

000 SPATIAL FORCING: IMPLICIT SPATIAL REPRESENTATION ALIGNMENT FOR VISION-LANGUAGE-ACTION 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SPATIAL FORCING: IMPLICIT SPATIAL REPRESENTATION ALIGNMENT FOR VISION-LANGUAGE-ACTION MODEL

Anonymous authors

Paper under double-blind review

ABSTRACT

Vision-language-action (VLA) models have recently shown strong potential in enabling robots to follow language instructions and execute precise actions. However, most VLAs are built upon vision-language models pretrained solely on 2D data, which lack accurate spatial awareness and hinder their ability to operate in the 3D physical world. Existing solutions attempt to incorporate explicit 3D sensor inputs such as depth maps or point clouds, but these approaches face challenges due to sensor noise, hardware heterogeneity, and incomplete depth coverage in existing datasets. Alternative methods that estimate 3D cues from 2D images also suffer from the limited performance of depth estimators. We propose Spatial Forcing (SF), a simple yet effective alignment strategy that implicitly forces VLAs to develop spatial comprehension capabilities without relying on explicit 3D inputs or depth estimators. SF aligns intermediate visual embeddings of VLAs with geometric representations produced by pretrained 3D foundation models. By enforcing alignment at intermediate layers, SF guides VLAs to encode richer spatial representations that enhance action precision. Extensive experiments in simulation and real-world environments demonstrate that SF achieves state-of-the-art results, surpassing both 2D- and 3D-based VLAs. SF further accelerates training by up to 3.8 \times and improves data efficiency across diverse robotic tasks.

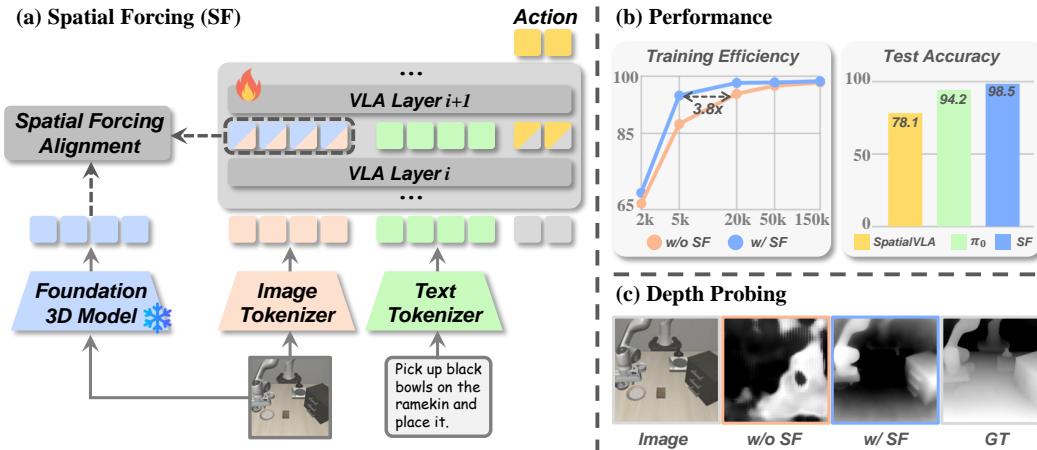


Figure 1: **Our proposed method, Spatial Forcing (SF), implicitly forces VLA models to acquire spatial-aware knowledge.** (a) SF aligns intermediate visual embeddings of VLAs with geometric representations from pretrained 3D foundation models. (b) Our simple yet effective strategy yields significant improvements in training efficiency and test accuracy. (c) Depth probing proves that our SF brings spatial information into the aligned representations, further enhancing 3D perception.

054

1 INTRODUCTION

055
 056 The development of robotic manipulation hinges on integrating semantic reasoning with accurate
 057 physical control in the 3D real world. Recently, vision-language-action (VLA) models (Brohan
 058 et al., 2022; Zitkovich et al., 2023; Bjorck et al., 2025; Black et al., 2024), capable of instruction
 059 following and robotic action execution, have attracted significant attention. Most VLA models are
 060 built upon vision-language models (VLMs) (Liu et al., 2023b; Chen et al., 2023; Karamcheti et al.,
 061 2024) to inherit semantic understanding capabilities and employ action tokenization (Kim et al.,
 062 2024; Song et al., 2025b) and action experts (Wen et al., 2025; Li et al., 2024a) to output actions.

063 However, the VLM backbones of these 2D VLA models are pretrained solely on 2D visual modal-
 064 ities and lack precise spatial awareness (Wang et al., 2025c), making it infeasible to adapt them to
 065 the 3D physical world. To address this, recent 3D VLAs have explored incorporating 3D modalities
 066 into inputs to exploit the rich geometric priors of the physical environment for precise manipula-
 067 tion. Several approaches (Chen et al., 2025; Li et al., 2025a; Bhat et al., 2025a; Li et al., 2025b; Sun et al.,
 068 2025) use depth cameras or lidars to obtain depth maps or point clouds as input, which are then
 069 encoded and explicitly fed into the VLM backbone or diffusion head. However, some limitations
 070 make it difficult to develop a universal and scalable 3D strategy for this paradigm: (1) Reliable 3D
 071 sensor data is hard to acquire, as depth maps and point clouds obtained from sensors are often low-
 072 quality and inaccurate. (2) Robotic sensors vary in types, positions, and calibration status, which
 073 introduces substantial heterogeneity into the data. (3) Portions of existing large-scale robot datasets
 074 (O’Neill et al., 2024b; Jang et al., 2022) do not include depth information, which limits the potential
 075 of scaling. Other approaches (Qu et al., 2025) attempt to estimate 3D information from 2D images
 076 using depth estimators. Yet, their effectiveness is inherently limited by the performance of the depth
 077 estimator, which finally yields sub-optimal performance. Therefore, an essential question for this
 078 field now is **how to implicitly develop VLAs’ 3D perception and comprehension capabilities, thereby**
 079 **eliminating the dependence on explicit 3D sensor information or depth estimators?**

080 To analyze this, we conduct a lightweight depth probing experiment: we extract the frozen visual
 081 embeddings from a mainstream VLA (Kim et al., 2025) and only train a DPT head (Ranftl et al.,
 082 2021) to predict the depth maps. As shown in Fig. 1(c), this observation proves that the original
 083 visual embeddings fail to yield meaningful spatial structures, revealing a potential gap in the spatial
 084 reasoning capabilities of VLAs trained without external guidance. To bridge the gap, we propose
 085 **Spatial Forcing (SF)**, a simple yet effective alignment strategy that implicitly forces VLA models
 086 to acquire spatial-aware knowledge. Specifically, for auto-regressive VLAs with causal attention,
 087 action tokens are generated conditioning on the preceding visual and linguistic tokens. Intuitively,
 088 higher-quality visual tokens that contain richer spatial information can facilitate generating more
 089 precise manipulation actions. Recent advances (Huang et al., 2025; Wang et al., 2024; Yu et al.,
 090 2024) have demonstrated the effectiveness of representation supervision. Inspired by this, as shown
 091 in Fig. 1(a), we align intermediate visual embeddings of VLAs with external spatial representations
 092 extracted from pretrained 3D foundation models. Technically, to ensure multi-view consistency, we
 093 employ VGGT (Wang et al., 2025b) as the 3D foundation model to simultaneously process robotic
 094 images and generate normalized spatial representations, which serve as supervision signals. Overall,
 095 by aligning representations, we implicitly force VLAs to develop 3D comprehension capabilities.

096 Experiments conducted across multiple simulation environments and the real world validate the
 097 effectiveness of SF. Results (Fig. 1(b)) on LIBERO and RoboTwin demonstrate that our SF achieves
 098 state-of-the-art (SOTA) performance, surpassing previous strong baselines, including 2D and 3D
 099 VLAs. Additional experiments on training iterations and dataset sizes indicate that our method
 100 realizes $3.8 \times$ training while also exhibiting data efficiency with significantly less data. Finally,
 101 real-world experiments demonstrate the spatial comprehension and data utilization capabilities.

102 In summary, the contributions of this paper are threefold:

- 103 • We provide an observation based on depth probing, supported by an interpretable analysis, to
 104 highlight the insufficiency of spatial information in the visual embeddings of VLAs.
- 105 • We introduce Spatial Forcing, a simple yet effective alignment strategy that implicitly enforces
 106 the integration of visual embeddings in VLAs with external spatial representations.
- 107 • Experiments prove that our method demonstrates enhanced performance, accelerated training
 108 speeds, and improved data efficiency across diverse robotic tasks.

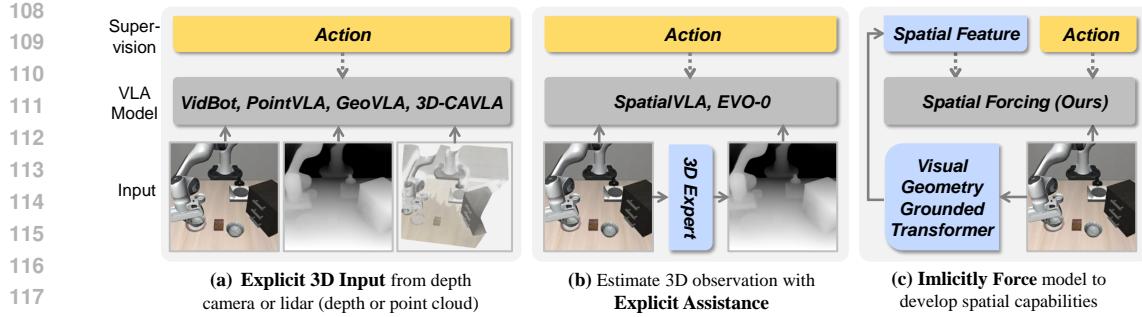


Figure 2: Comparison among different paradigms for 3D VLAs.

2 METHOD

2.1 PRELIMINARIES

Vision-language-action Models. VLA models are built upon pretrained VLMs and generate actions through specialized designs for action experts. A θ -parameterized VLM model employs multiple causal attention layers in an auto-regressive manner to generate the next tokens, formed as $\mathbf{x}_t \sim p_\theta(\mathbf{x}_t | \mathbf{x}_{<t})$, where $\{\mathbf{x}_t\}_{t=1}^T$ denotes a sequence of tokens.

