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ABSTRACT

Facility Location is a fundamental problem in clustering and unsupervised learning.
Recently, significant attention has been given to studying this problem in the
classical online setting enhanced with machine learning advice. While (almost)
tight bounds exist for the fractional version of the problem, the integral version
remains less understood, with only weaker results available. In this paper, we
address this gap by presenting the first online rounding algorithms for the facility
location problem, and by showing their applications to online facility location
with machine learning advice. Beyond its implications for the learning augmented
setting, our results also show that the hardness of the classic online facility location
problem lies in computing a good fractional solution and not in rounding it.

1 INTRODUCTION

Clustering is a central problem in unsupervised learning. In recent years, to capture the evolving
nature of real world data, there has been increased interest in clustering problems in the online setting,
where the set of points that have to be clustered is not known in advance and is revealed to the
algorithm over time Meyerson (2001); Alon et al. (2006); Fotakis (2011); Lattanzi and Vassilvitskii
(2017); Almanza et al. (2021); Cohen-Addad et al. (2021); Fotakis et al. (2021b); Lattanzi et al.
(2021); Anand et al. (2022); Cohen-Addad et al. (2022). This increased interest reflects the growing
importance of performing learning tasks in uncertain and dynamically changing environments. To
mitigate the negative impact of the uncertainty on algorithmic performance, a new paradigm using
machine-learned predictions has rapidly gained traction in the last few years Purohit et al. (2018);
Antoniadis et al. (2020); Bamas et al. (2020); Lattanzi et al. (2020); Wei and Zhang (2020); Im
et al. (2021); Lykouris and Vassilvitskii (2021); Chen et al. (2022); Mitzenmacher and Vassilvitskii
(2022); Bai and Coester (2023). The basic tenet of this framework is to simultaneously ensure that
the algorithm is able to exploit good predictions about the future (called consistency) while being
minimally affected by bad ones (called robustness), although it is unable to distinguish the good from
the bad predictions presented to it. In this paper, we present new algorithms for the classical facility
location problem in the online setting augmented with machine-learned predictions. These results are
derived via novel online rounding algorithms of fractional solutions, which may be of independent
interest.

In clustering problems, the goal is to partition (or cluster) a set of data points (called clients) into
designated groups (or clusters) while optimizing a desired objective. One of the most popular is the
k-median problem, which asks to select k cluster centers such that the sum of distances of the clients
from their nearest cluster centers is minimized. The condition that only k centers can be chosen can
be rather constraining, particularly in the online setting where it renders the problem uninteresting
because the algorithm fails to remain competitive after it has opened all k centers.

A natural and well-studied (Lagrangian) relaxation of k-median is the facility location problem,
where an arbitrary number of centers (called facilities) can be opened but each open facility adds an
opening cost to the objective. The online facility location problem where clients arrive over time was
introduced by Meyerson Meyerson (2001), and has since been studied extensively Anagnostopoulos
et al. (2004); Fotakis (2007; 2008; 2011). The advantage of this setting is that it produces stable
clusters that can be used in downstream tasks, notably as input to machine learning models, whereas
changes to the clustering would incur substantial overhead. In recent years, interest has grown in
obtaining learning-augmented algorithms for this problem, where machine-learned suggestions about
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the clustering solution are incorporated into the decision-making of the algorithm Almanza et al.
(2021); Jiang et al. (2022); Fotakis et al. (2021a); Anand et al. (2022). This has led to almost tight
bounds for fractional versions of this problem, while the integral version remains less understood,
especially in the presence of multiple advice. In this paper, we address this gap by presenting the
first online rounding algorithm for facility location, and show its applications to learning-augmented
versions of the problem.

Our Contributions. We present two new online rounding algorithms for the facility location problem.
Both algorithms take as input a fractional solution and produce an integral solution in the online
setting. To the best of our knowledge, these are the first two online rounding algorithms for the
facility location problem. This work introduces novel techniques that heavily exploit the problem’s
underlying metric structure, contributing to the growing literature on online rounding algorithms. We
believe these techniques are also of interest for a broader range of clustering problems.

Our first algorithm is for the uniform version, where all facilities have the same opening cost. In this
case, we give a deterministic online rounding algorithm that produces an integral solution whose cost
is only a constant times that of the fractional solution input to it. Paired with prior results for the
fractional problem, we obtain new algorithms for the integral facility location problem with machine
learning advice that matches the almost tight results, which were previously only known for the
fractional version.

Our second algorithm is for the non-uniform problem with arbitrary facility opening costs. For this
more general problem, we give an online rounding algorithm that is randomized and loses a factor
of O(log log∆) in expectation compared to its fractional input, where ∆ is the aspect ratio of the
underlying metric space. We remark that, by standard techniques (see Appendix E), the upper bound
O(log log∆) may be replaced by O(log log n), where n is the number of clients in the instance. As
in the uniform case, this algorithm can be paired with existing algorithms for the corresponding
fractional problem and yields a nearly optimal competitive algorithm for the online problem.

As an application of our rounding algorithms, we obtain the first integral algorithm for online
facility location in the multiple predictions setting Almanza et al. (2021); Anand et al. (2022). The
consistency bounds that we obtain are tight up to lower-order terms, thereby bridging fractional and
integral results for this problem. Simultaneously, we also obtain tight robustness bounds for the
learning-augmented setting by using a combiner algorithm that obtains the better of the solutions
between our algorithm and online facility location without predictions.

Other Related Work. The two most related works are Almanza et al. (2021); Anand et al. (2022).
The first paper studied the learning-augmented facility location problem in the uniform case. Their
integral algorithm has a cost overhead of O(log log n) compared to the best fractional solution, and
works in the simplified setting where all the predictions are presented before any client arrives. In
comparison, we improve the cost overhead to O(1) and no longer require the predictions to be given
upfront. The second paper studied online covering problems with multiple machine learning advice.
They provide several interesting results in this setting and in particular an online fractional algorithm
to the learning-augmented facility location problem. Our work bridges this fractional result and the
integral facility location problem. We also note that there is prior work on online facility location
with a single machine learning advice Azar et al. (2022); Fotakis et al. (2025), or from a mechanism
design perspective Balkanski et al. (2024). The results in these papers do not have any implication for
the multiple predictions settings of the current paper, and are obtained using very different techniques.

More broadly, there has been significant recent interest in online rounding algorithms, especially
for matching problems Buchbinder et al. (2023); Naor et al. (2025). In addition to its application
to learning-augmented algorithms, our work adds to this portfolio of online rounding algorithms,
specifically extending it beyond packing to covering problems. Our techniques differ from previous
work in that they use structural properties of the underlying metric space to define rounding solutions,
both using deterministic and randomized tools. Indeed, this is in sharp contrast to prior work on online
rounding for facility location in non-metric settings Alon et al. (2006); Bienkowski et al. (2020). In
these papers, the rounding algorithms must incur a logarithmic loss (being basically identical to the
set cover problem) while we incur sub-logarithmic loss by exploiting metric properties.

