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ABSTRACT

We improve time complexity of spectral sparsification algorithms, such as Batson,
Spielman and Srivastava (BSS-2009), used for iteratively computing spectral spar-
sifiers of n-vertex graphs or, more generally, for sparsifying a sum of rank-one
n× n matrices, or dual-set sparsification, Boutsidis, Drineas,and Magdon-Ismail
(2011) used for joint column selection. We demonstrate that for such algorithms
the computations relying on matrix inversion are iterations dependent, namely
inversion of large matrices at the k-th iteration can be performed using k×k matrix
inversion or, for greater stability, by inverting only the lower part of a Cholesky
decomposition. This improves the computational complexity of such algorithms.
We propose heuristics relying on restarted sparsification taking full advantage
of inverting small matrices while ensuring control on barriers as in the original
algorithms. Such heuristics present an empirical interest that is validated with
various numerical experiments.

1 INTRODUCTION

A spectral sparsifier is a reweighted sparse subgraph that approximately preserve Laplacian quadratic
form. Formally, for an n-vertex undirected and weighted graph G, a subgraph G′ of G, with proper
reweighting of edges is called a (1 + ϵ)-spectral sparsifier if (1− ϵ)LG ⪯ LG′ ⪯ (1 + ϵ)LG, i.e.

(1− ϵ)x⊤LGx ≤ x⊤LG′x ≤ (1 + ϵ)x⊤LGx, ∀x ∈ Rn

The utility of graph sparsification lies in approximating dense graphs with sparse ones, while ensuring
approximation of the Laplacian. This approximation guarantees that many global properties—such
as effective resistance, commute times, and cut capacities-are preserved to within provable bounds.
Spectral properties can be leveraged for graph clustering; for efficiently solving min-cut/max-flow
problems; for interpolating functions over the nodes. We refer to Satuluri et al. (2011); Ahn et al.
(2012); Fung et al. (2011); Bravo Hermsdorff & Gunderson (2019) and references their-in.

There has been an extensive research interest for this problem, initiated by Spielman et al. Spielman &
Teng (2004); Spielman & Srivastava (2008); Spielman & Teng (2011); Batson et al. (2009). In Batson
et al. (2009), the first algorithm for constructing a spectral sparsifier with n/ϵ2 edges, which is optimal
up to a constant (see e.g. Andoni et al. (2016)), was given. More generally, given an n×n symmetric
positive semi-definite matrix A =

∑m
i=1 viv

⊤
i , the paper establishes the existence, via a deterministic

constructive approach, of scalars ti ≥ 0 s.t. |{i : ti > 0| ≤ n/ϵ2 and A′ =
∑m

i=1 tiviv
⊤
i satisfies

(1− ϵ)A ⪯ A′ ⪯ (1 + ϵ)A. This result is a major theoretical breakthrough. It has shown that log
factor showing in random sampling can be removed. It has also an inherent computational interest as
it relies on straightforward techniques that can easily be adapted and generalized to other contexts.

The Batson-Spielman-Srivastava (BSS) sparse representation theorem/algorithm has become a foun-
dational tool across theoretical computer science, applied mathematics, and machine learning. Numer-
ous researchers have extended and applied the BSS framework in settings where linear-sized sparse
representations are required—either to establish complexity-theoretic bounds or to design scalable
algorithms. These techniques are particularly impactful in high-dimensional data analysis, where
storing or processing the full dataset is computationally prohibitive, yet preserving the underlying
geometric structure is crucial. We provide a concise overview of these developments.

Column subset selection or sketching The problem of selecting a representative subset of columns
from a matrix—commonly referred to as column subset selection—has been extensively studied in
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numerical linear algebra and machine learning. These techniques are essential for matrix approx-
imation, feature selection, and data reduction in high-dimensional settings. We refer to Avron &
Boutsidis (2013); Boutsidis et al. (2014) and references their-in for an overview of these problems.

A prominent line of work in column subset selection builds upon the BSS sparsification frame-
work. Boutsidis et al. Boutsidis et al. (2011; 2013); Boutsidis & Magdon-Ismail (2013); Avron &
Boutsidis (2013); Boutsidis et al. (2014) employed BSS-based techniques as subroutines in feature
extraction and low-rank reconstruction. In Boutsidis et al. (2011), one of the earliest applications
of BSS algorithm (called single-set sparsification) to deterministic and randomized feature extrac-
tion is given. Later, Boutsidis et al. (2014) introduced algorithmic variants called dual-set spectral
sparsification (Boutsidis et al., 2014, Lemma 13) and dual-set Frobenius sparsification (Boutsidis
et al., 2014, Lemma 14), which leverage BSS ideas to achieve asymptotically optimal column-based
reconstructions under both the spectral and Frobenius norms. These algorithms rely on two key
innovations: (i) fast, approximate SVD-like decompositions that estimate the dominant singular
subspace without computing the full SVD; (ii) deterministic greedy selection of some of the left and
right singular vectors via the dual-set variants algorithms.

Paul et al. Paul & Drineas (2016); Paul et al. (2016), employed single-set spectral sparsification for
deterministic feature selection in supervised learning. Namely, it was applied as preprocessing step
for regularized least-squares classification (RLSC) Paul & Drineas (2016) and to linear support vector
machines (SVMs) Paul et al. (2016). It is shown that solving these problems in the reduced feature
space yields approximate classifiers that are as good as the classifiers obtained using the full feature
space. In particular, solving in a reduced feature space of sizeO(s), where s is the number of support
vectors, yields classifiers with decision boundaries and margins comparable to those obtained in the
full feature space.

Spectral/Frobenius sparsification is a complementary approach for dimensionality reduction in many
others contexts Cohen et al. (2015). Its performance is competitive with state-of-the-art randomized
numerical linear algebra techniques Mahoney et al. (2011); Kannan & Vempala (2017), which offer
practical trade-offs between efficiency and accuracy, and have been successfully applied in these
contexts.

Covariance Estimation and Sample Sparsification. Another early application of BSS algorithm
appears in the context of covariance estimation. Srivastava and Vershynin Srivastava & Vershynin
(2013), apply the method to obtain bounds on the convergence of the sample covariance matrix to the
true covariance matrix of a high-dimensional distribution. Their results provide deterministic bounds
that are especially useful in settings where traditional concentration inequalities are insufficient
due to dimensionality or sample size constraints. A related development is the work of Charikar
et al. Charikar et al. (2017), who use the algorithm for sample sparsification. In this context, the
goal is to sparsify a set of input vectors (samples) while preserving certain properties, such as their
covariance or total variance.