When adapted to VLA models, three modalities of information will be processed: vision, text, and action. The vision modality consists of multi-view images captured by robots, which are transformed into N visual tokens $\{\mathbf{x}_t^V\}_{t=1}^N$ through pretrained visual encoders such as DINOv2 (Oquab et al., 2023) or SigLIP (Zhai et al., 2023). The text modality consists of task instructions, which are converted into M linguistic tokens $\{\mathbf{x}_t^L\}_{t=1}^M$ by a text tokenizer. Then, the VLA models generate K action tokens $\{\mathbf{x}_t^A\}_{t=1}^K$ conditioned on the preceding visual and linguistic tokens:

$$\mathbf{x}_t^A \sim p_\theta(\mathbf{x}_t^A | \{\mathbf{x}_i^V\}_{i=1}^N, \{\mathbf{x}_j^L\}_{j=1}^M, \mathbf{x}_{<t}^A), \quad (1)$$

$$\mathcal{L}_{\text{action}} = \mathcal{L}[\mathcal{G}(\{\mathbf{x}_t^A\}_{t=1}^K), A_{gt}], \quad (2)$$

where $\mathcal{L}[\cdot, \cdot]$ denotes the training loss (e.g. L1, L2, or cross-entropy loss), \mathcal{G} denotes the trainable action expert (e.g. two-layer MLP or flow-matching head (Lipman et al., 2022)). Eq. (1) illustrates that the visual tokens as intermediate scene representations play a crucial role in generating action tokens and could be supervised properly.

Visual Geometry Grounded Transformer (VGTT). VGTT (Wang et al., 2025b) is a feed-forward model that directly outputs various 3D attributes of a scene, including camera parameters, point maps, depth maps, and 3D point tracks, based on a series of 2D images. It is composed of a transformer backbone and multiple prediction heads. To make the Transformer focus within each frame and globally in an alternate way, the model employs an Alternating-Attention mechanism that interleaves frame-wise self-attention and global self-attention. For each frame, local and global features are integrated into a unified latent representation, which is subsequently processed by a set of task-specific heads to produce corresponding 3D attributes. In our work, we argue that the latent representation extracted from the VGTT transformer backbone inherently encodes rich spatial information and is sufficient to serve as the 3D supervision signal.

2.2 MOTIVATION

Challenge. It is significantly challenging to bridge the gap between VLMs pretrained solely on 2D images and the underlying dynamic 3D structure of the physical world. Several approaches (Chen et al., 2025; Li et al., 2025a; Bhat et al., 2025a; Li et al., 2025b; Sun et al., 2025) (Fig. 2(a)) incorporate depth cameras to obtain depth maps as input, but the effectiveness is limited by low quality and limited quantity of 3D data. Other approaches (Qu et al., 2025; Lin et al., 2025) (Fig. 2(b)) attempt to estimate 3D information from 2D images, but their capabilities are limited by the performance of the depth estimators, which makes the policy sub-optimal. These challenges motivate our exploration of a universal and scalable training paradigm for 3D VLAs.

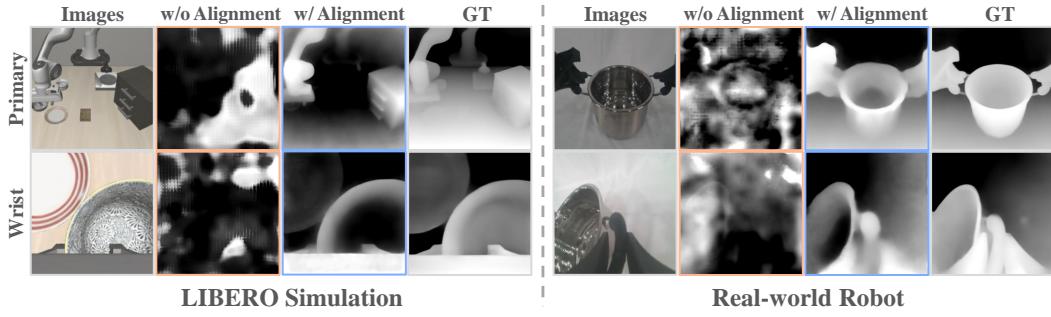


Figure 3: **Depth probing** of the visual embeddings of VLAs. Embeddings learned solely from 2D images without alignment do not produce meaningful spatial structures. The aligned embeddings inherently contain rich spatial information, leading to better performance in depth probing.

Observation. Since VLA models must capture 3D information and reason about the relative positions between robots and objects to generate precise spatial movements, we hypothesize that the 3D information is implicitly embedded within the visual embeddings of VLAs. Such embeddings would allow action tokens to acquire 3D cues through the auto-regressive mechanism during inference.

To evaluate this hypothesis, we follow linear probing (He et al., 2020) and Wu et al. (2025) to conduct a lightweight **depth probing** experiment. Specifically, we freeze all the parameters of a VLA model and only train a DPT head (Ranftl et al., 2021) to transform the visual embeddings of VLA to depth maps. This enables us to quantify the richness of spatial information embedded in the VLA representation space. As shown in Fig. 3, the probing results show that visual embeddings learned solely from 2D images do not produce meaningful spatial structures, suggesting a limited capacity of the model to encode 3D structure information without explicit spatial input or guidance.

2.3 SPATIAL FORCING

Our main philosophy is to employ external supervision signals to supervise the visual tokens x^V . To provide the signals with rich spatial information, we first input a set of multi-view images \mathcal{I} into the pretrained 3D foundation model VGGT f^{3D} , which outputs the pixel-level spatial representations $f^{3D}(I)$ for each image I . Additionally, these spatial representations are added with extra positional embedding E to ensure that the supervised tokens preserve the critical position order within the auto-regressive process in the VLA. To align the VLA’s per-pixel visual tokens with this 3D foundation model, we first process each x_i with batch normalization Γ followed by a two-layer MLP to ensure compatibility in feature dimension. Then we employ a cosine similarity score to maximize the alignment between the visual tokens of VLA and the spatial representation signals:

$$\mathcal{L}_{\text{align}} = -\frac{1}{N} \sum_{i=1}^N S[\text{MLP} \cdot \Gamma(x_i^V), f_i^{3D}(I) + E], \quad (3)$$

where $S[\cdot, \cdot]$ denotes cosine similarity, $f_i^{3D}(I)$ is the spatial representations corresponding to the pixel location of visual token x_i^V .

Additionally, as there are multiple causal attention layers in the VLA model, there are multiple x^V that can be gained after different layers. We found that supervising relatively deep but not the deepest layers is most effective in enhancing action performance. The reason is probably that the deeper layers lose more vision-specific features, making them less amenable to the supervision of target spatial representations, which is analogous to the conclusion in Huang et al. (2024).

The final training objective combines both the standard training loss for action generation and the 3D foundation model alignment loss with a weighting factor α :

$$\mathcal{L}_{\text{SF}} = \mathcal{L}_{\text{action}} + \alpha \mathcal{L}_{\text{align}}. \quad (4)$$

Overall, through SF, the VLA model acquires spatial reasoning capabilities implicitly and efficiently.

Model Inference. During inference, the VLA model trained in the SF manner operates identically to a standard VLA without SF, introducing no additional structures or computational overhead, thereby highlighting SF’s high applicability.

216
 217 **Table 1: Comparisons with state-of-the-art methods** on LIBERO benchmark. Please note that
 218 methods in gray font incorporate extra depth or point cloud information from other sensors. **Bold**
 219 denotes the best performances among the methods without extra sensor inputs.

Method	Spatial SR (%)	Object SR (%)	Goal SR (%)	Long SR (%)	Average SR (%)
2D VLA					
Diffusion Policy (Chi et al., 2023)[<i>RSS’23</i>]	78.3	92.5	68.3	50.5	72.4
TraceVLA (Zheng et al., 2025)[<i>ICLR’25</i>]	84.6	85.2	75.1	54.1	74.8
Octo (Ghosh et al., 2024)[<i>RSS’24</i>]	78.9	85.7	84.6	51.1	75.1
Openvla (Kim et al., 2024)[<i>CoRL’24</i>]	84.7	88.4	79.2	53.7	76.5
Dita (Hou et al., 2025)[<i>ICCV’25</i>]	84.2	96.3	85.4	63.8	82.4
CoT-VLA (Zhao et al., 2025)[<i>CVPR’25</i>]	87.5	91.6	87.6	69.0	83.9
π_0 -FAST (Pertsch et al., 2025)[<i>RSS’25</i>]	96.4	96.8	88.6	60.2	85.5
π_0 (Black et al., 2024)[<i>RSS’25</i>]	96.8	98.8	95.8	85.2	94.2
UniVLA (Bu et al., 2025)[<i>RSS’25</i>]	96.5	96.8	95.6	92.0	95.2
Openvla-OFT (Kim et al., 2025)[<i>RSS’25</i>]	97.6	98.4	97.9	94.5	97.1
Explicit 3D VLA					
SpatialVLA (Qu et al., 2025)[<i>RSS’25</i>]	88.2	89.9	78.6	55.5	78.1
GeoVLA (Sun et al., 2025)[<i>arXiv’25</i>]	98.4	99.0	96.6	96.6	97.7
3D-CAVLA (Bhat et al., 2025b)[<i>arXiv’25</i>]	98.2	99.8	98.2	96.1	98.1
Implicit 3D VLA					
Spatial Forcing (Ours)	99.4	99.6	98.8	96.0	98.5

3 SIMULATION EXPERIMENTS

3.1 EXPERIMENTAL SETUP

247 **Simulation Environment.** We evaluate our method on two widely-used simulation benchmarks,
 248 LIBERO (Liu et al., 2023a) and RoboTwin (Mu et al., 2025). **LIBERO** consists of four main task
 249 suites: LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long. Each task suite con-
 250 tains 500 expert demonstrations across 10 tasks to investigate policy generalization to different spa-
 251 tial layouts, objects, goals, and long-horizon tasks. **RoboTwin** is a real-to-sim bimanual benchmark.
 252 It contains an easy setting with in-domain layout and a hard setting with domain randomization, in-
 253 cluding scene clutter, diverse background textures, lighting variation, and varied tabletop heights.
 254 We evaluate our methods on diverse tasks. We report the success rates (**SR**) as evaluation metrics
 255 for these two benchmarks.

