
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMPROVING TIME COMPLEXITY OF SPARSIFICATION AL-
GORITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We improve time complexity of spectral sparsification algorithms, such as Batson,
Spielman and Srivastava (BSS-2009), used for iteratively computing spectral spar-
sifiers of n-vertex graphs or, more generally, for sparsifying a sum of rank-one
n× n matrices, or dual-set sparsification, Boutsidis, Drineas,and Magdon-Ismail
(2011) used for joint column selection. We demonstrate that for such algorithms
the computations relying on matrix inversion are iterations dependent, namely
inversion of large matrices at the k-th iteration can be performed using k×k matrix
inversion or, for greater stability, by inverting only the lower part of a Cholesky
decomposition. This improves the computational complexity of such algorithms.
We propose heuristics relying on restarted sparsification taking full advantage
of inverting small matrices while ensuring control on barriers as in the original
algorithms. Such heuristics present an empirical interest that is validated with
various numerical experiments.

1 INTRODUCTION

A spectral sparsifier is a reweighted sparse subgraph that approximately preserve Laplacian quadratic
form. Formally, for an n-vertex undirected and weighted graph G, a subgraph G′ of G, with proper
reweighting of edges is called a (1 + ϵ)-spectral sparsifier if (1− ϵ)LG ⪯ LG′ ⪯ (1 + ϵ)LG, i.e.

(1− ϵ)x⊤LGx ≤ x⊤LG′x ≤ (1 + ϵ)x⊤LGx, ∀x ∈ Rn

The utility of graph sparsification lies in approximating dense graphs with sparse ones, while ensuring
approximation of the Laplacian. This approximation guarantees that many global properties—such
as effective resistance, commute times, and cut capacities-are preserved to within provable bounds.
Spectral properties can be leveraged for graph clustering; for efficiently solving min-cut/max-flow
problems; for interpolating functions over the nodes. We refer to Satuluri et al. (2011); Ahn et al.
(2012); Fung et al. (2011); Bravo Hermsdorff & Gunderson (2019) and references their-in.

There has been an extensive research interest for this problem, initiated by Spielman et al. Spielman &
Teng (2004); Spielman & Srivastava (2008); Spielman & Teng (2011); Batson et al. (2009). In Batson
et al. (2009), the first algorithm for constructing a spectral sparsifier with n/ϵ2 edges, which is optimal
up to a constant (see e.g. Andoni et al. (2016)), was given. More generally, given an n×n symmetric
positive semi-definite matrix A =

∑m
i=1 viv

⊤
i , the paper establishes the existence, via a deterministic

constructive approach, of scalars ti ≥ 0 s.t. |{i : ti > 0| ≤ n/ϵ2 and A′ =
∑m

i=1 tiviv
⊤
i satisfies

(1− ϵ)A ⪯ A′ ⪯ (1 + ϵ)A. This result is a major theoretical breakthrough. It has shown that log
factor showing in random sampling can be removed. It has also an inherent computational interest as
it relies on straightforward techniques that can easily be adapted and generalized to other contexts.

The Batson-Spielman-Srivastava (BSS) sparse representation theorem/algorithm has become a foun-
dational tool across theoretical computer science, applied mathematics, and machine learning. Numer-
ous researchers have extended and applied the BSS framework in settings where linear-sized sparse
representations are required—either to establish complexity-theoretic bounds or to design scalable
algorithms. These techniques are particularly impactful in high-dimensional data analysis, where
storing or processing the full dataset is computationally prohibitive, yet preserving the underlying
geometric structure is crucial. We provide a concise overview of these developments.

Column subset selection or sketching The problem of selecting a representative subset of columns
from a matrix—commonly referred to as column subset selection—has been extensively studied in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

numerical linear algebra and machine learning. These techniques are essential for matrix approx-
imation, feature selection, and data reduction in high-dimensional settings. We refer to Avron &
Boutsidis (2013); Boutsidis et al. (2014) and references their-in for an overview of these problems.

A prominent line of work in column subset selection builds upon the BSS sparsification frame-
work. Boutsidis et al. Boutsidis et al. (2011; 2013); Boutsidis & Magdon-Ismail (2013); Avron &
Boutsidis (2013); Boutsidis et al. (2014) employed BSS-based techniques as subroutines in feature
extraction and low-rank reconstruction. In Boutsidis et al. (2011), one of the earliest applications
of BSS algorithm (called single-set sparsification) to deterministic and randomized feature extrac-
tion is given. Later, Boutsidis et al. (2014) introduced algorithmic variants called dual-set spectral
sparsification (Boutsidis et al., 2014, Lemma 13) and dual-set Frobenius sparsification (Boutsidis
et al., 2014, Lemma 14), which leverage BSS ideas to achieve asymptotically optimal column-based
reconstructions under both the spectral and Frobenius norms. These algorithms rely on two key
innovations: (i) fast, approximate SVD-like decompositions that estimate the dominant singular
subspace without computing the full SVD; (ii) deterministic greedy selection of some of the left and
right singular vectors via the dual-set variants algorithms.

Paul et al. Paul & Drineas (2016); Paul et al. (2016), employed single-set spectral sparsification for
deterministic feature selection in supervised learning. Namely, it was applied as preprocessing step
for regularized least-squares classification (RLSC) Paul & Drineas (2016) and to linear support vector
machines (SVMs) Paul et al. (2016). It is shown that solving these problems in the reduced feature
space yields approximate classifiers that are as good as the classifiers obtained using the full feature
space. In particular, solving in a reduced feature space of sizeO(s), where s is the number of support
vectors, yields classifiers with decision boundaries and margins comparable to those obtained in the
full feature space.

Spectral/Frobenius sparsification is a complementary approach for dimensionality reduction in many
others contexts Cohen et al. (2015). Its performance is competitive with state-of-the-art randomized
numerical linear algebra techniques Mahoney et al. (2011); Kannan & Vempala (2017), which offer
practical trade-offs between efficiency and accuracy, and have been successfully applied in these
contexts.

Covariance Estimation and Sample Sparsification. Another early application of BSS algorithm
appears in the context of covariance estimation. Srivastava and Vershynin Srivastava & Vershynin
(2013), apply the method to obtain bounds on the convergence of the sample covariance matrix to the
true covariance matrix of a high-dimensional distribution. Their results provide deterministic bounds
that are especially useful in settings where traditional concentration inequalities are insufficient
due to dimensionality or sample size constraints. A related development is the work of Charikar
et al. Charikar et al. (2017), who use the algorithm for sample sparsification. In this context, the
goal is to sparsify a set of input vectors (samples) while preserving certain properties, such as their
covariance or total variance.

Sample Sparsification for curse fitting: sparsification is often studied in the context of sample
selection, that is, selecting a subset of rows from the data matrix. This is particularly relevant for
regression problems, where the objective is to find small, informative subsets of the data samples,
observe associated labels/function evaluations, and produce accurate, unbiased estimators of the full
solution. Spectral sparsification techniques Batson et al. (2009); Lee & Sun (2018) were tailored to
this context for establishing the existence and producing linear-sized samples w.r.t projection space
dimension ensuring quasi-optimal error guarantee in expectation. We refer to Chen & Price (2019)
and Dolbeault & Chkifa (2024) and references their-in for some of these results. We also refer also to
Boutsidis et al. (2013); Huang et al. (2020) for the slightly similar problem of coresets construction,
where the use of dual-set sparsification framework introduced in Boutsidis et al. (2014) is significant.