Sample Sparsification for curse fitting: sparsification is often studied in the context of sample
selection, that is, selecting a subset of rows from the data matrix. This is particularly relevant for
regression problems, where the objective is to find small, informative subsets of the data samples,
observe associated labels/function evaluations, and produce accurate, unbiased estimators of the full
solution. Spectral sparsification techniques Batson et al. (2009); Lee & Sun (2018) were tailored to
this context for establishing the existence and producing linear-sized samples w.r.t projection space
dimension ensuring quasi-optimal error guarantee in expectation. We refer to Chen & Price (2019)
and Dolbeault & Chkifa (2024) and references their-in for some of these results. We also refer also to
Boutsidis et al. (2013); Huang et al. (2020) for the slightly similar problem of coresets construction,
where the use of dual-set sparsification framework introduced in Boutsidis et al. (2014) is significant.

Graphs in Machine Learning Graph sparsification belongs to a broader class of graph reduction
techniques, which include graph sampling/coarsening/sketching/streaming/distillation to name a
few. The common concept of all these techniques is to reduce the size or complexity of a graph
while approximately preserving key structural properties. They have become imperative for scaling
algorithms to handle the massive graphs that commonly arise in machine learning applications. We
refer to Ahn et al. (2012); Jin et al. (2022); Joly & Keriven (2024) and reference their-in for some
examples
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Graph sparsification techniques form an essential toolkit for processing and learning from large-
scale graphs. They enable efficiency, preserve theoretical guarantees, and support a wide range of
applications. They are now integrated into many modern machine learning pipelines, including:
Gaussian Graphical Model Cheng et al. (2015), Fast Graph Attention Networks (GATs) Srinivasa
et al. (2020), Graph Convolutional Networks (GCNs) Ahmad et al. (2021), Sparse Graph Attention
Networks (SGAT) Ye & Ji (2021), Neural Networks Pruning Laenen (2023), Graph Clustering
Chen et al. (2016); Chakeri et al. (2016); Sun & Zanetti (2019), Graph Learning and Laplacian
Regularization Sadhanala et al. (2016); Calandriello et al. (2018), Differential Privacy Arora &
Upadhyay (2019). We refer also to Dwaraknath et al. (2023) and references their-in for

Optimization and geometry Sparsification also arises in Volumetric Spanners constructions: the
work of Hazan et al. Hazan & Karnin (2016) makes use of identities similar to those found in the
BSS algorithm to construct compact representations of data. In particular, Hazan uses the BSS
algorithm to sparsify John’s decomposition of at set of m vectors in Rn transformed into John’s
position, thereby producing volumetric spanner for these vectors of order at most 12n and that can
be constructed in poly(m,n) time. We also mention Bhaskara et al. Bhaskara et al. (2023) for an
overview on volumetric spanners applications and comparison with Hazan & Karnin (2016).

Our contribution: BSS algorithm and the techniques based on it are all initialized with matrices
A = 0n×n that are iteratively rank-one updated. They all require n× n matrix inversions at every
iteration (or phase Lee & Sun (2018)). These matrices have the form ±(A− zIn) where A is the
current matrix to be updated. It turns out, a slight change of perspective leads to iteration dependent
matrix inversion. Namely, at iteration number k the required n× n matrix inversions can be deduced
from inverting k × k matrices (or better mk ×mk matrices where mk is the number of unique past
rank-one update). This improves the computational complexity for all iterations k s.t. mk < n.
This allows sparsification techniques to be tractable even for large values of n, at least for the first
iterations. The computational simplifications we propose are imperative for dual-set sparsification of
sums of the form

∑m
i=1 viv

⊤
i ∈ Rn1×n1 and

∑m
i=1 qiq

⊤
i ∈ Rn2×n2 where n2 >> n1. Indeed for a

target number N of rank-one update with n1 < N < n2, it is excessive to operate on matrices of size
n2 × n2 for the second sum. For single-set sparsification and in order to take full advantage of the
identified workarounds, strategies based on restarting/aggregating every other “few” iterations are to
be considered. We discuss a deterministic strategy that emulate lower barrier push as in Batson et al.
(2009); Lee & Sun (2018) and which has shown promising results in the numerical experiment.

Related works Improvement to spectral sparsification techniques are manifold and are concerned
with many aspects. First, there are purely graph sparsifiers, concerned only with graph sparsification,
though sophisticated edge sampling strategies Fung et al. (2011); Jambulapati & Sidford (2018), or in
the presence of active constraints Koutis & Xu (2016); Kapralov et al. (2017); Arora & Upadhyay
(2019). There are also improvements concerned with running time in the more general framework
of sparsifying a sum of matrices vv⊤. For instance, through fast isotropic sparsification Zouzias,
Anastasios (2012), random sampling and batch update rules Lee & Sun (2018), optimization grounded
updates, mainly by means of semi-definite programming Allen-Zhu et al. (2015); Lee & Sun (2017);
Cheng & Ge (2018), and optimized data structures for speeding up computations Song et al. (2022).
The latter provides a comparaison on complexity and running time of these improvements.

Our contribution is not a parallel development to the aforementioned works, but rather a transversal
one. The underlying ideas in this paper can be adapted to the frameworks such as Zouzias, Anastasios
(2012); Lee & Sun (2018), and can benefit from optimized implementations like those in Song et al.
(2022). For clarity of exposition, we focus on illustrating how these ideas apply specifically to the
framework single-set and dual-set sparsification, Batson et al. (2009) and Boutsidis et al. (2011; 2013;
2014).
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2 BSS FRAMEWORK

Let us recall the main theorem in Batson et al. (2009). We let v1,v2, . . . ,vm be vectors in Rn

and M =
∑

i≤m viv
⊤
i . For every ϵ ∈ (0, 1), there exist scalars si ≥ 0 with |{i : si ̸= 0}| ≤⌈

rank(M)/ϵ2
⌉

s.t.
(1− ϵ)2M ⪯

∑
i≤m

siviv
⊤
i ⪯ (1 + ϵ)2M

Up to consider vectors wi = (M+)
1
2vi where M+ is the pseudo-inverse of M (or rather vectors

wi = L−1vi if M is nonsingular and M = LL⊤ is a Cholesky decomposition of M ), it suffices to
establishes the theorem for M = In the identity matrix.