256 **Base Models and Implementation Details.** We follow Kim et al. (2025) and Black et al. (2024)
 257 to employ OpenVLA-OFT on LIBERO, and π_0 on RoboTwin, as base models. **OpenVLA-OFT**
 258 uses the Prismatic VLM (Karamchetti et al., 2024) pretrained on the Open-X-Embodiment dataset
 259 (O’Neill et al., 2024b) as the VLM backbone and the fused vision backbone (both SigLIP (Zhai
 260 et al., 2023) and DINOv2 (Oquab et al., 2023)) as the vision backbone. We train our SF based on
 261 OpenVLA-OFT on 8 NVIDIA H100 for 150k iterations to compare with other methods. **π_0** use the
 262 PaliGemma (Beyer et al., 2024) as VLM backbone. We train our SF based on π_0 with LoRA (Hu
 263 et al., 2022) on 1 NVIDIA H100 for 30k iterations. To ensure fairness, all training and evaluations
 264 follow the official settings.

3.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

265 **LIBERO.** Each task is evaluated for 500 trials under random seeds. Tab. 1 shows that SF gets the
 266 best performance across all four tasks. Specifically, strictly following the same setup of OpenVLA-
 267 OFT to use both primary and wrist camera images, our method outperforms them quite a lot. Be-
 268 sides, for long-horizon tasks on LIBERO-Long, our method also demonstrates strong capabilities

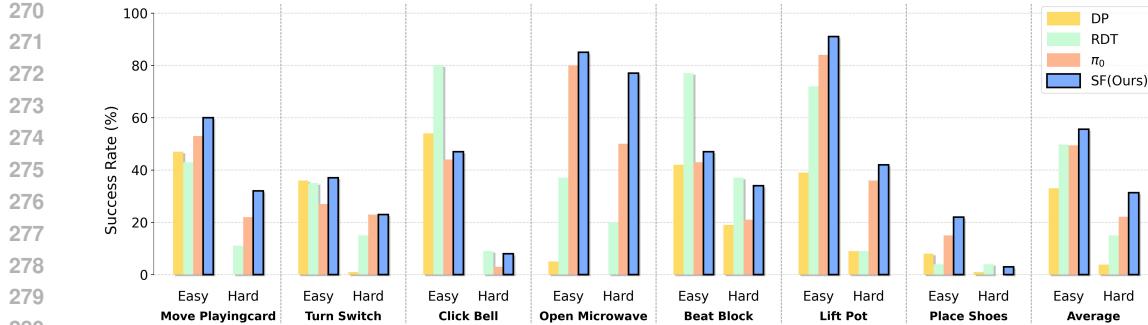


Figure 4: Comparisons with state-of-the-art methods on RoboTwin 2.0 benchmark.

to complete long-horizon tasks. Please note that, without requiring additional 3D inputs, our SF achieves comparable performance with those methods that benefit from extra 3D sensor inputs (*e.g.*, GeoVLA and 3D-CAVLA).

RoboTwin. Each easy task is evaluated for 100 trials, and each hard task is evaluated for 300 trials under random seeds. Fig. 4 shows that our SF achieves the highest average success rate and yields substantial improvements over the base model π_0 across all tasks, which demonstrates its effectiveness in enhancing the spatial awareness. Moreover, the obvious improvement on hard tasks indicates that SF enables the model to accurately capture object locations and focus on their relative spatial relationships, rather than relying on shortcut correlations such as background or lighting cues.

3.3 COMPONENT-WISE ANALYSIS

We further investigate the effect of SF by varying multiple model components and training conditions. Below, we provide a detailed analysis of each ablation. We take OpenVLA-OFT (Kim et al., 2025) as the base model and conduct experiments on the LIBERO benchmark with a single H100 because of limitations of computational resources.

Target Representation. We examine whether the effectiveness stems primarily from our proposed paradigm or from the quality of the target representations, shown in Tab. 2. Both SigLIP (Zhai et al., 2023) and DINOv2 (Oquab et al., 2023) are widely adopted vision backbones pretrained on large-scale 2D image datasets. SigLIP excels at semantic understanding through robust image-text alignment, whereas DINOv2 offers stronger visual grounding owing to its fine-grained spatial representations. VGGT (Wang et al., 2025b), trained on 2D–3D paired datasets, possesses powerful spatial perception abilities for predicting 3D attributes. All models with SF alignment get higher success rates compared to the base model, which shows that visual embedding alignment serves as a general paradigm to implicitly enhance visual perception. Using VGGT as the target representation yields the highest success rates, demonstrating that compensating for the lack of 3D understanding is crucial for VLA models. Furthermore, we find that adding positional embedding (Ranftl et al., 2021) to the target representation significantly enhances performance on long-horizon tasks. The reason is that the aligned visual embeddings are utilized in an auto-regressive manner within VLA, where the relative position of tokens plays a critical role.

Alignment at Different VLA Layers. We further investigate the effect of supervising different transformer layers of VLA, shown in Tab. 2. Our VLM backbone (Karamcheti et al., 2024) contains 32 causal attention layers. The results indicate that supervising relatively deep but not the deepest layers yields the most effective alignment. This is because supervising deep features implicitly enforces shallow features to be aligned more closely with spatial representations, thereby yielding improved spatial understanding at the global level. In contrast, constraining shallow features may cause the already aligned representations to gradually lose spatial information in subsequent layers. Besides, the visual and language modalities of VLA tend to converge into a modality-agnostic space with the layer increasing (Huang et al., 2024). Therefore, the last several layers lose more vision-specific features, making them less amenable to the supervision of target vision representation. This trade-off allows the 24th layer to achieve the best alignment performance.

324
 325 Table 2: **Component Analysis** on LIBERO benchmark. PE denotes positional embedding. **Bold**
 326 means the best performance. Experiments are conducted on 1xH100.

328 Target Representation	329 Aligned Layer th	330 Training Iterations	331 Training Data	332 Spatial SR (%)	333 Object SR (%)	334 Goal SR (%)	335 Long SR (%)	336 Average SR (%)
x	x	150K	100%	96.8	94.8	92.8	86.2	92.7
SigLIP	24	150K	100%	95.2	94.8	94.0	91.8	94.0
DINOv2	24	150K	100%	93.4	95.2	93.8	93.8	94.1
VG GT w/o PE	24	150K	100%	97.8	100.0	96.6	84.4	94.7
VG GT	24	150K	100%	97.2	99.2	96.8	94.2	96.9
VG GT	1	150K	100%	96.8	99.4	99.0	83.0	94.6
VG GT	8	150K	100%	96.2	98.4	95.6	92.4	95.7
VG GT	16	150K	100%	97.4	98.8	95.8	83.2	93.8
VG GT	24	150K	100%	97.2	99.2	96.8	94.2	96.9
VG GT	32	150K	100%	98.8	99.4	96.2	84.8	94.8
VG GT	24	2K	100%	70.6	89.8	87.0	43.4	72.7
VG GT	24	5K	100%	93.8	94.8	94.6	66.6	87.5
VG GT	24	20K	100%	96.8	99.0	93.8	85.2	93.7
VG GT	24	50K	100%	97.0	99.0	96.2	93.6	96.5
VG GT	24	150K	100%	97.2	99.2	96.8	94.2	96.9
VG GT	24	150K	1%	32.8	67.8	44.8	23.6	42.3
VG GT	24	150K	5%	73.2	83.4	80.6	66.0	75.8
VG GT	24	150K	100%	97.2	99.2	96.8	94.2	96.9

348
 349
 350 **Training efficiency.** We analyze whether SF helps improve training efficiency, shown in Tab. 2
 351 and Fig. 5(a). We report the task success rates vs. training iterations before and after representation
 352 alignment. The results illustrate that training with alignment significantly speeds up the convergence,
 353 achieving the same success rates $3.8\times$ more quickly than the base model. We hypothesize that our
 354 SF serves as an efficient learning pathway, enabling VLA models to acquire visual understanding
 355 and rapidly capture essential spatial relationships.

356 **Data efficiency.** We analyze how SF helps improve data efficiency, shown in Tab. 2 and Fig. 5(b).
 357 We uniformly sample 1%, 5%, and 33% of the entire dataset to create mini datasets. To ensure
 358 fairness, we use the cosine-annealing rather than a multi-step training scheduler. SF reaches 75.8%
 359 success rates with only 5% data. It also achieves 25.8% higher success rates in terms of the same
 360 data amounts and reaches $5.9\times$ more efficient in terms of the same success rates. Since the target
 361 representation is derived from pre-trained perception models, it can capture essential scene-general
 362 information. With the guidance of this target representation, the VLA can learn the core features with



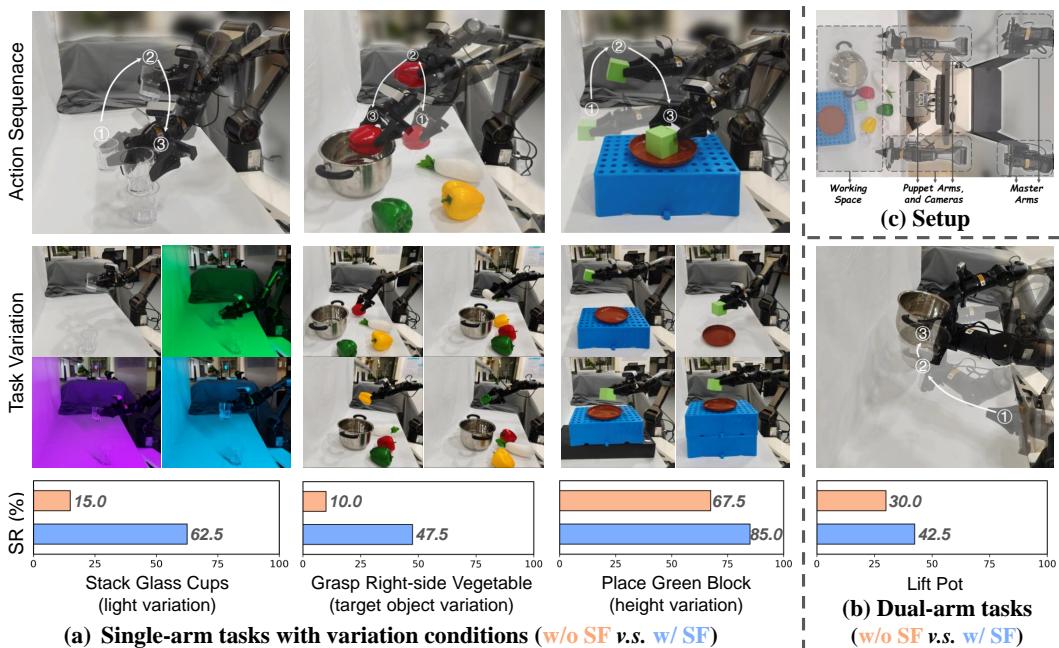
373 Figure 5: (a) We report the success rates vs. training iterations before and after representation
 374 alignment. (b) We report the success rate vs. training data before and after representation alignment.
 375 (c) The aligned representation exhibits almost the same distribution shape as the target.

