

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONLINE ROUNDING AND LEARNING AUGMENTED ALGORITHMS FOR FACILITY LOCATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Facility Location is a fundamental problem in clustering and unsupervised learning. Recently, significant attention has been given to studying this problem in the classical online setting enhanced with machine learning advice. While (almost) tight bounds exist for the fractional version of the problem, the integral version remains less understood, with only weaker results available. In this paper, we address this gap by presenting the first online rounding algorithms for the facility location problem, and by showing their applications to online facility location with machine learning advice. Beyond its implications for the learning augmented setting, our results also show that the hardness of the classic online facility location problem lies in computing a good fractional solution and not in rounding it.

1 INTRODUCTION

Clustering is a central problem in unsupervised learning. In recent years, to capture the evolving nature of real world data, there has been increased interest in clustering problems in the online setting, where the set of points that have to be clustered is not known in advance and is revealed to the algorithm over time Meyerson (2001); Alon et al. (2006); Fotakis (2011); Lattanzi and Vassilvitskii (2017); Almanza et al. (2021); Cohen-Addad et al. (2021); Fotakis et al. (2021b); Lattanzi et al. (2021); Anand et al. (2022); Cohen-Addad et al. (2022). This increased interest reflects the growing importance of performing learning tasks in uncertain and dynamically changing environments. To mitigate the negative impact of the uncertainty on algorithmic performance, a new paradigm using machine-learned predictions has rapidly gained traction in the last few years Purohit et al. (2018); Antoniadis et al. (2020); Bamas et al. (2020); Lattanzi et al. (2020); Wei and Zhang (2020); Im et al. (2021); Lykouris and Vassilvitskii (2021); Chen et al. (2022); Mitzenmacher and Vassilvitskii (2022); Bai and Coester (2023). The basic tenet of this framework is to simultaneously ensure that the algorithm is able to exploit *good* predictions about the future (called *consistency*) while being minimally affected by *bad* ones (called *robustness*), although it is unable to distinguish the good from the bad predictions presented to it. In this paper, we present new algorithms for the classical facility location problem in the online setting augmented with machine-learned predictions. These results are derived via novel online rounding algorithms of fractional solutions, which may be of independent interest.

In clustering problems, the goal is to partition (or cluster) a set of data points (called clients) into designated groups (or clusters) while optimizing a desired objective. One of the most popular is the k -median problem, which asks to select k cluster centers such that the sum of distances of the clients from their nearest cluster centers is minimized. The condition that only k centers can be chosen can be rather constraining, particularly in the online setting where it renders the problem uninteresting because the algorithm fails to remain competitive after it has opened all k centers.

A natural and well-studied (Lagrangian) relaxation of k -median is the facility location problem, where an arbitrary number of centers (called facilities) can be opened but each open facility adds an opening cost to the objective. The online facility location problem where clients arrive over time was introduced by Meyerson Meyerson (2001), and has since been studied extensively Anagnostopoulos et al. (2004); Fotakis (2007; 2008; 2011). The advantage of this setting is that it produces stable clusters that can be used in downstream tasks, notably as input to machine learning models, whereas changes to the clustering would incur substantial overhead. In recent years, interest has grown in obtaining learning-augmented algorithms for this problem, where machine-learned suggestions about

054 the clustering solution are incorporated into the decision-making of the algorithm Almanza et al.
 055 (2021); Jiang et al. (2022); Fotakis et al. (2021a); Anand et al. (2022). This has led to almost tight
 056 bounds for *fractional* versions of this problem, while the integral version remains less understood,
 057 especially in the presence of multiple advice. In this paper, we address this gap by presenting the
 058 first online rounding algorithm for facility location, and show its applications to learning-augmented
 059 versions of the problem.

060 **Our Contributions.** We present two new online rounding algorithms for the facility location problem.
 061 Both algorithms take as input a fractional solution and produce an integral solution in the online
 062 setting. To the best of our knowledge, these are the first two online rounding algorithms for the
 063 facility location problem. This work introduces novel techniques that heavily exploit the problem’s
 064 underlying metric structure, contributing to the growing literature on online rounding algorithms. We
 065 believe these techniques are also of interest for a broader range of clustering problems.

066 Our first algorithm is for the uniform version, where all facilities have the same opening cost. In this
 067 case, we give a deterministic online rounding algorithm that produces an integral solution whose cost
 068 is only a constant times that of the fractional solution input to it. Paired with prior results for the
 069 fractional problem, we obtain new algorithms for the *integral* facility location problem with machine
 070 learning advice that matches the almost tight results, which were previously only known for the
 071 fractional version.

072 Our second algorithm is for the non-uniform problem with arbitrary facility opening costs. For this
 073 more general problem, we give an online rounding algorithm that is randomized and loses a factor
 074 of $O(\log \log \Delta)$ in expectation compared to its fractional input, where Δ is the aspect ratio of the
 075 underlying metric space. We remark that, by standard techniques (see Appendix E), the upper bound
 076 $O(\log \log \Delta)$ may be replaced by $O(\log \log n)$, where n is the number of clients in the instance. As
 077 in the uniform case, this algorithm can be paired with existing algorithms for the corresponding
 078 fractional problem and yields a nearly optimal competitive algorithm for the online problem.

079 As an application of our rounding algorithms, we obtain the *first* integral algorithm for online
 080 facility location in the multiple predictions setting Almanza et al. (2021); Anand et al. (2022). The
 081 consistency bounds that we obtain are tight up to lower-order terms, thereby bridging fractional and
 082 integral results for this problem. Simultaneously, we also obtain tight robustness bounds for the
 083 learning-augmented setting by using a combiner algorithm that obtains the better of the solutions
 084 between our algorithm and online facility location without predictions.

085 **Other Related Work.** The two most related works are Almanza et al. (2021); Anand et al. (2022).
 086 The first paper studied the learning-augmented facility location problem in the uniform case. Their
 087 integral algorithm has a cost overhead of $O(\log \log n)$ compared to the best fractional solution, and
 088 works in the simplified setting where all the predictions are presented before any client arrives. In
 089 comparison, we improve the cost overhead to $O(1)$ and no longer require the predictions to be given
 090 upfront. The second paper studied online covering problems with multiple machine learning advice.
 091 They provide several interesting results in this setting and in particular an online fractional algorithm
 092 to the learning-augmented facility location problem. Our work bridges this fractional result and the
 093 integral facility location problem. We also note that there is prior work on online facility location
 094 with a *single* machine learning advice Azar et al. (2022); Fotakis et al. (2025), or from a mechanism
 095 design perspective Balkanski et al. (2024). The results in these papers do not have any implication for
 096 the multiple predictions settings of the current paper, and are obtained using very different techniques.

097 More broadly, there has been significant recent interest in online rounding algorithms, especially
 098 for matching problems Buchbinder et al. (2023); Naor et al. (2025). In addition to its application
 099 to learning-augmented algorithms, our work adds to this portfolio of online rounding algorithms,
 100 specifically extending it beyond packing to covering problems. Our techniques differ from previous
 101 work in that they use structural properties of the underlying metric space to define rounding solutions,
 102 both using deterministic and randomized tools. Indeed, this is in sharp contrast to prior work on online
 103 rounding for facility location in *non-metric* settings Alon et al. (2006); Bienkowski et al. (2020). In
 104 these papers, the rounding algorithms *must* incur a logarithmic loss (being basically identical to the
 105 set cover problem) while we incur sub-logarithmic loss by exploiting metric properties.