Graphs in Machine Learning Graph sparsification belongs to a broader class of graph reduction
techniques, which include graph sampling/coarsening/sketching/streaming/distillation to name a
few. The common concept of all these techniques is to reduce the size or complexity of a graph
while approximately preserving key structural properties. They have become imperative for scaling
algorithms to handle the massive graphs that commonly arise in machine learning applications. We
refer to Ahn et al. (2012); Jin et al. (2022); Joly & Keriven (2024) and reference their-in for some
examples

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Graph sparsification techniques form an essential toolkit for processing and learning from large-
scale graphs. They enable efficiency, preserve theoretical guarantees, and support a wide range of
applications. They are now integrated into many modern machine learning pipelines, including:
Gaussian Graphical Model Cheng et al. (2015), Fast Graph Attention Networks (GATs) Srinivasa
et al. (2020), Graph Convolutional Networks (GCNs) Ahmad et al. (2021), Sparse Graph Attention
Networks (SGAT) Ye & Ji (2021), Neural Networks Pruning Laenen (2023), Graph Clustering
Chen et al. (2016); Chakeri et al. (2016); Sun & Zanetti (2019), Graph Learning and Laplacian
Regularization Sadhanala et al. (2016); Calandriello et al. (2018), Differential Privacy Arora &
Upadhyay (2019). We refer also to Dwaraknath et al. (2023) and references their-in for

Optimization and geometry Sparsification also arises in Volumetric Spanners constructions: the
work of Hazan et al. Hazan & Karnin (2016) makes use of identities similar to those found in the
BSS algorithm to construct compact representations of data. In particular, Hazan uses the BSS
algorithm to sparsify John’s decomposition of at set of m vectors in Rn transformed into John’s
position, thereby producing volumetric spanner for these vectors of order at most 12n and that can
be constructed in poly(m,n) time. We also mention Bhaskara et al. Bhaskara et al. (2023) for an
overview on volumetric spanners applications and comparison with Hazan & Karnin (2016).

Our contribution: BSS algorithm and the techniques based on it are all initialized with matrices
A = 0n×n that are iteratively rank-one updated. They all require n× n matrix inversions at every
iteration (or phase Lee & Sun (2018)). These matrices have the form ±(A− zIn) where A is the
current matrix to be updated. It turns out, a slight change of perspective leads to iteration dependent
matrix inversion. Namely, at iteration number k the required n× n matrix inversions can be deduced
from inverting k × k matrices (or better mk ×mk matrices where mk is the number of unique past
rank-one update). This improves the computational complexity for all iterations k s.t. mk < n.
This allows sparsification techniques to be tractable even for large values of n, at least for the first
iterations. The computational simplifications we propose are imperative for dual-set sparsification of
sums of the form

∑m
i=1 viv

⊤
i ∈ Rn1×n1 and

∑m
i=1 qiq

⊤
i ∈ Rn2×n2 where n2 >> n1. Indeed for a

target number N of rank-one update with n1 < N < n2, it is excessive to operate on matrices of size
n2 × n2 for the second sum. For single-set sparsification and in order to take full advantage of the
identified workarounds, strategies based on restarting/aggregating every other “few” iterations are to
be considered. We discuss a deterministic strategy that emulate lower barrier push as in Batson et al.
(2009); Lee & Sun (2018) and which has shown promising results in the numerical experiment.

Related works Improvement to spectral sparsification techniques are manifold and are concerned
with many aspects. First, there are purely graph sparsifiers, concerned only with graph sparsification,
though sophisticated edge sampling strategies Fung et al. (2011); Jambulapati & Sidford (2018), or in
the presence of active constraints Koutis & Xu (2016); Kapralov et al. (2017); Arora & Upadhyay
(2019). There are also improvements concerned with running time in the more general framework
of sparsifying a sum of matrices vv⊤. For instance, through fast isotropic sparsification Zouzias,
Anastasios (2012), random sampling and batch update rules Lee & Sun (2018), optimization grounded
updates, mainly by means of semi-definite programming Allen-Zhu et al. (2015); Lee & Sun (2017);
Cheng & Ge (2018), and optimized data structures for speeding up computations Song et al. (2022).
The latter provides a comparaison on complexity and running time of these improvements.

Our contribution is not a parallel development to the aforementioned works, but rather a transversal
one. The underlying ideas in this paper can be adapted to the frameworks such as Zouzias, Anastasios
(2012); Lee & Sun (2018), and can benefit from optimized implementations like those in Song et al.
(2022). For clarity of exposition, we focus on illustrating how these ideas apply specifically to the
framework single-set and dual-set sparsification, Batson et al. (2009) and Boutsidis et al. (2011; 2013;
2014).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2 BSS FRAMEWORK

Let us recall the main theorem in Batson et al. (2009). We let v1,v2, . . . ,vm be vectors in Rn

and M =
∑

i≤m viv
⊤
i . For every ϵ ∈ (0, 1), there exist scalars si ≥ 0 with |{i : si ̸= 0}| ≤⌈

rank(M)/ϵ2
⌉

s.t.
(1− ϵ)2M ⪯

∑
i≤m

siviv
⊤
i ⪯ (1 + ϵ)2M

Up to consider vectors wi = (M+)
1
2vi where M+ is the pseudo-inverse of M (or rather vectors

wi = L−1vi if M is nonsingular and M = LL⊤ is a Cholesky decomposition of M), it suffices to
establishes the theorem for M = In the identity matrix.

To prove the theorem, they build a sum A =
∑

i tiviv
⊤
i iteratively, adding one update tiviv

⊤
i

at a time that after ⌈n/ϵ2⌉ update satisfies λmax(A)/λmin(A) ≤ (1 + ϵ)2/(1 − ϵ)2. For A s.t.
ℓIn ≺ A ≺ uIn, we recall that lower/upper potentials are

Φℓ(A)
def
= Tr((A− ℓIn)

−1), Φu(A)
def
= Tr((uIn −A)−1) (1)

Initially, A = 0 and the barriers are at ℓ = ℓ0 < 0 < u0 = u. At each iteration, the matrix is
updated by a rank-one matrix tiviv

⊤
i , that guarantees that while barriers ℓ and u are incremented by

δL and δU , respectively, at each step, the lower and upper potentials do not increase. As a result, no
eigenvalue ever jumps across a barrier.

More precisely, we let N ≥ 0, ϵL, ϵU , δL, δU > 0 s.t. 1/δU + ϵU ≤ 1/δL − ϵL, and consider the
following scheme

• Initialization: A = 0, u = n/ϵU and l = −n/ϵL, implying

Φℓ(A) = ϵL, and Φu(A) = ϵU .

• For k = 1, . . . , N do:
– pick a vector v ∈ {vi} and t ≥ 0 that insures

Φℓ+δL(A+ tvv⊤) ≤ Φℓ(A), Φu+δU (A+ tvv⊤) ≤ Φu(A).

– Update the matrix and increment the barrier ℓ and u,

A← A+ tvv⊤, ℓ← ℓ+ δL, u← u+ δU .

