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Abstract

Variance exploding (VE) based diffusion models, an important class of diffusion
models, have shown state-of-the-art (SOTA) performance. However, only a few
theoretical works analyze VE-based models, and those works suffer from a worse
forward convergence rate 1/poly(T ) than the exp (−T ) of variance preserving
(VP) based models, where T is the forward diffusion time and the rate measures
the distance between forward marginal distribution qT and pure Gaussian noise.
The slow rate is due to the Brownian Motion without a drift term. In this work, we
design a new drifted VESDE forward process, which allows a faster exp (−T ) for-
ward convergence rate. With this process, we achieve the first efficient polynomial
sample complexity for a series of VE-based models with reverse SDE under the
manifold hypothesis. Furthermore, unlike previous works, we allow the diffusion
coefficient to be unbounded instead of a constant, which is closer to the SOTA mod-
els. Besides the reverse SDE, the other common reverse process is the probability
flow ODE (PFODE) process, which is deterministic and enjoys faster sample speed.
To deepen the understanding of VE-based models, we consider a more general
setting considering reverse SDE and PFODE simultaneously, propose a unified
tangent-based analysis framework, and prove the first quantitative convergence
guarantee for SOTA VE-based models with reverse PFODE. We also show that the
drifted VESDE can balance different error terms and improve generated samples
without training through synthetic and real-world experiments.

1 Introduction

Recently, diffusion modeling has shown impressive performance in different areas [Ho et al., 2022,
Rombach et al., 2022, Esser et al., 2024, Li et al., 2024]. Diffusion models consist of two processes:
the forward and reverse process. The forward process gradually converts data q0 to Gaussian noise,
which can be described by an intermediate marginal distribution sequence {qt}t∈[0,T ]. The reverse
process sequentially predicts noise and removes it from data to generate samples.

There are two common forward processes: (1) Variance preserving (VP) SDE and (2) variance
exploding (VE) SDE. The VPSDE corresponds to an Ornstein-Uhlenbeck process, and the stationary
distribution is N (0, I). The VESDE has an exploding variance in the forward process. In earlier
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times, VP-based models [Ho et al., 2020, Lu et al., 2022] provide an important boost for developing
diffusion models. Recently, VE-based models have shown the ability to generate data distribution
supported on low-dimensional manifolds [Song and Ermon, 2019, 2020]. Since image and text
datasets typically exhibit a low-dimensional manifold nature [Pope et al., 2021, Tang and Yang,
2024], VE-based models have achieved great performance in image generation, one-step generation,
and reinforcement learning [Teng et al., 2023, Song et al., 2023, Ding and Jin, 2023]. Furthermore,
Karras et al. [2022] unify VP and VESDE and prove that the ODE solution trajectory of a specific
VESDE is linear and directly towards the data manifold, which makes the denoise process easy.

After determining a forward SDE, diffusion models reverse it and generate samples by running
the corresponding reverse process. Since the reverse drift term contains the gradient of forward
logarithmic density ∇ log qt (a.k.a. score function), we estimate it by using the score matching
technique [Vincent, 2011]. After that, diffusion models discretize the continuous reverse process and
run this discrete process starting from pure Gaussian. There are two widely used reverse processes:
reverse SDE [Ho et al., 2020] and probability flow ODE (PFODE) [Song et al., 2020a]. The reverse
SDE usually generates higher quality samples [Kim et al., 2022]. The reverse PFODE always has
a faster generation speed and is useful in other aspects such as calculating likelihoods [Song et al.,
2020b] or obtaining one-step generation models [Song et al., 2023]. Hence, these processes are both
critical, and providing the guarantee for VE-based models with these processes is necessary.

Recently, many works analyze the convergence guarantee of the VP-based diffusion models under the
reverse SDE setting and prove that the VP-based models can sample from the target data distribution
with polynomial complexity [Chen et al., 2023c,a,b, Lee et al., 2023, Benton et al., 2023]. As the
first step of this work, we also analyze VE-based models under the reverse SDE setting. Different
from the VP-based models, only a few works consider VE-based models and all of them suffer from
slow 1/Poly(T ) forward convergence rate [Lee et al., 2022, Gao et al., 2023, Gao and Zhu, 2024],
which is worse than exp(−T ) one for VPSDE. A slow forward convergence rate makes a large
distance between qT and pure Gaussian noise, which leads to a large reverse beginning error. From
the theoretical perspective, this error introduces hardness to balance three error sources, as shown in
Section 5. From the empirical perspective, Lin et al. [2024] show that this error introduces a data
information leakage problem, which leads to bad performance. To deal with this problem, De Bortoli
et al. [2021] introduce a small drift term to obtain a exp (−

√
T ) reverse beginning error. However,

they introduce an additional exp (T ) in the discretization error term. Furthermore, their results do not
allow unbounded βt, which is the key point of the optimal solution trajectory and used by the SOTA
models [Karras et al., 2022, Song et al., 2023]. Therefore, the following question remains open:

Is it possible to design a VESDE with a faster forward convergence rate than 1/poly(T ) and achieve
the polynomial sample complexity when the diffusion coefficient is unbounded?

In this work, for the first time, we propose a new drifted VESDE forward process, which enjoys a
faster forward convergence rate and allows unbounded coefficients. We first show that the drifted
VESDE has similar trends but performs better than the original SOTA VESDE on synthetic data
(Section 7). After that, we analyze the sample complexity of drifted VESDE under the realistic
manifold hypothesis. The manifold hypothesis means the data q0 is supported on a lower dimensional
compact set M, and much empirical evidence shows that image and text dataset satisfy this hypothesis
[Fefferman et al., 2016, Pope et al., 2021, Tang and Yang, 2024]. Furthermore, as shown in Section 2,
the manifold hypothesis is more realistic than previous data assumptions since it allows the blow-up
phenomenon of the score function at the end of the reverse process, which matches the empirical
observation [Kim et al., 2021]. Under the manifold hypothesis, we prove that the drifted VESDE with
a suitable larger βt balances the reverse beginning, discretization, and approximated score errors and
achieves the first efficient polynomial sample complexity for VE-based models with reverse SDE.