106 **Organization.** We formally define our problem and state our results in Section 2. In Section 3,
 107 we present the deterministic rounding algorithm for the uniform setting. In Section 4, we present
 the randomized rounding algorithm for the (general) non-uniform case. In Section 5, we give

108 applications of these rounding algorithms to obtain new results for the learning-augmented facility
 109 location problem. Finally, in Appendix D, we present a lower bound showing that our analysis of the
 110 randomized rounding algorithm for the non-uniform setting is (asymptotically) tight.
 111

112 **2 PRELIMINARIES**
 113

114 **Online Facility Location.** The classic online facility location problem is defined on a metric space
 115 (V, d) , where V is a set of vertices and d is the distance function between vertex pairs satisfying
 116 the standard properties of a metric space: (i) (Non-negativity) $d(u, v) \geq 0$ for all $u, v \in V$ with
 117 $d(v, v) = 0$ for all $v \in V$, (ii) (Symmetry) $d(u, v) = d(v, u)$ for all $u, v \in V$, and (iii) (Triangle
 118 Inequality) $d(u, v) + d(v, w) \geq d(u, w)$ for all $u, v, w \in V$.
 119

120 The metric space (V, d) is revealed online to the algorithm: in each online step t , a new vertex
 121 $v_t \in V$ is revealed along with (i) its distance to all vertices revealed in previous steps, and (ii) its
 122 (non-negative) facility opening cost $c(v_t)$. If the opening cost is uniform across all vertices, then it is
 123 a *uniform* instance, otherwise it is a *non-uniform* instance. By scaling, all opening costs are 1 in the
 124 uniform case.
 125

126 We denote the set of vertices revealed in the first t steps V_t . In step t , the online algorithm's solution
 127 comprises a subset of vertices in V_t where facilities are opened by the algorithm; we denote this set F_t .
 128 The sets F_t must be monotone over time, i.e., an open facility cannot be closed: $F_1 \subseteq F_2 \subseteq \dots \subseteq F_t$.
 129 The *connection cost* of a vertex $v \in V_t$ is its distance to the closest open facility. Collectively, the
 130 cost of the solution is the sum of the opening costs of the facilities and the connection costs of all
 131 vertices, i.e., $\text{alg}_t = \sum_{v \in F_t} c(v) + \sum_{u \in V_t} \min_{v \in F_t} d(u, v)$.
 132

133 Let opt_t denote the cost of an optimal solution on the instance (V_t, d) . Then, the competitive ratio
 134 of the online algorithm is defined as: $\max_t \text{alg}_t / \text{opt}_t$. Moreover, if the algorithm is randomized,
 135 the competitive ratio is $\max_t \mathbb{E}[\text{alg}_t] / \text{opt}_t$, where the expectation is over the random choices of the
 136 algorithm.
 137

138 **Fractional solution and ML-advice.** To define a valid fractional solution, it would be convenient to
 139 first write a (standard) LP relaxation of the problem. The following is the LP at step t :
 140

$$\begin{aligned} & \text{minimize} \sum_{v \in V_t} c(v) y_v^t + \sum_{u \in V_t} \sum_{v \in V_t} d(u, v) x_{uv}^t \text{ such that} \\ & \sum_{v \in V_t} x_{uv}^t = 1 \quad \forall u \in V_t \end{aligned} \tag{1}$$

$$x_{uv}^t \leq y_v^t \quad \forall v \in V_t \tag{2}$$

$$x_{uv}^t, y_v^t \geq 0 \quad \forall u, v \in V_t \tag{3}$$

141 The online fractional solution in step t is a feasible solution to this LP. Moreover, the variables y_v^t that
 142 represent the fraction of the facility at vertex v that is open at time t are non-decreasing over time:
 143 $y_v^1 \leq y_v^2 \leq \dots$ for all v . We will refer to the value of y_v^t as the *fractional mass* at vertex v at time t .
 144

145 Note that the values of y_v^t completely specify the fractional solution even without explicitly defining
 146 x_{uv}^t . This is because the optimal values of the x_{uv}^t variables is given as follows: for each client
 147 $u \in V_t$, order the vertices in V_t in non-decreasing distance from u (breaking ties arbitrarily), and
 148 select the minimal prefix of this order such that the total fractional mass in this prefix is at least 1.
 149 Now, assign $x_{uv}^t = y_v^t$ for all facilities v in this prefix, except possibly for the last one. For this last
 150 vertex, the value of x_{uv}^t is such that sum of x_{uv}^t over all the facilities in the prefix is 1. The value of
 151 x_{uv}^t for all vertices outside this prefix is 0.
 152

153 In the learning-augmented facility location problem, whenever a new vertex v arrives, one also
 154 receives k feasible suggestions (predictions) $y_v(1), \dots, y_v(k)$ for the value of y_v . We consider the
 155 k suggestions at each step as a collection (or bag) of predictions, disregarding any association with
 156 specific predictors. Our objective is to achieve performance comparable to the best suggestion in
 157 each step, i.e., we seek the minimum-cost solution that is consistent with at least one suggestion at
 158 every stage. Formally,
 159

$$\text{dynamic}_t = \min_{\hat{y} \in \hat{Y}} \sum_{v \in V_t} c(v) \hat{y}_v + \sum_{u \in V_t} \sum_{v \in V_t} d(u, v) x_{uv}^t,$$

162 where $\hat{Y} = \{\hat{y} : \forall v \in V_t, \exists i \in [k], \hat{y}_v = y_v(i)\}$ and x_{uv}^t are defined using the values of \hat{y} as
 163 described above.

164 It is interesting to note that this model of predictions generalizes other natural types of predictions.
 165 E.g., if the predictions specify opening a facility at a vertex when it arrives or even at the very
 166 outset Almanza et al. (2021), it can be simulated by setting $y_v = 1$ in our prediction model. In fact,
 167 our prediction model captures the very natural setting where the variable y_v represents the probability
 168 that a facility is opened at vertex v .
 169

170 We also note that our algorithm consider the possibility to open previously specified facilities as
 171 long as the assignment is online. This is standard in the literature. In fact, in the traditional online
 172 model for the facility location problem, introduced by Meyerson (2001), for non-uniform facility
 173 location(this is specified in the first paragraph of Section 3 in Meyerson (2001)) the facility locations
 174 are known before the clients arrive online, the demands are specified online and the assignments and
 175 the opening are decided online (in particular any facility location can be opened at any time and this
 176 is necessary in this setting). Furthermore, in Almanza et al. (2021), in the non-uniform case, the set
 177 of suggested facilities is specified in advance and facilities can be opened in these specified locations.
 178

179 In the learning-augmented facility location problem, we aim to return an integral solution (i.e.
 180 a solution where all the y variables have integral value) such that its cost is bounded by
 181 $\min\{\alpha \text{dynamic}_t, \beta \text{opt}_t\}$ for α and β as small as possible. From lower-bounds in previous works Al-
 182 manza et al. (2021); Anand et al. (2022), we know that $\alpha \geq \frac{\log k}{\log \log k}$ and that $\beta \geq \frac{\log t}{\log \log t}$ Fotakis
 183 (2008).

184 With the above notation, we can state the implication of our rounding algorithms more formally for
 185 the learning-augmented problems. First, we study the uniform setting where all the facilities have
 186 the same opening cost. In this setting, our rounding algorithm implies a deterministic algorithm
 187 that obtains a $O(\min\{\log(k+1) \text{dynamic}_t, \frac{\log t}{\log \log t} \text{opt}_t\})$ -approximation, improving previous
 188 work in the area. Second, we use our non-uniform facility rounding algorithm to obtain the *first*
 189 learning-augmented algorithm for the non-uniform facility location problem. Our algorithm returns a
 190 $O(\log \log \Delta \cdot \min\{\log(k+1) \text{dynamic}_t, \frac{\log t}{\log \log t} \text{opt}_t\})$ -approximation. Both results start from the
 191 fractional solution built for the learning-augmented facility location problem designed in previous
 192 work Anand et al. (2022) and use our online rounding algorithms to obtain the final integral results.
 193

194 **Additional notation.** Consider the metric space (V_t, d) at time t . The ball centered at some vertex
 195 $v \in V_t$ with radius $R \geq 0$ in this metric space is denoted $B^t(v, R)$: $B^t(v, R) = \{u \in V_t : d(u, v) \leq R\}$. For any set of vertices $S \subseteq V_t$, the total fractional mass on the vertices of S at time t is denoted
 196 $y^t(S)$: $y^t(S) = \sum_{v \in S} y_v^t$. Clearly, $y^t(S)$ is also non-decreasing over time. In particular, we will
 197 often consider the total fractional mass at time t in a ball $B = B^t(v, r)$; this is denoted $y^t(B)$.
 198

199 **γ -Consistent Rounding.** Consider a fractional solution $\mathbf{y}^t = (y_v^t, v \in V_t)$ (recall from above that
 200 \mathbf{y}^t is sufficient to define a solution). Now, suppose we round this fractional solution to produce an
 201 integer solution $F_t \subseteq V_t$. We say that F_t is γ -consistent with \mathbf{y}^t if the following property holds:

202 (γ -Consistency.) For any ball $B = B^t(v, R)$ centered at a vertex $v \in V_t$ and with radius R , if
 203 $y^t(B) \geq 1/2$, then there is an open facility in F_t that is within distance γR of v .
 204

205 We show that the γ -consistency property implies that the connection costs of the fractional and
 206 integral solutions are related.