The main difficulty in this sketched BSS algorithm resides in finding an adequate vector v and real
number t ≥ 0 s.t. the updated matrix yields a decrease in lower and upper potentials, with the new
lower and upper barriers. This is however possible as thoroughly explained in Batson et al. (2009).
We give a quick rundown of their arguments.

We assume that at the k-th iteration ℓIn ≺ A ≺ uIn, Φℓ(A) ≤ ϵL and Φu(A) ≤ ϵU . Then
obviously A ≺ (u + δU)In and since ϵL < 1/δL, one also has (ℓ + δL)In ≺ A. For an arbitrary
v ∈ {vi} and t ≥ 0, applying Sherman-Morisson identity gives

Φℓ+δL(A+ tvv⊤) = Φℓ+δL(A)− tv⊤ (A− (ℓ+ δL)In)
−2

v

1 + tvT (A− (ℓ+ δL)In)
−1

v
.

Φu+δU (A+ tvv⊤) = Φu+δU (A) +
tv⊤ ((u+ δU)In −A)

−2
v

1− tvT ((u+ δU)In −A)
−1

v
,

The second identity is justified if DU ̸= 0 where DU = (1− tvT ((u+ δU)In −A)
−1

v). We note
in passing that A + tvv⊤ ≺ (u + δU)In if and only if DU > 0, which in turn constraints t be in
[0, t∗[with t∗ = 1/vT ((u+ δU)In −A)

−1
v. We note that from lower/upper potentials definition,

Φℓ+δL(A) > Φℓ(A), Φu+δU (A) < Φu(A).

Also, note that t 7→ Φu+δu(A + tvv⊤) strictly increases from Φu+δU (A) to +∞ for t ∈ [0, t∗[
and t 7→ Φℓ+δL(A+ tvv⊤) is strictly decreasing. As t is increased, one is faced with the opposed

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

objectives of dropping the lower potential below Φℓ(A) while also keeping the upper potential below
Φu(A). If we cast these objectives as equations on t > 0, we obtain 1/t ≤ LA(v) and UA(v) ≤ 1/t
where

UA(v)
def
=

vT ((u+ δU) In −A)
−2

v

Φu(A)− Φu+δU (A)
+ vT ((u+ δU) In −A)

−1
v,

LA(v)
def
=

vT (A− (ℓ+ δL) In)
−2

v

Φℓ+δL(A)− Φℓ(A)
− vT (A− (ℓ+ δL) In)

−1
v.

(2)

These quantities are well defined for all v ∈ {vi} with UA(v) > 0 for all v. We note also that
the condition UA(v) ≤ 1/t implies necessarily t ∈ [0, t∗[. The authors in Batson et al. (2009)
prescribe naturally picking any v and t s.t. UA(v) ≤ 1/t ≤ LA(v). They indeed demonstrated by
an averaging argument that the inequality UA(v) ≤ LA(v) must holds for at least one v. For this to
hold, the conditions 1/δU + ϵU ≤ 1/δL − ϵL is sufficient as it implies

∑
v UA(v) ≤

∑
v LA(v).

Given ϵ ∈]0, 1[, we let κ = 1+ϵ
1−ϵ and consider parameters

δL = 1, ϵL = ϵ, δU = κ, ϵU = ϵ/κ. (3)

One has 1/δU + ϵU = (1 + ϵ)/κ = 1− ϵ = 1/δL − ϵL. Running the BSS algorithm for N iteration
yields A =

∑
i tiviv

⊤
i with |{i : ti ̸= 0|} ≤ N and

(−n/ϵ+N)In ≺ A ≺ κ(n/ϵ+N)In. (4)

For N ≥ n/ϵ, the matrix A is guaranteed definite positive, and for N = (1 + γ)n/ϵ it satisfies in
addition λmax(A)/λmin(A) ≤ κ 2+γ

γ . For N = ⌈n/ϵ2⌉ (hence γ ≈ (ϵ−1 − 1)). Normalizing A

by the lower barrier (−n/ϵ+N) ≈ n(1− ϵ)/ϵ2 and using the fact that (n/ϵ+ x)/(−n/ϵ+ x) is
strictly decreasing for x > 0, yields In ≺ A ≺ κ2In.

A sketch of the constructive proof is presented in Algorithm 1.

Algorithm 1 Single set sparsification algorithm
Require: {vi}mi=1 s.t.

∑m
i=1 viv

⊤
i = In, N > n,

Ensure: A =
∑

i tiviv
⊤
i s.t. |{i : ti ̸= 0|} ≤ N , and (1−

√
n/N)2In ≺ A ≺ (1 +

√
n/N)2In

1: Let ϵ =
√
n/N , κ = (1 + ϵ)/(1− ϵ), and

δL = 1, ϵL = ϵ, δU = κ, ϵU = ϵ/κ.

2: Initialize A = 0n×n, l = −n/ϵL, u = n/ϵU , Φℓ = ϵL, Φu = ϵU
3: for k = 1, . . . , N do
4: Select v ∈ {vi} and weights t > 0 satisfying

U (A, u, δU ,v) ≤ 1/t ≤ L (A, ℓ, δL,v) .

5: update A← A+ tvv⊤, l← l + δL, u← u+ δU ,
6: end for
7: multiply selected weights t and A by (1−

√
n/N)N−1

3 DUAL-SET SPARSIFICATION FRAMEWORK

The exact same constructive proof can be considered for a dual-set sparsification setting, see e.g.
Boutsidis et al. (2014). Namely, let v1,v2, . . . ,vm be vectors in Rn1 and q1, q2, . . . , qm vectors in
Rn2 s.t.

∑
i≤m viv

⊤
i = In1

and
∑

i≤m qiq
⊤
i = In2

. For every N > n1, there exist scalars si ≥ 0

with |{i : si ̸= 0}| ≤ N s.t.

(1−
√

n1/N)2In1
⪯
∑
i≤m

siviv
⊤
i ,

∑
i≤m

siqiq
⊤
i ⪯ (1 +

√
n1/N)2In2

A sketch of the constructive proof is presented in Algorithm 2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 Dual set sparsification algorithm
Require: {vi}mi=1 s.t.

∑m
i=1 viv

⊤
i = In1

, {qi}mi=1 s.t.
∑m

i=1 qiq
⊤
i = In2

, N > n1,
Ensure: A =

∑
i tiviv

⊤
i , H =

∑
i tiqiq

⊤
i s.t. |{i : ti ̸= 0|} ≤ N , and

(1−
√
n1/N)2In ⪯ A, H ⪯ (1 +

√
n2/N)2In

1: Let ϵ1 =
√
n1/N , ϵ2 =

√
n2/N , κ = (1 + ϵ2)/(1− ϵ1), and

δL = 1, ϵL = ϵ1, δU = κ, ϵU = ϵ2/κ.

2: Initialize A = 0n1×n1
, H = 0n2×n2

, l = −n1/ϵL, u = n2/ϵU , Φℓ = ϵL, Φu = ϵU
3: for k = 1, . . . , N do
4: Select couple (v,q) ∈ {(vi,qi)} and weights t > 0 satisfying

U (H, u, δU , q) ≤ 1/t ≤ L (A, ℓ, δL,v) .