378 little conductive bias from only a small amount of robotic data, thereby improving task success rates.
 379 Given the scarcity of real-world data, this capability is particularly valuable for robotic applications.
 380

381 **The t-SNE visualization.** We further visualize the degree of representation alignment. As shown in
 382 Fig. 5(c), it can be seen that after alignment, the VLA feature exhibits almost the same distribution
 383 shape as that of the target, while its cluster center remains independent from the target. This demon-
 384 strates that SF not only forces the VLA model to learn spatial comprehension ability but also ensures
 385 that its visual modality preserves original representational identity. More in-depth explanations can
 386 be seen in Appendix Sec. D.

387 4 REAL-WORLD EXPERIMENTS

389 We conduct real-world experiments to evaluate the effectiveness and data efficiency of our SF across
 390 highly variable environments.



413 **Figure 6: Real-world Experiments.** (a) A set of single-arm tasks across various visual and spatial
 414 conditions. For each task, we train a unified model to face all variations and report the success rate.
 415 (b) Dual-arm tasks to measure the spatial horizontal balance ability. (c) Top-view robot setup.

417 4.1 EXPERIMENTAL SETUP

420 As shown in Fig. 6(c), we conduct real-robot experiments on the bimanual AgileX platform. Each
 421 arm consists of a 6-DoF Piper manipulator and a 1-DoF gripper. A primary camera and two wrist
 422 cameras are installed on the body and the arms. We design a comprehensive set of tasks that covers
 423 various axes of spatial capabilities: **stack glass cups with light variation**, **grasp right-side vegetable** with
 424 **target object variation**, **place green block with height variation**, and **lift pot with new embodiments**. To
 425 examine the **data efficiency**, our model is trained on only 40 demonstrations for
 426 single-arm tasks and 20 for bimanual tasks. For evaluation, we test 10 trials per variation (40 trials
 427 in total) for each single-arm task, and 20 trials for the dual-arm task. We report the success rate (SR)
 428 of each task as the evaluation metric.

429 4.2 RESULT ANALYSIS

431 Fig. 6 shows that our SF achieves higher success rates across all tasks, showing considerable im-
 432 provements in data efficiency. This ability is critical for real-world deployment. Specifically, in the

432 *stack glass cups* task, transparent cups reflect varying surrounding lighting colors, making it highly
 433 deceptive. Our SF reaches 47.5% higher success rates than the base model because SF captures
 434 the underlying spatial relationships rather than overfitting the spurious correlations. In the *grasp*
 435 *right-side vegetable* task, different target objects require distinct gripper poses and clamping widths.
 436 Our performance demonstrates an understanding of the object’s 3D appearance. For the *place green*
 437 *block* task, varying placement heights require precise estimation of spatial height information. Ben-
 438 efit from spatial feature learning, SF achieves an 85% success rate. Results of the bimanual *lift pot*
 439 task indicate the adaptability in the new configuration as well as spatial awareness of the pot’s hori-
 440 zontal balance to prevent tilting. The performances across all tasks in Fig. 6(a) and (b) demonstrate
 441 that SF substantially improves task success rates, indicating its strong spatial comprehension and
 442 data utilization capabilities.
 443

444 5 RELATED WORK

445
 446 **Vision-language-action Models.** Given natural language instructions and scene observations, VLA
 447 aims to produce executable actions for robots. Prior works leverage vision and language foundation
 448 models to enhance robotic capabilities for low-level object localization (Stone et al., 2023; Gadre
 449 et al., 2023) as well as high-level reasoning and planning (Brohan et al., 2022; Zhao et al., 2023;
 450 Huang et al., 2023). With the development of VLMs (Liu et al., 2024a; Karamcheti et al., 2024;
 451 Beyer et al., 2024), numerous VLA research (Zitkovich et al., 2023; Deng et al., 2025; Li et al.,
 452 2024a; Song et al., 2025a; Li et al., 2024b) utilize VLMs with action experts to learn the general-
 453 izable action and language knowledge. OpenVLA (Kim et al., 2024) proposes the first open-source
 454 VLA model pretrained on large-scale robotic datasets (O’Neill et al., 2024b). However, these meth-
 455 ods primarily focus on 2D image information and lack an accurate comprehension of the 3D physical
 456 world. Recent studies enhance the spatial perception of VLAs through depth estimation (Zhen et al.,
 457 2024; Qu et al., 2025; Zhang et al., 2025), point cloud injection (Li et al., 2025a; Sun et al., 2025),
 458 and spatial projection (Li et al., 2025b; Argus et al., 2025). Nevertheless, these approaches exclu-
 459 sively enrich the visual inputs of VLAs with spatial information, while overlooking that the visual
 460 embeddings as intermediate scene representations also play a crucial role in generating action to-
 461 kens. In contrast, we argue that aligning the visual embeddings of VLAs with external powerful 3D
 462 representations (Wang et al., 2025b) is an efficient supervision to guide VLAs with spatial learning.
 463

464 **Representation Supervision.** The latent representations of models can be supervised through re-
 465 construction or alignment to facilitate downstream task adaptation. As for reconstruction-based
 466 supervision, L-DAE (Chen et al., 2024) and Genhancer (Ma et al., 2025) enable generative models
 467 to enhance visual representations. ROSS (Wang et al., 2024; 2025a) supervises the visual embed-
 468 dings of VLMs for VQA tasks by employing a denoising architecture (Ho et al., 2020) to reconstruct
 469 input images. ReconVLA (Song et al., 2025c) adopts reconstructions on the gazing area as a super-
 470 vised objective to guide VLAs in allocating attention to target objects. However, the reconstruction
 471 supervision may not be suitable for VLAs to learn effective representations, as it fails to filter out re-
 472 dundant details (LeCun, 2022; Assran et al., 2023). As for alignment-based supervision, (Wu et al.,
 473 2025) and REPA (Yu et al., 2024) directly align the intermediate hidden states of image and video
 474 generation models with external pretrained visual encoders (Oquab et al., 2023; Wang et al., 2025b).
 475 3DRS (Huang et al., 2025) introduces 3D representation supervision to strengthen its spatial ground-
 476 ing capability. **The cosine similarity is commonly used as a loss function to aligns hidden states at**
 477 **the pixel-patch level independently.** Our work also shares some similarities, where we follow the
 478 alignment-based paradigm to guide the intermediate representations of models towards geometry-
 479 aware structures. **Specifically, owing to the global attention across patches within the external 3D**
 480 **foundation model (e.g. VGGT), this alignment yields stable 3D representations for the whole scene.**
 481

482 6 CONCLUSION

483 In this paper, we investigated how to implicitly force VLAs to develop 3D perception and com-
 484 prehension capabilities. We begin with a lightweight depth probing experiment to investigate the
 485 insufficiency of spatial reasoning in current VLA models. Consequently, we propose **Spatial Forc-
 486 ing** (SF), a simple yet effective method that aligns the visual embeddings in VLAs with external
 487 spatial representations extracted from 3D foundation models. Finally, the simulation experiments

486 prove that SF can enhance performance, accelerate training speeds, and improve data efficiency. The
 487 real-world experiments prove its spatial comprehension capabilities across diverse robotic tasks.
 488

489 **REFERENCES**

490 Max Argus, Jelena Bratulic, Houman Masnavi, Maxim Velikanov, Nick Heppert, Abhinav Valada,
 491 and Thomas Brox. cvla: Towards efficient camera-space vlas. [arXiv preprint arXiv:2507.02190](#),
 492 2025.

493 Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
 494 Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
 495 predictive architecture. In [Proceedings of the IEEE/CVF Conference on Computer Vision and](#)
 496 [Pattern Recognition](#), pp. 15619–15629, 2023.

497 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
 498 Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
 499 Paligemma: A versatile 3b vlm for transfer. [arXiv preprint arXiv:2407.07726](#), 2024.

500 Vineet Bhat, Yu-Hsiang Lan, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami. 3d
 501 cavla: Leveraging depth and 3d context to generalize vision language action models for unseen
 502 tasks. [arXiv preprint arXiv:2505.05800](#), 2025a.

503 Vineet Bhat, Yu-Hsiang Lan, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami. 3d
 504 cavla: Leveraging depth and 3d context to generalize vision language action models for unseen
 505 tasks. [arXiv preprint arXiv:2505.05800](#), 2025b.

506 Johan Bjorck, Fernando Castañeda, Nikita Cherniakov, Xingye Da, Runyu Ding, Linxi Fan,
 507 Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr0ot n1: An open foundation model
 508 for generalist humanoid robots. [arXiv preprint arXiv:2503.14734](#), 2025.

509 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
 510 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow
 511 model for general robot control. [arXiv preprint arXiv:2410.24164](#), 2024.

512 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
 513 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
 514 transformer for real-world control at scale. [arXiv preprint arXiv:2212.06817](#), 2022.

515 Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo,
 516 and Hongyang Li. Univila: Learning to act anywhere with task-centric latent actions. [arXiv](#)
 517 [preprint arXiv:2505.06111](#), 2025.

518 Hanzhi Chen, Boyang Sun, Anran Zhang, Marc Pollefeys, and Stefan Leutenegger. Vidbot: Learning
 519 generalizable 3d actions from in-the-wild 2d human videos for zero-shot robotic manipulation.
 520 In [Proceedings of the Computer Vision and Pattern Recognition Conference](#), pp. 27661–27672,
 521 2025.

522 Xi Chen, Xiao Wang, Lucas Beyer, Alexander Kolesnikov, Jialin Wu, Paul Voigtlaender, Basil
 523 Mustafa, Sebastian Goodman, Ibrahim Alabdulmohsin, Piotr Padlewski, et al. Pali-3 vision lan-
 524 guage models: Smaller, faster, stronger. [arXiv preprint arXiv:2310.09199](#), 2023.

525 Xinlei Chen, Zhuang Liu, Saining Xie, and Kaiming He. Deconstructing denoising diffusion models
 526 for self-supervised learning. [arXiv preprint arXiv:2401.14404](#), 2024.

527 Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
 528 Song. Diffusion policy: Visuomotor policy learning via action diffusion. In [Robotics: Science](#)
 529 [and Systems](#), 2023.