Organization. We formally define our problem and state our results in Section 2. In Section 3,
we present the deterministic rounding algorithm for the uniform setting. In Section 4, we present
the randomized rounding algorithm for the (general) non-uniform case. In Section 5, we give
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applications of these rounding algorithms to obtain new results for the learning-augmented facility
location problem. Finally, in Appendix D, we present a lower bound showing that our analysis of the
randomized rounding algorithm for the non-uniform setting is (asymptotically) tight.

2 PRELIMINARIES

Online Facility Location. The classic online facility location problem is defined on a metric space
(V, d), where V is a set of vertices and d is the distance function between vertex pairs satisfying
the standard properties of a metric space: (i) (Non-negativity) d(u, v) ≥ 0 for all u, v ∈ V with
d(v, v) = 0 for all v ∈ V , (ii) (Symmetry) d(u, v) = d(v, u) for all u, v ∈ V , and (iii) (Triangle
Inequality) d(u, v) + d(v, w) ≥ d(u,w) for all u, v, w ∈ V .

The metric space (V, d) is revealed online to the algorithm: in each online step t, a new vertex
vt ∈ V is revealed along with (i) its distance to all vertices revealed in previous steps, and (ii) its
(non-negative) facility opening cost c(vt). If the opening cost is uniform across all vertices, then it is
a uniform instance, otherwise it is a non-uniform instance. By scaling, all opening costs are 1 in the
uniform case.

We denote the set of vertices revealed in the first t steps Vt. In step t, the online algorithm’s solution
comprises a subset of vertices in Vt where facilities are opened by the algorithm; we denote this set Ft.
The sets Ft must be monotone over time, i.e., an open facility cannot be closed: F1 ⊆ F2 ⊆ . . . ⊆ Ft.
The connection cost of a vertex v ∈ Vt is its distance to the closest open facility. Collectively, the
cost of the solution is the sum of the opening costs of the facilities and the connection costs of all
vertices, i.e., algt =

∑
v∈Ft

c(v) +
∑

u∈Vt
minv∈Ft d(u, v).

Let optt denote the cost of an optimal solution on the instance (Vt, d). Then, the competitive ratio
of the online algorithm is defined as: maxt algt/optt. Moreover, if the algorithm is randomized,
the competitive ratio is maxt E[algt]/optt, where the expectation is over the random choices of the
algorithm.

Fractional solution and ML-advice. To define a valid fractional solution, it would be convenient to
first write a (standard) LP relaxation of the problem. The following is the LP at step t:

minimize
∑
v∈Vt

c(v) ytv +
∑
u∈Vt

∑
v∈Vt

d(u, v) xt
uv such that

∑
v∈Vt

xt
uv = 1 ∀u ∈ Vt (1)

xt
uv ≤ ytv ∀v ∈ Vt (2)

xt
uv, y

t
v ≥ 0 ∀u, v ∈ Vt (3)

The online fractional solution in step t is a feasible solution to this LP. Moreover, the variables ytv that
represent the fraction of the facility at vertex v that is open at time t are non-decreasing over time:
y1v ≤ y2v ≤ . . . for all v. We will refer to the value of ytv as the fractional mass at vertex v at time t.

Note that the values of ytv completely specify the fractional solution even without explicitly defining
xt
uv. This is because the optimal values of the xt

uv variables is given as follows: for each client
u ∈ Vt, order the vertices in Vt in non-decreasing distance from u (breaking ties arbitrarily), and
select the minimal prefix of this order such that the total fractional mass in this prefix is at least 1.
Now, assign xt

uv = ytv for all facilities v in this prefix, except possibly for the last one. For this last
vertex, the value of xt

uv is such that sum of xt
uv over all the facilities in the prefix is 1. The value of

xt
uv for all vertices outside this prefix is 0.

In the learning-augmented facility location problem, whenever a new vertex v arrives, one also
receives k feasible suggestions (predictions) yv(1), . . . , yv(k) for the value of yv. We consider the
k suggestions at each step as a collection (or bag) of predictions, disregarding any association with
specific predictors. Our objective is to achieve performance comparable to the best suggestion in
each step, i.e., we seek the minimum-cost solution that is consistent with at least one suggestion at
every stage. Formally,

dynamict = min
ŷ∈Ŷ

∑
v∈Vt

c(v) ŷv +
∑
u∈Vt

∑
v∈Vt

d(u, v) xt
uv,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where Ŷ = {ŷ : ∀v ∈ Vt,∃i ∈ [k], ŷv = yv(i)} and xt
uv are defined using the values of ŷ as

described above.

It is interesting to note that this model of predictions generalizes other natural types of predictions.
E.g., if the predictions specify opening a facility at a vertex when it arrives or even at the very
outset Almanza et al. (2021), it can be simulated by setting yv = 1 in our prediction model. In fact,
our prediction model captures the very natural setting where the variable yv represents the probability
that a facility is opened at vertex v.

We also note that our algorithm consider the possibility to open previously specified facilities as
long as the assignment is online. This is standard in the literature. In fact, in the traditional online
model for the facility location problem, introduced by Meyerson (2001), for non-uniform facility
location(this is specified in the first paragraph of Section 3 in Meyerson (2001)) the facility locations
are known before the clients arrive online, the demands are specified online and the assignments and
the opening are decided online (in particular any facility location can be opened at any time and this
is necessary in this setting). Furthermore, in Almanza et al. (2021), in the non-uniform case, the set
of suggested facilities is specified in advance and facilities can be opened in these specified locations.

In the learning-augmented facility location problem, we aim to return an integral solution (i.e.
a solution where all the y variables have integral value) such that its cost is bounded by
min{α dynamict, β optt} for α and β as small as possible. From lower-bounds in previous works Al-
manza et al. (2021); Anand et al. (2022), we know that α ≥ log k

log log k and that β ≥ log t
log log t Fotakis

(2008).

With the above notation, we can state the implication of our rounding algorithms more formally for
the learning-augmented problems. First, we study the uniform setting where all the facilities have
the same opening cost. In this setting, our rounding algorithm implies a deterministic algorithm
that obtains a O(min{log(k + 1) dynamict,

log t
log log t optt})-approximation, improving previous

work in the area. Second, we use our non-uniform facility rounding algorithm to obtain the first
learning-augmented algorithm for the non-uniform facility location problem. Our algorithm returns a
O(log log∆ ·min{log(k + 1) dynamict,

log t
log log t optt})-approximation. Both results start from the

fractional solution built for the learning-augmented facility location problem designed in previous
work Anand et al. (2022) and use our online rounding algorithms to obtain the final integral results.

