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Abstract We investigate how one can automatically retrieve prior knowledge and use it to improve the

sample efficiency of training linear models. This is addressed using the Bayesian formulation

of logistic regression, which relies on the specification of a prior distribution that accurately

captures the belief the data analyst, or an associated domain expert, has about the values

of the model parameters before having seen any data. We develop a broadly applicable

strategy for crafting informative priors through the use of Large Language Models (LLMs).

The method relies on generating synthetic data using the LLM, and then modelling the

distribution over labels that the LLM associates with the generated data. In contrast to

existing methods, the proposed approach does not require a substantial time investment

from a domain expert and has the potential to leverage access to a much broader range

of information. Moreover, our method is straightforward to implement, requiring only

the ability to make black-box queries of a pre-trained LLM. The experimental evaluation

demonstrates that the proposed approach can have a substantial benefit in some situations,

at times achieving an absolute improvement of more than 10% accuracy in the severely

data-scarce regime. We show that such gains can be had even when only a small volume of

information is elicited from the LLM.

1 Introduction

Logistic regression is a ubiquitous method for building linear classifiers in machine learning, and

a useful tool for data analysis in a variety scientific disciplines. Although the most common

approach for model fitting relies on finding a point estimate of the parameters, one can also take

a Bayesian approach and compute a posterior distribution over model parameters. While much

more computationally expensive, the Bayesian approach is known for providing good uncertainty

estimates—which can be useful for qualifying data analysis conclusions and incorporating additional

sources of information. Moreover, it also has the potential to improve the sample efficiency, if an

informative prior distribution is used. For example, in the transfer learning and meta-learning

settings, it has been shown that fitting a prior on related auxiliary tasks can lead to substantial

improvements in sample efficiency (Rothfuss et al., 2021; Zhang et al., 2021; Riou et al., 2023;

Shwartz-Ziv et al., 2022)

However, there is little effort in the machine learning community devoted to constructing

informative priors for logistic regression—or many other families of Bayesian models. With the

notable exception of Bayesian transfer learning and meta-learning methods, the problem of crafting

informative priors has mainly been addressed in the statistics community, where the goal is to

elicit a prior from one, or many, domain experts (Falconer et al., 2022; Mikkola et al., 2023). Rather

than making the prior informative, the goal is usually to construct a prior that is an accurate

representation of an experts subjective belief about the parameters. Such priors are developed after

undertaking elicitation sessions with the expert, which involves providing them with sufficient

background in statistical concepts to facilitate communication of different data or parameter

statistics. Overall, this is a time-consuming and imprecise process, as there are many human factors
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at play. A popular line of research in the prior elicitation literature is to elicit information in

observation space. This means that, rather that attempting to get an expert to make statements

about their belief distribution for the parameters, one instead attempts to gain information about

the expert’s belief for various marginal and conditional distributions of the data. From this, the

analyst can try to infer a distribution over the parameters that is consistent with the expert’s belief

for how the data is distributed. Methods for eliciting priors from human experts tend to focus on

obtaining fractiles of the data distribution, and in practice this most often means quartiles (see, e.g.,

the discussion in Bockting et al. (2024)). In the case of regression models, the set of feature vectors

is also often made available to the expert, and the goal of the analyst is to infer the expert’s belief

for the target distribution of each point (Hosack et al., 2017).

The focus of this paper is to determine the extent to which LLMs can be used in place of human

experts for the purposes of prior elicitation. By using LLMs instead of human experts, we can

circumvent the need for elicitation sessions, thus saving valuable time for the experts and the

analyst. Moreover, in some situations the analyst will not have access to someone with the relevant

expertise. While the machine learning community often makes use of Bayesian methods with

uninformative priors, with the goal of producing principled estimates of uncertainty, our goal

is different. We instead try to automatically construct informative priors that enable improved

sample efficiency. We also follow the line of work that elicits information in observation space but,

rather than trying to model the expert’s conditional distribution of the labels given the training

features, we also use the expert to generate novel feature vectors. We then model the likelihood of

this synthetic expert-provided dataset, given the logistic regression parameters. In a conventional

prior elicitation session, such a process would be impractical, but sampling features and label

distributions from LLMs is relatively straightforward. The experimental evaluation shows that this

approach can lead to significant improvements in sample efficiency, even when a relatively small

volume of knowledge is retrieved from the LLM.