530 Shengliang Deng, Mi Yan, Songlin Wei, Haixin Ma, Yuxin Yang, Jiayi Chen, Zhiqi Zhang, Taoyu
 531 Yang, Xuheng Zhang, Heming Cui, et al. Graspvla: a grasping foundation model pre-trained on
 532 billion-scale synthetic action data. [arXiv preprint arXiv:2505.03233](#), 2025.

540 Peter Florence, Lucas Manuelli, and Russ Tedrake. Self-supervised correspondence in visuomotor
 541 policy learning. *IEEE Robotics and Automation Letters*, 5(2):492–499, 2019.
 542

543 Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco, Ludwig Schmidt, and Shuran Song.
 544 Cows on pasture: Baselines and benchmarks for language-driven zero-shot object navigation.
 545 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 546 23171–23181, 2023.

547 Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey Hejna,
 548 Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Pannag Sanketi, Quan Vuong, Ted
 549 Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine. Octo: An open-source generalist robot
 550 policy. In *Proceedings of Robotics: Science and Systems*, Delft, Netherlands, 2024.

551

552 Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone
 553 Tao, Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manip-
 554 ulation skills. *arXiv preprint arXiv:2302.04659*, 2023.

555 Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
 556 learning: Solving long-horizon tasks via imitation and reinforcement learning. *arXiv preprint*
 557 *arXiv:1910.11956*, 2019.

558 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 559 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*
 560 *computer vision and pattern recognition*, pp. 9729–9738, 2020.

561

562 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 563 *neural information processing systems*, 33:6840–6851, 2020.

564 Zhi Hou, Tianyi Zhang, Yuwen Xiong, Haonan Duan, Hengjun Pu, Ronglei Tong, Chengyang Zhao,
 565 Xizhou Zhu, Yu Qiao, Jifeng Dai, et al. Dita: Scaling diffusion transformer for generalist vision-
 566 language-action policy. *arXiv preprint arXiv:2503.19757*, 2025.

567

568 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 569 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

570

571 Qidong Huang, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Jiaqi Wang, Dahua Lin,
 572 Weiming Zhang, and Nenghai Yu. Deciphering cross-modal alignment in large vision-language
 573 models with modality integration rate. *arXiv preprint arXiv:2410.07167*, 2024.

574

575 Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
 576 Composable 3d value maps for robotic manipulation with language models. *arXiv preprint*
 577 *arXiv:2307.05973*, 2023.

578

579 Xiaohu Huang, Jingjing Wu, Qunyi Xie, and Kai Han. Mllms need 3d-aware representation super-
 580 vision for scene understanding. *arXiv preprint arXiv:2506.01946*, 2025.

581

582 Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
 583 and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In
 584 *Conference on Robot Learning*, pp. 991–1002. PMLR, 2022.

585

586 Georgios Kapidis, Ronald Poppe, Elsbeth Van Dam, Lucas Noldus, and Remco Veltkamp. Ego-
 587 centric hand track and object-based human action recognition. In *2019 IEEE SmartWorld,*
588 Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing
589 & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation
590 (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 922–929. IEEE, 2019.

591

592 Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
 593 Rupprecht. Cotracker: It is better to track together. In *European conference on computer vision*,
 594 pp. 18–35. Springer, 2024.

595

596 Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
 597 Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models.
 598 In *Forty-first International Conference on Machine Learning*, 2024.

594 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 595 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 596 vision-language-action model. [arXiv preprint arXiv:2406.09246](https://arxiv.org/abs/2406.09246), 2024.

597

598 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
 599 mizing speed and success. [arXiv preprint arXiv:2502.19645](https://arxiv.org/abs/2502.19645), 2025.

600 Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. [Open](https://openreview.net/pdf?id=621)
 601 [Review](https://openreview.net/pdf?id=621), 62(1):1–62, 2022.

602

603 Chengmeng Li, Junjie Wen, Yan Peng, Yixin Peng, Feifei Feng, and Yichen Zhu. Pointvla: Injecting
 604 the 3d world into vision-language-action models. [arXiv preprint arXiv:2503.07511](https://arxiv.org/abs/2503.07511), 2025a.

605 Peiyan Li, Yixiang Chen, Hongtao Wu, Xiao Ma, Xiangnan Wu, Yan Huang, Liang Wang, Tao
 606 Kong, and Tieniu Tan. Bridgevla: Input-output alignment for efficient 3d manipulation learning
 607 with vision-language models. [arXiv preprint arXiv:2506.07961](https://arxiv.org/abs/2506.07961), 2025b.

608

609 Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
 610 Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for syn-
 611 ergizing cognition and action in robotic manipulation. [arXiv preprint arXiv:2411.19650](https://arxiv.org/abs/2411.19650), 2024a.

612 Xiang Li, Wenhui Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks. In [Proceedings of](https://openaccess.thecvf.com/content/ICCV2019/papers/Li_Selective_Kernel_Networks_ICCV_2019_paper.pdf)
 613 the IEEE/CVF conference on computer vision and pattern recognition, pp. 510–519, 2019.

614

615 Xinghang Li, Peiyan Li, Minghuan Liu, Dong Wang, Jirong Liu, Bingyi Kang, Xiao Ma, Tao Kong,
 616 Hanbo Zhang, and Huaping Liu. Towards generalist robot policies: What matters in building
 617 vision-language-action models. [arXiv preprint arXiv:2412.14058](https://arxiv.org/abs/2412.14058), 2024b.

618 Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
 619 Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation
 620 policies in simulation. [arXiv preprint arXiv:2405.05941](https://arxiv.org/abs/2405.05941), 2024c.

621 Tao Lin, Gen Li, Yilei Zhong, Yanwen Zou, and Bo Zhao. Evo-0: Vision-language-action model
 622 with implicit spatial understanding. [arXiv preprint arXiv:2507.00416](https://arxiv.org/abs/2507.00416), 2025.

623

624 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 625 for generative modeling. [arXiv preprint arXiv:2210.02747](https://arxiv.org/abs/2210.02747), 2022.

626 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 627 Benchmarking knowledge transfer for lifelong robot learning. [Advances in Neural Information](https://openaccess.thecvf.com/content/ICML2023/papers/Liu_Libero_Benchmarking_Knowledge_Transfer_for_Lifelong_Robot_Learning_ICML_2023_paper.pdf)
 628 [Processing Systems](https://openaccess.thecvf.com/content/ICML2023/papers/Liu_Libero_Benchmarking_Knowledge_Transfer_for_Lifelong_Robot_Learning_ICML_2023_paper.pdf), 36:44776–44791, 2023a.

629

630 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. [Advances](https://openaccess.thecvf.com/content/ICML2023/papers/Liu_Visual_Instruction_Tuning_ICML_2023_paper.pdf)
 631 [in neural information processing systems](https://openaccess.thecvf.com/content/ICML2023/papers/Liu_Visual_Instruction_Tuning_ICML_2023_paper.pdf), 36:34892–34916, 2023b.

632 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 633 tuning. In [Proceedings of the IEEE/CVF conference on computer vision and pattern recognition](https://openaccess.thecvf.com/content/ICCV2023/papers/Liu_Improved_Baselines_With_Visual_Instruction_Tuning_ICCV_2023_paper.pdf),
 634 pp. 26296–26306, 2024a.

635

636 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
 637 Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. [arXiv preprint](https://arxiv.org/abs/2410.07864)
 638 [arXiv:2410.07864](https://arxiv.org/abs/2410.07864), 2024b.

639 Shijie Ma, Yuying Ge, Teng Wang, Yuxin Guo, Yixiao Ge, and Ying Shan. Genhancer: Imperfect
 640 generative models are secretly strong vision-centric enhancers. [arXiv preprint arXiv:2503.19480](https://arxiv.org/abs/2503.19480),
 641 2025.

642 Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
 643 Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline
 644 human demonstrations for robot manipulation. [arXiv preprint arXiv:2108.03298](https://arxiv.org/abs/2108.03298), 2021.

645

646 Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
 647 language-conditioned policy learning for long-horizon robot manipulation tasks. [IEEE Robotics](https://openaccess.thecvf.com/content/RA2022/papers/Mees_Calvin_A_Benchmark_for_Language-Conditioned_Policy_Learning_for_Long-Horizon_Robot_Manipulation_Tasks_RA_2022_paper.pdf)
 648 [and Automation Letters](https://openaccess.thecvf.com/content/RA2022/papers/Mees_Calvin_A_Benchmark_for_Language-Conditioned_Policy_Learning_for_Long-Horizon_Robot_Manipulation_Tasks_RA_2022_paper.pdf), 7(3):7327–7334, 2022.

648 Yao Mu, Tianxing Chen, Zanxin Chen, Shijia Peng, Zhiqian Lan, Zeyu Gao, Zhixuan Liang, Qiaojun
 649 Yu, Yude Zou, Mingkun Xu, et al. Robotwin: Dual-arm robot benchmark with generative digital
 650 twins. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 27649–
 651 27660, 2025.

652 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 653 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, et al. Dinov2: Learning
 654 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

655 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 656 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
 657 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *2024 IEEE
 658 International Conference on Robotics and Automation (ICRA)*, pp. 6892–6903. IEEE, 2024a.

659 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 660 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
 661 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *2024 IEEE
 662 International Conference on Robotics and Automation (ICRA)*, pp. 6892–6903. IEEE, 2024b.

663 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 664 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

665 Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 666 reasoning with a general conditioning layer. In *Proceedings of the AAAI conference on artificial
 667 intelligence*, volume 32, 2018.

668 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
 669 Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
 670 models. *arXiv preprint arXiv:2501.09747*, 2025.

671 Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan
 672 Gu, Bin Zhao, Dong Wang, et al. Spatialvlva: Exploring spatial representations for visual-
 673 language-action model. *arXiv preprint arXiv:2501.15830*, 2025.

674 René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
 675 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12179–12188,
 676 2021.

677 Nur Muhammad Shafullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
 678 transformers: Cloning k modes with one stone. *Advances in neural information processing
 679 systems*, 35:22955–22968, 2022.

680 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 681 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 682 *arXiv preprint arXiv:1701.06538*, 2017.

683 Wenxuan Song, Jiayi Chen, Pengxiang Ding, Han Zhao, Wei Zhao, Zhide Zhong, Zongyuan Ge, Jun
 684 Ma, and Haoang Li. Accelerating vision-language-action model integrated with action chunking
 685 via parallel decoding. *arXiv preprint arXiv:2503.02310*, 2025a.