207 **Lemma 1.** *If an integral solution F_t is γ -consistent with a fractional solution \mathbf{y}^t , then the total
 208 connection cost of all the clients in V_t in the integer solution is at most 2γ times that in the fractional
 209 solution. In notation,*

$$\sum_{u \in V_t} \min_{v \in F_t} d(u, v) \leq 2\gamma \cdot \sum_{u \in V_t} \sum_{v \in V_t} d(u, v) x_{uv}^t,$$

210 for any \mathbf{x}^t such that $(\mathbf{y}^t, \mathbf{x}^t)$ is feasible for the LP given above.
 211

212 **Proof.** Consider a client at vertex u that arrives at time t . Suppose its fractional connection cost
 213 is β , i.e., $\sum_{v \in V} d(u, v) x_{uv}^t = \beta$ where $\sum_{v \in V} x_{uv}^t = 1$ and $x_{uv}^t \leq y_v^t$ for all $v \in V_t$. Then,
 214 $\sum_{v \in B(u, 2\beta)} y_v^t \geq \sum_{v \in B(u, 2\beta)} x_{uv}^t \geq 1/2$. Note that γ -consistency ensures that there is at least one
 215

216 facility at distance $2\gamma\beta$ from u after the processing at time t . It follows that the connection cost of
 217 client u in the integer solution is at most $2\gamma\beta$. \square
 218
 219
 220

221 Our goal is to obtain γ -competitive solutions so that the total connection cost can be bounded
 222 immediately by Lemma 1. So, our analysis will comprise two parts: first, obtain an explicit bound on
 223 the facility opening cost $\sum_{v \in F_t} c(v)$ of the integral solution against the opening cost of the fractional
 224 solution, $\sum_{v \in V_t} c(v) y_v$; and second, establish γ -competitiveness of the integral solution with respect
 225 to the fractional solution for a suitable value of γ .
 226
 227

228 3 THE DETERMINISTIC ROUNDING ALGORITHM FOR UNIFORM OPENING 229 COSTS 230

231 In this section we present our deterministic online rounding algorithm for the uniform facility case.
 232 This algorithm combined with the fractional algorithm in Anand et al. (2022) will imply our result
 233 for learning-augmented facility location as we will show in Section 5.
 234

235 We start by stating the main result of this section.
 236

237 **Theorem 2.** *There exists an online algorithm that rounds a fractional solution of uniform facility
 238 location online and the cost of the returned integral solution is $O(\alpha)$, where α denotes the cost of the
 239 fractional solution.*

240 **The Algorithm.** The main idea behind the algorithm is to guarantee that at any point in time the
 241 algorithm is 4-consistent. In order to do so if at time t a ball $B^t(v, R)$ has total fractional mass
 242 $y^t(B) \geq 1/2$ and has the closest open facility at a distance $\geq 4R$ we open a facility at v . While
 243 this guarantees 4-consistency, it can lead to excessive facility openings. To mitigate this, additional
 244 facilities are opened. Roughly, if there is a ball $B^t(u, r)$ with total fractional mass in the ball
 245 $y^t(B) \geq 1/4$ that intersects $B^t(v, R)$ and such that the closest open facility to u is at a distance $\geq 3r$
 246 we open also a facility at u . In addition, we do this an additional time by considering balls $B^t(w, \rho)$
 247 with total fractional mass in the ball $y^t(B) \geq 1/8$, intersecting with $B^t(u, r)$ and with closest open
 248 facility to w is at a distance $> 2\rho$ and by opening a facility in such w . Interestingly, by opening these
 249 additional facilities we can show that the number of open facility is bounded and by combining this
 250 with the fact that the algorithm is 4-consistent we obtain the theorem.

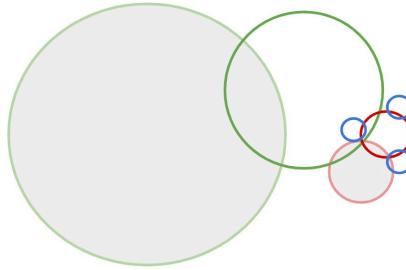
251 To define the algorithm, we start to formalize the three conditions discussed above:
 252

- 253 • A ball $B = B^t(v, R)$ is said to satisfy **Condition A** at time t if the following holds:
 254 – the total fractional mass in the ball $y^t(B) \geq 1/2$
 255 – the closest open facility to v is at a distance $> 4R$.
 256
- 257 • A ball $B = B^t(u, r)$ is said to satisfy **Condition B** at time t if the following holds:
 258 – the total fractional mass in the ball $y^t(B) \geq 1/4$
 259 – the closest open facility to u is at a distance $> 3r$.
 260
- 261 • A ball $B = B^t(w, \rho)$ is said to satisfy **Condition C** at time t if the following holds:
 262 – the total fractional mass in the ball $y^t(B) \geq 1/8$
 263 – the closest open facility to w is at a distance $> 2\rho$.
 264

265 We use the above conditions to define the online algorithm. In the description below, we define the
 266 algorithmic steps at some time t . For the purpose of analysis, it would be convenient to think of
 267 time as continuous, although the actual implementation of the algorithm can be easily discretized by
 268 skipping over times where the online algorithm does not make any updates.
 269

When a client arrives, the algorithm first updates the fractional solution, then rounds it based on
 Algorithm 1, and finally connects the client to the closest open facility.

270
271
272
273
274
275
276
277
278
279



280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 1: Green balls are at level-1, red balls are at level-2, blue balls are at level-3. Level-3 balls associated with the same level-2 balls are disjoint and are at most 3. Level-2 and level-1 balls can overlap but any new ball is associated with some new additional fractional mass. This allows us to bound the number of level-2 and level-1 balls.

Algorithm 1: The Deterministic Online Rounding Algorithm for Uniform Facility Location

```

while  $\exists$  a ball  $B(v, R)$  satisfying condition A do
  Let  $B(v, R)$  be a ball of minimum radius satisfying the condition A.
  while  $\exists$  a ball  $B(u, r)$  for some  $r \leq R/3$  satisfying condition B s.t.  $B(u, r) \cap B(v, R) \neq \emptyset$ 
    do
      Let  $B(u, r)$  be a ball of minimum radius satisfying the condition B and intersecting
       $B(v, R)$ ;
      while  $\exists$  a ball  $B(w, \rho)$  for some  $\rho \leq r/2$  satisfying condition C s.t.
         $B(w, \rho) \cap B(u, r) \neq \emptyset$  do
          Let  $B(w, \rho)$  be a ball of minimum radius satisfying the condition C and intersecting
           $B(u, r)$ ;
          Open a facility at  $w$ ;
        Open a facility at  $u$ ;
      Open a facility at  $v$ ;

```

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869

324 But, since the balls $B(v, R)$ and $B(u, r)$ overlap, $d(v, u) \leq R + r$. Thus, v has an open facility at
 325 distance at most $8r + (R + r) \leq 8R/3 + (R + R/3) \leq 4R$. This contradicts the fact that the ball
 326 $B(v, R)$ satisfies condition A. \square

328 Next, we bound the number of level-1 and level-2 facilities. The arguments for these two cases are
 329 quite similar. We start by defining predecessors for level-1 and level-2 facilities. Consider a level-1
 330 facility at vertex v opened by a level-1 ball $B(v, R)$ at time t . We call a level-1 facility at some vertex
 331 v' the *predecessor* of the level-1 facility at v if the following holds:

- 332 – The level-1 facility at v' was opened before the level-1 facility at v .
- 333 – The level-1 ball $B(v', R')$ that opened the level-1 facility at v' overlaps with the level-1 ball $B(v, R)$.
- 334 – The level-1 balls corresponding to the level-1 facilities opened after v' and before v do not overlap
 335 with the level-1 ball $B(v, R)$.