To better understand VE-based models, we analyze reverse SDE and PFODE simultaneously after
obtaining polynomial complexity for reverse SDE. Despite the great performance, a few theoretical
works consider reverse PFODE [Chen et al., 2023d,b, Gao and Zhu, 2024], and these works either
focus on VPSDE or have strong assumptions. Hence, we propose the tangent-based framework for
VE-based models and achieve the first quantitative convergence for the SOTA VE-based models with
reverse PFODE. In conclusion, we accomplish the following results under the manifold hypothesis:

1. We propose a new drifted VESDE forward process, which allows exp (−T ) forward conver-
gence guarantee with suitable βt. With this process, we achieve the first polynomial sample
complexity for a series of VE-based models under the reverse SDE setting.
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2. When considering the general setting, we propose the tangent-based unified framework and
analyze reverse SDE and PFODE simultaneously. Under this framework, we prove the first
quantitative guarantee for SOTA VE-based models with reverse PFODE.

3. We show that the drifted VESDE balances different error terms and improves generated
samples without training via synthetic and real-world experiments.

2 Related Work
Before providing current results, we first discuss different assumptions about the data distribution
from strong to weak. The strongest assumption is the log-concave distribution. While the log-Sobelev
inequality (LSI) assumption is slightly weaker, it does not allow the presence of substantial non-
convexity, which is far away from the multi-modal distribution. Recently, some works assume the
score function is L-Lipschitz to allow the multi-modal distribution. However, this assumption can
not explain the blow-up phenomenon of score [Kim et al., 2021]. The last assumption is the manifold
hypothesis, which is supported by much empirical evidence and allows the blow-up score.

Analyses for VP-based models. For the reverse SDE, Lee et al. [2022] achieve the first polynomial
complexity with strong LSI assumption. Chen et al. [2023c] remove the LSI assumption, assume the
Lipschitz score and achieve polynomial complexity. Bortoli [2022] is the first work to focus on the
sample complexity of diffusion models under the manifold hypothesis, and it is the most relevant
work to our unified framework. However, as discussed in Section 6.1, the original tangent-based
lemma can not deal with reverse PFODE even in VPSDE. We carefully control the tangent process
to avoid additional exp (T ) by using the exploding variance property of VESDE. Recently, Chen
et al. [2023a] and Benton et al. [2023] also remove the Lipschitz score assumption, and Benton et al.
[2023] achieve optimal dependence on d. More recently, Conforti et al. [2023] use bounded Fisher
information assumption and replace d with a Fisher information term.

For the PFODE, Chen et al. [2023d] propose the first quantitative result with exponential dependence
on the Lipschitz constant. Chen et al. [2023b] achieve polynomial complexity by introducing a
corrector component to inject suitable noise. More recently, Li et al. [2023] remove the additional
corrector. However, their results rely heavily on the very specific βt, which goes to 0 as T → +∞.
Since VE-based models have an unbounded βt, this method is not suitable for our models.

Analyses for VE-based models. When considering VESDE, most works focus on constant βt

and reverse SDE. De Bortoli et al. [2021] provide the first convergence guarantee with exponential
dependence on T . Lee et al. [2022] analyze a constant diffusion coefficient VESDE and achieve
polynomial sample complexity under the LSI assumption. When considering the reverse PFODE,
Chen et al. [2023d] only consider the discretization error and provide a quantitative convergence
guarantee. However, their results introduce additional exp (T ) compared to ours (Section 6.1).
Recently, Gao et al. [2023] and Gao and Zhu [2024] provide the polynomial results for a series of
VESDE with reverse SDE and reverse PFODE under the log-concave assumption, respectively.

3 The Drifted Variance Exploding (VE) SDE

Diffusion models usually consist of a forward process and a reverse process. The forward process
gradually injects noise to convert the data distribution to pure noise. To generate samples, diffusion
models reverse the forward process and run the corresponding reverse process.

This section first recalls two previous forward processes: VPSDE and VESDE. Recently, the VE-
based models achieve great performance in application [Karras et al., 2022, Song et al., 2023].
However, unlike the widely analyzed VP-based models [Benton et al., 2023, Chen et al., 2023b], the
VE-based models suffer from challenges in obtaining an efficient sample complexity due to the slow
forward convergence rate. To address this limitation, we introduce a new drifted VESDE forward
process, which has a faster forward convergence rate, balances different error terms and achieves the
first efficient polynomial sample complexity (see Section 5). Finally, we introduce how to reverse
this new forward process and obtain an implementable algorithm.

3.1 The VP and VESDE of Diffusion Models

We first introduce the general form of the forward process and then recall two common forward
processes, VPSDE and VESDE, adopted in previous works [Ho et al., 2020, Karras et al., 2022]. Let
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q0 be the data distribution. Given X0 ∈ Rd, the forward process is defined by
dXt = f(Xt, t) dt+ g(t) dBt, X0 ∼ q0 ,

where (Bt)t≥0 is the standard Brownian motion in Rd, f(Xt, t) is a drift coefficient and g(t) is a
diffusion coefficient. Let qt be the density function of Xt at time t. With a suitable choice of drift and
diffusion terms (e.g. Section 3.1 and 3.2), the forward process gradually converts the data distribution
into Gaussian noise. More specifically, the conditional distribution Xt|X0 is exactly N (mtX0, σ

2
t I)

given X0, where mt is determined by the drift term and σ2
t is determined by the diffusion term.