686 Wenxuan Song, Jiayi Chen, Pengxiang Ding, Han Zhao, Wei Zhao, Zhide Zhong, Zongyuan Ge, Jun
 687 Ma, and Haoang Li. Accelerating vision-language-action model integrated with action chunking
 688 via parallel decoding. *arXiv preprint arXiv:2503.02310*, 2025b.

689 Wenxuan Song, Ziyang Zhou, Han Zhao, Jiayi Chen, Pengxiang Ding, Haodong Yan, Yuxin Huang,
 690 Feilong Tang, Donglin Wang, and Haoang Li. Reconvla: Reconstructive vision-language-action
 691 model as effective robot perceiver. *arXiv preprint arXiv:2508.10333*, 2025c.

692 Andreas Steiner, André Susano Pinto, Michael Tschannen, Daniel Keysers, Xiao Wang, Yonatan
 693 Bitton, Alexey Gritsenko, Matthias Minderer, Anthony Sherbondy, Shangbang Long, et al.
 694 Paligemma 2: A family of versatile vlms for transfer. *arXiv preprint arXiv:2412.03555*, 2024.

702 Austin Stone, Ted Xiao, Yao Lu, Keerthana Gopalakrishnan, Kuang-Huei Lee, Quan Vuong, Paul
 703 Wohlhart, Sean Kirmani, Brianna Zitkovich, Fei Xia, et al. Open-world object manipulation using
 704 pre-trained vision-language models. [arXiv preprint arXiv:2303.00905](https://arxiv.org/abs/2303.00905), 2023.

705

706 Lin Sun, Bin Xie, Yingfei Liu, Hao Shi, Tiancai Wang, and Jiale Cao. Geovla: Empowering 3d
 707 representations in vision-language-action models. [arXiv preprint arXiv:2508.09071](https://arxiv.org/abs/2508.09071), 2025.

708

709 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 710 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 711 tion and fine-tuned chat models. [arXiv preprint arXiv:2307.09288](https://arxiv.org/abs/2307.09288), 2023.

712

713 Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
 714 Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset
 715 for robot learning at scale. In *Conference on Robot Learning*, pp. 1723–1736. PMLR, 2023.

716

717 Haochen Wang, Anlin Zheng, Yucheng Zhao, Tiancai Wang, Zheng Ge, Xiangyu Zhang, and Zhaox-
 718 iang Zhang. Reconstructive visual instruction tuning. [arXiv preprint arXiv:2410.09575](https://arxiv.org/abs/2410.09575), 2024.

719

720 Haochen Wang, Yucheng Zhao, Tiancai Wang, Haoqiang Fan, Xiangyu Zhang, and Zhaoxiang
 721 Zhang. Ross3d: Reconstructive visual instruction tuning with 3d-awareness. [arXiv preprint
 722 arXiv:2504.01901](https://arxiv.org/abs/2504.01901), 2025a.

723

724 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 725 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the Computer Vision
 726 and Pattern Recognition Conference*, pp. 5294–5306, 2025b.

727

728 Wenqi Wang, Reuben Tan, Pengyue Zhu, Jianwei Yang, Zhengyuan Yang, Lijuan Wang, Andrey
 729 Kolobov, Jianfeng Gao, and Boqing Gong. Site: towards spatial intelligence thorough evaluation.
 730 [arXiv preprint arXiv:2505.05456](https://arxiv.org/abs/2505.05456), 2025c.

731

732 Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin Tang, Kun Wu, Zhiyuan Xu, Ning Liu,
 733 Ran Cheng, Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient vision-language-action
 734 models for robotic manipulation. *IEEE Robotics and Automation Letters*, 2025.

735

736 Haoyu Wu, Diankun Wu, Tianyu He, Junliang Guo, Yang Ye, Yueqi Duan, and Jiang Bian. Geometry
 737 forcing: Marrying video diffusion and 3d representation for consistent world modeling. [arXiv
 738 preprint arXiv:2507.07982](https://arxiv.org/abs/2507.07982), 2025.

739

740 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
 741 Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
 742 understanding and generation. [arXiv preprint arXiv:2409.04429](https://arxiv.org/abs/2409.04429), 2024.

743

744 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
 745 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
 746 than you think. [arXiv preprint arXiv:2410.06940](https://arxiv.org/abs/2410.06940), 2024.

747

748 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 749 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 pp. 11975–11986, 2023.

750

751 Jiahui Zhang, Yurui Chen, Yueming Xu, Ze Huang, Yanpeng Zhou, Yu-Jie Yuan, Xinyue Cai,
 752 Guowei Huang, Xingyue Quan, Hang Xu, et al. 4d-vla: Spatiotemporal vision-language-action
 753 pretraining with cross-scene calibration. [arXiv preprint arXiv:2506.22242](https://arxiv.org/abs/2506.22242), 2025.

754

755 Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo
 Li, Qianli Ma, Song Han, Chelsea Finn, et al. Cot-vla: Visual chain-of-thought reasoning for
 756 vision-language-action models. In *Proceedings of the Computer Vision and Pattern Recognition
 757 Conference*, pp. 1702–1713, 2025.

758

759 Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
 760 manipulation with low-cost hardware. [arXiv preprint arXiv:2304.13705](https://arxiv.org/abs/2304.13705), 2023.

756 Tony Z Zhao, Jonathan Tompson, Danny Driess, Pete Florence, Kamyar Ghasemipour, Chelsea
 757 Finn, and Ayzaan Wahid. Aloha unleashed: A simple recipe for robot dexterity. [arXiv preprint](https://arxiv.org/abs/2410.13126)
 758 [arXiv:2410.13126](https://arxiv.org/abs/2410.13126), 2024.

760 Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin Yan, Yilun Du, Yining Hong, and
 761 Chuang Gan. 3d-vla: A 3d vision-language-action generative world model. [arXiv preprint](https://arxiv.org/abs/2403.09631)
 762 [arXiv:2403.09631](https://arxiv.org/abs/2403.09631), 2024.

763 Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé III, Andrey Kolobov,
 764 Furong Huang, and Jianwei Yang. Tracevla: Visual trace prompting enhances spatial-temporal
 765 awareness for generalist robotic policies. In [The Thirteenth International Conference on Learning](https://openaccess.thecvf.com/content_iclr_2025/html/Tracevla:_Visual_Trace_Prompting_Enhances_Spatial-Temporal_Awareness_for_Generalist_Robotic_Policies_iclr_2025_paper.html)
 766 [Representations](https://openaccess.thecvf.com/content_iclr_2025/html/Tracevla:_Visual_Trace_Prompting_Enhances_Spatial-Temporal_Awareness_for_Generalist_Robotic_Policies_iclr_2025_paper.html), 2025.

767 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
 768 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
 769 to robotic control. In [Conference on Robot Learning](https://openaccess.thecvf.com/content_iclr_2025/html/Rt-2:_Vision-Language-Action_Models_Transfer_Web_Knowledge_to_Robotic_Control_iclr_2025_paper.html), pp. 2165–2183. PMLR, 2023.

772 A THE USE OF LARGE LANGUAGE MODELS (LLMs)

774 In preparing this paper, large language models (LLMs) were utilized solely as general-purpose
 775 writing aids for light proofreading and language polishing. This assistance was limited to minor
 776 improvements in grammar, phrasing, and style. All core intellectual contributions, including the
 777 research ideas, problem formulation, methodology, experimental design, data analysis, code devel-
 778 opment, and substantive writing, were conceived and executed by the authors. No LLM was used
 779 to generate original content, design experiments, analyze data, write code, or draft any part of the
 780 manuscript. The authors thoroughly reviewed and verified all text, and they take full responsibility
 781 for the entire content of the paper. The LLM should not be considered an author or contributor.

783 B REPRODUCIBILITY STATEMENT

785 We have taken several measures to ensure the reproducibility of our work. The main paper provides
 786 detailed descriptions of the model architecture, training objectives, evaluation protocols, and imple-
 787 mentation details. Additional hyper-parameter settings and real-world data collection settings are
 788 presented in the appendix. Furthermore, we include a demo source code package in the supplemen-
 789 tary materials to facilitate the reproduction of our results.

791 C WEIGHT FACTOR

794 Table 3: weight factor of alignment loss.

α	0	0.02	0.1	0.5	2.5	12.5
SR (%)	73.2	92.2	92.8	93.6	86.6	81.2

799 The hyper-parameter α is used to control the relative weight of the alignment loss in Eq. (4). Appropriate
 800 weight can implicitly force the model to develop spatial comprehension capability. However,
 801 the excessively large weight may destabilize the VLA visual modality and interfere with the original
 802 robot action prediction. As shown in Tab. 3, the model performs best under the $\alpha = 0.5$, which is
 803 the default setting in all other experiments.

805 D EXPLANATIONS OF T-SNE RESULTS

807 This section provides a more detailed explanation of the t-SNE visualization used in Sec. 3.3 to
 808 demonstrate the effectiveness of our SF. T-Distributed Stochastic Neighbor Embedding (t-SNE) is a
 809 non-linear dimensionality reduction technique primarily used for visualizing high-dimensional fea-
 tures into a low-dimensional space (typically 2D or 3D). It works by modeling the similarity between

810 high-dimensional data points as a conditional probability. Specifically, it computes the probability
 811 that a point x_i would pick another point x_j as a neighbor, based on the Gaussian distribution cen-
 812 tered on x_i .

813 The **distribution shape** of a t-SNE cluster reveals the internal relative similarities and discrepancies
 814 among the features within that set. A similar distribution shape indicates that the relational structure
 815 between features has become isomorphic. In our results, the VLA feature with SF alignment exhibits
 816 almost the same distribution shape as that of the target. This means that, by forcing the VLA model’s
 817 features to adopt a similar relational geometry, our SF method is doing more than just a simple linear
 818 mapping function. It is forcing the VLA model to learn the underlying manifold of the target’s
 819 spatial representation. The VLA model learns not just where individual features should be, but how
 820 the entire feature space is structured with respect to spatial concepts.

821 The **center** of a t-SNE cluster is roughly the densest, most typical region of that feature set. The in-
 822 dependence between two cluster centers indicates that their local structures are preserved separately.
 823 In our results, the center of aligned VLA features remains independent from that of the target, which
 824 signifies that the alignment process has not caused a representational collapse. If the alignment were
 825 merely forcing the VLA features to exactly replicate the target features, the two clusters would over-
 826 lap entirely. The distinct cluster centers demonstrate that while the VLA features have adopted the
 827 relational structure of the target, they have done so without discarding the information that is unique
 828 to their own modality.