336 **Lemma 5.** *Consider a level-1 facility opened by a ball $B(v, R)$ at time t . Let the predecessor of this
 337 level-1 facility at v be a level-1 facility at v' that was opened by the level-1 ball $B(v', R')$ at time
 338 $t' \leq t$. Then,*

$$339 \quad y^t(B(v, R)) - y^{t'}(B(v, R)) \geq 1/4.$$

340 *Proof.* Since the balls $B(v, R)$ and $B(v', R')$ overlap, we have $d(v, v') \leq R + R'$. But, note that the
 341 ball $B(v, R)$ satisfied condition A at time t , i.e., there was no open facility within a distance of $4R$ of
 342 v at time t . In particular, this implies that the facility at v' is also at a distance $> 4R$ from v , namely
 343 $d(v, v') > 4R$. It follows that $R + R' > 4R$, i.e., $R' > 3R$. \square

344 Suppose the lemma is false, i.e., $y^t(B(v, R)) - y^{t'}(B(v, R)) < 1/4$. Since $y^t(B(v, R)) \geq 1/2$, it
 345 follows that $y^{t'}(B(v, R)) > 1/4$. Since the processing of $B(v', R')$ did not open a facility at v , it
 346 must be that $B(v, R)$ failed condition B at the end of this processing. Since $y^{t'}(B(v, R)) > 1/4$, the
 347 only way this can happen is if there was a facility open at distance $\leq 3R$ from v at the end of the
 348 processing for $B(v', R')$. But, this contradicts the fact that $B(v, R)$ satisfied condition A at time
 349 t . \square

351 The definition of the predecessor of a level-2 facility is similar to that for level-1 facilities. Consider
 352 a level-2 facility at vertex u opened by a level-2 ball $B(u, r)$ at time t . We call a level-2 facility at
 353 some vertex u' the *predecessor* of the level-2 facility at u if the following holds:

- 354 – The level-2 facility at u' was opened before the level-2 facility at u .
- 355 – The level-2 ball $B(u', r')$ that opened the level-2 facility at u' overlaps with the level-2 ball $B(u, r)$.
- 356 – The level-2 balls corresponding to the level-2 facilities opened after u' and before u do not overlap
 357 with the level-2 ball $B(u, r)$.

358 Now, using the same proof strategy of Lemma 5, one can show that the overlap between level-2 ball
 359 is bounded. Here we present the statement of the Lemma and defer the proof to Appendix A

360 **Lemma 6.** *Consider a level-2 facility opened by a ball $B(u, r)$ at time t . Let the predecessor of this
 361 level-2 facility at u be a level-2 facility at u' that was opened by the level-2 ball $B(u', r')$ at time
 362 $t' \leq t$. Then,*

$$363 \quad y^t(B(u, r)) - y^{t'}(B(u, r)) \geq 1/8.$$

364 We are now ready to bound the facility cost:

365 **Theorem 7.** *The number of facilities opened by the rounding algorithm is at most $36 \cdot \sum_v y_v$, where
 366 y_v is the final value of the fractional solution for vertex v .*

367 *Proof.* We charge a level-1 facility opened by a level-1 ball $B(v, R)$ to the gain in fractional mass
 368 $y(B(v, R))$ after time t' until time t , where t' denotes the time when the predecessor of the facility at
 369 v was opened. This charging only loses a factor of 4 by Lemma 5.

370 We charge the level-2 facility and the level-3 facilities opened by a level-2 ball $B(u, r)$ to the gain in
 371 fractional mass $y(B(u, r))$ after time t' until time t , where t' denotes the time when the predecessor
 372 of the facility at u was opened. The charging of the level-2 facility only loses a factor of 8 by
 373 Lemma 6 and that of the level-3 facilities loses a factor of 24 by Lemma 4.

374 The lemma follows by adding up the multiplicative factors that we lose for level-1, level-2, and
 375 level-3 facilities. \square

378 Finally, we bound the connection cost.
 379

380 **Theorem 8.** *Let U be the set of clients and x_{uv} be the fractional solution for client $u \in U$. Then, the
 381 connection cost of integer solution for client u is at most $8 \sum_{v \in V} d(u, v)x_{uv}$.*

382 *Proof.* This follows directly from the fact that the algorithm is 4-consistent, via Lemma 1. \square
 383

384 Now we are ready to prove Theorem 2.
 385

386 *Proof of Theorem 2.* The proof follow by combining Theorem 7 and Theorem 8. \square
 387

389 4 THE RANDOMIZED ROUNDING ALGORITHM 390

391 In this section, we describe a randomized rounding algorithm for the weighted online facility location
 392 problem with the following properties: (a) the rounding algorithm is γ -consistent for some constant γ
 393 (this property holds deterministically), and (b) at any time t , the *expected* facility opening cost of the
 394 integral solution is at most $O(\log \log \Delta_t)$ times that of the fractional solution, where Δ_t denotes the
 395 aspect ratio of the metric space at time t , i.e., the ratio of the maximum to the minimum (non-zero)
 396 distance between any pair of vertices. Formally,

397 **Theorem 9.** *There exists a randomized online algorithm that rounds a fractional solution for facility
 398 location online and the expected cost of the rounded integral solution is $O((\log \log \Delta) \cdot \alpha)$, where α
 399 denotes the cost of the fractional solution.*

400 In defining the rounding algorithm, it will be convenient to assume that the fractional mass y_v at
 401 any vertex v does not change over time. This is without loss of generality by the following standard
 402 technique: whenever the fractional algorithm increases the fractional mass at a vertex v by some
 403 quantity δ , we create a second copy of vertex v , namely a new vertex that is at distance 0 from v and
 404 at the same distance as v from all other vertices, and set the fractional mass on the new vertex to δ .
 405 The facility opening cost of the new vertex is the same as that of the original vertex. Clearly, the
 406 opening and connection costs of the new fractional solution are identical to the original solution, but
 407 this new solution has the advantage that the fractional mass on a vertex is set in only one step. In the
 408 rest of this paper, we will assume that the fractional solution satisfies this property.

409 We describe the rounding algorithm next, and then give its analysis in Appendix B to establish
 410 properties (a) and (b) above.
 411

412 4.1 RANDOMIZED ROUNDING ALGORITHM 413

414 If any vertex v has $y_v^t \geq 1/2$, we immediately open a facility at that vertex. We call this a *deterministic*
 415 rounding step, and the corresponding facilities are called deterministic facilities. Clearly, the total
 416 opening cost of deterministic facilities is at most twice their fractional opening cost. In the rest of
 417 the description, we focus on how the algorithm opens the rest of the facilities using a randomized
 418 algorithm.

419 The algorithm uses a counter for every vertex v that we call its *level* and denote $\ell(v)$. In the following,
 420 we will say that a vertex has been rounded by the randomized algorithm if it has been involved in a
 421 randomized step of the algorithm. Initially, $\ell(v) = 0$. Over time, $\ell(v)$ tracks the number of times
 422 vertex v has been rounded by the algorithm. Since the algorithm rounds vertices randomly, the level
 423 counters are random variables. Eventually, we will show that for every vertex v , the expected value
 424 of $\ell(v)$ at time t is $O(\log \log \Delta_t)$. For notational convenience, we also maintain a level counter of
 425 value 1 at each deterministic facility. These counters do not change over time.

426 It will be convenient to maintain an order \prec on all the vertices in the metric space. The precise order
 427 is not important, but for consistency, $v \prec v'$ if v appears earlier than v' in the online problem (ties
 428 are broken arbitrarily for vertices that appear in the same time-step). We also set up a lexicographic
 429 order on all balls $B^t(v, R)$ in the metric space, which we also denote \prec , using the following rules:
 430 (a) if $t < t'$, then $B^t(v, R) \prec B^{t'}(v', R')$ for any vertices v, v' and radii R, R' , (b) for any time t , if
 431 $R < R'$, then $B^t(v, R) \prec B^t(v', R')$ for any vertices v, v' , and (c) for any time t and radius R , if
 $v \prec v'$, then $B^t(v, R) \prec B^t(v', R)$.

432 At any time t , we call a ball $B^t(v, R)$ *critical* if it satisfies the following properties: (a) the total
 433 fractional mass in $B^t(v, R)$ is at least $1/2$, and (b) there is no overlapping critical ball with radius
 434 at most $2R$ that appears earlier in the lexicographic order, i.e., there is no $B^{t'}(v', R') \prec B^t(v, R)$
 435 with radius $R' \leq 2R$ such that $B^{t'}(v', R') \cap B^t(v, R) \neq \emptyset$. Observe that critical balls are defined
 436 deterministically since this definition only depends on the fractional solution. We also define the level
 437 of a critical ball $B := B^t(v, R)$ as $\ell(B) := \min\{\ell : \sum_{u \in B: \ell(u) \leq \ell} y_u^t \geq 1/4\}$. Note that although the
 438 fact that a ball is critical is deterministic, its level is random since it depends on the values of the level
 439 counters which themselves are random variables.