5: update A← A+ tvv⊤, H ←H + tvv⊤, l← l + δL, u← u+ δU ,
6: end for
7: multiply selected weights t, A and H by (1−

√
n1/N)N−1

4 COMPUTATIONAL IMPROVEMENTS

In Algorithms 1 and 2. Every iteration is dominated by the computation of Tr(M−1) and evaluations
vM−1v and vM−2v for M the two matrices (A− (l + δL)In) and ((u+ δU)In −H). 1. In
plain algorithm description, it is usually assumed that these inverses are computed at the beginning of
every iteration and required computations are carried out in the most natural and direct manner. Here,
we present the simplification (workarounds) for such computations. They improve greatly the speed
of the algorithms on the first n or more iterations and are imperative dual sparsification in the case
n1 < N < n2.

Few linear algebra lemmas The Woodbury matrix identity is

(A+XCY)
−1

= A−1 −A−1X
(
C−1 + Y A−1X

)−1
Y A−1

where A, C, X and Y are conformable matrices: A is n× n, C is k × k, X is n× k, Y is k × n
and the inverses are assumed to be well defined. The Weinstein–Aronszajn identity states

det(In +XY) = det(Ik + Y X).

By an immediate application to A = −zIn, C = Ik and Y = X⊤, we have the following lemma.
Lemma 1. Let X ∈ Rn×k, and z ∈ R − {0}. Then

(
XX⊤ − zIn

)
is nonsingular if and only if(

X⊤X − zIk
)

is nonsingular. Moreover, there holds(
XX⊤ − zIn

)−1
=

X
(
X⊤X − zIk

)−1
X⊤ − In

z
(5)

This lemma can also be derived via SVD decomposition of X . Taking the square of the identity and
performing some simplifications, we derive the following lemma.
Lemma 2. Let X ∈ Rn×k, and z ∈ R− {0} s.t. XX⊤ − zIk is nonsingular. There holds(

XX⊤ − zIn
)−2

+

(
XX⊤ − zIn

)−1

z
=

X
(
X⊤X − zIk

)−2
X⊤

z
(6)

Proof. We have that(
X
(
X⊤X − zIk

)−1
X⊤

)2
= X

(
X⊤X − zIk

)−1
X⊤X

(
X⊤X − zIk

)−1
X⊤

= zX
(
X⊤X − zIk

)−2
X⊤ +X

(
X⊤X − zIk

)−1
X⊤,

where we have simply used X⊤X = zIn + (X⊤X − zIn). Taking the square of equation 5 and
rearranging the right hand side using the above identity, we derive the claimed result.

1H = A for single-set sparsification

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

An immediate implication of Lemmas 1 and 2 is the following.
Corollary 1. Let X ∈ Rn×k, A = XX⊤, B = X⊤X and z ̸= 0 s.t. A− zIk is non nonsingular.
For v ∈ Rn, there holds

v⊤ (A− zIn)
−1

v =
w⊤ (B − zIk)

−1
w − ∥v∥2

z
, (7)

where w = X⊤v. We let q−(v) be the value, then

v⊤ (A− zIn)
−2

v =
w⊤ (B − zIk)

−2
w − q−(v)

z
(8)

Fast potentials and quadratic forms computation Sparsification algorithms as discussed consist
in picking a new pair of vector/weight (vik , tk) at the k-th iteration and update A← A+ tkvikv

⊤
ik

or (vik , qik , tk) at the k-th iteration and update A ← A + tkvikv
⊤
ik

and H ← H + tkqikq
⊤
ik

for
dual set sparsification. We introduce notation X = [

√
t1vi1 | . . . |

√
tkvik] ∈ Rn×k. Then at iteration

k, one has

A =

k∑
j=1

tjvijv
⊤
ij = XX⊤

The matrix A has the same eigenvalues as the matrix B = X⊤X(∈ Rk×k). More precisely, if
λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of A, then λ1 ≥ · · · ≥ λk ≥ 0 are the eigenvalues B (with
λn+1 = · · · = λk if k ≥ n and λk+1 = · · · = λn = 0 if k ≤ n). In particular, if l, u ∈ R are such
that lIn ≺ A ≺ uIn, then lIk ≺ B ≺ uIk, and

Φℓ(A) = Φℓ(B)− n− k

l
, Φu(A) = Φu(B) +

n− k

u
. (9)

Quadratic forms associated with matrices of the form (A− zI)
−1, (A− zI)

−2, (zI−A)
−1, and

(zI−A)
−2 are related to those same quadratic forms but associated with B, see Corollary 1. Let

us present this for our settings of k-th iteration of single-set or dual-set sparsification algorithm and
assume that

(l + δL) In ≺ A ≺ (u+ δU) In.

Then, (l + δL) Ik ≺ B ≺ (u+ δU) Ik. Moreover, given v ∈ Rn and introducing w = X⊤v(∈ Rk),

QL,1(v) = v⊤ (A− (l + δL) I)
−1

v =
w⊤ (B − (l + δL) Ik)

−1
w − ∥v∥2

l + δL
, (10)

QL,2(v) = v⊤ (A− (l + δL) I)
−2

v =
w⊤ (B − (l + δL) Ik)

−2
w −QL,1(v)

l + δL
. (11)

and

QU,1(v) = v⊤ ((u+ δU) I−A)
−1

v =
w⊤ ((u+ δU) Ik −B)

−1
w + ∥v∥2

u+ δU
, (12)

QU,2(v) = v⊤ ((u+ δU) I−A)
−2

v =
w⊤ ((u+ δU) Ik −B)

−1
w +QL,1(v)

u+ δU
. (13)

In particular, the knowledge of matrices X and B is enough to compute quantities L (A, ℓ, δL,v)
and U (A, u, δU ,v).

We assume we have matrices X ∈ Rn×k, A = XX⊤, and B = X⊤X as described above. We
summarize below the time complexities for computing matrix inverse (A− zIk)

−1 vs (B − zIk)
−1,

for computing their traces, for matrix-vector multiplication (A− zIk)
−1

v vs (B − zIk)
−1

w with
w = X⊤v, for computing scalar products (and squared euclidean norm) and finally for computing
quantities such as L (A, ℓ, δL,v) and U (A, u, δU ,v) relying on A vs relying on B.

We note that in the actual sparsification algorithms, the complexity for computing vectors w = X⊤v
for v ∈ {vi}mi=1 can be reduced to O(1) by storing computation from previous iterations. In matrix-
vector multiplication below, we take this into account, and have O(k2) instead of O(n) +O(k2).
In light of the comparaison table, we have the following theorem on Algorithm 2 improved complexity.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Operations
Algorithm relying on A relying on B

Matrix inversion O(n3) O(k3)
Trace computation O(n) O(k)

Matrix-vector multiplication O(n2) +O(k2)
scalar product/norm squared O(n) O(k)

LA (v) and UA (v) for all v ∈ {vi}mi=1 O(n3 +mn2) O(k3 +mk2)

Theorem 1. Let v1,v2, . . . ,vm be vectors in Rn1 and q1, q2, . . . , qm vectors in Rn2 s.t.∑
i≤m viv

⊤
i = In1

and
∑

i≤m qiq
⊤
i = In2

and assume that n1 ≤ n2. For every m > N > n1,
there exist scalars si ≥ 0 with |{i : si ̸= 0}| ≤ N s.t.