2 Prior Elicitation

The posterior over model parameters, taking into account the available data, 𝐷 , and expert prior

knowledge, 𝐾 , is given by

𝑝 (𝜃 |𝐷,𝐾, 𝜙) = 𝑝 (𝐷 |𝜃, 𝐾, 𝜙)𝑝 (𝜃 |𝐾,𝜙)∫
Θ
𝑝 (𝐷 |𝜃, 𝐾, 𝜙)𝑝 (𝜃 |𝐾,𝜙) · 𝑑𝜃

, (1)

where 𝜙 are hyperparameters selected by the analyst. The goal of prior elicitation is to construct a

prior that accurately represents the domain expert’s belief about the parameters, 𝜃 . We accomplish

this by modelling the prior knowledge elicited from the expert,

𝑝 (𝜃 |𝐾,𝜙) = 𝑝 (𝐾 |𝜃, 𝜙)𝑝 (𝜃 |𝜙)∫
Θ
𝑝 (𝐾 |𝜃, 𝜙)𝑝 (𝜃 |𝜙) · 𝑑𝜃

. (2)

It can be convenient to express the overall posterior as

𝑝 (𝜃 |𝐷,𝐾, 𝜙) ∝ 𝑝 (𝐷 |𝜃, 𝐾, 𝜙)︸         ︷︷         ︸
Data Likelihood

𝑝 (𝐾 |𝜃, 𝜙)︸     ︷︷     ︸
Knowledge Likelihood

𝑝 (𝜃 |𝜙)︸ ︷︷ ︸
Analyst Prior

, (3)

where 𝑝 (𝜃 |𝜙) is the analysts prior belief about 𝜃 , which will usually be minimally informative.

Expressing the posterior in this way makes it clear that we are modelling the knowledge elicited

from the expert with the same conceptual framework that we would model any other data; 𝑝 (𝐾 |𝜃, 𝜙)
is another likelihood term, but it is associated with the expert knowledge, 𝐾 .
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You are an expert in the field of {field}.
Your top priority is to provide statisticians with the domain knowledge required to
analyse their data. {data description}

The dataset has the following features:
{feature name 1}: {feature description 1}
...
{feature name m}: {feature description m}

The dataset has the following target:
{target name}: {target description}
The target can take these values: {target values}.

Figure 1: The system prompt for generating synthetic data to be used for fitting the informative prior.

3 Bayesian Logistic Regression with LLM Priors

We follow a standard approach for specifying the data likelihood and the analyst prior for the

coefficient matrix, 𝛽 , and intercept vector, 𝛼 . For a set 𝐷 = {(x𝑖 , y𝑖)}𝑛𝑖=1, where each x𝑖 is a random
vector of reals and each y𝑖 is a corresponding class in {1, ...,𝐶}, the data likelihood is given by

𝑝 (𝐷 |𝛽, 𝛼) =
𝑛∏
𝑖=1

𝐶∏
𝑗=1

(𝜎 𝑗 (𝛽x𝑖 + 𝛼))1(y𝑖=𝑗 ) , (4)

where 𝜎 𝑗 (·) is the 𝑗-th component of the output of the softmax function, 𝜎 , and 1(·) is the indicator
function. The analyst prior for both 𝛽 and 𝛼 is chosen to be a zero-mean Gaussian with identity

covariance.

3.1 Eliciting Knowledge from LLMs

The knowledge we elicit from the LLM takes the form of synthetic training data. We divide the

data generation process into two phases: feature synthesis, and target sampling. In both cases

we take advantage of non-deterministic methods of performing inference with LLMs: sampling

tokens according to their probabilities, rather than greedily selecting the token with the highest

probability. In all cases, the only content shared between subsequent queries are the system and

instruction prompts.

In the first phase, the LLM is prompted to generate a batch of feature vectors, and this query is

repeated until the desired number of synthetic feature vectors is obtained. In the second phase, the

LLM is presented with each synthetic feature vector one at a time and asked to provide a target

label. This is repeated multiple times for each feature vector in order to obtain a distribution over

labels. The result of this process is a set of random variables, 𝐾 = {(x𝑘𝑖 , y𝑘𝑖 )}𝑚𝑖=1, containing synthetic
feature vectors and corresponding discrete distributions representing the LLMs belief for the label.

To ensure that the LLM has sufficient information to successfully complete these tasks, we

construct a system prompt, given in Figure 1 that is shared between both phases. This system

prompt is constructed by filling in a template with dataset-specific meta-data. The prompt starts by

instructing the LLM to be an expert in a relevant field of study, then provides a short explanation

of the problem to be solved with the dataset, and finally gives a list of attributes (features and the

target) with natural language descriptions. We use a guided generation technique to ensure that

the continuations generated by the LLM match a JSON schema for the dataset features in the first

phase, and that only valid class labels are produced in the second phase.
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3.2 The Knowledge Likelihood

Prior elicitation literature has found that modelling experts’ belief, not their best guess, is crucial—a

paradigm sometimes referred to as supra-Bayesian methods (Mikkola et al., 2023).

We assume independence between the different synthetic data points, and that the label distri-

butions follow a Dirichlet distribution parameterised by the logistic regression classifier,

𝑝 (𝐾 |𝛽, 𝛼,𝛾, 𝛿) =
𝑚∏
𝑖=1

Dir

(
y𝑘𝑖

���𝛾1 + 𝛿𝜎 (𝛽x𝑘𝑖 + 𝛼)) . (5)

Across our experiments we found that a reliable choice for 𝛾 is 0.5, and good values for 𝛿 were

typically in the range [0.5, 2]. These hyperparameters allow the analyst to specify the belief about

the expert’s beliefs.