The VPSDE forward process. Let {βt}t≥0 be a non-decreasing sequence with bounded range
[1/β̄, β̄]. The VPSDE has the following formula:

dXt = −βtXt dt+
√

2βt dBt ,where X0 ∼ q0 . (1)

In this case, mt = exp(−
∫ t

0
βsds) and σ2

t = 1−m2
t . Note that mT ≤ exp (−T/β̄) ,which indicates

a fast forward convergence rate TV(qT |N (0, I)) ≤ exp (−T/β̄) [Chen et al., 2023c].

The VESDE forward process. The VESDE forward process is defined without a drift term:

dXt =
√
dσ2

t /dt dBt ,where X0 ∼ q0 . (2)

Two common choices for σ2
t are t and t2, with the latter achieving SOTA performance [Karras et al.,

2022, Teng et al., 2023]. However, VESDE only has a slow polynomial-decay forward convergence
rate (Theorem 4.2), which introduces hardness to obtain an efficient sample complexity (see Section 5).
This motivates us to design an improved VESDE process with a fast forward convergence rate.

3.2 The Drifted VESDE Forward Process

Note that the forward convergence rate of the general process is upper bounded by mT /σ
2
T (Theo-

rem 4.2). In practical applications [Ho et al., 2020, Karras et al., 2022, Song et al., 2023], the variance
of the forward process σ2

t at time T , which is determined by the diffusion term, does not exceed T 2.
This indicates the contribution of σ2

T to the forward convergence rate is only 1/Poly(T ). Hence, the
exponential-decay forward convergence rate of VPSDE comes from the drift term, which introduces
an exponential-decay mt ≤ exp (−T/β̄). Due to the absence of the drift term in VESDE, the data
information, such as expectation E[q0] and covariance Cov[q0], does not decay and mt ≡ 1, which is
a key to an only polynomial-decay forward convergence rate mT /σ

2
T ≤ 1/Poly(T ). With the drift

term, the VPSDE gradually removes the data information from qt during the process, which makes
qt quickly converge to pure Gaussian noise. Inspired by this elimination effect of the drift term, we
propose a drifted VESDE forward process:

dXt = −1

τ
βtXt dt+

√
2βt dBt, X0 ∼ q0 , (3)

where τ ∈ [T, T 2] is the coefficient used to balance the drift and diffusion term 2, and {βt}t≥0 is a
positive non-decreasing sequence. In this case,

mt = exp

(
−
∫ t

0

βs/τ ds

)
and σ2

t = τ
(
1−m2

t

)
. (4)

We show that the drifted VESDE is not only an effective representation of the existing VESDE but
also extends beyond it (see Section 7 and Appendix A.1). We also prove that this process with suitable
βt has a exp (−T ) forward convergence rate and enjoys an efficient polynomial sample complexity.

3.3 The Reverse Process of the Drifted VESDE

To generate samples from Gaussian noise, a diffusion model reverses the forward process. Let qτt be
the density function of the drifted VESDE forward process at time t and (Yt)t∈[0,T ] = (XT−t)t∈[0,T ].
As shown in Cattiaux et al. [2021], the reverse process of drifted VESDE has the following form 3:

dYt = βT−t

{
Yt/τ + (1 + η2)∇ log qτT−t (Yt)

}
dt+ η

√
2βT−t dBt . (5)

2We note that the choice τ ∈ [T, T 2] is used to guarantee the exploding variance of the forward process. In
fact, our drifted VESDE is a general formula that covers the VP and VESDE by choosing τ ∈ [1, T 2]. More
details are shown in Section 5.

3Now (Bt)t≥0 is the reversed Brownian motion, and we abuse this notation here for ease of notation.
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The parameter η ∈ [0, 1] is used to determine the type of reverse processes. There are two common
reverse processes in the application: reverse probability flow ODE (PFODE) (η = 0) [Song et al.,
2020b, 2023] and reverse SDE (η = 1) [Ho et al., 2020].

To generate distribution q0 through running the above reverse process, diffusion models need the
true score function ∇ log qτT−t(Yt) and the accurate reverse beginning distribution qτT . However,
∇ log qτT−t(Yt) and qτT contain the data information and usually can not be exactly calculated. For the
score function, diffusion models approximate it using a score network s(T − t, ·) by minimizing the
score matching objective function [Vincent, 2011]. For the initial distribution of the reverse process,
since qτT should be close to a pure Gaussian, we choose qτ∞ = N (0, σ2

T I) as an approximation. Then,
the continuous reverse process (Ŷt)t∈[0,T ], incorporating s(T − t, ·) and qτ∞, is defined as:

dŶt = βT−t

{
Ŷt/τ + (1 + η2)s(T − t, Ŷt)

}
dt+ η

√
2βT−t dBt ,where Ŷ0 ∼ qτ∞ .