Additional notation. Consider the metric space (Vt, d) at time t. The ball centered at some vertex
v ∈ Vt with radius R ≥ 0 in this metric space is denoted Bt(v,R): Bt(v,R) = {u ∈ Vt : d(u, v) ≤
R}. For any set of vertices S ⊆ Vt, the total fractional mass on the vertices of S at time t is denoted
yt(S): yt(S) =

∑
v∈S ytv. Clearly, yt(S) is also non-decreasing over time. In particular, we will

often consider the total fractional mass at time t in a ball B = Bt(v, r); this is denoted yt(B).

γ-Consistent Rounding. Consider a fractional solution yt = (ytv, v ∈ Vt) (recall from above that
yt is sufficient to define a solution). Now, suppose we round this fractional solution to produce an
integer solution Ft ⊆ Vt. We say that Ft is γ-consistent with yt if the following property holds:

(γ-Consistency.) For any ball B = Bt(v,R) centered at a vertex v ∈ Vt and with radius R, if
yt(B) ≥ 1/2, then there is an open facility in Ft that is within distance γR of v.

We show that the γ-consistency property implies that the connection costs of the fractional and
integral solutions are related.

Lemma 1. If an integral solution Ft is γ-consistent with a fractional solution yt, then the total
connection cost of all the clients in Vt in the integer solution is at most 2γ times that in the fractional
solution. In notation, ∑

u∈Vt

min
v∈Ft

d(u, v) ≤ 2γ ·
∑
u∈Vt

∑
v∈Vt

d(u, v) xt
uv,

for any xt such that (yt,xt) is feasible for the LP given above.

Proof. Consider a client at vertex u that arrives at time t. Suppose its fractional connection cost
is β, i.e.,

∑
v∈V d(u, v)xt

uv = β where
∑

v∈V xt
uv = 1 and xt

uv ≤ ytv for all v ∈ Vt. Then,∑
v∈B(u,2β) y

t
v ≥

∑
v∈B(u,2β) x

t
uv ≥ 1/2. Note that γ-consistency ensures that there is at least one
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facility at distance 2γβ from u after the processing at time t. It follows that the connection cost of
client u in the integer solution is at most 2γβ.

Our goal is to obtain γ-competitive solutions so that the total connection cost can be bounded
immediately by Lemma 1. So, our analysis will comprise two parts: first, obtain an explicit bound on
the facility opening cost

∑
v∈Ft

c(v) of the integral solution against the opening cost of the fractional
solution,

∑
v∈Vt

c(v) yv; and second, establish γ-competitiveness of the integral solution with respect
to the fractional solution for a suitable value of γ.

3 THE DETERMINISTIC ROUNDING ALGORITHM FOR UNIFORM OPENING
COSTS

In this section we present our deterministic online rounding algorithm for the uniform facility case.
This algorithm combined with the fractional algorithm in Anand et al. (2022) will imply our result
for learning-augmented facility location as we will show in Section 5.

We start by stating the main result of this section.

Theorem 2. There exists an online algorithm that rounds a fractional solution of uniform facility
location online and the cost of the returned integral solution is O(α), where α denotes the cost of the
fractional solution.

The Algorithm. The main idea behind the algorithm is to guarantee that at any point in time the
algorithm is 4-consistent. In order to do so if at time t a ball Bt(v,R) has total fractional mass
yt(B) ≥ 1/2 and has the closest open facility at a distance ≥ 4R we open a facility at v. While
this guarantees 4-consistency, it can lead to excessive facility openings. To mitigate this, additional
facilities are opened. Roughly, if there is a ball Bt(u, r) with total fractional mass in the ball
yt(B) ≥ 1/4 that intersects Bt(v,R) and such that the closest open facility to u is at a distance ≥ 3r
we open also a facility at u. In addition, we do this an additional time by considering balls Bt(w, ρ)
with total fractional mass in the ball yt(B) ≥ 1/8, intersecting with Bt(u, r) and with closest open
facility to w is at a distance > 2ρ and by opening a facility in such w. Interestingly, by opening these
additional facilities we can show that the number of open facility is bounded and by combining this
with the fact that the algorithm is 4-consistent we obtain the theorem.

To define the algorithm, we start to formalize the three conditions discussed above:

• A ball B = Bt(v,R) is said to satisfy Condition A at time t if the following holds:
– the total fractional mass in the ball yt(B) ≥ 1/2
– the closest open facility to v is at a distance > 4R.

• A ball B = Bt(u, r) is said to satisfy Condition B at time t if the following holds:
– the total fractional mass in the ball yt(B) ≥ 1/4
– the closest open facility to u is at a distance > 3r.

• A ball B = Bt(w, ρ) is said to satisfy Condition C at time t if the following holds:
– the total fractional mass in the ball yt(B) ≥ 1/8
– the closest open facility to w is at a distance > 2ρ.

We use the above conditions to define the online algorithm. In the description below, we define the
algorithmic steps at some time t. For the purpose of analysis, it would be convenient to think of
time as continuous, although the actual implementation of the algorithm can be easily discretized by
skipping over times where the online algorithm does not make any updates.

When a client arrives, the algorithm first updates the fractional solution, then rounds it based on
Algorithm 1, and finally connects the client to the closest open facility.

5
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Figure 1: Green balls are at level-1, red balls are at level-2, blue balls are at level-3. Level-3 balls
associated with the same level-2 balls are disjoint and are at most 3. Level-2 and level-1 balls can
overlap but any new ball is associated with some new additional fractional mass. This allows us to
bound the number of level-2 and level-1 balls.

Algorithm 1: The Deterministic Online Rounding Algorithm for Uniform Facility Location
while ∃ a ball B(v,R) satisfying condition A do

Let B(v,R) be a ball of minimum radius satisfying the condition A.
while ∃ a ball B(u, r) for some r ≤ R/3 satisfying condition B s.t. B(u, r) ∩B(v,R) ̸= ∅

do
Let B(u, r) be a ball of minimum radius satisfying the condition B and intersecting
B(v,R);

while ∃ a ball B(w, ρ) for some ρ ≤ r/2 satisfying condition C s.t.
B(w, ρ) ∩B(u, r) ̸= ∅ do

Let B(w, ρ) be a ball of minimum radius satisfying the condition C and intersecting
B(u, r);

Open a facility at w;
Open a facility at u;

Open a facility at v;

Analysis. First, we bound the facility cost, namely we show that the number of facilities opened by
the algorithm is at most a constant times the final value of the fractional solution

∑
v yv .

We call the ball selected in the outer loop level-1 ball and the respective facility level-1 facility, the
one selected in the second loop level-2 ball and level-2 facility and the one selected in the innermost
loop level-3. In Figure 1, we show graphically the interaction between ball at different levels. Note
that a ball at level-1 only open a single in the outer loop, a ball at level-2 open a single facility
at level-2 but possibly multiple facilities at level-3. So in our proof we first bound the number of
facilities opened in level-3. Then we show how to bound the number of level-1 and level-2 facilities.
To do this, we first need to establish disjointness of the level-3 balls associated with a level-2 ball.