(1−
√
n1/N)2In1

⪯
∑
i≤m

siviv
⊤
i ,

∑
i≤m

siqiq
⊤
i ⪯ (1 +

√
n1/N)2In2

The sparsification algorithm runs in O(Nmn2
1) +O(Nm min(n2

2, N
2))

The computational complexity O(Nm min(n2
2, N

2)) follows as the minimum of complexities
O(Nmn2

2) and O(mN3) which corresponds to Algorithm 2 improved complexity. in the case
n2 > N and N ≤ n2.

5 CONCLUSION

We have presented a transversal contribution that extends core ideas from spectral sparsification.
Our framework offers both theoretical insight and practical flexibility, with potential applications
across graph theory, linear algebra, and machine learning. Future endeavor will primarily focus on
establishing theoretical guarantees for the restarted/aggregated framework.

Reproducibility Statement. Reproducibility is supported by: clear problem setup, notation, and
assumptions in Section 2 and 3 and complete or sketched proofs. Implementation details and
experimental settings for computing sparse sums are revisited and detailed in the appendix.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

REFERENCES

Tasweer Ahmad, Lianwen Jin, Luojun Lin, and GuoZhi Tang. Skeleton-based action recognition
using sparse spatio-temporal gcn with edge effective resistance. Neurocomputing, 423:389–398,
2021.

Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners, and
subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on Principles of
Database Systems, pp. 5–14, 2012.

Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and regret mini-
mization beyond matrix multiplicative updates. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pp. 237–245, 2015.

Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P Woodruff, and Qin Zhang.
On sketching quadratic forms. In Proceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science, pp. 311–319, 2016.

Raman Arora and Jalaj Upadhyay. On differentially private graph sparsification and applications.
Advances in neural information processing systems, 32, 2019.

Haim Avron and Christos Boutsidis. Faster subset selection for matrices and applications. SIAM
Journal on Matrix Analysis and Applications, 34(4):1464–1499, 2013.

Joshua D Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. In
Proceedings of the forty-first annual ACM symposium on Theory of computing, pp. 255–262, 2009.

Aditya Bhaskara, Sepideh Mahabadi, and Ali Vakilian. Tight bounds for volumetric spanners and
applications. Advances in Neural Information Processing Systems, 36:916–930, 2023.

Christos Boutsidis and Malik Magdon-Ismail. Deterministic feature selection for k-means clustering.
IEEE Transactions on Information Theory, 59(9):6099–6110, 2013.

Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Sparse features for PCA-like linear
regression. Advances in Neural Information Processing Systems, 24, 2011.

Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal coresets for least-squares
regression. IEEE transactions on information theory, 59(10):6880–6892, 2013.

Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal column-based matrix
reconstruction. SIAM Journal on Computing, 43(2):687–717, 2014.

Gecia Bravo Hermsdorff and Lee Gunderson. A unifying framework for spectrum-preserving graph
sparsification and coarsening. Advances in Neural Information Processing Systems, 32, 2019.

Daniele Calandriello, Alessandro Lazaric, Ioannis Koutis, and Michal Valko. Improved large-scale
graph learning through ridge spectral sparsification. In International Conference on Machine
Learning, pp. 688–697. PMLR, 2018.

Alireza Chakeri, Hamidreza Farhidzadeh, and Lawrence O Hall. Spectral sparsification in spectral
clustering. In 2016 23rd international conference on pattern recognition (icpr), pp. 2301–2306.
IEEE, 2016.

Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In Proceedings
of the 49th annual ACM SIGACT symposium on theory of computing, pp. 47–60, 2017.

Jiecao Chen, He Sun, David Woodruff, and Qin Zhang. Communication-optimal distributed clustering.
Advances in Neural Information Processing Systems, 29, 2016.

Xue Chen and Eric Price. Active regression via linear-sample sparsification. In Conference on
Learning Theory, pp. 663–695. PMLR, 2019.

Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. Efficient sampling for
gaussian graphical models via spectral sparsification. In Conference on Learning Theory, pp.
364–390. PMLR, 2015.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Yu Cheng and Rong Ge. Non-convex matrix completion against a semi-random adversary. In
Conference On Learning Theory, pp. 1362–1394. PMLR, 2018.

Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimen-
sionality reduction for k-means clustering and low rank approximation. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pp. 163–172, 2015.

Matthieu Dolbeault and Moulay Abdellah Chkifa. Randomized least-squares with minimal oversam-
pling and interpolation in general spaces. SIAM Journal on Numerical Analysis, 62(4):1515–1538,
2024.

Rajat Vadiraj Dwaraknath, Ishani Karmarkar, and Aaron Sidford. Towards optimal effective resistance
estimation. Advances in Neural Information Processing Systems, 36:59034–59046, 2023.

Wai Shing Fung, Ramesh Hariharan, Nicholas JA Harvey, and Debmalya Panigrahi. A general
framework for graph sparsification. In Proceedings of the forty-third annual ACM symposium on
Theory of computing, pp. 71–80, 2011.

Elad Hazan and Zohar Karnin. Volumetric spanners: an efficient exploration basis for learning. The
Journal of Machine Learning Research, 17(1):4062–4095, 2016.

Lingxiao Huang, K Sudhir, and Nisheeth Vishnoi. Coresets for regressions with panel data. Advances
in Neural Information Processing Systems, 33:325–337, 2020.

Arun Jambulapati and Aaron Sidford. Efficient O(n/ϵ) Spectral Sketches for the Laplacian and its
Pseudoinverse. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 2487–2503. SIAM, 2018.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=WLEx3Jo4QaB.

Antonin Joly and Nicolas Keriven. Graph Coarsening with Message-Passing Guarantees. Advances
in Neural Information Processing Systems, 37:114902–114927, 2024.

Ravindran Kannan and Santosh Vempala. Randomized algorithms in numerical linear algebra. Acta
Numerica, 26:95–135, 2017.

Michael Kapralov, Yin Tat Lee, CN Musco, Christopher Paul Musco, and Aaron Sidford. Single pass
spectral sparsification in dynamic streams. SIAM Journal on Computing, 46(1):456–477, 2017.

Ioannis Koutis and Shen Chen Xu. Simple parallel and distributed algorithms for spectral graph
sparsification. ACM Transactions on Parallel Computing (TOPC), 3(2):1–14, 2016.

Steinar Laenen. One-shot neural network pruning via spectral graph sparsification. In Topological,
Algebraic and Geometric Learning Workshops 2023, pp. 60–71. PMLR, 2023.

Yin Tat Lee and He Sun. An SDP-Based Algorithm for Linear-Sized Spectral Sparsification. In
Proceedings of the 49th annual acm sigact symposium on theory of computing, pp. 678–687, 2017.

Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-linear time. SIAM
Journal on Computing, 47(6):2315–2336, 2018.

Michael W Mahoney et al. Randomized algorithms for matrices and data. Foundations and Trends®
in Machine Learning, 3(2):123–224, 2011.

Saurabh Paul and Petros Drineas. Feature Selection for Ridge Regression with Provable Guarantees.
Neural computation, 28(4):716–742, 2016.

Saurabh Paul, Malik Magdon-Ismail, and Petros Drineas. Feature selection for linear SVM with
provable guarantees. Pattern Recognition, 60:205–214, 2016. ISSN 0031-3203. doi: https://doi.
org/10.1016/j.patcog.2016.05.018. URL https://www.sciencedirect.com/science/
article/pii/S0031320316301017.