830 E REAL-WORLD DATA COLLECTION

831 During data collection, we use the master arms in a teleoperated manner to guide the puppet arms to
 832 finish tasks. Camera images and absolute joint angles are recorded as task-specific datasets at 30Hz.
 833 During training and inference, the model is fine-tuned separately for each task to control the puppet
 834 arms in task execution.

835 F DETAILS OF COMPARED MODELS

836 **π_0 (Black et al., 2024)** π_0 is a vision-language-action model for general robot control that inte-
 837 grates a pre-trained vision-language model (VLM) with a novel flow matching action expert. This
 838 architecture enables the model to produce continuous, high-frequency actions. The model is trained
 839 with a two-stage recipe: broad pre-training on a large-scale, diverse, cross-embodiment dataset, fol-
 840 lowed by optional fine-tuning on high-quality data. In evaluations, π_0 excels at following language
 841 commands and significantly outperforms methods designed specifically for dexterous manipulation
 842 tasks. Furthermore, the model can be adapted to master exceptionally complex, multi-stage tasks
 843 that take 5 to 20 minutes to complete, such as folding laundry and bussing cluttered tables.

844 **Openvla-OFT (Kim et al., 2025)** Openvla-OFT introduces an Optimized Fine-Tuning (OFT)
 845 recipe designed to enhance both performance and inference efficiency of VLAs when adapting them
 846 to specific robotic tasks. The recipe integrates parallel decoding, action chunking, a continuous ac-
 847 tion representation, and a simple L1 regression objective to improve inference efficiency. For tasks
 848 requiring precise language understanding, the recipe is further augmented with FiLM (Feature-wise
 849 Linear Modulation) (Perez et al., 2018) to strengthen language grounding. On the LIBERO simula-
 850 tion benchmark (Liu et al., 2023a), OpenVLA-OFT boosts the success rate to 97.1% while increas-
 851 ing action generation throughput by 26x. In real-world evaluations on a bimanual ALOHA robot
 852 (Zhao et al., 2024), it outperforms strong fine-tuned VLAs like π_0 (Black et al., 2024) and RDT-1B
 853 (Liu et al., 2024b), as well as policies trained from scratch, by up to 15% (absolute) in average
 854 success rate on dexterous tasks.

855 **Diffusion Policy (Chi et al., 2023)** Diffusion Policy is a visuomotor policy that represents the
 856 robot’s behavior as a conditional denoising process. Instead of directly predicting an action, Diffu-
 857 sion Policy learns the gradient of the action distribution and iteratively refines a randomly sampled
 858 action through a series of denoising steps with respect to the gradient field. This formulation enables
 859 the model to gracefully handle multimodal action distributions and high-dimensional action spaces,
 860 leading to impressive training stability. Across 15 different tasks from 4 different robot manipula-

864 tion benchmarks (Florence et al., 2019; Gupta et al., 2019; Mandlekar et al., 2021; Shafiu-
 865 llah et al., 2022), Diffusion Policy consistently outperforms existing state-of-the-art robot learning methods
 866 with an average improvement of 46.9%.

867
868 TraceVLA (Zheng et al., 2025) TraceVLA provides a visual trace prompting technique that en-
 869 hances the spatial-temporal awareness of generalist robotic policies. The method employs an off-
 870 the-shelf point tracker Co-Tracker (Karaev et al., 2024) to generate trajectories of the robot’s past
 871 movements, which are then visually overlaid onto the current observation as an additional input
 872 prompt for the VLA Model. Evaluations show that TraceVLA outperforms the OpenVLA (Kim
 873 et al., 2024) baseline by 10% in the SimplerEnv simulation and by 3.5x on real-world robot tasks,
 874 showcasing robust generalization across diverse embodiments and scenarios.

875
876 Octo (Ghosh et al., 2024) Octo is an open-source, transformer-based model for robotic manipu-
 877 lation pretrained on 800k trajectories from the Open X-Embodiment (OXE) dataset (O’Neill et al.,
 878 2024a). The architecture pairs a large transformer backbone for processing multimodal inputs with
 879 a lightweight diffusion head that generates expressive, continuous actions. The model can be in-
 880 structed via language commands or goal images and demonstrates strong zero-shot performance,
 881 outperforming RT-1-X (O’Neill et al., 2024a) by 29% on average. Its compositional design makes
 882 it a versatile initialization for data-efficient finetuning. On average, finetuned Octo policies outper-
 883 form training from scratch by 52%, successfully adapting to novel sensors, new action spaces, and
 884 entirely new embodiments. Crucially, this adaptation is achieved with only 100 demonstrations and
 885 a few hours of training on a single consumer GPU.

886
887 Openvla (Kim et al., 2024) OpenVLA is a 7B-parameter, open-source Vision-Language-Action
 888 (VLA) model designed for generalist robotic manipulation. The model’s architecture is built on a
 889 Llama 2 backbone (Touvron et al., 2023) combined with a powerful visual encoder that fuses fea-
 890 tures from both DINOv2 (Oquab et al., 2023) and SigLIP (Zhai et al., 2023), enabling strong spatial
 891 reasoning and semantic understanding. Pretrained on a diverse collection of 970k real-world robot
 892 demonstrations from the Open X-Embodiment dataset (O’Neill et al., 2024a), OpenVLA outper-
 893 forms the closed-source 55B RT-2-X model (O’Neill et al., 2024a) by 16.5% in absolute success
 894 rate across multiple robots and 29 tasks on the WidowX (BridgeData V2) (Walke et al., 2023) and
 895 Google Robot platforms. OpenVLA also introduces robust and efficient fine-tuning strategies, such
 896 as LoRA (Hu et al., 2022), which allow the model to be quickly adapted to new tasks and robots on
 897 consumer-grade GPUs.

898
899 Dita (Hou et al., 2025) Dita is a scalable framework for generalist robotic learning that leverages a
 900 Diffusion Transformer (DiT) (Peebles & Xie, 2023) to directly denoise continuous action sequences.
 901 The architecture features an “in-context conditioning” mechanism where a causal transformer di-
 902 rectly processes raw visual tokens from historical observations to inform the denoising of future ac-
 903 tions, enabling fine-grained alignment and explicit modeling of environmental nuances. Pretrained
 904 on the large-scale OXE dataset, the lightweight 334M Dita model achieves state-of-the-art or com-
 905 petitive performance across extensive simulation benchmarks like LIBERO, CALVIN (Mees et al.,
 906 2022), and ManiSkill2 (Gu et al., 2023). Furthermore, it demonstrates robust real-world adaptation,
 907 successfully executing complex, long-horizon manipulation tasks with just 10-shot finetuning.

908
909 CoT-VLA (Zhao et al., 2025) CoT-VLA is a VLA model that incorporates visual chain-of-
 910 thought (CoT) reasoning, where it first auto-regressively generates a future subgoal image as an
 911 intermediate reasoning step before predicting the action sequence. The model is built upon the
 912 VILA-U multimodal foundation model (Wu et al., 2024) and features a hybrid attention mechanism,
 913 using causal attention for subgoal image generation and full attention for multi-step action predic-
 914 tion. The training dataset includes not only robot demonstrations from the Open X-Embodiment
 915 dataset but also action-less video datasets like EPIC-KITCHENS (Kapidis et al., 2019), allowing
 916 the model to improve visual reasoning from unlabeled sources. In evaluations, CoT-VLA achieves
 917 a 6% average improvement over OpenVLA on the LIBERO simulation benchmark and a 17% im-
 918 provement in real-world manipulation tasks.

919
920 π_0 -FAST (Pertsch et al., 2025) FAST introduces an efficient action tokenization method for VLA
 921 models that enables the training of auto-regressive policies on high-frequency, dexterous manipula-

tion tasks where previous binning schemes failed. The approach, named Frequency-space Action Sequence Tokenization (FAST), leverages the discrete cosine transform (DCT) to convert action trajectories into the frequency domain, where the signal’s core information is naturally concentrated into a few low-frequency coefficients. This method effectively compresses actions into a compact set of discrete tokens, significantly reducing redundancy. When integrated with the π_0 backbone, the resulting auto-regressive policy (π_0 -FAST) matches the performance of the original π_0 model on complex, long-horizon tasks like laundry folding, while reducing training time by up to 5x.

UniVLA (Bu et al., 2025) UniVLA introduces a framework for generalist robotic policies that learns a unified, task-centric latent action space from videos, uniquely enabling it to leverage diverse data sources (including human videos) without explicit action labels. The core of the method is an unsupervised latent action model that uses a VQ-VAE to discretize task-relevant dynamics from paired video frames within the DINOv2 feature space. These quantized latent actions then serve as pseudo-labels to pretrain an auto-regressive vision-language policy. In evaluations, UniVLA significantly outperforms OpenVLA, achieving a 95.2% success rate on the LIBERO benchmark (an 18.7% absolute improvement) and a 36.7% absolute improvement in real-world deployment tasks, while using less than 1/20 of the pretraining compute.

SpatialVLA (Qu et al., 2025) SpatialVLA is a spatial-enhanced VLA model designed to improve 3D spatial understanding. The architecture introduces two key innovations: Ego3D Position Encoding, which injects 3D spatial context from depth information into the input observation of a PaliGemma 2 backbone (Steiner et al., 2024), and Adaptive Action Grids, a novel action representation that discretizes continuous robot movements into adaptive spatial grids based on the data distribution. Pretrained on 1.1 million real-world robot episodes, SpatialVLA demonstrates superior zero-shot performance and efficient adaptation capabilities. In extensive evaluations across 24 real-world tasks and 3 simulation environments (Li et al., 2024c; Liu et al., 2023a; Walke et al., 2023), it achieves state-of-the-art results, significantly outperforming models like OpenVLA and RoboVLM (Li et al., 2024b), particularly in tasks requiring precise spatial reasoning and generalization to new robot setups.

GeoVLA (Sun et al., 2025) GeoVLA is a VLA framework designed to improve robotic manipulation by explicitly integrating 3D geometric information alongside standard 2D visual inputs. Its novel dual-path architecture features a standard VLM for processing 2D vision and language, together with a custom Point Embedding Network (PEN) that extracts geometric features from point clouds derived from depth maps. These multimodal embeddings are then fused by a 3D-enhanced Action Expert (3DAE) to generate precise and continuous actions. In evaluations, GeoVLA achieves state-of-the-art performance, outperforming OpenVLA-OFT on the LIBERO benchmark and Dita on ManiSkill2 (Gu et al., 2023). In real-world experiments, it demonstrates superior robustness to 3D variations such as changes in object height, scale, and camera viewpoint, outperforming strong baselines like π_0 by 28.8% in average success rate.