Lemma 3. The level-3 balls associated with a level-2 ball B(u, r) are mutually disjoint.

Proof. Suppose not; let B(w, ρ) and B(w′, ρ′) overlap. Without loss of generality, suppose ρ ≤ ρ′.
Then, the algorithm processes B(w, ρ) before B(w′, ρ′). At the end of the processing for B(w, ρ),
the algorithm opens a level-3 facility at w. Since B(w, ρ) and B(w′, ρ′) overlap, we have d(w,w′) ≤
ρ + ρ′. Therefore, there is an open facility at distance ≤ ρ + ρ′ from w′. Yet, B(w′, ρ′) satisfies
condition C; this implies ρ+ ρ′ > 2ρ′, i.e., ρ > ρ′. This is a contradiction.

Lemma 4. The total number of level-3 facilities opened by a (level-2) ball B(u, r) is at most 3.

Proof. Suppose B(u, r) opens ≥ 4 level-3 facilities. Since the level-3 balls corresponding to these
facilities are mutually disjoint (by Lemma 3), it follows that the total fractional mass in these level-3
balls is at least 4 · 1/8 = 1/2. Now, note that the ball B(u, 2r) contains all these level-3 balls; hence,
this ball also has fractional mass at least 1/2. The radius of this ball is 2r ≤ 2R/3 < R. Since this
ball has a smaller radius than B(v,R) but B(v,R) was chosen as a minimum radius ball satisfying
condition A, it must be the case that B(u, 2r) does not satisfy condition A. Since yt(B(u, 2r)) ≥ 1/2,
the only way it can fail to satisfy condition A is if there is an open facility at distance ≤ 8r from u.

6
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But, since the balls B(v,R) and B(u, r) overlap, d(v, u) ≤ R + r. Thus, v has an open facility at
distance at most 8r + (R+ r) ≤ 8R/3 + (R+R/3) ≤ 4R. This contradicts the fact that the ball
B(v,R) satisfies condition A.

Next, we bound the number of level-1 and level-2 facilities. The arguments for these two cases are
quite similar. We start by defining predecessors for level-1 and level-2 facilities. Consider a level-1
facility at vertex v opened by a level-1 ball B(v,R) at time t. We call a level-1 facility at some vertex
v′ the predecessor of the level-1 facility at v if the following holds:
– The level-1 facility at v′ was opened before the level-1 facility at v.
– The level-1 ball B(v′, R′) that opened the level-1 facility at v′ overlaps with the level-1 ball B(v,R).
– The level-1 balls corresponding to the level-1 facilities opened after v′ and before v do not overlap
with the level-1 ball B(v,R).
Lemma 5. Consider a level-1 facility opened by a ball B(v,R) at time t. Let the predecessor of this
level-1 facility at v be a level-1 facility at v′ that was opened by the level-1 ball B(v′, R′) at time
t′ ≤ t. Then,

yt(B(v,R))− yt
′
(B(v,R)) ≥ 1/4.

Proof. Since the balls B(v,R) and B(v′, R′) overlap, we have d(v, v′) ≤ R+R′. But, note that the
ball B(v,R) satisfied condition A at time t, i.e., there was no open facility within a distance of 4R of
v at time t. In particular, this implies that the facility at v′ is also at a distance > 4R from v, namely
d(v, v′) > 4R. It follows that R+R′ > 4R, i.e., R′ > 3R.

Suppose the lemma is false, i.e., yt(B(v,R)) − yt
′
(B(v,R)) < 1/4. Since yt(B(v,R)) ≥ 1/2, it

follows that yt
′
(B(v,R)) > 1/4. Since the processing of B(v′, R′) did not open a facility at v, it

must be that B(v,R) failed condition B at the end of this processing. Since yt
′
(B(v,R)) > 1/4, the

only way this can happen is if there was a facility open at distance ≤ 3R from v at the end of the
processing for B(v′, R′). But, this contradicts the fact that B(v,R) satisfied condition A at time
t.

The definition of the predecessor of a level-2 facility is similar to that for level-1 facilities. Consider
a level-2 facility at vertex u opened by a level-2 ball B(u, r) at time t. We call a level-2 facility at
some vertex u′ the predecessor of the level-2 facility at u if the following holds:
– The level-2 facility at u′ was opened before the level-2 facility at u.
– The level-2 ball B(u′, r′) that opened the level-2 facility at u′ overlaps with the level-2 ball B(u, r).
– The level-2 balls corresponding to the level-2 facilities opened after u′ and before u do not overlap
with the level-2 ball B(u, r).

Now, using the same proof strategy of Lemma 5, one can show that the overlap between level-2 ball
is bounded. Here we present the statement of the Lemma and defer the proof to Appendix A
Lemma 6. Consider a level-2 facility opened by a ball B(u, r) at time t. Let the predecessor of this
level-2 facility at u be a level-2 facility at u′ that was opened by the level-2 ball B(u′, r′) at time
t′ ≤ t. Then,

yt(B(u, r))− yt
′
(B(u, r)) ≥ 1/8.

We are now ready to bound the facility cost:
Theorem 7. The number of facilities opened by the rounding algorithm is at most 36 ·

∑
v yv , where

yv is the final value of the fractional solution for vertex v.

Proof. We charge a level-1 facility opened by a level-1 ball B(v,R) to the gain in fractional mass
y(B(v,R)) after time t′ until time t, where t′ denotes the time when the predecessor of the facility at
v was opened. This charging only loses a factor of 4 by Lemma 5.

We charge the level-2 facility and the level-3 facilities opened by a level-2 ball B(u, r) to the gain in
fractional mass y(B(u, r)) after time t′ until time t, where t′ denotes the time when the predecessor
of the facility at u was opened. The charging of the level-2 facility only loses a factor of 8 by
Lemma 6 and that of the level-3 facilities loses a factor of 24 by Lemma 4.

The lemma follows by adding up the multiplicative factors that we lose for level-1, level-2, and
level-3 facilities.
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Finally, we bound the connection cost.

Theorem 8. Let U be the set of clients and xuv be the fractional solution for client u ∈ U . Then, the
connection cost of integer solution for client u is at most 8

∑
v∈V d(u, v)xuv .

Proof. This follows directly from the fact that the algorithm is 4-consistent, via Lemma 1.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. The proof follow by combining Theorem 7 and Theorem 8.

4 THE RANDOMIZED ROUNDING ALGORITHM

In this section, we describe a randomized rounding algorithm for the weighted online facility location
problem with the following properties: (a) the rounding algorithm is γ-consistent for some constant γ
(this property holds deterministically), and (b) at any time t, the expected facility opening cost of the
integral solution is at most O(log log∆t) times that of the fractional solution, where ∆t denotes the
aspect ratio of the metric space at time t, i.e., the ratio of the maximum to the minimum (non-zero)
distance between any pair of vertices. Formally,

Theorem 9. There exists a randomized online algorithm that rounds a fractional solution for facility
location online and the expected cost of the rounded integral solution is O((log log∆) · α), where α
denotes the cost of the fractional solution.