440 Finally, we define the randomized rounding step. At time t , we consider the critical balls in lexicographic
 441 order \prec . For a critical ball $B := B^t(v, R)$, if there is an open facility in B already, then
 442 we do nothing. Otherwise, we open a facility at a location in $B_\ell := \{u \in B : \ell(u) \leq \ell(B)\}$ with
 443 probability proportional to y_u^t . (In other words, the probability of opening a facility at $u \in B_\ell$ is
 444 $y_u^t / \sum_{u \in B_\ell} y_u^t$). Correspondingly, we increase by one the level counters $\ell(u)$ of all locations $u \in B_\ell$.
 445 This algorithm is already sufficient, but for the sake of simpler analysis, we add one more step. For
 446 each vertex $u \in B_\ell$, we also open a facility at u independently with probability y_u^t . We call the two
 447 randomized rounding steps respectively the *dependent* and *independent* rounding steps.

449 5 APPLICATION TO LEARNED-AUGMENTED FACILITY LOCATION

450 In this section we show how to leverage the presented online rounding algorithms to obtain algorithms
 451 for the learning-augmented facility location.

452 Our starting point is the online fractional algorithm for learning-augmented facility location presented
 453 in Anand et al. (2022) that gives the following theorem:

454 **Theorem 10** (Theorem 7.1 from Anand et al. (2022) restated). *There is an algorithm for the
 455 fractional online facility location problem that at time t produces an online solution with cost
 456 $O(\min\{\log(k+1) \mathbf{dynamic}_t, \frac{\log t}{\log \log t} \mathbf{opt}_t\})$ in the multiple predictions setting with k predictions.*

457 We apply our rounding algorithms presented in Section 3 and Section 4 on the fractional solution
 458 constructed in Anand et al. (2022) to obtain integral algorithms for the learning-augmented facility
 459 location. In particular, we obtain the following theorems for the uniform (Theorem 11) and non-
 460 uniform (Theorem 12) setting. Note that the two theorems obtain consistency bounds of $O(\log(k+1))$
 461 and $O(\log \log \Delta \cdot \log(k+1))$ respectively, while ensuring a robustness bound of $O(\frac{\log t}{\log \log t})$. (The
 462 proofs are deferred to Appendix C.)

463 **Theorem 11.** *There is an algorithm for the uniform learning-augmented facility location problem
 464 that at time t produces an online solution with cost $O(\min\{\log(k+1) \mathbf{dynamic}_t, \frac{\log t}{\log \log t} \mathbf{opt}_t\})$.*

465 **Theorem 12.** *There is an algorithm for the non-uniform learning-augmented facility location
 466 problem that at time t produces an online solution with cost $O(\min\{\log \log \Delta \cdot \log(k+1)
 467 + 1) \mathbf{dynamic}_t, \frac{\log t}{\log \log t} \mathbf{opt}_t\})$.*

471 472 CONCLUSIONS AND FUTURE WORK

473 We present two new algorithms to round online a fractional facility location solution and we show
 474 how to use them to obtain learning-augmented facility location algorithms. The algorithms obtain
 475 almost tight guarantees for the learning-augmented problem and are simple and natural. As follow-up
 476 questions, it would be interesting to find a rounding algorithm for the non-uniform settings that loose
 477 only a constant factor in the approximation. It would also be very nice to modify the fractional
 478 algorithm in Anand et al. (2022) to obtain a $O(\min\{\frac{\log k}{\log \log k} \mathbf{dynamic}_t, \frac{\log t}{\log \log t} \mathbf{opt}_t\})$ -approximation
 479 or show that it is impossible.

481 482 IMPACT STATEMENT

483 This paper presents work whose goal is to advance the field of Machine Learning. The main
 484 contribution of the paper is theoretical and is of interest to the domain of designing robust algorithms
 485 leveraging machine learning advice.

486 REFERENCES
487

488 Matteo Almanza, Flavio Chierichetti, Silvio Lattanzi, Alessandro Panconesi, and Giuseppe Re.
489 Online facility location with multiple advice. *Advances in neural information processing systems*,
490 34:4661–4673, 2021.

491 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. A general approach to
492 online network optimization problems. *ACM Transactions on Algorithms (TALG)*, 2(4):640–660,
493 2006.

494 Aris Anagnostopoulos, Russell Bent, Eli Upfal, and Pascal Van Hentenryck. A simple and deter-
495 ministic competitive algorithm for online facility location. *Information and Computation*, 194(2):
496 175–202, 2004.

497 Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. Online algorithms with multiple
498 predictions. In *International Conference on Machine Learning*, pages 582–598. PMLR, 2022.

499 Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online matching
500 problems with machine learned advice. *Advances in Neural Information Processing Systems*, 33:
501 7933–7944, 2020.

502 Yossi Azar, Debmalya Panigrahi, and Noam Touitou. Online graph algorithms with predictions. In
503 *Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages
504 35–66. SIAM, 2022.

505 Xingjian Bai and Christian Coester. Sorting with predictions. *Advances in Neural Information
506 Processing Systems*, 36:26563–26584, 2023.

507 Eric Balkanski, Vasilis Gkatzelis, and Golnoosh Shahkarami. Randomized strategic facility location
508 with predictions. *Advances in Neural Information Processing Systems*, 37:35639–35664, 2024.

509 Etienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning aug-
510 mented algorithms. *Advances in Neural Information Processing Systems*, 33:20083–20094, 2020.

511 Marcin Bienkowski, Björn Feldkord, and Paweł Schmidt. A nearly optimal deterministic online
512 algorithm for non-metric facility location. *arXiv preprint arXiv:2007.07025*, 2020.

513 Niv Buchbinder, Joseph Naor, and David Wajc. Lossless online rounding for online bipartite matching
514 (despite its impossibility). In *Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
515 Algorithms (SODA)*, pages 2030–2068. SIAM, 2023.

516 Justin Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster fundamental graph algorithms via
517 learned predictions. In *International Conference on Machine Learning*, pages 3583–3602. PMLR,
518 2022.

519 Vincent Cohen-Addad, Benjamin Guedj, Varun Kanade, and Guy Rom. Online k-means clustering.
520 In *International Conference on Artificial Intelligence and Statistics*, pages 1126–1134. PMLR,
521 2021.

522 Vincent Cohen-Addad, Silvio Lattanzi, Andreas Maggiori, and Nikos Parotsidis. Online and consis-
523 tent correlation clustering. In *International Conference on Machine Learning*, pages 4157–4179.
524 PMLR, 2022.

525 Dimitris Fotakis. A primal-dual algorithm for online non-uniform facility location. *Journal of
526 Discrete Algorithms*, 5(1):141–148, 2007.

527 Dimitris Fotakis. On the competitive ratio for online facility location. *Algorithmica*, 50(1):1–57,
528 2008.

529 Dimitris Fotakis. Online and incremental algorithms for facility location. *ACM SIGACT News*, 42(1):
530 97–131, 2011.

531 Dimitris Fotakis, Evangelia Gergatsouli, Themis Gouleakis, and Nikolas Patris. Learning augmented
532 online facility location. *CoRR*, abs/2107.08277, 2021a. URL <https://arxiv.org/abs/2107.08277>.

540 Dimitris Fotakis, Loukas Kavouras, and Lydia Zakynthinou. Online facility location in evolving
 541 metrics. *Algorithms*, 14(3):73, 2021b.

542

543 Dimitris Fotakis, Evangelia Gergatsouli, Themistoklis Gouleakis, Nikolas Patris, and Thanos Tolias.
 544 Improved bounds for online facility location with predictions. In *Proceedings of the AAAI
 545 Conference on Artificial Intelligence*, volume 39, pages 26973–26981, 2025.

546 Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Online knapsack with
 547 frequency predictions. *Advances in neural information processing systems*, 34:2733–2743, 2021.

548

549 Shaofeng H.-C. Jiang, Erzhi Liu, You Lyu, Zhihao Gavin Tang, and Yubo Zhang. Online fa-
 550 cility location with predictions. In *The Tenth International Conference on Learning Rep-
 551 resentations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL
 552 <https://openreview.net/forum?id=DSQHjibtgKR>.

553 Silvio Lattanzi and Sergei Vassilvitskii. Consistent k-clustering. In *International Conference on
 554 Machine Learning*, pages 1975–1984. PMLR, 2017.

555

556 Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online scheduling
 557 via learned weights. In *Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
 558 Algorithms*, pages 1859–1877. SIAM, 2020.

559 Silvio Lattanzi, Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang, and Rudy Zhou. Robust online
 560 correlation clustering. *Advances in Neural Information Processing Systems*, 34:4688–4698, 2021.

561 Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
 562 *Journal of the ACM (JACM)*, 68(4):1–25, 2021.