To prove the theorem, they build a sum A =
∑

i tiviv
⊤
i iteratively, adding one update tiviv

⊤
i

at a time that after ⌈n/ϵ2⌉ update satisfies λmax(A)/λmin(A) ≤ (1 + ϵ)2/(1 − ϵ)2. For A s.t.
ℓIn ≺ A ≺ uIn, we recall that lower/upper potentials are

Φℓ(A)
def
= Tr((A− ℓIn)

−1), Φu(A)
def
= Tr((uIn −A)−1) (1)

Initially, A = 0 and the barriers are at ℓ = ℓ0 < 0 < u0 = u. At each iteration, the matrix is
updated by a rank-one matrix tiviv

⊤
i , that guarantees that while barriers ℓ and u are incremented by

δL and δU , respectively, at each step, the lower and upper potentials do not increase. As a result, no
eigenvalue ever jumps across a barrier.

More precisely, we let N ≥ 0, ϵL, ϵU , δL, δU > 0 s.t. 1/δU + ϵU ≤ 1/δL − ϵL, and consider the
following scheme

• Initialization: A = 0, u = n/ϵU and l = −n/ϵL, implying

Φℓ(A) = ϵL, and Φu(A) = ϵU .

• For k = 1, . . . , N do:
– pick a vector v ∈ {vi} and t ≥ 0 that insures

Φℓ+δL(A+ tvv⊤) ≤ Φℓ(A), Φu+δU (A+ tvv⊤) ≤ Φu(A).

– Update the matrix and increment the barrier ℓ and u,

A← A+ tvv⊤, ℓ← ℓ+ δL, u← u+ δU .

The main difficulty in this sketched BSS algorithm resides in finding an adequate vector v and real
number t ≥ 0 s.t. the updated matrix yields a decrease in lower and upper potentials, with the new
lower and upper barriers. This is however possible as thoroughly explained in Batson et al. (2009).
We give a quick rundown of their arguments.

We assume that at the k-th iteration ℓIn ≺ A ≺ uIn, Φℓ(A) ≤ ϵL and Φu(A) ≤ ϵU . Then
obviously A ≺ (u + δU )In and since ϵL < 1/δL, one also has (ℓ + δL)In ≺ A. For an arbitrary
v ∈ {vi} and t ≥ 0, applying Sherman-Morisson identity gives

Φℓ+δL(A+ tvv⊤) = Φℓ+δL(A)− tv⊤ (A− (ℓ+ δL)In)
−2

v

1 + tvT (A− (ℓ+ δL)In)
−1

v
.

Φu+δU (A+ tvv⊤) = Φu+δU (A) +
tv⊤ ((u+ δU )In −A)

−2
v

1− tvT ((u+ δU )In −A)
−1

v
,

The second identity is justified if DU ̸= 0 where DU = (1− tvT ((u+ δU )In −A)
−1

v). We note
in passing that A + tvv⊤ ≺ (u + δU )In if and only if DU > 0, which in turn constraints t be in
[0, t∗[ with t∗ = 1/vT ((u+ δU )In −A)

−1
v. We note that from lower/upper potentials definition,

Φℓ+δL(A) > Φℓ(A), Φu+δU (A) < Φu(A).

Also, note that t 7→ Φu+δu(A + tvv⊤) strictly increases from Φu+δU (A) to +∞ for t ∈ [0, t∗[
and t 7→ Φℓ+δL(A+ tvv⊤) is strictly decreasing. As t is increased, one is faced with the opposed
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objectives of dropping the lower potential below Φℓ(A) while also keeping the upper potential below
Φu(A). If we cast these objectives as equations on t > 0, we obtain 1/t ≤ LA(v) and UA(v) ≤ 1/t
where

UA(v)
def
=

vT ((u+ δU ) In −A)
−2

v

Φu(A)− Φu+δU (A)
+ vT ((u+ δU ) In −A)

−1
v,

LA(v)
def
=

vT (A− (ℓ+ δL) In)
−2

v

Φℓ+δL(A)− Φℓ(A)
− vT (A− (ℓ+ δL) In)

−1
v.

(2)

These quantities are well defined for all v ∈ {vi} with UA(v) > 0 for all v. We note also that
the condition UA(v) ≤ 1/t implies necessarily t ∈ [0, t∗[. The authors in Batson et al. (2009)
prescribe naturally picking any v and t s.t. UA(v) ≤ 1/t ≤ LA(v). They indeed demonstrated by
an averaging argument that the inequality UA(v) ≤ LA(v) must holds for at least one v. For this to
hold, the conditions 1/δU + ϵU ≤ 1/δL − ϵL is sufficient as it implies

∑
v UA(v) ≤

∑
v LA(v).

Given ϵ ∈]0, 1[, we let κ = 1+ϵ
1−ϵ and consider parameters

δL = 1, ϵL = ϵ, δU = κ, ϵU = ϵ/κ. (3)

One has 1/δU + ϵU = (1 + ϵ)/κ = 1− ϵ = 1/δL − ϵL. Running the BSS algorithm for N iteration
yields A =

∑
i tiviv

⊤
i with |{i : ti ̸= 0|} ≤ N and

(−n/ϵ+N)In ≺ A ≺ κ(n/ϵ+N)In. (4)

For N ≥ n/ϵ, the matrix A is guaranteed definite positive, and for N = (1 + γ)n/ϵ it satisfies in
addition λmax(A)/λmin(A) ≤ κ 2+γ

γ . For N = ⌈n/ϵ2⌉ (hence γ ≈ (ϵ−1 − 1)). Normalizing A

by the lower barrier (−n/ϵ+N) ≈ n(1− ϵ)/ϵ2 and using the fact that (n/ϵ+ x)/(−n/ϵ+ x) is
strictly decreasing for x > 0, yields In ≺ A ≺ κ2In.

A sketch of the constructive proof is presented in Algorithm 1.

Algorithm 1 Single set sparsification algorithm
Require: {vi}mi=1 s.t.