In defining the rounding algorithm, it will be convenient to assume that the fractional mass yv at
any vertex v does not change over time. This is without loss of generality by the following standard
technique: whenever the fractional algorithm increases the fractional mass at a vertex v by some
quantity δ, we create a second copy of vertex v, namely a new vertex that is at distance 0 from v and
at the same distance as v from all other vertices, and set the fractional mass on the new vertex to δ.
The facility opening cost of the new vertex is the same as that of the original vertex. Clearly, the
opening and connection costs of the new fractional solution are identical to the original solution, but
this new solution has the advantage that the fractional mass on a vertex is set in only one step. In the
rest of this paper, we will assume that the fractional solution satisfies this property.

We describe the rounding algorithm next, and then give its analysis in Appendix B to establish
properties (a) and (b) above.

4.1 RANDOMIZED ROUNDING ALGORITHM

If any vertex v has ytv ≥ 1/2, we immediately open a facility at that vertex. We call this a deterministic
rounding step, and the corresponding facilities are called deterministic facilities. Clearly, the total
opening cost of deterministic facilities is at most twice their fractional opening cost. In the rest of
the description, we focus on how the algorithm opens the rest of the facilities using a randomized
algorithm.

The algorithm uses a counter for every vertex v that we call its level and denote ℓ(v). In the following,
we will say that a vertex has been rounded by the randomized algorithm if it has been involved in a
randomized step of the algorithm. Initially, ℓ(v) = 0. Over time, ℓ(v) tracks the number of times
vertex v has been rounded by the algorithm. Since the algorithm rounds vertices randomly, the level
counters are random variables. Eventually, we will show that for every vertex v, the expected value
of ℓ(v) at time t is O(log log∆t). For notational convenience, we also maintain a level counter of
value 1 at each deterministic facility. These counters do not change over time.

It will be convenient to maintain an order ≺ on all the vertices in the metric space. The precise order
is not important, but for consistency, v ≺ v′ if v appears earlier than v′ in the online problem (ties
are broken arbitrarily for vertices that appear in the same time-step). We also set up a lexicographic
order on all balls Bt(v,R) in the metric space, which we also denote ≺, using the following rules:
(a) if t < t′, then Bt(v,R) ≺ Bt′(v′, R′) for any vertices v, v′ and radii R,R′, (b) for any time t, if
R < R′, then Bt(v,R) ≺ Bt(v′, R′) for any vertices v, v′, and (c) for any time t and radius R, if
v ≺ v′, then Bt(v,R) ≺ Bt(v′, R).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

At any time t, we call a ball Bt(v,R) critical if it satisfies the following properties: (a) the total
fractional mass in Bt(v,R) is at least 1/2, and (b) there is no overlapping critical ball with radius
at most 2R that appears earlier in the lexicographic order, i.e., there is no Bt′(v′, R′) ≺ Bt(v,R)

with radius R′ ≤ 2R such that Bt′(v′, R′) ∩ Bt(v,R) ̸= ∅. Observe that critical balls are defined
deterministically since this definition only depends on the fractional solution. We also define the level
of a critical ball B := Bt(v,R) as ℓ(B) := min{ℓ :

∑
u∈B:ℓ(u)≤ℓ y

t
u ≥ 1/4}. Note that although the

fact that a ball is critical is deterministic, its level is random since it depends on the values of the level
counters which themselves are random variables.

Finally, we define the randomized rounding step. At time t, we consider the critical balls in lexico-
graphic order ≺. For a critical ball B := Bt(v,R), if there is an open facility in B already, then
we do nothing. Otherwise, we open a facility at a location in Bℓ := {u ∈ B : ℓ(u) ≤ ℓ(B)} with
probability proportional to ytu. (In other words, the probability of opening a facility at u ∈ Bℓ is
yt
u/

∑
u∈Bℓ

yt
u). Correspondingly, we increase by one the level counters ℓ(u) of all locations u ∈ Bℓ.

This algorithm is already sufficient, but for the sake of simpler analysis, we add one more step. For
each vertex u ∈ Bℓ, we also open a facility at u independently with probability ytu. We call the two
randomized rounding steps respectively the dependent and independent rounding steps.

5 APPLICATION TO LEARNED-AUGMENTED FACILITY LOCATION

In this section we show how to leverage the presented online rounding algorithms to obtain algorithms
for the learning-augmented facility location.

Our starting point is the online fractional algorithm for learning-augmented facility location presented
in Anand et al. (2022) that gives the following theorem:
Theorem 10 (Theorem 7.1 from Anand et al. (2022) restated). There is an algorithm for the
fractional online facility location problem that at time t produces an online solution with cost
O(min{log(k + 1) dynamict,

log t
log log t optt}) in the multiple predictions setting with k predictions.

We apply our rounding algorithms presented in Section 3 and Section 4 on the fractional solution
constructed in Anand et al. (2022) to obtain integral algorithms for the learning-augmented facility
location. In particular, we obtain the following theorems for the uniform (Theorem 11) and non-
uniform (Theorem 12) setting. Note that the two theorems obtain consistency bounds of O(log(k+1))

and O(log log∆ · log(k + 1)) respectively, while ensuring a robustness bound of O( log t
log log t ). (The

proofs are deferred to Appendix C.)
Theorem 11. There is an algorithm for the uniform learning-augmented facility location problem
that at time t produces an online solution with cost O(min{log(k + 1) dynamict,

log t
log log t optt}).

Theorem 12. There is an algorithm for the non-uniform learning-augmented facility loca-
tion problem that at time t produces an online solution with cost O(min{log log∆ · log(k +

1) dynamict,
log t

log log t optt}).

CONCLUSIONS AND FUTURE WORK

We present two new algorithms to round online a fractional facility location solution and we show
how to use them to obtain learning-augmented facility location algorithms . The algorithms obtains
almost tight guarantees for the learning-augmented problem and are simple and natural. As follow-up
questions, it would be interesting to find a rounding algorithm for the non-uniform settings that loose
only a constant factor in the approximation. It would also be very nice to modify the fractional
algorithm in Anand et al. (2022) to obtain a O(min{ log k

log log k dynamict,
log t

log log t optt})-approximation
or show that it is impossible.

IMPACT STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. The main
contribution of the paper is theoretical and is of interest to the domain of designing robust algorithms
leveraging machine learning advice.
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A PROOF OF LEMMA 6

Lemma 6. Consider a level-2 facility opened by a ball B(u, r) at time t. Let the predecessor of this
level-2 facility at u be a level-2 facility at u′ that was opened by the level-2 ball B(u′, r′) at time
t′ ≤ t. Then,

yt(B(u, r))− yt
′
(B(u, r)) ≥ 1/8.

