., and Mehta, S. Continual dis-
tributed learning for crisis management. arXiv preprint
arXiv:2104.12876, 2021.

Qi, D., Zhao, H., and Li, S. Better generative re-
play for continual federated learning. arXiv preprint
arXiv:2302.13001, 2023.

Qiu, X., Fernandez-Marques, J., Gusmao, P. P., Gao, Y.,
Parcollet, T., and Lane, N. D. Zerofl: Efficient on-device
training for federated learning with local sparsity. arXiv
preprint arXiv:2208.02507, 2022.

Don’t Memorize; Mimic The Past: Federated Class Incremental Learning Without Episodic Memory

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konecny, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. arXiv preprint arXiv:2003.00295,
2020.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and
Wayne, G. Experience replay for continual learning. Ad-

vances in Neural Information Processing Systems, 32,
2019.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning
with deep generative replay. Advances in neural informa-
tion processing systems, 30, 2017.

Shoham, N., Avidor, T., Keren, A., Israel, N., Benditkis,
D., Mor-Yosef, L., and Zeitak, I. Overcoming forgetting
in federated learning on non-iid data. arXiv preprint
arXiv:1910.07796, 2019.

Smith, J., Hsu, Y.-C., Balloch, J., Shen, Y., Jin, H., and
Kira, Z. Always be dreaming: A new approach for data-
free class-incremental learning. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,
pp. 9374-9384, 2021.

Usmanova, A., Portet, F., Lalanda, P., and Vega, G. A
distillation-based approach integrating continual learn-
ing and federated learning for pervasive services. arXiv
preprint arXiv:2109.04197, 2021.

Van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning. arXiv preprint arXiv:1904.07734,
2019.

Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi,
F, Jin, S., Quek, T. Q. S., and Vincent Poor, H. Feder-
ated learning with differential privacy: Algorithms and
performance analysis. IEEE Transactions on Informa-
tion Forensics and Security, 15:3454-3469, 2020. doi:
10.1109/TIFS.2020.2988575.

Yin, H., Molchanov, P., Alvarez, J. M., Li, Z., Mallya,
A., Hoiem, D., Jha, N. K., and Kautz, J. Dreaming to
distill: Data-free knowledge transfer via deepinversion. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8715-8724, 2020.

Yoon, J., Jeong, W., Lee, G., Yang, E., and Hwang, S. J.
Federated continual learning with weighted inter-client
transfer. In International Conference on Machine Learn-
ing, pp. 12073-12086. PMLR, 2021.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In International Confer-
ence on Machine Learning, pp. 3987-3995. PMLR, 2017.

Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge dis-
tillation for heterogeneous federated learning. In Infer-
national Conference on Machine Learning, pp. 12878—
12889. PMLR, 2021.

Don’t Memorize; Mimic The Past: Federated Class Incremental Learning Without Episodic Memory

A. Algorithm in detail

Algorithm 1 MFCL

1: N: #Clients, [Cx]: Client Set, K: #Clients per Round, u;: client i Update, E: Local Epoch
2: R: FL Rounds per Task, T #Tasks, ¢: current task , | |t: Task t Size, ¢q: #Discovered Classes
3: F:: Global Model for task t, G;: Generative Model, Eg: Generator Training Epoch

4: ¢+ 0

5: G, Fo, F1 < initialize()

6: fort =1to T do

7 g q+ |V

8: Fi < updateArchitecture(F;, q)

9: forr=1to Rdo
10: Ck < RandomSelect([Cy], K)
11: for c € Ck in parallel do
12: U, < localUpdate(F;,G, F;_1, E)
13: end for
14: F; + globalAggregation(F, [I.])
15: end for

16: # save a frozen version of model for sending to clients
17: saveFrozen(F;)

18: G « trainDFGenerator(F;, Eg, q) #using (4)

19: G < freezeModel(G) #fix generator weights

20: end for

A.1. Generative Model Architectures

In Table 2, we show the generative model architectures used for CIFAR-100. The global model has ResNet18 architecture, we
change the first CONV layer kernel size to 3 x 3 from 7 x 7. In this table, CONV layers are reported as CONVK X K (Cip,, Cout),
where K, C;,, and C,,,; are the size of the kernel, input channel and output channel of the layer, respectively.

A.2. Hyperparameters

Table 3 presents some of the more important parameters.

CIFAR-100

FC(1000, 128 x 8 x 8)
reshape(—, 128,8,8)

BatchNorm(128) Datas‘.et CIFAR-100
Interpolate(2) Data Size 32 x 32
CONV3 x 3(128,128) # Tasks 10
BatchNorm(128) # Classes per task 10
LeakyReLU # Samples per class 500
Interpolate(2) Batch Size 32
CONV3 x 3(128,64) Synthetic Batch Size 32
BatchNorm(64) FL round per task 100
LeakyReLU Local epoch 10
NV 4
0 ST:H?;1<6 .3) Table 3. Parameter Settings in different datasets

BatchNorm(3)

Table 2. Generative model Architecture