∑m
i=1 viv

⊤
i = In, N > n,

Ensure: A =
∑

i tiviv
⊤
i s.t. |{i : ti ̸= 0|} ≤ N , and (1−

√
n/N)2In ≺ A ≺ (1 +

√
n/N)2In

1: Let ϵ =
√
n/N , κ = (1 + ϵ)/(1− ϵ), and

δL = 1, ϵL = ϵ, δU = κ, ϵU = ϵ/κ.

2: Initialize A = 0n×n, l = −n/ϵL, u = n/ϵU , Φℓ = ϵL, Φu = ϵU
3: for k = 1, . . . , N do
4: Select v ∈ {vi} and weights t > 0 satisfying

U (A, u, δU ,v) ≤ 1/t ≤ L (A, ℓ, δL,v) .

5: update A← A+ tvv⊤, l← l + δL, u← u+ δU ,
6: end for
7: multiply selected weights t and A by (1−

√
n/N)N−1

3 DUAL-SET SPARSIFICATION FRAMEWORK

The exact same constructive proof can be considered for a dual-set sparsification setting, see e.g.
Boutsidis et al. (2014). Namely, let v1,v2, . . . ,vm be vectors in Rn1 and q1, q2, . . . , qm vectors in
Rn2 s.t.

∑
i≤m viv

⊤
i = In1

and
∑

i≤m qiq
⊤
i = In2

. For every N > n1, there exist scalars si ≥ 0

with |{i : si ̸= 0}| ≤ N s.t.

(1−
√

n1/N)2In1
⪯
∑
i≤m

siviv
⊤
i ,

∑
i≤m

siqiq
⊤
i ⪯ (1 +

√
n1/N)2In2

A sketch of the constructive proof is presented in Algorithm 2.
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Algorithm 2 Dual set sparsification algorithm
Require: {vi}mi=1 s.t.

∑m
i=1 viv

⊤
i = In1

, {qi}mi=1 s.t.
∑m

i=1 qiq
⊤
i = In2

, N > n1,
Ensure: A =

∑
i tiviv

⊤
i , H =

∑
i tiqiq

⊤
i s.t. |{i : ti ̸= 0|} ≤ N , and

(1−
√
n1/N)2In ⪯ A, H ⪯ (1 +

√
n2/N)2In

1: Let ϵ1 =
√
n1/N , ϵ2 =

√
n2/N , κ = (1 + ϵ2)/(1− ϵ1), and

δL = 1, ϵL = ϵ1, δU = κ, ϵU = ϵ2/κ.

2: Initialize A = 0n1×n1
, H = 0n2×n2

, l = −n1/ϵL, u = n2/ϵU , Φℓ = ϵL, Φu = ϵU
3: for k = 1, . . . , N do
4: Select couple (v,q) ∈ {(vi,qi)} and weights t > 0 satisfying

U (H, u, δU , q) ≤ 1/t ≤ L (A, ℓ, δL,v) .

5: update A← A+ tvv⊤, H ←H + tvv⊤, l← l + δL, u← u+ δU ,
6: end for
7: multiply selected weights t, A and H by (1−

√
n1/N)N−1

4 COMPUTATIONAL IMPROVEMENTS

In Algorithms 1 and 2. Every iteration is dominated by the computation of Tr(M−1) and evaluations
vM−1v and vM−2v for M the two matrices (A− (l + δL)In) and ((u+ δU )In −H). 1. In
plain algorithm description, it is usually assumed that these inverses are computed at the beginning of
every iteration and required computations are carried out in the most natural and direct manner. Here,
we present the simplification (workarounds) for such computations. They improve greatly the speed
of the algorithms on the first n or more iterations and are imperative dual sparsification in the case
n1 < N < n2.

Few linear algebra lemmas The Woodbury matrix identity is

(A+XCY )
−1

= A−1 −A−1X
(
C−1 + Y A−1X

)−1
Y A−1

where A, C, X and Y are conformable matrices: A is n× n, C is k × k, X is n× k, Y is k × n
and the inverses are assumed to be well defined. The Weinstein–Aronszajn identity states

det(In +XY ) = det(Ik + Y X).

By an immediate application to A = −zIn, C = Ik and Y = X⊤, we have the following lemma.
Lemma 1. Let X ∈ Rn×k, and z ∈ R − {0}. Then

(
XX⊤ − zIn

)
is nonsingular if and only if(

X⊤X − zIk
)

is nonsingular. Moreover, there holds(
XX⊤ − zIn

)−1
=

X
(
X⊤X − zIk

)−1
X⊤ − In

z
(5)

This lemma can also be derived via SVD decomposition of X . Taking the square of the identity and
performing some simplifications, we derive the following lemma.
Lemma 2. Let X ∈ Rn×k, and z ∈ R− {0} s.t. XX⊤ − zIk is nonsingular. There holds(

XX⊤ − zIn
)−2

+

(
XX⊤ − zIn

)−1

z
=

X
(
X⊤X − zIk

)−2
X⊤

z
(6)

Proof. We have that(
X
(
X⊤X − zIk

)−1
X⊤

)2
= X

(
X⊤X − zIk

)−1
X⊤X

(
X⊤X − zIk

)−1
X⊤

= zX
(
X⊤X − zIk

)−2
X⊤ +X

(
X⊤X − zIk

)−1
X⊤,

where we have simply used X⊤X = zIn + (X⊤X − zIn). Taking the square of equation 5 and
rearranging the right hand side using the above identity, we derive the claimed result.