Proof. Since the balls B(u, r) and B(u′, r′) overlap, we have d(u, u′) ≤ r + r′. But, note that the
ball B(u, r) satisfied condition B at time t, i.e., there was no open facility within a distance of 3r of
u at time t. In particular, this implies that the facility at u′ is also at a distance > 3r from u, namely
d(u, u′) > 3r. It follows that r + r′ > 3r, i.e., r′ > 2r.

Suppose the lemma is false, i.e., yt(B(u, r)) − yt
′
(B(u, r)) < 1/8. Since yt(B(u, r)) ≥ 1/4, it

follows that yt
′
(B(u, r)) > 1/8. Since the processing of B(u′, r′) did not open a facility at u, it must

be that B(u, r) failed condition C at the end of this processing. Since yt
′
(B(u, r)) > 1/8, the only

way this can happen is if there was a facility open at distance ≤ 2r from u at the end of the processing
for B(u′, r′). But, this contradicts the fact that B(u, r) satisfied condition B at time t.

B ANALYSIS OF THE RANDOMIZED ROUNDING ALGORITHM

The γ-consistency property follows immediately from the definition of the algorithm.

Lemma 14. The randomized rounding algorithm given above is 5-consistent.

Proof. Let B := Bt(v,R) be such that yt(B) ≥ 1/2. If B is critical, then it contains an open facility
after its rounding step. So, suppose B is not critical. Then, there must be some critical ball B′ ≺ B
of radius at most 2R overlapping with B; call this ball B′ := B(v′, R′). Since the balls overlap
and R′ ≤ 2R, we have B′ ⊆ B(v, 5R) by triangle inequality. After the rounding step for B′, there
must be an open facility in B′, which is at a distance of at most 5R from v. This establishes the
lemma.

We now bound the expected facility opening cost incurred by the rounding algorithm. Note that the
level of a vertex ℓ(v) denotes the number of times it has been rounded.

Lemma 15. Fix any vertex v and let yv be the value of ytv at the end of the algorithm. If ℓ(v) denotes
the number of times that vertex v is rounded in the entire algorithm, then the expected facility cost at
v is at most 5c(v)yv · E[ℓ(v)].

Proof. First, note that if there is a deterministic facility at v, then the lemma holds for v since the
cost of the facility is c(v), the level of the vertex ℓ(v) = 1, and the fractional value yv ≥ 1/2. In the
rest of the proof, we assume that yv < 1/2, i.e., there is no deterministic facility at v. Next, note that
ytv = yv at all times t when v is rounded, since yv is set in only one step of the fractional algorithm
and v is rounded only after ytv > 0. Moreover, the cumulative fractional mass of all vertices in Bℓ for
randomized rounding of a ball B is at least 1/4. I.e., the probability that a facility is opened at v in a
single dependent rounding step is at most 4yv. Including the independent rounding step, the total
probability of opening a facility at v is at most 5yv .

Consider the random variables Yi(v) with value c(v) if a facility is opened at vertex v when ℓ(v) = i,
and 0 otherwise. These random variables are independent across different values of i, and their
expected value is bounded by E[Yi(v)] ≤ 5c(v)yv for every i. The number of such random variables
is given by the final value of ℓ(v), which is determined by a stopping rule. Using Wald’s identity, we
then have that the expected facility cost at v is at most 5c(v)yv · E[ℓ(v)].

By the above lemma, it suffices to bound the value E[ℓ(v)] for any vertex v. Indeed, we will show
that E[ℓ(v)] ≤ O(log log∆). But first, we establish a simpler deterministic bound on ℓ(v).

Lemma 16. Any vertex v belongs to at most 1 + lg∆ critical balls. Therefore, ℓ(v) ≤ 1 + lg∆.
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Proof. Clearly, the lemma holds if there is a deterministic facility at v, since ℓ(v) = 1. Hence, we
assume yv < 1/2 in the rest of the proof. Suppose v is in two critical balls B := Bt(u,R) and
B′ := Bt′(u′, R′), where wlog, t ≤ t′. Since these balls overlap, it must be that R > 2R′ by the
definition of critical balls. Now, since yv < 1/2, the minimum radius of any critical ball containing v
must be 1. The maximum radius of any ball in the metric space is ∆. The lemma follows.

Next, we bound the expected level of a vertex. We do this in two steps. In the first step, we give a tail
bound on the level of a critical ball that the algorithm performs randomized rounding on.

Lemma 17. For any critical ball B, the probability that the algorithm performs the randomized
rounding step for B at level ℓ(B) > ℓ for any positive integer ℓ is at most e−ℓ/4.

Proof. If the algorithm performs randomized rounding for B, then it must be that all previous
rounding attempts for vertices in B did not open any facility. In particular, this is true for the
independent rounding attempts on these vertices. Each independent rounding attempt for a vertex
v with fractional value yv fails with probability 1− yv ≤ e−yv . Since these rounding attempts are
independent, the probability that all these attempts fail to open any facility is at most e−

∑
v∈B yv·ℓ(v).

Since ℓ(B) ≥ ℓ and
∑

v∈B yv ≥ 1/2 (the latter because B is critical), we get e−
∑

v∈B yv·ℓ(v) ≤
e−ℓ/4.

We now use this lemma to bound the expected level of any vertex.

Lemma 18. The expected level of any vertex at the end of the algorithm is at most 1+8 ln(1+lg∆) =
O(log log∆).

Proof. Fix any vertex v. By Lemma 16, it belongs to at most 1 + lg∆ critical balls; call them
B1, B2, . . . , Bk where k ≤ 1 + lg∆. For each such ball Bi, by Lemma 17, randomized rounding is
performed for ball Bi at a level > 8 ln(1+lg∆) with probability at most e−2 ln(1+lg∆) = 1/(1+lg∆)2.
Using the union bound over the k ≤ 1 + lg∆ balls, the probability that randomized rounding is
performed for any ball containing v at a level > 8 ln(1+lg∆) is at most 1/1+lg∆. Since the maximum
value of ℓ(v) is (deterministically) 1 + lg∆ by Lemma 16, it follows that the expected value of ℓ(v)
is at most 1 + 8 ln(1 + lg∆) = O(log log∆).

Now, we can prove our main Theorem 9 for the section.

Proof of Theorem 9. From Lemma 14 we know that our algorithm is 5 consistent and so we have a
bound on the connection cost (Lemma 1). To bound the facility cost we note that Lemma 15 implies
that the bound on the facility cost is directly implied by a bound on the expected level of any vertex
at the end of the algorithm. That is bounded in expectation by O(log log∆) by Lemma 18.

C PROOF OF THEOREM 11 AND THEOREM 12

Theorem 11. There is an algorithm for the uniform learning-augmented facility location problem
that at time t produces an online solution with cost O(min{log(k + 1) dynamict,

log t
log log t optt}).