10

https://openreview.net/forum?id=WLEx3Jo4QaB
https://www.sciencedirect.com/science/article/pii/S0031320316301017
https://www.sciencedirect.com/science/article/pii/S0031320316301017

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Veeru Sadhanala, Yu-Xiang Wang, and Ryan Tibshirani. Graph sparsification approaches for laplacian
smoothing. In Artificial Intelligence and Statistics, pp. 1250–1259. PMLR, 2016.

Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. Local graph sparsification for scalable
clustering. In Proceedings of the 2011 ACM SIGMOD International Conference on Management
of data, pp. 721–732, 2011.

Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding Up Sparsification using Inner Product Search
Data Structures, April 2022. arXiv:2204.03209.

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pp. 563–568, 2008.

Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pp. 81–90, 2004.

Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on
Computing, 40(4):981–1025, 2011.

Rakshith S Srinivasa, Cao Xiao, Lucas Glass, Justin Romberg, and Jimeng Sun. Fast graph attention
networks using effective resistance based graph sparsification. arXiv preprint arXiv:2006.08796,
2020.

Nikhil Srivastava and Roman Vershynin. Covariance estimation for distributions with 2 + ϵ moments.
The Annals of Probability, 41(5):3081–3111, 2013.

He Sun and Luca Zanetti. Distributed graph clustering and sparsification. ACM Transactions on
Parallel Computing (TOPC), 6(3):1–23, 2019.

Yang Ye and Shihao Ji. Sparse graph attention networks. IEEE Transactions on Knowledge and Data
Engineering, 35(1):905–916, 2021.

Zouzias, Anastasios. A Matrix Hyperbolic Cosine Algorithm and Applications. In Czumaj, Artur
and Mehlhorn, Kurt and Pitts, Andrew and Wattenhofer, Roger (ed.), Automata, Languages, and
Programming, pp. 846–858, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX: ALGORITHMS AND ADDITIONAL DETAILS

Here we revisit in more details the single-set and dual-set sparsification frameworks discussed in
the paper. An implementation of the BSS algorithm is provided in Algorithm 1. Every iteration is
dominated by the computation of Tr(M−1) and evaluations vM−1v and vM−2v for M the two
matrices (A− (l + δL)In) and ((u+ δU)In −A). In the plain algorithm description, we simply
assume we compute these inverses Zl and Zu at the beginning of every iteration and carry out
required computations in the most natural and direct manner. One other more stable and convenient
way to perform this is by means of Cholesky decomposition. Given M an n× n symmetric definite
positive and M = LL⊤ its cholesky decomposition, there holds Tr(M−1) = ∥L−1∥2F and

v⊤M−1v = ∥L−1v∥2, v⊤M−2v = ∥(L−1)⊤L−1v∥2. (14)

The quantities Φℓ+δL , Φu+δU and the evaluations ql,1, ql,2, qu,1, qu,2 in Algorithm equation 3 can
thus be computed by relying on Cholesky decomposition with M equal to (A− (ℓ+ δL)In) or
((u+ δU)In −A). One needs to perform two Cholesky decomposition and two matrix inversion of
the lower matrices at the beginning of every iteration, the other operations are straightforward.

For the improved and faster computation of potentials and quadratic forms associated with B,
Cholesky decomposition can be invoked exactly as explained above.

In both Algorithm 3 and Algorithm 5, we can keep track on “unlocked” indices ik, i.e. indices for
which (vik , tk) was selected prior to the k-th iteration. We note that mk := |{ij : 1 ≤ j ≤ k| ≤ k
since vectors can be reselected. In Algorithm 5 if v was selected in a previous iteration, we can
simply update associated column in X replacing

√
told with

√
told + tnew and also reflect this on

B. In case this detail is implemented, Algorithm 5 is faster than Algorithm 3 on all iteration k s.t.
mk ≤ n.

In the improved algorithm 5, X is only needed to compute the output A = XX⊤ if the latter
is not iteratively updated. We can dismiss it in the implementation and simply iteratively update
A← A+ tvv⊤ initialized at A = 0n×n. For applications where the knowledge of the final weights
{t1, . . . , tm} is required, it is straightforward to implement the updating rule.

The improved implementation of dual-set sparsification is not fully detailed. However, the underlying
ideas for simplification/speed up/caching are as demonstrated in Algorithm 5

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.1 PLAIN SINGLE SET SPARSIFICATION ALGORITHM

For implementing plain single-set sparsification, we replace the generic instruction at line 6 and
computations at lines 7,8 in Algorithm 3 with the more detailed subroutine 4.

Algorithm 3 Plain single set sparsification algorithm
Require: {vi}mi=1 s.t.

∑n
i=1 viv

⊤
i = In, N ≥ n,

Ensure: A =
∑

i tiviv
⊤
i s.t. |{i : ti ̸= 0|} ≤ r, and (1−

√
n/N)2 In ≺ A ≺ (1 +

√
n/N)2 In

1: Let ϵ =
√

n/N , κ = (1 + ϵ)/(1− ϵ), and

δL = 1, ϵL = ϵ, δU = κ, ϵU = ϵ/κ.

2: Initialize A = 0n×n, ▷ matrices initialization
3: Initialize ℓ = −n/ϵL, u = n/ϵU , ▷ barriers initialization
4: Initialize Φℓ = ϵL, Φu = ϵU , ▷ potentials initialization
5: for k = 1, . . . , N do
6: select vector v ∈ {vi} and number t > 0 satisfying

U (v, δU ,A, u) ≤ 1

t
≤ L (v, δL,A, ℓ) .

7: compute qℓ,1 = v⊤(A− (ℓ+ δL)In)
−1v, qℓ,2 = v⊤(A− (ℓ+ δL)In)

−2v
8: compute qu,1 = v⊤((u+ δU)In −A)−1v, qu,2 = v⊤((u+ δU)In −A)−2v
9: update

Φℓ ← Φℓ+δL +
ql,2

1/t− ql,1
, Φu ← Φu+δu −

qu,2
1/t+ qu,1

10: update A← A+ tvv⊤, ℓ← ℓ+ δL, u← u+ δU ,
11: end for
12: multiply selected weights t and A by (1−

√
n/N)N−1

Algorithm 4 selection of vector/weight (v, t)
1: compute Zℓ = (A− (ℓ+ δL)In)

−1, Φℓ+δL = Tr(Zℓ), and ∆ℓ = Φℓ − Φℓ+δL
2: compute Zu = ((u+ δU)In −A)−1, Φu+δU = Tr(Zu), and ∆u = Φu+δU − Φu

3: consider variables ql,1, ql,2, qu,1, qu,2, L, U
4: for i = 1 to m do
5: Let v = vi and compute xℓ = Zℓv, and xu = Zuv
6: compute

ql,1 ← ⟨v,xl⟩, ql,2 ← ∥xl∥2, L← ql,2/∆l − ql,1
qu,1 ← ⟨v,xu⟩, qu,2 ← ∥xu∥2, U ← qu,2/∆u + qu,1

7: if U ≤ L then
8: break ▷ the for loop
9: end if

10: end for
11: select vector v, weight t = 1/L and return ql,1, ql,2, qu,1, qu,2

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 MODIFIED SINGLE SET SPARSIFICATION ALGORITHM

For implementing modified single-set sparsification, we replace the generic instruction at line 8 and
computations at lines 9,10 in Algorithm 5 with the more detailed subroutine 6.