1H = A for single-set sparsification
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An immediate implication of Lemmas 1 and 2 is the following.
Corollary 1. Let X ∈ Rn×k, A = XX⊤, B = X⊤X and z ̸= 0 s.t. A− zIk is non nonsingular.
For v ∈ Rn, there holds

v⊤ (A− zIn)
−1

v =
w⊤ (B − zIk)

−1
w − ∥v∥2

z
, (7)

where w = X⊤v. We let q−(v) be the value, then

v⊤ (A− zIn)
−2

v =
w⊤ (B − zIk)

−2
w − q−(v)

z
(8)

Fast potentials and quadratic forms computation Sparsification algorithms as discussed consist
in picking a new pair of vector/weight (vik , tk) at the k-th iteration and update A← A+ tkvikv

⊤
ik

or (vik , qik , tk) at the k-th iteration and update A ← A + tkvikv
⊤
ik

and H ← H + tkqikq
⊤
ik

for
dual set sparsification. We introduce notation X = [

√
t1vi1 | . . . |

√
tkvik ] ∈ Rn×k. Then at iteration

k, one has

A =

k∑
j=1

tjvijv
⊤
ij = XX⊤

The matrix A has the same eigenvalues as the matrix B = X⊤X(∈ Rk×k). More precisely, if
λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of A, then λ1 ≥ · · · ≥ λk ≥ 0 are the eigenvalues B (with
λn+1 = · · · = λk if k ≥ n and λk+1 = · · · = λn = 0 if k ≤ n). In particular, if l, u ∈ R are such
that lIn ≺ A ≺ uIn, then lIk ≺ B ≺ uIk, and

Φℓ(A) = Φℓ(B)− n− k

l
, Φu(A) = Φu(B) +

n− k

u
. (9)

Quadratic forms associated with matrices of the form (A− zI)
−1, (A− zI)

−2, (zI−A)
−1, and

(zI−A)
−2 are related to those same quadratic forms but associated with B, see Corollary 1. Let

us present this for our settings of k-th iteration of single-set or dual-set sparsification algorithm and
assume that

(l + δL) In ≺ A ≺ (u+ δU ) In.

Then, (l + δL) Ik ≺ B ≺ (u+ δU ) Ik. Moreover, given v ∈ Rn and introducing w = X⊤v(∈ Rk),

QL,1(v) = v⊤ (A− (l + δL) I)
−1

v =
w⊤ (B − (l + δL) Ik)

−1
w − ∥v∥2

l + δL
, (10)

QL,2(v) = v⊤ (A− (l + δL) I)
−2

v =
w⊤ (B − (l + δL) Ik)

−2
w −QL,1(v)

l + δL
. (11)

and

QU,1(v) = v⊤ ((u+ δU ) I−A)
−1

v =
w⊤ ((u+ δU ) Ik −B)

−1
w + ∥v∥2

u+ δU
, (12)

QU,2(v) = v⊤ ((u+ δU ) I−A)
−2

v =
w⊤ ((u+ δU ) Ik −B)

−1
w +QL,1(v)

u+ δU
. (13)

In particular, the knowledge of matrices X and B is enough to compute quantities L (A, ℓ, δL,v)
and U (A, u, δU ,v).

We assume we have matrices X ∈ Rn×k, A = XX⊤, and B = X⊤X as described above. We
summarize below the time complexities for computing matrix inverse (A− zIk)

−1 vs (B − zIk)
−1,

for computing their traces, for matrix-vector multiplication (A− zIk)
−1

v vs (B − zIk)
−1

w with
w = X⊤v, for computing scalar products (and squared euclidean norm) and finally for computing
quantities such as L (A, ℓ, δL,v) and U (A, u, δU ,v) relying on A vs relying on B.

We note that in the actual sparsification algorithms, the complexity for computing vectors w = X⊤v
for v ∈ {vi}mi=1 can be reduced to O(1) by storing computation from previous iterations. In matrix-
vector multiplication below, we take this into account, and have O(k2) instead of O(n) +O(k2).
In light of the comparaison table, we have the following theorem on Algorithm 2 improved complexity.

7
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Operations
Algorithm relying on A relying on B

Matrix inversion O(n3) O(k3)
Trace computation O(n) O(k)

Matrix-vector multiplication O(n2) +O(k2)
scalar product/norm squared O(n) O(k)

LA (v) and UA (v) for all v ∈ {vi}mi=1 O(n3 +mn2) O(k3 +mk2)

Theorem 1. Let v1,v2, . . . ,vm be vectors in Rn1 and q1, q2, . . . , qm vectors in Rn2 s.t.∑
i≤m viv

⊤
i = In1

and
∑

i≤m qiq
⊤
i = In2

and assume that n1 ≤ n2. For every m > N > n1,
there exist scalars si ≥ 0 with |{i : si ̸= 0}| ≤ N s.t.

(1−
√
n1/N)2In1

⪯
∑
i≤m

siviv
⊤
i ,

∑
i≤m

siqiq
⊤
i ⪯ (1 +

√
n1/N)2In2

The sparsification algorithm runs in O(Nmn2
1) +O(Nm min(n2

2, N
2))

The computational complexity O(Nm min(n2
2, N

2)) follows as the minimum of complexities
O(Nmn2

2) and O(mN3) which corresponds to Algorithm 2 improved complexity. in the case
n2 > N and N ≤ n2.

5 CONCLUSION

We have presented a transversal contribution that extends core ideas from spectral sparsification.
Our framework offers both theoretical insight and practical flexibility, with potential applications
across graph theory, linear algebra, and machine learning. Future endeavor will primarily focus on
establishing theoretical guarantees for the restarted/aggregated framework.

Reproducibility Statement. Reproducibility is supported by: clear problem setup, notation, and
assumptions in Section 2 and 3 and complete or sketched proofs. Implementation details and
experimental settings for computing sparse sums are revisited and detailed in the appendix.
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A APPENDIX: ALGORITHMS AND ADDITIONAL DETAILS

Here we revisit in more details the single-set and dual-set sparsification frameworks discussed in
the paper. An implementation of the BSS algorithm is provided in Algorithm 1. Every iteration is
dominated by the computation of Tr(M−1) and evaluations vM−1v and vM−2v for M the two
matrices (A− (l + δL)In) and ((u+ δU )In −A). In the plain algorithm description, we simply
assume we compute these inverses Zl and Zu at the beginning of every iteration and carry out
required computations in the most natural and direct manner. One other more stable and convenient
way to perform this is by means of Cholesky decomposition. Given M an n× n symmetric definite
positive and M = LL⊤ its cholesky decomposition, there holds Tr(M−1) = ∥L−1∥2F and

v⊤M−1v = ∥L−1v∥2, v⊤M−2v = ∥(L−1)⊤L−1v∥2. (14)

The quantities Φℓ+δL , Φu+δU and the evaluations ql,1, ql,2, qu,1, qu,2 in Algorithm equation 3 can
thus be computed by relying on Cholesky decomposition with M equal to (A− (ℓ+ δL)In) or
((u+ δU )In −A). One needs to perform two Cholesky decomposition and two matrix inversion of
the lower matrices at the beginning of every iteration, the other operations are straightforward.