Proof. The result is obtained by running the rounding algorithm presented in Section 3 on the
fractional solution returned by the algorithm in Anand et al. (2022). Then, the result follows by
combining Theorem 10 with Theorem 2.

Theorem 12. There is an algorithm for the non-uniform learning-augmented facility loca-
tion problem that at time t produces an online solution with cost O(min{log log∆ · log(k +

1) dynamict,
log t

log log t optt}).

Proof. We run the rounding algorithm presented in Section 4 on the fractional solution returned by
the algorithm in Anand et al. (2022). Then, combining Theorem 10 with Theorem 9 gives a bound of
O(log log∆ ·min{log(k + 1) dynamict,

log t
log log t optt}).
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We now improve the robustness bound from O(log log∆ · log t
log log t optt) to O( log t

log log t optt). To do
this, we use a standard technique of a combiner algorithm whose solution matches, up to a constant
factor, the better of the rounded solution and that of an online algorithm without predictions. In our
case, the latter algorithm is the O( log t

log log t )-competitive online facility location algorithm in Fotakis
(2008).

We now give more details of how the two algorithms are combined to yield a robust algorithm. At any
time t, compare the cost of the solutions (including both opening costs of facilities and connection
costs of clients) of the two algorithms. For the algorithm that has the smaller cost, we open all
facilities opened by that algorithm. So, clients can connect to their closest facilities given by this
algorithm, and therefore, the total cost of opening these facilities and connecting clients is at most the
total cost of the cheaper algorithm at time t.

For the other algorithm, we might have some facilities that are already open in the combiner algorithm
from previous steps – we keep those facilities open but do not open any more facilities. Suppose
t′ < t was the last time when the second algorithm was cheaper. Then, the open facilities in the
combiner algorithm due to the second algorithm were already open in the second algorithm at time t′
(since the combiner algorithm does not open any new facilities from the more expensive algorithm).
Now, note that the costs of the two algorithms are monotonically non-decreasing since the set of
clients is monotonically increasing. Thus means the cost of the cheaper of the two algorithms is also
monotonically non-decreasing. Thus, the cost of the cheaper algorithm at time t is at least as much
as the cost of the other algorithm at time t′ when it was the cheaper of the two algorithms. Hence,
the total opening cost of the facilities in the second algorithm at time t′ is at most the current cost of
the first algorithm at time t. It follows that the total cost of the combiner algorithm at any time t is
at most 2 times the cost of the cheaper of the two algorithms at time t. Since the algorithm without
predictions has a competitive ratio of O( log t

log log t ), we get a robustness bound of O( log t
log log t ) using the

combiner algorithm.

D LOWER BOUND ON APPROXIMATION GUARANTEE OF RANDOMIZED
ALGORITHM

We show that the analysis of the randomized algorithm is asymptotically tight.

Theorem 19. There is an instance for which the expected cost of the solution returned by the
randomized algorithm is Ω(log log∆) times the cost of the fractional solution.

The lower bound will consist of 10d batches. The high-level intuition is that each batch will increase
the level of (i.e., try to round) a special facility u with probability at least 1/5d. This will allow us
to prove that the randomized algorithm opens facility u with a probability that is at least d times
the fractional opening value of u given by the linear program. Then setting the opening cost of this
facility so that it completely dominates the objective function will allow us to prove our lower bound
of Ω(log log∆) because d = Ω(log log∆) in our construction. We remark that, as the randomized
algorithm is oblivious to the points of the instance, we only describe in the construction how the
fractional openings changes in the fractional solution that is rounded and omit the clients (that are
irrelevant for the behavior of the randomized algorithm).

The metric is defined by the real line R, and the distinguished vertex u is positioned at the origin.
The fractional value of u is set to ε > 0, i.e., yu = ε, deliberately chosen to be a tiny value. The cost
of the special facility is c(u) = M/ε and the cost of all other facilities is 0. We select M ≫ 1010

2d

sufficiently large so that the cost of the linear program solution is always dominated by c(u) ·yu = M ,
i.e., the total connection cost is o(M) (recall that the remaining opening cost is 0).

We now proceed with the description of the instance that yields the lower bound (see also Figure 2).
For b = 1, . . . , 10d, the bth batch of arrivals is defined by the scale parameter γ(b) = 1010

d(10d−b)

and d+ 2 facility locations that arrive during d+ 2 time steps:

• First, center c arrives at position γ(b) with yc = 1/2− 2ε.

• During the next d time steps, centers v1, v2, . . . , vd arrive. Center vi is at position
γ(b)10d+1−i and has yvi = 1/5.
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• Finally, an extra center c′ colocated with c arrives with yc′ = ε.

u v1c v2

Figure 2: An illustration of the construction with d = 2. The ellipoids depicted in black correspond to
one batch and the blue correspond to the following batch. Due to the scaling factor γ(·) the different
batches do not interact and by the geometrically decreasing radii of balls inside a batch we have
that the critical balls of a batch are in order (c, v1), (c, v2), . . . , (c, vd), (c, c′, u) (the drawing is in
logarithmic scale). The center c′ arriving last of a batch is colocated with c and is not depicted.

By definition, the maximum distance in our construction is upper bounded by γ(1) · 10d = γ(b) =

1010
d(10d−b) · 10d ≤ 1010

2d

and the smallest distance is at least 1. Hence, by construction

∆ ≤ 1010
2d

and log log∆ = O(d) .

We now discuss the critical balls that are formed in our construction, which also gives valuable
intuition for the construction. First, for a single batch, the critical balls that are formed (only using
centers from that batch and u) are in order

(c, v1), (c, v2), . . . , (c, vd) and finally (c, c′, u) .

(Here, we identify the balls with the locations that they contain for notational simplicty.) This is
because the placement of the centers c and c′ to be at position γ(b) for batch b and vi to be at position
γ(b) · 10d+1−i ensures that the radii of the above balls are rapidly decreasing. Specifically, when vi
arrives, any ball B containing centers from this batch with y(B) ≥ 1/2 must either contain c and vi
or vi and vj with j < i. By their placement, the radii of the ball (c, vi) is significantly smaller than
any ball containing vi and vj . Additionally, it is significantly smaller than the previous critical balls
which makes it critical. Finally, when c′ arrives, we have the critical ball of radii γ(b) that contains
(c, c′, u) (which now thanks to the arrival of c′ has y-value 1/2). Repeating the same arguments
(using that γ(b + 1) ≪ γ(b)), we can also conclude that there is no critical ball that contains two
centers from two different batches.

We now proceed to analyze the random decisions of the algorithm. For simplicity and without loss of
generality, we perform the analysis for d ≥ 10. We say that a batch is successful, if the algorithm
opens facilities v1, . . . , vd when considering critical balls (c, v1), . . . , (c, vd), i.e., it does not open
center c.
Lemma 20. There are at least d successful batches with probability at least 1/2.