Algorithm 5 Modified single-set sparsification algorithm
Require: {vi}mi=1 s.t.

∑n
i=1 viv

⊤
i = In, N ≥ n,

Ensure: A =
∑

i tiviv
⊤
i s.t. |{i : ti ̸= 0|} ≤ r, and (1−

√
n/N)2 In ≺ A ≺ (1 +

√
n/N)2 In

1: Let ϵ =
√

n/N , κ = (1 + ϵ)/(1− ϵ), and

δL = 1, ϵL = ϵ, δU = κ, ϵU = ϵ/κ.

2: Initialize A = 0n×n, X = [], B = [0], ▷ matrices initialization
3: Initialize ℓ = −n/ϵL, u = n/ϵU , ▷ barriers initialization
4: Initialize ϕℓ = ϵL, ϕu = ϵU , ▷ potentials initialization
5: let V = [v1, . . . ,vm] ∈ Rn×m and compute E = [∥v1∥2, . . . , ∥vm∥2],
6: Initialize W = [0, . . . , 0], ▷ cache initialization
7: for k = 1, . . . , N do
8: select vector v ∈ {vi} and number t > 0 satisfying

U (v, δU ,A, u) ≤ 1

t
≤ L (v, δL,A, ℓ) .

9: compute qℓ,1 = v⊤(A− (ℓ+ δL)In)
−1v, qℓ,2 = v⊤(A− (ℓ+ δL)In)

−2v
10: compute qu,1 = v⊤((u+ δU)In −A)−1v, qu,2 = v⊤((u+ δU)In −A)−2v
11: update

Φℓ ← Φℓ+δL +
ql,2

1/t− ql,1
, Φu ← Φu+δu −

qu,2
1/t+ qu,1

12: compute z = [⟨v,v1⟩, . . . , ⟨v,vm⟩], ▷ z = V ⊤v

13: update X ← [X,
√
t v], B ←

(
B

√
t w√

t w⊤ t ξ

)
, W ←

(
W√
t z

)
▷ matrices/cache

14: update A← A+ tvv⊤, ℓ← ℓ+ δL, u← u+ δU
15: end for
16: multiply selected weights t and A by (1−

√
n/N)N−1

Algorithm 6 selection of vector/weight (v, t) and associated vector w and squared norm ξ

1: compute Zℓ = (B − (ℓ+ δL)Ik)
−1, and Φℓ+δL = Tr(Zℓ)− (n− k)/(l + δL),

2: compute Zu = ((u+ δU)Ik −B)−1, and Φu+δU = Tr(Zu) + (n− k)/(u+ δU),
3: compute ∆ℓ = Φℓ − Φℓ+δL and ∆u = Φu+δU − Φu

4: consider variables ql,1, ql,2, qu,1, qu,2, L, U
5: for i = 1 to m do
6: let v = vi, ξ = Ei, and w be the i-th column of W ▷ ξ = ∥v∥2 and w = X⊤v
7: compute yl = Zlw, and yu = Zuw
8: compute

ql,1 ←
w⊤yl − ξ

l + δL
, ql,2 ←

∥yl∥2 − ql,1
l + δL

, L← ql,2/∆l − ql,1

qu,1 ←
w⊤yu + ξ

u+ δU
, qu,2 ←

∥yu∥2 + ql,1
u+ δU

, U ← qu,2/∆u + qu,1

9: if U ≤ L then
10: break ▷ the inner for loop
11: end if
12: end for
13: select vector v, weight t = 1/L and return w, ξ, and ql,1, ql,2, qu,1, qu,2

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 RESTARTED/AGGREGATED SPARSIFICATION HEURISTIC

Let us consider ϵ = 1/
√
d ∈]0, 1[, the parameters ϵL, ϵU , δL, δU as in 3 and execute single-set

sparsification for N > n iterations, as presented in the paper and without final normalization of A
(line 12 in Algorithm 3 and line 16 in Algorithm 5) The output matrix A satisfies

(−n/ϵ+N)In ≺ A ≺ κ(n/ϵ+N)In,

see equation 4. If we use N = dn = n/ϵ2 iterations, we obtain

nd(−ϵ+ 1)In ≺ A ≺ κ(ϵ+ 1)In

If instead we execute sparsification for n iterations and repeat this process d times (with reshuffled
{vi} preferably), the individual output matrices A(j) satisfy 0n×n ≺ A(j) ≺ κ(n/ϵ+ n)In, hence
the sum of output matrices A(j) satisfies

0n×n ⪯

(
d∑

i=1

A(i)

)
/nd ≺ 1

ϵ
κ(ϵ+ 1)In.

This last approach is faster, however provides worse estimate on the upper eigenvalue and no estimate
on the lower eigenvalue. In practice, we can design heuristics that would compel lower eigenvalue of
aggregated matrices A(i) to quickly become nonzero and increase steadily.

We consider a very general outline for this Restarted/aggregated Algorithm.

Algorithm 7 Fast restarted sparsification algorithm
Require: {vi}mi=1 s.t.

∑n
i=1 viv

⊤
i = In, J ≥ 1, 0 < ϵ < 1

Ensure: A =
∑

i tiviv
⊤
i s.t. |{i : ti ̸= 0|} ≤

∑
j Nj ,

1: let κ = (1 + ϵ)/(1− ϵ) and define δL = 1, ϵL = ϵ, δU = κ, ϵU = ϵ/κ.
2: Initialize A = 0n×n,
3: for j = 1, . . . , J do
4: let Nj be a number of rank-one matrices to be added
5: consider {vi} reordered in a certain way
6: compute Wj = Algorithm 5 / Algorithm 3({vi}, Nj , δL, ϵL, δU , ϵU) without normalization

(line 16/ line 12)
7: A← A+Wj

8: end for

This heuristic has practical grounding. The main objective here is to improve complexity while emu-
lating BSS algorithm. By Algorithm Algorithm 5 / Algorithm 3, we mean the improved Algorithm
5 for up to n iterations concluded by the plain Algorithm if needed. For the above algorithm to have
better computational complexity than plain BSS, we need to have Nj < n for all j.

The way we decide on the cardinality Nj and how to reorder {vi} at every iteration will affect
greatly the performance of the algorithm. Whatever the strategy, we have a uniform bounding on
largest eigenvalue of A at the end of iteration j, i.e. λmax(Aj) ≤ λmax(Aj−1) + κ(n/ϵ + Nj).
In particular, the output matrix A satisfies λmax(A) ≤ κ (Jn/ϵ+N) where N =

∑J
j=1 Nj . This

is to be compared with the upper bound κ (n/ϵ+N) insured by plain BSS Algorithm run for N
iteration. We have however no control over the smallest eigenvalue of A. We note however that if
−n/ϵL +NjδL ≥ 0 for at least one j, we are insured that the matrix A becomes definite positive
during the algorithm.

In moderate as well as high dimensional setting (n >> 1), one can experiment with this algorithm
for small values of Nj in order to quickly produce sparse sums

∑
j tjvjvj and check afterward

the well conditioning compared to κ2 insured by plain BSS. We have experimented with fixed
cardinality strategies. More precisely, we compare BSS run for N ≈ n/ϵ2 iteration, with the heuristic
parametrized with c ∈ {1, . . . , n} and run for Nj = c for J ≈ N/c iterations. The hyper-parameter
c is intended for fine tuning. As for reordering {vi}, we have experimented with

• Strategy 1: randomly reshuffle {vi} at every iteration,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Strategy 2: we let ℓj be a strict lower barrier to A at the j-th iteration, then reorder the
vectors in {vi}i in decreasing order w.r.t. v⊤(A− ℓjIn)

−1v.