563

564 Adam Meyerson. Online facility location. In *Proceedings 42nd IEEE Symposium on Foundations of
 565 Computer Science*, pages 426–431. IEEE, 2001.

566

567 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. *Communications of
 568 the ACM*, 65(7):33–35, 2022.

569 Joseph Naor, Aravind Srinivasan, and David Wajc. Online dependent rounding schemes for bipartite
 570 matchings, with. In *Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms
 571 (SODA)*, pages 3116–3154. SIAM, 2025.

572 Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions.
 573 *Advances in Neural Information Processing Systems*, 31, 2018.

574

575 Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-augmented
 576 online algorithms. *Advances in Neural Information Processing Systems*, 33:8042–8053, 2020.

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A PROOF OF LEMMA 6**
595596 **Lemma 6.** Consider a level-2 facility opened by a ball $B(u, r)$ at time t . Let the predecessor of this
597 level-2 facility at u be a level-2 facility at u' that was opened by the level-2 ball $B(u', r')$ at time
598 $t' \leq t$. Then,
599

600
$$y^t(B(u, r)) - y^{t'}(B(u, r)) \geq 1/8.$$

601

602 *Proof.* Since the balls $B(u, r)$ and $B(u', r')$ overlap, we have $d(u, u') \leq r + r'$. But, note that the
603 ball $B(u, r)$ satisfied condition B at time t , i.e., there was no open facility within a distance of $3r$ of
604 u at time t . In particular, this implies that the facility at u' is also at a distance $> 3r$ from u , namely
605 $d(u, u') > 3r$. It follows that $r + r' > 3r$, i.e., $r' > 2r$.
606607 Suppose the lemma is false, i.e., $y^t(B(u, r)) - y^{t'}(B(u, r)) < 1/8$. Since $y^t(B(u, r)) \geq 1/4$, it
608 follows that $y^{t'}(B(u, r)) > 1/8$. Since the processing of $B(u', r')$ did not open a facility at u , it must
609 be that $B(u, r)$ failed condition C at the end of this processing. Since $y^{t'}(B(u, r)) > 1/8$, the only
610 way this can happen is if there was a facility open at distance $\leq 2r$ from u at the end of the processing
611 for $B(u', r')$. But, this contradicts the fact that $B(u, r)$ satisfied condition B at time t . \square
612613 **B ANALYSIS OF THE RANDOMIZED ROUNDING ALGORITHM**
614615 The γ -consistency property follows immediately from the definition of the algorithm.
616617 **Lemma 14.** The randomized rounding algorithm given above is 5-consistent.
618619 *Proof.* Let $B := B^t(v, R)$ be such that $y^t(B) \geq 1/2$. If B is critical, then it contains an open facility
620 after its rounding step. So, suppose B is not critical. Then, there must be some critical ball $B' \prec B$
621 of radius at most $2R$ overlapping with B ; call this ball $B' := B(v', R')$. Since the balls overlap
622 and $R' \leq 2R$, we have $B' \subseteq B(v, 5R)$ by triangle inequality. After the rounding step for B' , there
623 must be an open facility in B' , which is at a distance of at most $5R$ from v . This establishes the
624 lemma. \square
625626 We now bound the expected facility opening cost incurred by the rounding algorithm. Note that the
627 level of a vertex $\ell(v)$ denotes the number of times it has been rounded.
628629 **Lemma 15.** Fix any vertex v and let y_v be the value of y_v^t at the end of the algorithm. If $\ell(v)$ denotes
630 the number of times that vertex v is rounded in the entire algorithm, then the expected facility cost at
631 v is at most $5c(v)y_v \cdot \mathbb{E}[\ell(v)]$.
632633 *Proof.* First, note that if there is a deterministic facility at v , then the lemma holds for v since the
634 cost of the facility is $c(v)$, the level of the vertex $\ell(v) = 1$, and the fractional value $y_v \geq 1/2$. In the
635 rest of the proof, we assume that $y_v < 1/2$, i.e., there is no deterministic facility at v . Next, note that
636 $y_v^t = y_v$ at all times t when v is rounded, since y_v is set in only one step of the fractional algorithm
637 and v is rounded only after $y_v^t > 0$. Moreover, the cumulative fractional mass of all vertices in B_ℓ for
638 randomized rounding of a ball B is at least $1/4$. I.e., the probability that a facility is opened at v in a
639 single dependent rounding step is at most $4y_v$. Including the independent rounding step, the total
640 probability of opening a facility at v is at most $5y_v$.
641642 Consider the random variables $Y_i(v)$ with value $c(v)$ if a facility is opened at vertex v when $\ell(v) = i$,
643 and 0 otherwise. These random variables are independent across different values of i , and their
644 expected value is bounded by $\mathbb{E}[Y_i(v)] \leq 5c(v)y_v$ for every i . The number of such random variables
645 is given by the final value of $\ell(v)$, which is determined by a stopping rule. Using Wald's identity, we
646 then have that the expected facility cost at v is at most $5c(v)y_v \cdot \mathbb{E}[\ell(v)]$. \square
647648 By the above lemma, it suffices to bound the value $\mathbb{E}[\ell(v)]$ for any vertex v . Indeed, we will show
649 that $\mathbb{E}[\ell(v)] \leq O(\log \log \Delta)$. But first, we establish a simpler deterministic bound on $\ell(v)$.
650651 **Lemma 16.** Any vertex v belongs to at most $1 + \lg \Delta$ critical balls. Therefore, $\ell(v) \leq 1 + \lg \Delta$.
652

648 *Proof.* Clearly, the lemma holds if there is a deterministic facility at v , since $\ell(v) = 1$. Hence, we
 649 assume $y_v < 1/2$ in the rest of the proof. Suppose v is in two critical balls $B := B^t(u, R)$ and
 650 $B' := B^{t'}(u', R')$, where wlog, $t \leq t'$. Since these balls overlap, it must be that $R > 2R'$ by the
 651 definition of critical balls. Now, since $y_v < 1/2$, the minimum radius of any critical ball containing v
 652 must be 1. The maximum radius of any ball in the metric space is Δ . The lemma follows. \square
 653

654 Next, we bound the expected level of a vertex. We do this in two steps. In the first step, we give a tail
 655 bound on the level of a critical ball that the algorithm performs randomized rounding on.

656 **Lemma 17.** *For any critical ball B , the probability that the algorithm performs the randomized
 657 rounding step for B at level $\ell(B) > \ell$ for any positive integer ℓ is at most $e^{-\ell/4}$.*

659 *Proof.* If the algorithm performs randomized rounding for B , then it must be that all previous
 660 rounding attempts for vertices in B did not open any facility. In particular, this is true for the
 661 independent rounding attempts on these vertices. Each independent rounding attempt for a vertex
 662 v with fractional value y_v fails with probability $1 - y_v \leq e^{-y_v}$. Since these rounding attempts are
 663 independent, the probability that all these attempts fail to open any facility is at most $e^{-\sum_{v \in B} y_v \cdot \ell(v)}$.
 664 Since $\ell(B) \geq \ell$ and $\sum_{v \in B} y_v \geq 1/2$ (the latter because B is critical), we get $e^{-\sum_{v \in B} y_v \cdot \ell(v)} \leq$
 665 $e^{-\ell/4}$. \square
 666

667 We now use this lemma to bound the expected level of any vertex.

668 **Lemma 18.** *The expected level of any vertex at the end of the algorithm is at most $1 + 8 \ln(1 + \lg \Delta) =$
 669 $O(\log \log \Delta)$.*

671 *Proof.* Fix any vertex v . By Lemma 16, it belongs to at most $1 + \lg \Delta$ critical balls; call them
 672 B_1, B_2, \dots, B_k where $k \leq 1 + \lg \Delta$. For each such ball B_i , by Lemma 17, randomized rounding is
 673 performed for ball B_i at a level $> 8 \ln(1 + \lg \Delta)$ with probability at most $e^{-2 \ln(1 + \lg \Delta)} = 1/(1 + \lg \Delta)^2$.
 674 Using the union bound over the $k \leq 1 + \lg \Delta$ balls, the probability that randomized rounding is
 675 performed for any ball containing v at a level $> 8 \ln(1 + \lg \Delta)$ is at most $1/(1 + \lg \Delta)$. Since the maximum
 676 value of $\ell(v)$ is (deterministically) $1 + \lg \Delta$ by Lemma 16, it follows that the expected value of $\ell(v)$
 677 is at most $1 + 8 \ln(1 + \lg \Delta) = O(\log \log \Delta)$. \square
 678