3.3 Implementation Details

We implement our Bayesian Logistic Regression model in python using the PyMC library (Abril-Pla

et al., 2023), performing inference with the NUTS Markov Chain Monte Carlo method (Hoffman

et al., 2014), as this allows us to obtain arbitrarily close approximations to the true posterior and

posterior predictive distributions. All experiments use eight billion parameter instruction-tuned

variant of Llama-3
1
, and the vLLM server (Kwon et al., 2023) is used for performing inference. We

separately standardise the real and synthetic data, with the standardisation statistics computed on

the real data being used to transform the test examples. Performing the standardisation separately

adds robustness to the LLM providing features that are linearly transformed compared to the real

features. This can happen, for example, when different units are used, or when time is given as

an offset from some fixed point. Code for reproducing the experiments is available in our GitHub

repository.
2

4 Experiments

Experiments are conducted to demonstrate the relationship between the volume of real and synthetic

data, and the performance of the models on held-out real data. See Appendix Appendix A for

information on the datasets.

4.1 Sample Efficiency

The first set of experiments investigates the sample efficiency of using a conventional Bayesian

Logistic Regression model with an uninformative prior, compared to our LLM-based prior elicitation

framework. For each dataset, we train the two methods with varying amounts of real training

data ranging from five examples to 80 examples. For the informative prior, we use a fixed set of

80 examples generated by the LLM, and we explore several different values for 𝛿 . Accuracies are

estimated using ten repetitions of 5-fold cross-validation. The results are given in Figure 2. From

these plots, we can see that on the diabetes and survival datasets, the LLM is able to provide very

informative priors, leading to substantial improvements in performance in the severely limited

data setting. We note that setting 𝛿 = 0 in our method recovers the baseline as a special case, so

when using it in practice it will fail more gracefully than these plots indicate.

4.2 Impact of the Volume of Elicited Data

The second set of experiments investigates the impact of the volume of elicited synthetic data on

the performance of the model when evaluated on real data. For each dataset, we train the model

1https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
2https://github.com/henrygouk/llm-prior

4

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://github.com/henrygouk/llm-prior


0 20 40 60 80

0.65

0.7

0.75

Training Examples

A
c
c
u
r
a
c
y

Baseline

LLM (𝛿 = 0.5)

LLM (𝛿 = 1)

LLM (𝛿 = 2)

(a) diabetes

0 20 40 60 80

0.35

0.4

0.45

0.5

0.55

0.6

Training Examples

A
c
c
u
r
a
c
y

(b) glass

0 20 40 60 80

0.6

0.7

0.8

0.9

Training Examples

A
c
c
u
r
a
c
y

(c) iris

0 20 40 60 80

0.64

0.66

0.68

0.7

0.72

0.74

Training Examples

A
c
c
u
r
a
c
y

(d) survival

0 20 40 60 80

0.7

0.8

0.9

Training Examples

A
c
c
u
r
a
c
y

(e) vote

0 20 40 60 80

0.66

0.68

0.7

0.72

Synthetic Examples

A
c
c
u
r
a
c
y

(f) diabetes (prior samples)

Figure 2: (a–e) Plots showing the sample efficiency on each dataset, where accuracies are estimated

using 10 repetition of 5-fold cross-validation, with error bars indicating the standard error;

(f) A plot showing the impact of different volumes of synthetic data on the performance of

models with different choices for 𝛿 .

with a fixed amount of real training data, and varying amounts of synthetic training data. We

explore several different values for 𝛿 . Accuracies are once again estimated using five repetitions of

5-fold cross-validation. The results are given in Figure 2f. From these results, we can see that even

with a small amount of synthetic data one can gain a measurable improvement in performance

over the baseline that does not use the synthetic data. This provides some evidence that we are not

just replacing a time consuming prior elicitation session with a compute intensive LLM sampling

procedure; the total cost will be only a few thousand tokens.

5 Conclusion

In this paper, we explore an automated approach for crafting informative priors for Bayesian logistic

regression using Large Language Models (LLMs). This method contrasts with traditional expert-

driven prior elicitation, offering a broader range of informationwithout the need for extensive expert

involvement. Our experiments demonstrate significant improvements in accuracy in some cases,

especially in data-scarce scenarios, highlighting the potential of LLMs to replace human experts

for prior elicitation in resource-constrained setting, thus saving time and leveraging extensive

pre-existing knowledge.

5.1 Limitations and Broader Impact

The main technical limitation of our work is that we have not explored model selection strategies

to tune the hyperparameters, 𝛿 and 𝛾 . We would not currently recommend deploying this method

in practice, as the reliance on LLMs could lead to unintended consequences, due to the broader lack

of understanding on their limitations in various contexts.
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A Dataset Information

We use the five datasets summarised in Table Table 1. All the datasets contain features that can be

interpreted numerically. E.g., as real valued, count data, or as binary or trinary (binary and missing)

indicators.

Table 1: Descriptions of the datasets used throughout our experiments.

Dataset Domain Features Classes

diabetes (Smith et al., 1988) Medicine 8 2

glass (German and Spiehler, 1987) Forensics 9 6

iris (Fisher, 1936) Botany 4 3

survival (Haberman, 1976) Medicine 3 2

vote (Schlimmer, 1987) Politics 16 2
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