The lower barrier ℓ considered at the k-th iteration of plain BSS Algorithm is

ℓ0 + (k − 1) = −n/ϵ+ (k − 1),

which results from adding (k − 1) rank-one update to A = 0n×n and we are guaranteed this barrier
become positive after k ≃ n/ϵ iteration. In the restarted/agregated algorithm, we have in general no
guarantee A becomes definite positive, and we will consider such barriers only when negative. More
precisely, for j = 1, . . . , J , we consider the lower barrier ℓj = min(−n/ϵ+

∑j−1
i=1 Ni,−1+ ⌊n/ϵ⌋).

We note that −1 + ⌊n/ϵ⌋ is the largest −n/ϵ+ k located strictly below 0. In particular ℓj < 0 for
any j = 1, . . . , N . For strategy 2 we will consider this choice of ℓj (strategy 2-1) and also a more
involved choice ℓj = λmin(Aj−1)− δL which entails computing the smallest eigenvalue of A at the
beginning of the j-th iteration (strategy 2-2). We note that obviously the smallest eigenvalue of A is
0 for

∑j−1
i=0 Nj < n rank-one update.

Below we revisit restarted Algorithm 7 with strategy 2-2 which has given the best result. We simply
run Algorithm 7 for c iterations, then restart.

Algorithm 8 Fast restarted sparsification algorithm
Require: {vi}mi=1 s.t.

∑n
i=1 viv

⊤
i = In, N ≥ 1, c ≥ 1, 0 < ϵ < 1

Ensure: A =
∑

i tiviv
⊤
i s.t. |{i : ti ̸= 0|} ≤ N , and empirically λmax(A)/λmin(A) ≤ (1+ϵ)2

(1−ϵ)2

1: let κ = 1+ϵ
1−ϵ and define δL = 1, ϵL = ϵ, δU = κ, ϵU = ϵ/κ

2: Initialize A = 0,
3: ν = 0 ▷ Total number of added tvv⊤

4: while ν < N do
5: let ℓ = λmin(A)− δL and compute Zl = (A− ℓIn)

−1

6: let Nj be a number of rank-one matrices to be added ▷ here the number is c
7: Nj ← min(Nj , N − ν) ▷ ensure ν = N at loop exit
8: reorder {vi} in decreasing order w.r.t. v⊤Zℓv
9: compute ∆j = Algorithm 5({vi}, Nj , δL, ϵL, δU , ϵU) without normalization (line 16)

10: update A← A+∆j , ν ← ν +Nj

11: end while

Since every ∆j satisfies 0 ≺ ∆j ≺ κ(n/ϵ + Nj)In, then the final output matrix A satisfies
0 ≺ A ≺ κ(Jn/ϵ+N) where J is the number of times the while loop was entered. We note that for
values ν ≤ n, we have λmin(A) = 0 and the computations of Zl = (A− ℓIn)

−1 and of evaluations
v⊤Zℓv can be performed via B = X⊤X assuming we have access to X in explained in Algorithm
5.

The time complexity of every iteration of this algorithm isO(n3)+O(mn2+m log(m))+Tj which
corresponds to operations at lines 5 and 8, and Tj the time complexity for computing ∆j . Assuming
the numbers Nj are fixed and are equal to c, we have Tj = O(mcmax(n, c2)) for all j and J ≈ N/c.
Assuming log(m) ≤ n2, the overall complexity is

O
(
Nm

(
n2

c
+max(n, c2)

))
For example, for c ≈ n2/3, we have overall time complexity O

(
Nmn4/3

)
. For comparison, the

overall time complexity of plain BSS algorithm is O
(
Nmn2

)
.

A.4 EXPERIMENTAL VALIDATION

The reported execution times were obtained on a personal laptop with a Dual-Core Intel i5. All
algorithms were implemented in python numpy.

We let n = 256 and consider G the complete weighted undirected n-vertex graph where vertices are
numbered s1, . . . , sn and the weight on the edge connecting si and sj is equal to wi,j = e−|i−j|/n.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

We then consider the Laplacian LG =
∑

1≤i ̸=j≤n wi,j (ei − ej) (ei − ej)
⊤ where ej are the unit

vector in Rn. We then consider the matrix (11⊤ + LG) which is symmetric definite positive and let
MM⊤ be it Cholesky decomposition. We then consider the decomposition of identity

In = v0v
⊤
0 +

∑
1≤i ̸=j≤n

vi,jv
⊤
i,j

where
v0 := M−11, vi,j =

√
wi,j M

−1 (ei − ej) , 1 ≤ i ̸= j ≤ n.

The decomposition consists on a sum of 32641 = 1 + 256×255
2 outer product. The vector are ordered

as v1,2, . . . ,v1,n,v2,1, . . . ,vn,n−1,v0

We let d = 4, ϵ = 1/
√
d = 1/2 and consider parameters ϵL, ϵU , δL, δU as in equation 3. In particular

κ2 = 9. We compare the execution times and condition numbers of matrices A output by Algorithm
?? and Algorithm 7 with the discussed strategies.

Figure 1: Comparison of condition number and execution time as a function of fixed size c.

The BSS algorithm run for dn iterations took roughly 1200 seconds (20 minutes) and insure
λmax(A)/λmin(A) ≈ 8.4 ≤ κ2. We also compare Algorithm 7 with strategy 1 and strategy
2-1 (in red) and strategy 2-2 (in blue) for values c ∈ {16, 32, . . . , 256} multiples of

√
n = 16.

For strategy 1, the condition number is ∞ for all values of c meaning the output matrix A re-
mains singular. This strategy run with c = n/ϵ = 2n took only 120 seconds but merely yields a
condition number 100. Strategy 2-1 is not reported in the figure, associated condition numbers
are [4604, 410, 427, 3346, 151, 128, 49, 105, 57, 35, 21, 38, 50, 43, 31, 11]. Strategy 2-2 is the most
promising. For instance, the condition number for c = 128 is equal to 5. We note that the algorithm
only took 60 seconds for this value.

Algorithm 7 performs very poorly with strategy 1 and strategy 2-1 but is very promising with
strategy 2-2. We speculate the main reason is the following: the vectors vi,j have squared norms
∥vi,j∥2 = e−

|i−j|
2n (ei − ej)

⊤
(11⊤ + LG)

−1 (ei − ej) depend mostly in |i − j|. Any random
shuffling or sorting w.r.t. to v⊤

i,j(A − ljIn)
−1vi,j for lj < 0 will not create disparities among the

vi,j hence not promoting those vectors that may push the smallest eigenvalue of A. It seems that
strategy 2-2 allow this. More experiments are needed for validating Algorithm 7 combined with
intuitive heuristics such as strategy 2-2.

17

	Introduction
	BSS framework
	Dual-set sparsification framework
	Computational improvements
	Conclusion
	Appendix: Algorithms and Additional Details
	Plain single set sparsification algorithm
	Modified single set sparsification algorithm
	Restarted/aggregated sparsification heuristic
	Experimental Validation