Since diffusion models can not run a continuous process due to the nonlinear score function, these
models usually discretize the above continuous process and freeze the approximated score at the
beginning of each interval. Let {γk}k∈[K] be the stepsize and tk+1 =

∑k
j=0 γj . As shown in Kim

et al. [2021], ∇ log qτT−t(Yt) goes to +∞ at the end of the reverse process. To mitigate this issue,
they use the early stopping technique tK = T − δ, and we also employ this technique in this work.
With the stepsize, we choose the exponential integrator discretization scheme [Zhang and Chen,
2022] to discretize the above process, which runs the following process:

dỸt = βT−t

{
Ỹt/τ + (1 + η2)s(T − tk, Ỹtk)

}
dt+ η

√
2βT−t dBt ,where t ∈ [tk, tk+1] . (6)

As shown in Karras et al. [2022], the choice of βt significantly affects the performance of models,
and we need to determine βt before running the reverse process. The state-of-the-art diffusion models
adopt βt = t, which increases rapidly and has an unbounded range. However, current theoretical
works assume βt to be a constant [Chen et al., 2023c] or confined to a bounded interval [1/β̄, β̄]
[Bortoli, 2022] to match the setting of VPSDE. To align more closely with practical applications
of VE-based models, we allow an unbounded βt in this work. Furthermore, we make a detailed
assumption on βt when considering different reverse processes.
Assumption 3.1. Let {βt}t≥0 be a positive, non-decreasing sequence. For any τ ∈ [T, T 2], there
exists constants β̄ and C, such that for any t ∈ [0, T ]: (1) for η = 0, then 1/β̄ ≤ βt ≤ max{β̄, t}
and

∫ T

0
βt/τ dt ≤ C; (2) for η = 1, then 1/β̄ ≤ βt ≤ max{β̄, t2}.

As shown in Chen et al. [2023b], due to the absence of the stochasticity, the small errors for quickly
accumulate and are magnified. Hence, we assume a conservative βt for the reverse PFODE, whose
growth rate is at most t, to avoid an additional exp (T ) in the convergence guarantee (see Section 6.1).
We note that this choice of βt is satisfied in practical applications [Song et al., 2020b, Karras et al.,
2022]. For the reverse SDE setting, we assume the growth rate of βt can depend on τ instead of at
most linear. For example, when τ = T 2, we can choose βt = t2, which has the same order as τ . As
shown in Theorem 4.2, the drifted VESDE with aggressive βt = t2 has an exponential-decay forward
convergence rate, which leads to the first efficient polynomial complexity for VE-based models.

Notations. For x ∈ Rd and A ∈ Rd×d, we denote by ∥x∥ and ∥A∥ the Euclidean norm for vector
and the spectral norm for matrix. We denote by γ̄K = argmaxk∈{0,...,K−1}γk the maximum stepsize

for k ∈ [0,K − 1]. We denote by q0PT the distribution of XT , Qqτ∞
tK the distribution of YtK , Rqτ∞

K

the distribution of ỸtK and Qq0PT

tK the distribution which does reverse process starting from qτT (Eq.
5). We denote by W1 and W2 the Wasserstein distance of order one and two, respectively.

4 The Faster Forward Convergence Rate for the Drifted VESDE

This section shows that the drifted VESDE has a fast forward convergence rate. Since qτT contains
the data information, we first introduce the manifold hypothesis before controlling TV(qτT , q

τ
∞).

Assumption 4.1. q0 is supported on a compact set M and 0 ∈ M.

We denote R the diameter of the manifold by R = sup{∥x − y∥ : x, y ∈ M} and assume R > 1.
As shown in Section 1, the manifold hypothesis is supported by much empirical evidence [Bengio

5



et al., 2013, Fefferman et al., 2016, Pope et al., 2021] and allows the blow-up phenomenon of the
score. Recently, Tang and Yang [2024] show that diffusion models can adapt to the intrinsic manifold
structure. With Assumption 4.1, we obtain the forward process guarantee for the drifted VESDE.
Theorem 4.2. Assume Assumption 4.1 and 3.1. Let qτ∞ = N (0, σ2

T I). With mT , σT defined in
Equation (4), we have TV(qτT , q

τ
∞) ≤ √

mT D̄/σT , where D̄ = d|c| + E[q0] + R and c is the
eigenvalue of Cov[q0] with the largest absolute value.

Recall that mT = exp(−
∫ T

0
βt/τ dt), the previous VESDE [Song et al., 2020b, Karras et al., 2022,

Lee et al., 2022] chooses a conservative βt satisfies
∫ T

0
βt/τ dt ≤ C. However, with an aggressive βt,

the drifted VESDE will have a faster convergence rate. To illustrate the accelerated forward process,
we use τ = T 2 as an example and discuss different βt = tα1 , α1 ∈ [1, 2]. Due to the definition of σT ,
σT ≈ T , and the forward convergence rate mainly depends on

√
mT . When α1 = 1 is conservative,

mT is a constant, and the convergence rate is 1/T . When α1 = 1 + ln(2r ln(T ))/ ln(T ) is slightly
aggressive, the convergence rate is 1/T r+1 for r > 0. When α1 ≥ 1 + ln(T − ln(T ))/ ln(T ) is
aggressive, the convergence rate is faster than exp(−T ). In our analysis, whether βt can be aggressive
depends on the reverse process (see Section 6). When choosing an aggressive βt, the drifted VESDE
achieves an improved sample complexity compared with pure VESDE (see Section 5).

5 The Polynomial Complexity for a Series of VESDE with Reverse SDE

In this section, we first pay attention to the reverse SDE (η = 1) to show the power of the drifted
VESDE. More specifically, we show that our general drifted VESDE form covers the current models
(VP and VESDE). After that, we show that drifted VESDE can go beyond the current models and
achieve an improved complexity with an aggressive βt. Since the objective function minimizes the
L2 distance between the ground truth and the approximated score, we assume that the approximated
score is L2-accuracy, which is exactly the same with Chen et al. [2023c] and Benton et al. [2023].

Assumption 5.1. Eqtk

[∥∥stk −∇ ln qτtk
∥∥2] ≤ ϵ2score for ∀k ∈ [K].