For the improved and faster computation of potentials and quadratic forms associated with B,
Cholesky decomposition can be invoked exactly as explained above.

In both Algorithm 3 and Algorithm 5, we can keep track on “unlocked” indices ik, i.e. indices for
which (vik , tk) was selected prior to the k-th iteration. We note that mk := |{ij : 1 ≤ j ≤ k| ≤ k
since vectors can be reselected. In Algorithm 5 if v was selected in a previous iteration, we can
simply update associated column in X replacing

√
told with

√
told + tnew and also reflect this on

B. In case this detail is implemented, Algorithm 5 is faster than Algorithm 3 on all iteration k s.t.
mk ≤ n.

In the improved algorithm 5, X is only needed to compute the output A = XX⊤ if the latter
is not iteratively updated. We can dismiss it in the implementation and simply iteratively update
A← A+ tvv⊤ initialized at A = 0n×n. For applications where the knowledge of the final weights
{t1, . . . , tm} is required, it is straightforward to implement the updating rule.

The improved implementation of dual-set sparsification is not fully detailed. However, the underlying
ideas for simplification/speed up/caching are as demonstrated in Algorithm 5
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A.1 PLAIN SINGLE SET SPARSIFICATION ALGORITHM

For implementing plain single-set sparsification, we replace the generic instruction at line 6 and
computations at lines 7,8 in Algorithm 3 with the more detailed subroutine 4.

Algorithm 3 Plain single set sparsification algorithm
Require: {vi}mi=1 s.t.

∑n
i=1 viv

⊤
i = In, N ≥ n,

Ensure: A =
∑

i tiviv
⊤
i s.t. |{i : ti ̸= 0|} ≤ r, and (1−

√
n/N)2 In ≺ A ≺ (1 +

√
n/N)2 In

1: Let ϵ =
√

n/N , κ = (1 + ϵ)/(1− ϵ), and

δL = 1, ϵL = ϵ, δU = κ, ϵU = ϵ/κ.

2: Initialize A = 0n×n, ▷ matrices initialization
3: Initialize ℓ = −n/ϵL, u = n/ϵU , ▷ barriers initialization
4: Initialize Φℓ = ϵL, Φu = ϵU , ▷ potentials initialization
5: for k = 1, . . . , N do
6: select vector v ∈ {vi} and number t > 0 satisfying

U (v, δU ,A, u) ≤ 1

t
≤ L (v, δL,A, ℓ) .

7: compute qℓ,1 = v⊤(A− (ℓ+ δL)In)
−1v, qℓ,2 = v⊤(A− (ℓ+ δL)In)

−2v
8: compute qu,1 = v⊤((u+ δU )In −A)−1v, qu,2 = v⊤((u+ δU )In −A)−2v
9: update

Φℓ ← Φℓ+δL +
ql,2

1/t− ql,1
, Φu ← Φu+δu −

qu,2
1/t+ qu,1

10: update A← A+ tvv⊤, ℓ← ℓ+ δL, u← u+ δU ,
11: end for
12: multiply selected weights t and A by (1−

√
n/N)N−1

Algorithm 4 selection of vector/weight (v, t)
1: compute Zℓ = (A− (ℓ+ δL)In)

−1, Φℓ+δL = Tr(Zℓ), and ∆ℓ = Φℓ − Φℓ+δL
2: compute Zu = ((u+ δU )In −A)−1, Φu+δU = Tr(Zu), and ∆u = Φu+δU − Φu

3: consider variables ql,1, ql,2, qu,1, qu,2, L, U
4: for i = 1 to m do
5: Let v = vi and compute xℓ = Zℓv, and xu = Zuv
6: compute

ql,1 ← ⟨v,xl⟩, ql,2 ← ∥xl∥2, L← ql,2/∆l − ql,1
qu,1 ← ⟨v,xu⟩, qu,2 ← ∥xu∥2, U ← qu,2/∆u + qu,1

7: if U ≤ L then
8: break ▷ the for loop
9: end if

10: end for
11: select vector v, weight t = 1/L and return ql,1, ql,2, qu,1, qu,2
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A.2 MODIFIED SINGLE SET SPARSIFICATION ALGORITHM

For implementing modified single-set sparsification, we replace the generic instruction at line 8 and
computations at lines 9,10 in Algorithm 5 with the more detailed subroutine 6.

Algorithm 5 Modified single-set sparsification algorithm
Require: {vi}mi=1 s.t.

∑n
i=1 viv

⊤
i = In, N ≥ n,

Ensure: A =
∑

i tiviv
⊤
i s.t. |{i : ti ̸= 0|} ≤ r, and (1−

√
n/N)2 In ≺ A ≺ (1 +

√
n/N)2 In

1: Let ϵ =
√

n/N , κ = (1 + ϵ)/(1− ϵ), and

δL = 1, ϵL = ϵ, δU = κ, ϵU = ϵ/κ.

2: Initialize A = 0n×n, X = [ ], B = [0], ▷ matrices initialization
3: Initialize ℓ = −n/ϵL, u = n/ϵU , ▷ barriers initialization
4: Initialize ϕℓ = ϵL, ϕu = ϵU , ▷ potentials initialization
5: let V = [v1, . . . ,vm] ∈ Rn×m and compute E = [∥v1∥2, . . . , ∥vm∥2],
6: Initialize W = [0, . . . , 0], ▷ cache initialization
7: for k = 1, . . . , N do
8: select vector v ∈ {vi} and number t > 0 satisfying

U (v, δU ,A, u) ≤ 1

t
≤ L (v, δL,A, ℓ) .