3D-CAVLA (Bhat et al., 2025b) 3D-CAVLA introduces a framework that enhances Vision-Language-Action models with improved 3D spatial awareness and reasoning to boost generalization on unseen tasks. Built upon OpenVLA-OFT, the model integrates three key modifications: chain-of-thought-style narrative prompts to enrich task context, 3D features derived from point clouds to improve depth perception, and task-oriented region-of-interest pooling to focus visual attention. The model achieves a near-perfect 98.1% average success rate on standard LIBERO tasks. Furthermore, it demonstrates a significant 8.8% absolute improvement over OpenVLA-OFT on a newly proposed benchmark of 10 zero-shot tasks derived from the LIBERO environment, highlighting its superior generalization capabilities.

G ADAPTIVELY CHOOSING ALIGNMENT DEPTH LAYER

We develop an adaptive strategy to automatically choose the alignment depth layer of VLAs, and we find this strategy is effective. Specifically, following the core idea of MOE soft gating mechanism (Li et al., 2019; Shazeer et al., 2017), firstly we employ a trainable weight matrix $M_g \in \mathbb{R}^{L \times D}$, where L is the total amount of VLA layers (e.g., 32 for LLaVA), D is the feature dimension. Then,

972 pool the VLAs' visual tokens along the token axis:
 973

$$P = \frac{1}{N} \sum_{t=1}^N x_t^V, \quad (5)$$

976 where $\{x_t^V\}_{t=1}^N$ is N visual token of VLAs. If the visual tokens ${}^l x^V$ are gained at the l_{th} layer of
 977 VLAs, we denote the corresponding pooling feature as $P(l)$, where $l = \{1, 2, \dots, L\}$.
 978

979 Next, calculate the gating score scalar for each layer:
 980

$$s_l = M_g(l)P(l)^T. \quad (6)$$

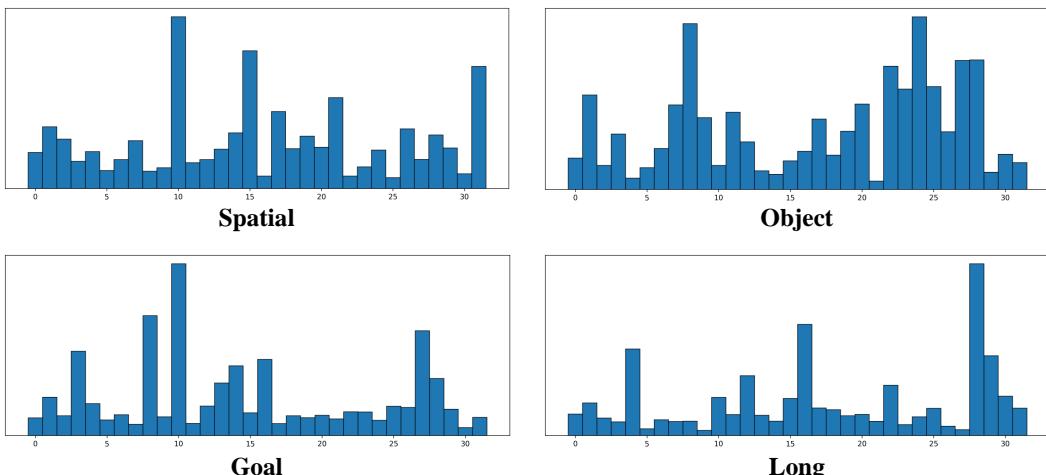
981 Finally, we use the mixtual visual feature to calculate the align loss:
 982

$$\mathcal{F}_{align} \left[\sum_{l=1}^L \frac{\exp(s_l)}{\sum_{j=1}^L \exp(s_j)} {}^l x^V, f^{3D} \right]. \quad (7)$$

985 We report the updated success rate on LIBERO. As shown in the Tab. 4 below, the adaptive layer se-
 986 lection strategy shows clear improvements. And we provide the gating score distribution histograms
 987 across layers in Fig. 7.
 988

989
 990 Table 4: The Ablation of Supervising Different Transformer Layers of VLA.

991 Aligned Layer th	992 Spatial	993 Object	994 Goal	995 Long	996 Average
997 1	96.8	99.4	99.0	83.0	94.6
998 8	96.2	98.4	95.6	92.4	95.7
999 16	97.4	98.8	95.8	83.2	93.8
1000 24	97.2	99.2	96.8	<u>94.2</u>	<u>96.9</u>
1001 32	98.8	99.4	96.2	84.8	94.8
1002 adaptive	<u>98.6</u>	<u>99.4</u>	<u>98.8</u>	95.4	98.1



1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025 Figure 7: The MOE gating score distribution histograms on the LIBERO benchmark of adaptive
 layer selection strategy.

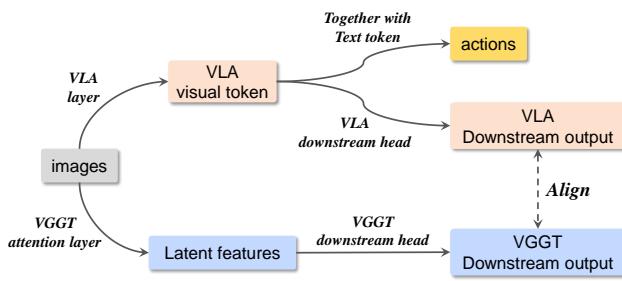
H ADDITIONAL REAL-WORLD SETTINGS

H.1 COMPLEX COLOR, CLUTTER, INSTRUCTION CHALLENGES

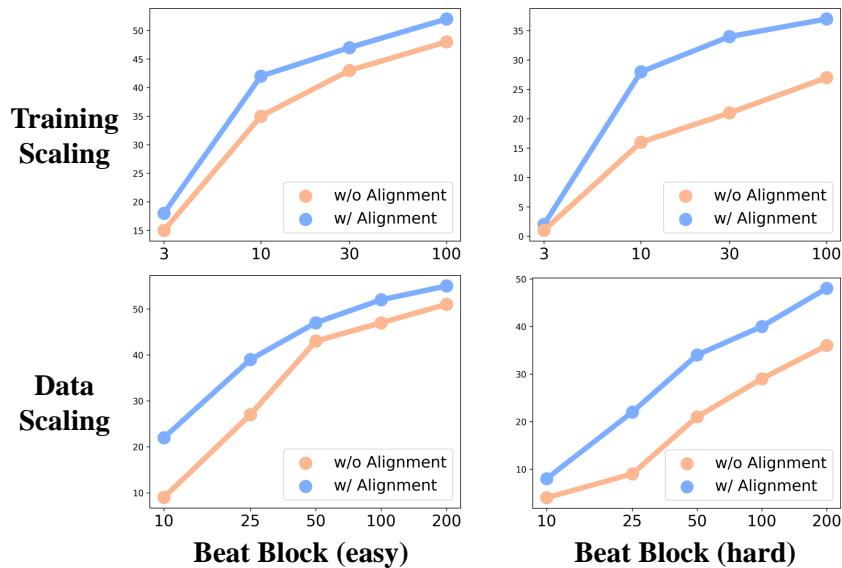
1026 As shown in Fig. 8, the target objects include red bell pepper, green bell pepper, red carrot, or
 1027 green cube. This experimental setting is provided in the revised appendix. Models are trained on 40
 1028 demonstrations and evaluated over 40 trials. For each evaluation trial, unseen objects appear on the
 1029 table and are randomly positioned.

1080 **J DOWNSTREAM TASK SUPERVISION STRATEGY**
1081

1082 To understand what specific geometric properties are most dominant in these features, we design
1083 a paradigm to directly align VLA with downstream properties of VGGT. Following the official
1084 implementation of VGGT, we mainly choose three geometric properties: depth, point maps, and
1085 dynamic tracks. Firstly, we utilize the task-specific heads of VGGT as VLA downstream heads.
1086 Then, the visual tokens of VLA are fed into the trainable VLA downstream heads to produce task-
1087 specific outputs (i.e., depth, point maps, or dynamic tracks). Finally, we treat the VGGT task-specific
1088 outputs as ground-truth and calculate the loss between these two outputs. The overall pipeline is
1089 shown in the Fig. 11.

1100 Figure 11: The pipeline of the downstream task supervision strategy.
11011102 **K SCALING PERFORMANCE EVALUATION**
1103

1104 To better evaluate our scaling performance on increasing data and training steps, we choose a dif-
1105 ficult task in RoboTwin and collect additional data. The experiments are on the RoboTwin "beat
1106 block" task. The original data includes 50 episodes and we additionally collected 150 episodes,
1107 total of 200 episodes. The line charts of success rate comparison are shown in Fig. 12.
1108

1129 Figure 12: Additional ablation experiments for training iteration and data with the logarithmic scale
1130 x-axis.
1131

1132 The x-axis of the original data-scaling curves is displayed in a logarithmic scale. Under the log scale,
1133 the curves visually appear much steeper. Therefore, as shown in Fig. 13, we provide the data-scaling
curves using the linear scale x-axis, which reflects the absolute dataset size without bias. In addition,

1134 to make sure that these data-scaling curves fully converged, we conducted further experiments under
 1135 the larger dataset sizes. Experimental results demonstrate that as the dataset size increases, the
 1136 performance gains gradually become marginal for both the baseline and our SF method. However,
 1137 we could find that under every setting of data sizes, our SF consistently outperforms the baseline.
 1138 In particular, even when the data-scaling curves nearly converge under large data sizes, our SF still
 1139 maintains a significantly higher success rate. This indicates that our SF remains effective even under
 1140 large data scales.

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

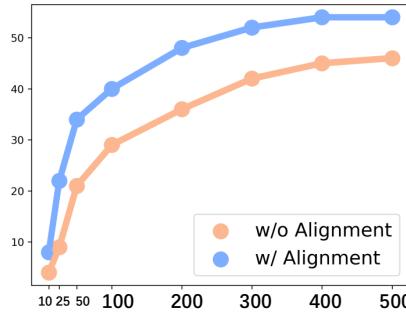


Figure 13: Data-scaling curves with the linear scale x-axis.