With this assumption, we provide a universe convergence guarantee for τ ∈ [1, T 2] and βt ∈ [1, t2]
and discuss the sample complexity of VP and VE-based models in detail.
Theorem 5.2. Assume Assumption 3.1, 4.1, 5.1. Let D̄ defined in Theorem 4.2, γ̄K =
argmaxk∈{0,...,K−1}γk, τ = T 2 and βt ∈ [1, t2]. Then, we have that

TV
(
R

qτ∞
K , qδ

)
≤

D̄
√
mT

σT
+

R2
√
d

σ4
δ

√
γ̄KβT τT + ϵscore

√
βTT .

To guarantee the above convergence guarantee smaller than Õ(ϵTV), each component of the result
needs to be smaller than ϵTV. As shown in Remark 5.3, it is difficult for pure VESDE to balance the
approximated score and the first two error terms to achieve an efficient sample complexity. Hence, we
discuss how to balance the reverse beginning and discretization error. More specifically, we require
D̄
√
mT /σT ≤ ϵTV and γ̄K ≤ σ8

δϵ
2
TV/

(
R4dβT τT

)
, where the first inequality determines the order

of T and the second inequality determines the stepsize γ̄K . After that, with sample complexity
K = T/γ̄K , we have that TV(R

qτ∞
K , qδ) ≤ Õ(ϵTV). The last step is to guarantee qδ and q0 is close

enough W 2
2 (q0, qδ) ≤ ϵ2W2

, which requires σ2
δ ≤ ϵ2W2

/(d+R
√
d).

Following the above process, this general convergence guarantee leads to the polynomial sample
complexity for VP and VE-based models. When βt = 1 and τ = 1, the drifted VESDE becomes
VPSDE and achieve the complexity Õ(1/(ϵ8W2

ϵ2TV)), which achieve exactly the same order compared
with Chen et al. [2023c]. When βt = 1 and τ = T , our formula is similar but slightly better (Figure 2
and 3) to pure VESDE (σ2

t = t) and achieves O(1/ϵ8W2
ϵ8TV) result. For βt = t and τ = T 2, the

general formula is similar to SOTA pure VESDE (σ2
t = t2) and achieves the first polynomial results

O(1/ϵ8W2
ϵ7TV) for this model under the manifold hypothesis4.

Although we achieve the first polynomial sample complexity for VE-based models under the manifold
hypothesis, it is clear that the results of the VE-based models are significantly worse than the result

4We note these results still hold for pure VESDE with σ2
t = t and t2, and we use the general drifted VESDE

for simplicity. Here, we only consider the dependence of ϵ. Readers can find detailed results in Appendix C.1.
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of VP-based models since the slow 1/Poly(T ) forward convergence guarantee. More specifically,
the forward convergence rate of VPSDE is exp (−T ), which means T has the order log(1/ϵTV) and
can be ignore. When considering the pure VESDE with σ2

t = t2, the forward convergence rate is
D̄/T , which indicates T ≥ D̄/ϵTV is a polynomial term and can not be ignored. Hence, the results
K = R4dT 5/(σ8

δϵ
2
TV) of pure VESDE (σ2

t = t2) is heavily influenced by T . When considering
pure VESDE with σ2

t = t, it suffers from a slower forward convergence guarantee D̄/
√
T , which

indicates T ≥ D̄2/ϵ2TV and K = R4dT 3/(σ8
δϵ

2
TV). This is the first work to explain why pure

VESDE (σ2
t = t2) performs better than pure VESDE (σ2

t = t2) from a theoretical perspective.
Remark 5.3. In this part, we explain the reason why the pure VESDE fails to balance the reverse
beginning and the approximated score. We use the pure VESDE with σ2

t = t2 as an example. Under
this setting, the guarantee has the form 1/T +

√
γ̄KT 4/δ4 + ϵscore

√
T 2, which requires T ≥ 1/ϵTV.

Then, ϵscore
√
T 2 is larger than ϵscore/

√
ϵ2TV. Hence, it is hard to achieve non-asymptotic results.

Drifted VESDE with an aggressive βt balances different error terms. This part shows that
our drifted VESDE with a suitable aggressive βt can balance the above three error terms. More
specifically, we show that introducing aggressive βt only slightly affects the discretization error and
significantly benefits in balancing reverse beginning and approximated errors. As a result, we obtain
an efficient polynomial complexity for a series of VE-based models with unbounded βt.

Corollary 5.4. Following the setting of Theorem 5.2. When considering τ = T 2, βt = t2, by

choosing δ ≤
ϵ
2/3
W2

(d+R
√
d)1/3

, T ≥ 2 ln(D̄/ϵTV ), γ̄K ≤ δ12ϵ2TV ln5(D̄/ϵTV)/(R
4d) and assuming

ϵscore ≤ Õ(ϵTV), R
qτ∞
K is (ϵTV+ ϵscore) close to qδ , which is ϵW2 close to q0, with sample complexity

K ≤ Õ

(
dR4(d+R

√
d)4

ϵ8W2
ϵ2TV

)
.

Defined by R
qτ∞
K,R0

the output Rqτ∞
K projected onto B (0, R0) for R0 = Θ̃(R). Then, we achieve pure

W2 guarantee W2(R
qτ∞
K,R0

, q0) ≤ ϵW2
with sample complexity Õ

(
dR8(d+R

√
d)4

ϵ12W2

)
.