9: compute qℓ,1 = v⊤(A− (ℓ+ δL)In)
−1v, qℓ,2 = v⊤(A− (ℓ+ δL)In)

−2v
10: compute qu,1 = v⊤((u+ δU )In −A)−1v, qu,2 = v⊤((u+ δU )In −A)−2v
11: update

Φℓ ← Φℓ+δL +
ql,2

1/t− ql,1
, Φu ← Φu+δu −

qu,2
1/t+ qu,1

12: compute z = [⟨v,v1⟩, . . . , ⟨v,vm⟩], ▷ z = V ⊤v

13: update X ← [X,
√
t v], B ←

(
B

√
t w√

t w⊤ t ξ

)
, W ←

(
W√
t z

)
▷ matrices/cache

14: update A← A+ tvv⊤, ℓ← ℓ+ δL, u← u+ δU
15: end for
16: multiply selected weights t and A by (1−

√
n/N)N−1

Algorithm 6 selection of vector/weight (v, t) and associated vector w and squared norm ξ

1: compute Zℓ = (B − (ℓ+ δL)Ik)
−1, and Φℓ+δL = Tr(Zℓ)− (n− k)/(l + δL),

2: compute Zu = ((u+ δU )Ik −B)−1, and Φu+δU = Tr(Zu) + (n− k)/(u+ δU ),
3: compute ∆ℓ = Φℓ − Φℓ+δL and ∆u = Φu+δU − Φu

4: consider variables ql,1, ql,2, qu,1, qu,2, L, U
5: for i = 1 to m do
6: let v = vi, ξ = Ei, and w be the i-th column of W ▷ ξ = ∥v∥2 and w = X⊤v
7: compute yl = Zlw, and yu = Zuw
8: compute

ql,1 ←
w⊤yl − ξ

l + δL
, ql,2 ←

∥yl∥2 − ql,1
l + δL

, L← ql,2/∆l − ql,1

qu,1 ←
w⊤yu + ξ

u+ δU
, qu,2 ←

∥yu∥2 + ql,1
u+ δU

, U ← qu,2/∆u + qu,1

9: if U ≤ L then
10: break ▷ the inner for loop
11: end if
12: end for
13: select vector v, weight t = 1/L and return w, ξ, and ql,1, ql,2, qu,1, qu,2

14
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A.3 RESTARTED/AGGREGATED SPARSIFICATION HEURISTIC

Let us consider ϵ = 1/
√
d ∈]0, 1[, the parameters ϵL, ϵU , δL, δU as in 3 and execute single-set

sparsification for N > n iterations, as presented in the paper and without final normalization of A
(line 12 in Algorithm 3 and line 16 in Algorithm 5) The output matrix A satisfies

(−n/ϵ+N)In ≺ A ≺ κ(n/ϵ+N)In,

see equation 4. If we use N = dn = n/ϵ2 iterations, we obtain

nd(−ϵ+ 1)In ≺ A ≺ κ(ϵ+ 1)In

If instead we execute sparsification for n iterations and repeat this process d times (with reshuffled
{vi} preferably), the individual output matrices A(j) satisfy 0n×n ≺ A(j) ≺ κ(n/ϵ+ n)In, hence
the sum of output matrices A(j) satisfies

0n×n ⪯

(
d∑

i=1

A(i)

)
/nd ≺ 1

ϵ
κ(ϵ+ 1)In.

This last approach is faster, however provides worse estimate on the upper eigenvalue and no estimate
on the lower eigenvalue. In practice, we can design heuristics that would compel lower eigenvalue of
aggregated matrices A(i) to quickly become nonzero and increase steadily.

We consider a very general outline for this Restarted/aggregated Algorithm.

Algorithm 7 Fast restarted sparsification algorithm
Require: {vi}mi=1 s.t.

∑n
i=1 viv

⊤
i = In, J ≥ 1, 0 < ϵ < 1

Ensure: A =
∑

i tiviv
⊤
i s.t. |{i : ti ̸= 0|} ≤

∑
j Nj ,

1: let κ = (1 + ϵ)/(1− ϵ) and define δL = 1, ϵL = ϵ, δU = κ, ϵU = ϵ/κ.
2: Initialize A = 0n×n,
3: for j = 1, . . . , J do
4: let Nj be a number of rank-one matrices to be added
5: consider {vi} reordered in a certain way
6: compute Wj = Algorithm 5 / Algorithm 3({vi}, Nj , δL, ϵL, δU , ϵU ) without normalization

(line 16/ line 12)
7: A← A+Wj

8: end for

This heuristic has practical grounding. The main objective here is to improve complexity while emu-
lating BSS algorithm. By Algorithm Algorithm 5 / Algorithm 3, we mean the improved Algorithm
5 for up to n iterations concluded by the plain Algorithm if needed. For the above algorithm to have
better computational complexity than plain BSS, we need to have Nj < n for all j.

The way we decide on the cardinality Nj and how to reorder {vi} at every iteration will affect
greatly the performance of the algorithm. Whatever the strategy, we have a uniform bounding on
largest eigenvalue of A at the end of iteration j, i.e. λmax(Aj) ≤ λmax(Aj−1) + κ(n/ϵ + Nj).
In particular, the output matrix A satisfies λmax(A) ≤ κ (Jn/ϵ+N) where N =

∑J
j=1 Nj . This

is to be compared with the upper bound κ (n/ϵ+N) insured by plain BSS Algorithm run for N
iteration. We have however no control over the smallest eigenvalue of A. We note however that if
−n/ϵL +NjδL ≥ 0 for at least one j, we are insured that the matrix A becomes definite positive
during the algorithm.

In moderate as well as high dimensional setting (n >> 1), one can experiment with this algorithm
for small values of Nj in order to quickly produce sparse sums

∑
j tjvjvj and check afterward

the well conditioning compared to κ2 insured by plain BSS. We have experimented with fixed
cardinality strategies. More precisely, we compare BSS run for N ≈ n/ϵ2 iteration, with the heuristic
parametrized with c ∈ {1, . . . , n} and run for Nj = c for J ≈ N/c iterations. The hyper-parameter
c is intended for fine tuning. As for reordering {vi}, we have experimented with

• Strategy 1: randomly reshuffle {vi} at every iteration,
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• Strategy 2: we let ℓj be a strict lower barrier to A at the j-th iteration, then reorder the
vectors in {vi}i in decreasing order w.r.t. v⊤(A− ℓjIn)

−1v.

The lower barrier ℓ considered at the k-th iteration of plain BSS Algorithm is

ℓ0 + (k − 1) = −n/ϵ+ (k − 1),

which results from adding (k − 1) rank-one update to A = 0n×n and we are guaranteed this barrier
become positive after k ≃ n/ϵ iteration. In the restarted/agregated algorithm, we have in general no
guarantee A becomes definite positive, and we will consider such barriers only when negative. More
precisely, for j = 1, . . . , J , we consider the lower barrier ℓj = min(−n/ϵ+

∑j−1
i=1 Ni,−1+ ⌊n/ϵ⌋).