679 Now, we can prove our main Theorem 9 for the section.

680 *Proof of Theorem 9.* From Lemma 14 we know that our algorithm is 5 consistent and so we have a
 681 bound on the connection cost (Lemma 1). To bound the facility cost we note that Lemma 15 implies
 682 that the bound on the facility cost is directly implied by a bound on the expected level of any vertex
 683 at the end of the algorithm. That is bounded in expectation by $O(\log \log \Delta)$ by Lemma 18. \square
 684

686 C PROOF OF THEOREM 11 AND THEOREM 12

688 **Theorem 11.** *There is an algorithm for the uniform learning-augmented facility location problem
 689 that at time t produces an online solution with cost $O(\min\{\log(k+1) \mathbf{dynamic}_t, \frac{\log t}{\log \log t} \mathbf{opt}_t\})$.*

692 *Proof.* The result is obtained by running the rounding algorithm presented in Section 3 on the
 693 fractional solution returned by the algorithm in Anand et al. (2022). Then, the result follows by
 694 combining Theorem 10 with Theorem 2. \square

695 **Theorem 12.** *There is an algorithm for the non-uniform learning-augmented facility location
 696 problem that at time t produces an online solution with cost $O(\min\{\log \log \Delta \cdot \log(k+1) \mathbf{dynamic}_t, \frac{\log t}{\log \log t} \mathbf{opt}_t\})$.*

699 *Proof.* We run the rounding algorithm presented in Section 4 on the fractional solution returned by
 700 the algorithm in Anand et al. (2022). Then, combining Theorem 10 with Theorem 9 gives a bound of
 701 $O(\log \log \Delta \cdot \min\{\log(k+1) \mathbf{dynamic}_t, \frac{\log t}{\log \log t} \mathbf{opt}_t\})$.

We now improve the robustness bound from $O(\log \log \Delta \cdot \frac{\log t}{\log \log t} \text{opt}_t)$ to $O(\frac{\log t}{\log \log t} \text{opt}_t)$. To do this, we use a standard technique of a combiner algorithm whose solution matches, up to a constant factor, the better of the rounded solution and that of an online algorithm without predictions. In our case, the latter algorithm is the $O(\frac{\log t}{\log \log t})$ -competitive online facility location algorithm in Fotakis (2008).

We now give more details of how the two algorithms are combined to yield a robust algorithm. At any time t , compare the cost of the solutions (including both opening costs of facilities and connection costs of clients) of the two algorithms. For the algorithm that has the smaller cost, we open all facilities opened by that algorithm. So, clients can connect to their closest facilities given by this algorithm, and therefore, the total cost of opening these facilities and connecting clients is at most the total cost of the cheaper algorithm at time t .

For the other algorithm, we might have some facilities that are already open in the combiner algorithm from previous steps – we keep those facilities open but do not open any more facilities. Suppose $t' < t$ was the last time when the second algorithm was cheaper. Then, the open facilities in the combiner algorithm due to the second algorithm were already open in the second algorithm at time t' (since the combiner algorithm does not open any new facilities from the more expensive algorithm). Now, note that the costs of the two algorithms are monotonically non-decreasing since the set of clients is monotonically increasing. Thus means the cost of the cheaper of the two algorithms is also monotonically non-decreasing. Thus, the cost of the cheaper algorithm at time t is at least as much as the cost of the other algorithm at time t' when it was the cheaper of the two algorithms. Hence, the total opening cost of the facilities in the second algorithm at time t' is at most the current cost of the first algorithm at time t . It follows that the total cost of the combiner algorithm at any time t is at most 2 times the cost of the cheaper of the two algorithms at time t . Since the algorithm without predictions has a competitive ratio of $O(\frac{\log t}{\log \log t})$, we get a robustness bound of $O(\frac{\log t}{\log \log t})$ using the combiner algorithm. \square

D LOWER BOUND ON APPROXIMATION GUARANTEE OF RANDOMIZED ALGORITHM

We show that the analysis of the randomized algorithm is asymptotically tight.

Theorem 19. *There is an instance for which the expected cost of the solution returned by the randomized algorithm is $\Omega(\log \log \Delta)$ times the cost of the fractional solution.*

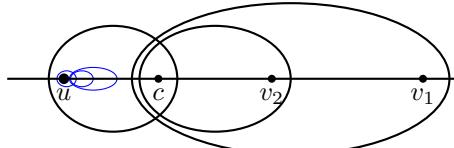
The lower bound will consist of 10^d batches. The high-level intuition is that each batch will increase the level of (i.e., try to round) a special facility u with probability at least $1/5^d$. This will allow us to prove that the randomized algorithm opens facility u with a probability that is at least d times the fractional opening value of u given by the linear program. Then setting the opening cost of this facility so that it completely dominates the objective function will allow us to prove our lower bound of $\Omega(\log \log \Delta)$ because $d = \Omega(\log \log \Delta)$ in our construction. We remark that, as the randomized algorithm is oblivious to the points of the instance, we only describe in the construction how the fractional openings changes in the fractional solution that is rounded and omit the clients (that are irrelevant for the behavior of the randomized algorithm).

The metric is defined by the real line \mathbb{R} , and the distinguished vertex u is positioned at the origin. The fractional value of u is set to $\varepsilon > 0$, i.e., $y_u = \varepsilon$, deliberately chosen to be a tiny value. The cost of the special facility is $c(u) = M/\varepsilon$ and the cost of all other facilities is 0. We select $M \gg 10^{10^{2d}}$ sufficiently large so that the cost of the linear program solution is always dominated by $c(u) \cdot y_u = M$, i.e., the total connection cost is $o(M)$ (recall that the remaining opening cost is 0).

We now proceed with the description of the instance that yields the lower bound (see also Figure 2). For $b = 1, \dots, 10^d$, the b th batch of arrivals is defined by the scale parameter $\gamma(b) = 10^{10^d(10^d-b)}$ and $d+2$ facility locations that arrive during $d+2$ time steps:

- First, center c arrives at position $\gamma(b)$ with $y_c = 1/2 - 2\varepsilon$.
- During the next d time steps, centers v_1, v_2, \dots, v_d arrive. Center v_i is at position $\gamma(b)10^{d+1-i}$ and has $y_{v_i} = 1/5$.

756 • Finally, an extra center c' colocated with c arrives with $y_{c'} = \varepsilon$.



765 Figure 2: An illustration of the construction with $d = 2$. The ellipsoids depicted in black correspond to
766 one batch and the blue correspond to the following batch. Due to the scaling factor $\gamma(\cdot)$ the different
767 batches do not interact and by the geometrically decreasing radii of balls inside a batch we have
768 that the critical balls of a batch are in order $(c, v_1), (c, v_2), \dots, (c, v_d), (c, c', u)$ (the drawing is in
769 logarithmic scale). The center c' arriving last of a batch is colocated with c and is not depicted.

770 By definition, the maximum distance in our construction is upper bounded by $\gamma(1) \cdot 10^d = \gamma(b) =$
771 $10^{10^d(10^d-b)} \cdot 10^d \leq 10^{10^{2d}}$ and the smallest distance is at least 1. Hence, by construction
772

$$773 \Delta \leq 10^{10^{2d}} \quad \text{and} \quad \log \log \Delta = O(d).$$

775 We now discuss the critical balls that are formed in our construction, which also gives valuable
776 intuition for the construction. First, for a single batch, the critical balls that are formed (only using
777 centers from that batch and u) are in order

$$778 (c, v_1), (c, v_2), \dots, (c, v_d) \text{ and finally } (c, c', u).$$

780 (Here, we identify the balls with the locations that they contain for notational simplicity.) This is
781 because the placement of the centers c and c' to be at position $\gamma(b)$ for batch b and v_i to be at position
782 $\gamma(b) \cdot 10^{d+1-i}$ ensures that the radii of the above balls are rapidly decreasing. Specifically, when v_i
783 arrives, any ball B containing centers from this batch with $y(B) \geq 1/2$ must either contain c and v_i
784 or v_i and v_j with $j < i$. By their placement, the radii of the ball (c, v_i) is significantly smaller than
785 any ball containing v_i and v_j . Additionally, it is significantly smaller than the previous critical balls
786 which makes it critical. Finally, when c' arrives, we have the critical ball of radii $\gamma(b)$ that contains
787 (c, c', u) (which now thanks to the arrival of c' has y -value 1/2). Repeating the same arguments
788 (using that $\gamma(b+1) \ll \gamma(b)$), we can also conclude that there is no critical ball that contains two
789 centers from two different batches.