Since our drifted VESDE with τ = T 2 and βt = t2 has a fast forward convergence rate exp (−T )/T 2,
T becomes a logarithmic term and does not influence the discretization term, which is the source of
the improved sample complexity. Furthermore, the requirement of ϵscore has the same order with ϵTV,
which indicates the drifted VESDE balances the reverse beginning and approximated score error. In
fact, we only require the forward convergence rate of drifted VESDE is exp (−T ), which indicates
a series of VE-based models can achieve this sample complexity. We use τ = T 2 as an example.
When considering the βt = tα1 , we require 2 ≥ α1 ≥ 1 + ln(T − ln(T ))/ ln(T ) to enjoy exp (−T )

forward convergence rate and achieve K ≤ Õ
(
1/(ϵ8W2

ϵ2TV)
)

sample complexity. For βt = t and
τ = T , we also obtain complexity K ≤ Õ

(
1/
(
ϵ8W2

ϵ2TV

))
(Appendix C.1).

Remark 5.5. Recently, Lee et al. [2022] and Gao et al. [2023] consider the sample complexity of
VESDE with reverse SDE under strong assumption. Lee et al. [2022] consider VESDE with σ2

t = t

and achieve Õ(L2/ϵ4TV) result under the LSI assumption. Under the manifold hypothesis, the result
is Õ(1/ϵ8W2

ϵ4TV), which is worse than Corollary 5.4. Gao et al. [2023] achieve pure W2 guarantee
Õ(1/ϵ2.5W2

) under the log-concave distribution, which is even stronger than LSI assumption and ignore
the influence of δ. Hence, they ignore an additional 1/Poly(W2) (Detail in Appendix A.2).

6 The Tangent-based Analysis Framework

To deepen the understanding of VE-based models instead of the specific reverse process, we introduce
the unified framework for VESDE with reverse SDE and PFODE. Similar to previous PFODE work
[Chen et al., 2023d], we assume an accurate score and consider the other errors.

Theorem 6.1. Assume Assumption 3.1 and 4.1, δ ≤ 1/32 and γk supv∈[T−tk+1,T−tk]
βv/σ

2
v ≤ 1/28

for ∀k ∈ {0, ...,K − 1}. Let γK = δ. Then, for ∀τ ∈ [T, T 2]:

7



(1) If η = 1 (the reverse SDE), choosing βt = t2, W1

(
R

qτ∞
K , q0

)
is bounded by

(
R

τ
+

√
d)
√
δ + exp

(
R2

2
(
β̄

δ3
+

1

τ
)

)(
C1(τ)Tκ

2
1(τ)

(
(
β̄

δ3
+

1

τ
)γ̄

1/2
K + 1

)
γ̄
1/2
K +

D̄e−T/2

√
τ

)
,

where κ1(τ) = T 2(1/τ + β̄/δ3) and C1(τ) is linear in τ2.

(2) If η = 0 (PFODE), choosing a conservative βt (Assumption 3.1), W1

(
R

qτ∞
K , q0

)
is bounded by

(
R

τ
+
√
d)
√
δ + exp

(
R2

2
(
β̄

δ2
+

1

τ
)

)(
C2(τ)κ

2
2(τ)T

(
(
β̄

δ2
+

1

τ
)γ̄

1/2
K + 1

)
γ̄
1/2
K +

D̄√
τ

)
,

where κ2(τ) = T
(
1/τ + β̄/δ2

)
and C2(τ) is linear in τ2.

Theorem 6.1 proves the first quantitative guarantee for VE-based models with reverse PFODE using
the unified tangent-based framework. Correspondingly, the Girsanov-based method [Chen et al.,
2023c,a] can not deal with reverse PFODE since the reverse process diffusion term is not well-defined.
Recently, Chen et al. [2023d] employ the Restoration-Degradation framework to analyze VESDE
with reverse PFODE, which also has exponential dependence on R and δ. Furthermore, their results
have exponential dependence on βt (gmax in Chen et al. [2023d]), which corresponds to τ . However,
our dependence on τ appears in the polynomial term. Hence, our framework is a suitable unified
framework. Furthermore, we emphasize that our tangent-based unified framework is not a simple
extension of Bortoli [2022]. We carefully control the tangent process according to the variance
exploding property of VESDE to avoid exp (T ) term when considering PFODE (Section 6.1).

Theorem 6.1 has exponential dependence on R and δ, which is introduced by the tangent process.
Similar to Bortoli [2022], if we assume the Hessian

∥∥∇2 log qt (xt)
∥∥ ≤ Γ/σ2

t , we obtain a better con-
trol on the tangent process and replace the exponential dependence on δ by a polynomial dependence
on δ and exponential dependence on Γ when considering reverse PFODE.
Corollary 6.2. Assume Assumption 3.1, 4.1 and

∥∥∇2 log qt (xt)
∥∥ ≤ Γ/σ2

t . Let η = 0 (reverse
PFODE), δ ∈ (0, 1/32), τ = T 2, βt = t and κ2(τ), C2(τ) defined in Theorem 6.1, we have

W1

(
R

qτ∞
K , q0

)
≤ (

R

τ
+
√
d)
√
δ +

β̄
Γ
2

δΓ
exp

(
Γ + 2

2

)(
C2(τ)κ

2
2(τ)T ((

β̄

δ2
+

1

τ
)γ̄

1/2
K + 1)γ̄

1/2
K +

D̄√
τ

)
.

Though the additional assumption is strong, many special cases, such as hypercube M =
[−1/2, 1/2]p satisfy this assumption. We emphasize that our analysis also holds for VESDE (σ2

t = t2)
with reverse PFODE, which means our results can explain the SOTA model in Karras et al. [2022].

6.1 The Discussion on the Unified Framework

In this section, we introduce the unified tangent-based framework for reverse SDE and PFODE and
discuss key steps to achieve the quantitative guarantee for PFODE. Firstly, we decompose the goal
W1

(
R

qτ∞
K , q0

)
into three terms: W1

(
R

qτ∞
K , Q

qτ∞
tK

)
+W1

(
Q

qτ∞
tK , Qq0PT

tK

)
+W1

(
Qq0PT

tK , q0

)
.