We note that −1 + ⌊n/ϵ⌋ is the largest −n/ϵ+ k located strictly below 0. In particular ℓj < 0 for
any j = 1, . . . , N . For strategy 2 we will consider this choice of ℓj (strategy 2-1) and also a more
involved choice ℓj = λmin(Aj−1)− δL which entails computing the smallest eigenvalue of A at the
beginning of the j-th iteration (strategy 2-2). We note that obviously the smallest eigenvalue of A is
0 for

∑j−1
i=0 Nj < n rank-one update.

Below we revisit restarted Algorithm 7 with strategy 2-2 which has given the best result. We simply
run Algorithm 7 for c iterations, then restart.

Algorithm 8 Fast restarted sparsification algorithm
Require: {vi}mi=1 s.t.

∑n
i=1 viv

⊤
i = In, N ≥ 1, c ≥ 1, 0 < ϵ < 1

Ensure: A =
∑

i tiviv
⊤
i s.t. |{i : ti ̸= 0|} ≤ N , and empirically λmax(A)/λmin(A) ≤ (1+ϵ)2

(1−ϵ)2

1: let κ = 1+ϵ
1−ϵ and define δL = 1, ϵL = ϵ, δU = κ, ϵU = ϵ/κ

2: Initialize A = 0,
3: ν = 0 ▷ Total number of added tvv⊤

4: while ν < N do
5: let ℓ = λmin(A)− δL and compute Zl = (A− ℓIn)

−1

6: let Nj be a number of rank-one matrices to be added ▷ here the number is c
7: Nj ← min(Nj , N − ν) ▷ ensure ν = N at loop exit
8: reorder {vi} in decreasing order w.r.t. v⊤Zℓv
9: compute ∆j = Algorithm 5({vi}, Nj , δL, ϵL, δU , ϵU ) without normalization (line 16)

10: update A← A+∆j , ν ← ν +Nj

11: end while

Since every ∆j satisfies 0 ≺ ∆j ≺ κ(n/ϵ + Nj)In, then the final output matrix A satisfies
0 ≺ A ≺ κ(Jn/ϵ+N) where J is the number of times the while loop was entered. We note that for
values ν ≤ n, we have λmin(A) = 0 and the computations of Zl = (A− ℓIn)

−1 and of evaluations
v⊤Zℓv can be performed via B = X⊤X assuming we have access to X in explained in Algorithm
5.

The time complexity of every iteration of this algorithm isO(n3)+O(mn2+m log(m))+Tj which
corresponds to operations at lines 5 and 8, and Tj the time complexity for computing ∆j . Assuming
the numbers Nj are fixed and are equal to c, we have Tj = O(mcmax(n, c2)) for all j and J ≈ N/c.
Assuming log(m) ≤ n2, the overall complexity is

O
(
Nm

(
n2

c
+max(n, c2)

))
For example, for c ≈ n2/3, we have overall time complexity O

(
Nmn4/3

)
. For comparison, the

overall time complexity of plain BSS algorithm is O
(
Nmn2

)
.

A.4 EXPERIMENTAL VALIDATION

The reported execution times were obtained on a personal laptop with a Dual-Core Intel i5. All
algorithms were implemented in python numpy.

We let n = 256 and consider G the complete weighted undirected n-vertex graph where vertices are
numbered s1, . . . , sn and the weight on the edge connecting si and sj is equal to wi,j = e−|i−j|/n.
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We then consider the Laplacian LG =
∑

1≤i ̸=j≤n wi,j (ei − ej) (ei − ej)
⊤ where ej are the unit

vector in Rn. We then consider the matrix (11⊤ + LG) which is symmetric definite positive and let
MM⊤ be it Cholesky decomposition. We then consider the decomposition of identity

In = v0v
⊤
0 +

∑
1≤i ̸=j≤n

vi,jv
⊤
i,j

where
v0 := M−11, vi,j =

√
wi,j M

−1 (ei − ej) , 1 ≤ i ̸= j ≤ n.

The decomposition consists on a sum of 32641 = 1 + 256×255
2 outer product. The vector are ordered

as v1,2, . . . ,v1,n,v2,1, . . . ,vn,n−1,v0

We let d = 4, ϵ = 1/
√
d = 1/2 and consider parameters ϵL, ϵU , δL, δU as in equation 3. In particular

κ2 = 9. We compare the execution times and condition numbers of matrices A output by Algorithm
?? and Algorithm 7 with the discussed strategies.

Figure 1: Comparison of condition number and execution time as a function of fixed size c.

The BSS algorithm run for dn iterations took roughly 1200 seconds (20 minutes) and insure
λmax(A)/λmin(A) ≈ 8.4 ≤ κ2. We also compare Algorithm 7 with strategy 1 and strategy
2-1 (in red) and strategy 2-2 (in blue) for values c ∈ {16, 32, . . . , 256} multiples of

√
n = 16.

For strategy 1, the condition number is ∞ for all values of c meaning the output matrix A re-
mains singular. This strategy run with c = n/ϵ = 2n took only 120 seconds but merely yields a
condition number 100. Strategy 2-1 is not reported in the figure, associated condition numbers
are [4604, 410, 427, 3346, 151, 128, 49, 105, 57, 35, 21, 38, 50, 43, 31, 11]. Strategy 2-2 is the most
promising. For instance, the condition number for c = 128 is equal to 5. We note that the algorithm
only took 60 seconds for this value.

Algorithm 7 performs very poorly with strategy 1 and strategy 2-1 but is very promising with
strategy 2-2. We speculate the main reason is the following: the vectors vi,j have squared norms
∥vi,j∥2 = e−

|i−j|
2n (ei − ej)

⊤
(11⊤ + LG)

−1 (ei − ej) depend mostly in |i − j|. Any random
shuffling or sorting w.r.t. to v⊤

i,j(A − ljIn)
−1vi,j for lj < 0 will not create disparities among the

vi,j hence not promoting those vectors that may push the smallest eigenvalue of A. It seems that
strategy 2-2 allow this. More experiments are needed for validating Algorithm 7 combined with
intuitive heuristics such as strategy 2-2.
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