Proof. Let p be the probability that a batch is successful. We first prove that p ≥ (1/5)d. When v1
arrives, no center has been opened in the ball containing (c, v1) due to the batch scale factor γ(·).
The algorithm opens v1 with probability yv1/(yv1 + yc) ≥ yv1 = 1/5. Now, assuming the algorithm
opens v1, the same arguments say that the algorithm opens v2 with probability at least 1/5. That
p ≥ (1/5)d then follows by repeating the argument for v3, . . . , vd.

The total number of batches are 10d and so the expected number of successful batches are 10d/5d =
2d. The statement now follows via a standard Chernoff bound using that the success of different
batches are independent events. For simplicity and completeness, we include a direct argument. The
probability that exactly ℓ batches are successful is(

10d

ℓ

)
pℓ(1− p)10

d−ℓ ≤
(
10d

ℓ

)
(1− (1/5)d)10

d

.

We have that
∑d

ℓ=0

(
10d

ℓ

)
≤ (d + 1)

(
10d

ℓ

)
≤ (d + 1)10d

2

. At the same time (1 − (1/5)d)10
d ≤

1/e10
d/5d = 1/e2

d

. The statement now follows since (d+ 1) · 10d2

/e2
d ≤ 1/2 where we use that

d ≥ 10.
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Now consider the case when there are at least d batches that are successful. Consider the d first
such successful batches and let Ei be the event that the randomized algorithm opens center u when
considering the ith of these batches.
Lemma 21. We have Pr[E1 ∨ E2 ∨ · · · ∨ Ed] = 2d · ε.

Proof. We have

Pr[E1 ∨ E2 ∨ · · · ∨ Ed] =

d∑
i=1

Pr[Ei | ¬E1, . . . ,¬Ei−1]

The lemma follows by arguing Pr[Ei | ¬E1, . . . ,¬Ei−1] = 2ε. As the batch corresponding to event
Ei is successful, the facility c is at level d after the critical balls (c, v1), . . . , (c, vd). Therefore as u
has been considered i− 1 < d times at this point, i.e, is at level less than d, we have that the level of
the ball (u, c, c′) is at most d. Therefore, the probability that u is opened by the randomized algorithm
equals yu/(yu + yc + yc′) = 2yu = 2ε. Having proved that Pr[Ei | ¬E1, . . . ,¬Ei−1] = 2ε, the
lemma follows by the sum.

We have that the there are d successful batches with probability at least 1/2. If that holds, the
probability that the randomized algorithm opens u, which incurs a cost of M/ε, is at least 2dε. It
follows that the expected cost of the randomized algorithm is at least d ·M , which as noted above is
Ω(log log∆) times the cost of the fractional LP solution. This completes the proof of Theorem 19.

E REDUCTION FROM O(log log∆) TO O(log log n)

Recall that we have shown that the expected cost of the randomized algorithm is O(log log∆) times
that of the fractional solution. We now show that a slight modification of the algorithm changes the
expected cost to O(log log n) times the fractional cost, which might be more desirable if the number
of vertices is small compared to the aspect ratio of the metric space.

By scaling, let us assume that the minimum distance between two non-identical vertices in the metric
space is at least 1 and at most ∆. (Note that for notational convenience, we created copies of identical
vertices if multiple clients appear at the same vertex over time. However, this was simply a notational
change, i.e., the competitive ratio of the algorithm is not affected if we switch back to a notation
where distinct vertices are not co-located but the number of clients at a vertex can increase over time.
We will take this latter view in this reduction.)

We first describe the reduction in the offline case, and then adapt it to the online setting. Our basic
idea is to merge pairs of vertices that are within a distance of opt/n2, where opt is the cost of the
fractional solution solution and n is the total number of clients. To merge of a pair of vertices,
consider a complete graph on all the vertices where the length of every edge is their pairwise distance.
Now, change the length of the edge connecting the two vertices being merged to 0 and recompute
all pairwise distances in the metric space as the shortest path distances in the modified graph. Then,
unify the two merged vertices into a single vertex whose opening cost is the smaller among the two
merged vertices. We repeatedly perform this step of merging vertex pairs at a mutual distance of
opt/n2 or less unless no such pair is left. (The precise order of the mergers is unimportant.) Note that
as a result of these mergers, the following happen:

• The minimium distance between any pair of vertices in the modified metric space is ≥ opt/n2.
• The difference in the distances between any pair of vertices in the original and modified

metric spaces (in the modified metric space, each vertex represents multiple merged vertices
of the original metric space) is at most opt/n. This is because any path in the original metric
space constitutes at most |V | − 1 merged pairs, where |V | ≤ n since each vertex has at
least one client (we assume wlog that every vertex has at least one client). Therefore, the
additional connection cost paid by a client in the original metric space compared to the
modified one is ≤ opt/n, which adds up to ≤ opt over all the n clients.

Next, we decrease the maximum distance between any vertex pair. We define an unweighted graph
on the vertices where each vertex pair that is at a distance of ≤ 2opt is connected by an edge. Then,
we identify the connected components of this auxiliary graph, and create a separate metric space for
each connected component. This results in the following:
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• The maximum distance between any pair of vertices in any of the individual metric spaces
is ≤ 2(|V | − 1) · opt ≤ 2n · opt.

• For any client, the fractional solution connects at least half of the client within its component
since connections across different components cost > 2opt. Hence, it suffices for the
algorithm to operate independently on each metric space by incurring a constant factor
overhead in cost compared to the fractional solution.

Overall, these two steps ensure that the aspect ratio of the metric space on which the algorithm
operates is at most poly(n), which in turn establishes an expected cost of O(log log n) times the
fractional cost for the randomized algorithm.

The above discussion only holds for an offline transformation to reduce O(log log∆) to O(log log n).
In the online case, the first complication is that the value of opt is not known in advance and increases
over time. We define a series of epochs, where an epoch ends when the value of opt doubles with
respect to that at the beginning of the epoch. Suppose optt is the value of opt at time t when an epoch
starts. Then, we perform the transformations given above with opt = 2optt so that opt remains an
upper bound on the actual fractional cost throughout the epoch. Moreover, opt doubles in consecutive
epochs thereby ensuring that the sum of opt across all the epochs is at most the final fractional cost
times a constant factor.

In the rest of the discussion, we describe the reduction within a single epoch. The complication is that
the number of clients n also changes over time, which affects the parameters of the transformation.
To handle this, we partition an epoch into a series of phases. A phase that starts when the number of
clients is nt ends when the number of clients increases to n2

t . (If the containing epoch ends before
the end of a phase, then we start a new epoch and a new phase within that epoch.) Throughout the
phase, we use n = n2

t in the above transformation, which ensures that n is an upper bound on the
actual number of clients. The expected cost in a phase is the fractional cost times O(log log n) =
O(log log nt). Summing over all the phases in an epoch, we get O(log log n) times the fractional
cost at the end of the epoch, where n is the number of clients in the epoch.

This completes the description of the overall reduction.
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