790 We now proceed to analyze the random decisions of the algorithm. For simplicity and without loss of
791 generality, we perform the analysis for $d \geq 10$. We say that a batch is *successful*, if the algorithm
792 opens facilities v_1, \dots, v_d when considering critical balls $(c, v_1), \dots, (c, v_d)$, i.e., it does *not* open
793 center c .

794 **Lemma 20.** *There are at least d successful batches with probability at least $1/2$.*

795 *Proof.* Let p be the probability that a batch is successful. We first prove that $p \geq (1/5)^d$. When v_1
796 arrives, no center has been opened in the ball containing (c, v_1) due to the batch scale factor $\gamma(\cdot)$.
797 The algorithm opens v_1 with probability $y_{v_1}/(y_{v_1} + y_c) \geq y_{v_1} = 1/5$. Now, assuming the algorithm
798 opens v_1 , the same arguments say that the algorithm opens v_2 with probability at least $1/5$. That
799 $p \geq (1/5)^d$ then follows by repeating the argument for v_3, \dots, v_d .

800 The total number of batches are 10^d and so the expected number of successful batches are $10^d/5^d =$
801 2^d . The statement now follows via a standard Chernoff bound using that the success of different
802 batches are independent events. For simplicity and completeness, we include a direct argument. The
803 probability that exactly ℓ batches are successful is

$$804 \binom{10^d}{\ell} p^\ell (1-p)^{10^d-\ell} \leq \binom{10^d}{\ell} (1 - (1/5)^d)^{10^d}.$$

805 We have that $\sum_{\ell=0}^d \binom{10^d}{\ell} \leq (d+1) \binom{10^d}{\ell} \leq (d+1) 10^{d^2}$. At the same time $(1 - (1/5)^d)^{10^d} \leq$
806 $1/e^{10^d/5^d} = 1/e^{2^d}$. The statement now follows since $(d+1) \cdot 10^{d^2}/e^{2^d} \leq 1/2$ where we use that
807 $d \geq 10$. \square

Now consider the case when there are at least d batches that are successful. Consider the d first such successful batches and let E_i be the event that the randomized algorithm opens center u when considering the i th of these batches.

Lemma 21. *We have $\Pr[E_1 \vee E_2 \vee \dots \vee E_d] = 2d \cdot \varepsilon$.*

Proof. We have

$$\Pr[E_1 \vee E_2 \vee \dots \vee E_d] = \sum_{i=1}^d \Pr[E_i \mid \neg E_1, \dots, \neg E_{i-1}]$$

The lemma follows by arguing $\Pr[E_i \mid \neg E_1, \dots, \neg E_{i-1}] = 2\varepsilon$. As the batch corresponding to event E_i is successful, the facility c is at level d after the critical balls $(c, v_1), \dots, (c, v_d)$. Therefore as u has been considered $i-1 < d$ times at this point, i.e., is at level less than d , we have that the level of the ball (u, c, c') is at most d . Therefore, the probability that u is opened by the randomized algorithm equals $y_u/(y_u + y_c + y_{c'}) = 2y_u = 2\varepsilon$. Having proved that $\Pr[E_i \mid \neg E_1, \dots, \neg E_{i-1}] = 2\varepsilon$, the lemma follows by the sum. \square

We have that there are d successful batches with probability at least $1/2$. If that holds, the probability that the randomized algorithm opens u , which incurs a cost of M/ε , is at least $2d\varepsilon$. It follows that the expected cost of the randomized algorithm is at least $d \cdot M$, which as noted above is $\Omega(\log \log \Delta)$ times the cost of the fractional LP solution. This completes the proof of Theorem 19.

E REDUCTION FROM $O(\log \log \Delta)$ TO $O(\log \log n)$

Recall that we have shown that the expected cost of the randomized algorithm is $O(\log \log \Delta)$ times that of the fractional solution. We now show that a slight modification of the algorithm changes the expected cost to $O(\log \log n)$ times the fractional cost, which might be more desirable if the number of vertices is small compared to the aspect ratio of the metric space.

By scaling, let us assume that the minimum distance between two non-identical vertices in the metric space is at least 1 and at most Δ . (Note that for notational convenience, we created copies of identical vertices if multiple clients appear at the same vertex over time. However, this was simply a notational change, i.e., the competitive ratio of the algorithm is not affected if we switch back to a notation where distinct vertices are not co-located but the number of clients at a vertex can increase over time. We will take this latter view in this reduction.)

We first describe the reduction in the offline case, and then adapt it to the online setting. Our basic idea is to merge pairs of vertices that are within a distance of opt/n^2 , where opt is the cost of the fractional solution solution and n is the total number of clients. To merge of a pair of vertices, consider a complete graph on all the vertices where the length of every edge is their pairwise distance. Now, change the length of the edge connecting the two vertices being merged to 0 and recompute all pairwise distances in the metric space as the shortest path distances in the modified graph. Then, unify the two merged vertices into a single vertex whose opening cost is the smaller among the two merged vertices. We repeatedly perform this step of merging vertex pairs at a mutual distance of opt/n^2 or less unless no such pair is left. (The precise order of the mergers is unimportant.) Note that as a result of these mergers, the following happen:

- The minimum distance between any pair of vertices in the modified metric space is $\geq \text{opt}/n^2$.
- The difference in the distances between any pair of vertices in the original and modified metric spaces (in the modified metric space, each vertex represents multiple merged vertices of the original metric space) is at most opt/n . This is because any path in the original metric space constitutes at most $|V| - 1$ merged pairs, where $|V| \leq n$ since each vertex has at least one client (we assume wlog that every vertex has at least one client). Therefore, the additional connection cost paid by a client in the original metric space compared to the modified one is $\leq \text{opt}/n$, which adds up to $\leq \text{opt}$ over all the n clients.

Next, we decrease the maximum distance between any vertex pair. We define an unweighted graph on the vertices where each vertex pair that is at a distance of $\leq 2\text{opt}$ is connected by an edge. Then, we identify the connected components of this auxiliary graph, and create a separate metric space for each connected component. This results in the following:

864 • The maximum distance between any pair of vertices in any of the individual metric spaces
 865 is $\leq 2(|V| - 1) \cdot \text{opt} \leq 2n \cdot \text{opt}$.
 866
 867 • For any client, the fractional solution connects at least half of the client within its component
 868 since connections across different components cost $> 2\text{opt}$. Hence, it suffices for the
 869 algorithm to operate independently on each metric space by incurring a constant factor
 870 overhead in cost compared to the fractional solution.

871 Overall, these two steps ensure that the aspect ratio of the metric space on which the algorithm
 872 operates is at most $\text{poly}(n)$, which in turn establishes an expected cost of $O(\log \log n)$ times the
 873 fractional cost for the randomized algorithm.

874 The above discussion only holds for an offline transformation to reduce $O(\log \log \Delta)$ to $O(\log \log n)$.
 875 In the online case, the first complication is that the value of opt is not known in advance and increases
 876 over time. We define a series of epochs, where an epoch ends when the value of opt doubles with
 877 respect to that at the beginning of the epoch. Suppose opt_t is the value of opt at time t when an epoch
 878 starts. Then, we perform the transformations given above with $\text{opt} = 2\text{opt}_t$ so that opt remains an
 879 upper bound on the actual fractional cost throughout the epoch. Moreover, opt doubles in consecutive
 880 epochs thereby ensuring that the sum of opt across all the epochs is at most the final fractional cost
 881 times a constant factor.

882 In the rest of the discussion, we describe the reduction within a single epoch. The complication is that
 883 the number of clients n also changes over time, which affects the parameters of the transformation.
 884 To handle this, we partition an epoch into a series of phases. A phase that starts when the number of
 885 clients is n_t ends when the number of clients increases to n_t^2 . (If the containing epoch ends before
 886 the end of a phase, then we start a new epoch and a new phase within that epoch.) Throughout the
 887 phase, we use $n = n_t^2$ in the above transformation, which ensures that n is an upper bound on the
 888 actual number of clients. The expected cost in a phase is the fractional cost times $O(\log \log n) =$
 889 $O(\log \log n_t)$. Summing over all the phases in an epoch, we get $O(\log \log n)$ times the fractional
 890 cost at the end of the epoch, where n is the number of clients in the epoch.

891 This completes the description of the overall reduction.

892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917