These terms correspond to the discretization scheme, reverse beginning distribution, and the early
stopping parameter δ. We focus on most difficult discretization term and first recall the stochastic
flow of the reverse process for any x ∈ Rd and s, t ∈ [0, T ] with t ≥ s:

dYx
s,t = βT−t

{
Yx

s,t/τ +
(
1 + η2

)
∇ log qT−t

(
Yx

s,t

)}
dt+ η

√
2βT−tdBt ,where Yx

s,s = x .

With ∇Yx
s,s = I, the corresponding tangent process is

d∇Yx
s,t =βT−t∇Yx

s,t/τdt+ βT−t

(
1 + η2

)
∇2 log qT−t(Y

x
s,t)∇Yx

s,tdt .

The key of the discretization error is to bound tangent process
∥∥∇Yx

s,tK

∥∥. For this term, we consider
the reverse SDE and PFODE simultaneously and propose a general version of Bortoli [2022].
Lemma 6.3. Assume Assumption 3.1 and 4.1. For ∀s ∈ [0, tK ] and x ∈ Rd, we have

∥∇Yx
s,tK∥ ≤ exp

(
R2

2σ2
T−tK

+
(1− η2)

2

∫ tK

0

βT−u

τ
du

)
.
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(a) Original Figure (b) VESDE (𝑇 = 100) (c) Drifted VESDE (𝑇 = 100)

Figure 1: Experiment results of Swiss roll with Euler Maruyama Method (Reverse SDE)

We emphasize that the general bound for the tangent process is the key to achieving the guarantee for
VESDE with the reverse ODE. Recall that in the original lemma for the tangent processes, since τ

is independent of T and βt is bounded in a small interval [1/β̄, β̄],
∫ tK
0

βT−u/τdu = Θ(T ), which
means there is an additional exp (T ) when considering VPSDE with revere PFODE. However, our
tangent-based lemma makes use of the variance exploding property of VESDE to guarantee that∫ T

0
βt/τdt ≤ C with a conservative βt = t when considering reverse PFODE. When η = 1, we

choose aggressive βt = t2 since the choice of βt does not affect the bound of the tangent process.

For the early stopping term, it corresponds to δ and is smaller than 2(R/τ +
√
d)
√
δ. Since we can

not use the data processing inequality in Wasserstein distance, the reverse beginning terms consists of
the bound of tangent process term and the forward process term:

W1

(
Q

qτ∞
tK , Qq0PT

tK

)
≤

√
mT D̄

σT
exp

(
R2

2σ2
T−tK

+
(1− η2)

2

∫ tK

0

βT−u

τ
du

)
.

One notable future work is introducing the short regularization technique [Chen et al., 2023b] and
suitable corrector to remove the above exponential dependence.

7 Experiments

In this section, we show the power of the drifted VESDE forward process through experiments.
Section 7.1 shows that aggressive one achieves good balance in different error terms. After that, we
consider the approximated score and show that the conservative one can improve the quality of the
generated distribution without training in the synethetic and real-world setting.

7.1 The Aggressive Drifted VESDE Balances Errors

In this section, we do experiments on 2-D Gaussian to show that the aggressive drifted VESDE
balances different errors. Since the ground truth score of the Gaussian can be directly calculated, we
use the accurate score function to discuss the balance between the other two error terms clearly. We
show how to use approximated score in Section 7.2.

Figure 2: Results of 2-D Gaussian

As shown in Figure 2, the process with aggres-
sive βt = t2 achieves the best and second per-
formance in EI and EM discretization, which
supports our theoretical result (Corollary 5.4).
The third best process is conservative βt = t
with the small drift term. The reason is that
though it can not achieve a exp (−T ) forward
guarantee, it also has a constant decay on prior
information, which slightly reduces the effect of
the reverse beginning error (Section 3.1). The
worst process is pure VESDE since it is hard to
balance different error sources. Our experimen-
tal results also show that EI is better than EM.
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(a) Pure VESDE

(b) Drifted VESDE

Figure 3: Experiment results of CelebA dataset

7.2 The Conservative Drifted VESDE Benefits from VESDE without Training

As shown in Figure 2, the red and orange lines have similar trends. Hence, for conservative drifted
VESDE, which satisfies (2) of Assumption 3.1, we can directly use the models trained by pure
VESDE to improve the quality of generated distribution. We confirm our intuition by training the
model with pure VESDE with σ2

t = t and directly use the models to conservative drifted VESDE
with βt = 1 and τ = T . From the experimental results (Figure 1), it is clear that pure VESDE has a
low density on the Swiss roll except for the center one, which indicates pure VESDE can not deal
with large dataset variance, as we discuss in Section 4. For conservative drift VESDE, as we discuss
in the above section, it can reduce the influence of the dataset information. Figure 1 (c) supports our
augmentation and shows that the density of the generated distribution is more uniform compared to
pure VESDE, which means that the drift VESDE can deal with large dataset mean and variance.

Beyond the synthetic data, we show that our conservative drifted VESDE can improve the generated
images of pure VESDE without training on the real-world CelebA256 dataset. From the qualitative
perspective, as shown in Figure 3, the images generated by our drifted VESDE have more detail (such
as hair and beard details). On the contrary, since pure VESDE can not deal with large variance, the
images generated by pure VESDE appear blurry and unrealistic in these details. From the quantitative
results, we use aesthetic score [Schuhmann et al., 2022] and Inception Score to measure the quality
of generated images. Our drifted VESDE achieves aesthetic score 5.813, and IS 4.174, which is
better than the results of baseline pure VESDE (aesthetic score 5.807 and IS 4.082). There are more
examples on CelebA256 and more experiments on Swiss roll and 1D-GMM to explore different
sampling methods (RK45, PFODE) and different T . We refer to Appendix G for more details.

8 Conclusion

In this work, we analyze the VE-based models under the manifold hypothesis. Firstly, we propose a
new forward drifted VESDE process, which enjoys a faster forward convergence rate. Then, we show
that with an aggressive βt, the new process balances different errors and achieve the first efficient
polynomial sample complexity for a series of VE-based models with reverse SDE.

After achieving the above results, we go beyond the reverse SDE and propose the tangent-based unified
framework, which considers reverse SDE and PFODE at the same time. Under this framework, we
make use of the variance exploding property of VESDE and achieve the first quantitative convergence
guarantee for SOTA VE-based models with reverse PFODE. Finally, we show the power of the new
drifted forward process through synthetic and real-world experiments.

Future Work and Limitation. This work proposes the first unified framework for VE-based models
with an accurate score. After that, we plan to consider the approximated score error and provide a
polynomial complexity for the VE-based models with reverse PFODE under the manifold hypothesis.

Broader Impact. Our work focuses on the convergence guarantee of the SOTA diffusion models and
deepens the understanding of diffusion models. Therefore, this work can be viewed as a fundamental
step in improving the quality of diffusion models and the societal impact is similar to general
generative models [Mirsky and Lee, 2021].
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Appendix

A More Discussion on Drifted VESDE and Current Works

A.1 The Drifted VESDE is Representative Enough.

In this work, we consider τ ∈ [T, T 2] and show that this choice is enough to represent the current
VESDE. More specifically, since VESDE with σ2

t = t has qT = N (E[q0],Cov[q0] + T I) and
drifted VESDE with τ = T 2 and βt ≡ 1/2 has qτT = N (exp (− 1

2T )E[q0], exp (−
1
T )Cov[q0] + (1−

exp (− 1
T ))T

2I), these two setting is almost identical when T → +∞. The second choice of VESDE
σ2
t = t2, which achieves the state-of-the-art performance [Karras et al., 2022], is almost identical

to τ = T 2, βt = t. The simulation experiments also show that VESDE and drifted VESDE with
specific βt and τ have similar performance (Figure 2).

A.2 The Detailed Calculation of Previous work

The results of Lee et al. [2022] Lee et al. [2022] consider VESDE (σ2
t = t ) with reverse SDE

under the LSI assumption with parameter CLS. The LSI assumption does not allow the presence of
substantial non-convexity and is far away from the multi-modal real-world distribution. Furthermore,
they use unrealistic assumption ϵscore ≤ 1/(CLS + T ) to avoid the effect of the approximated score,
which is stronger than Assumption 5.1. Under the above strong assumption, Lee et al. [2022] achieve
the polynomial sample complexity Õ(L2d(d|c| + R)2/ϵ4TV). Under the manifold hypothesis, by
Lemma E.2, we know that

L = R2d2/ϵ4W2

Then, the result is Õ(R4d5(d|c|+R)2/ϵ8W2
ϵ4TV), which is worse than Corollary 5.4.

The results of Gao et al. [2023]. Gao et al. [2023] analyze a series of VESDE with reverse SDE and
achieve 1/ϵ2.5W2

sample compelxity for VESDE with σ2
t = t2 in 2-Wasserstein distance. However, they

assume the data distribution is log-concave, which is even stronger than LSI assumption. Furthermore,
under this assumption, ∇ log qT−t(·) do not blow-up at the end of the reverse process, which do not
match the empirical phenomenon and ignore the influence of early stopping parameters. To transfer
their results to our the results under the manifold hypothesis, we need to consider the influence of δ,
which would introduce an additional 1/Poly(W2) term.

B The Proof for the Faster Forward Process

Lemma B.1. The minimization problem minm̄t,Vt
KL (qτt | N (m̄t, Vt)) is minimized by m̄t =

mtE [q0] and Vt = m2
t Cov [q0] + σ2

t I, where mt and σt defined in Equation (4).

Proof. For simplicity, we denote the mean and covariance of q0 by a and C ′. We also define the
optimize variable nt = N (m̄t, Ct). We can directly compute the KL divergence KL(qt|nt):

KL (qt|nt) = −H (qt)−
∫

log (nt(x)) qt(x)dx

= −H (qt) +
d

2
log(2π) +

1

2
log (det (Vt)) +

1

2

∫
(x− m̄t)

TV −1
t (x− m̄t)qt(x)dx .

For the last term, we directly compute∫
(x− m̄t)

T
V −1
t (x− m̄t) pt(x)dx

=E
[
(Xt − m̄t)

T
V −1
t (Xt − m̄t)

]
= E

[
(mtX0 + σtZ − m̄t)

T
V −1
t (mtX0 + σtZ − m̄t)

]
=E

[
m2

t (X0 − a)
T
V −1
t (X0 − a)

]
+ (mta− m̄t)

T
V −1
t (mta− m̄t) + σ2

tE
[
ZTV −1

t Z
]

=m2
t tr
(
C ′V −1

t

)
+ σ2

t tr
(
V −1
t

)
+ (mta− m̄t)

T
V −1
t (mta− m̄t) ,
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where the second inequality follows that Xt = mtX0 + σtZ. It is clear that the optimal solution of
m̄t is mta. In the next step, we focus on the optimization problem for Vt:

L
(
V −1
t

)
= log (det (Vt)) + tr

((
m2

tC
′ + σ2

t I
)
V −1
t

)
= − log

(
det
(
V −1
t

))
+ tr

((
m2

tC
′ + σ2

t I
)
V −1
t

)
.

Since the above optimization is a convex optimization problem, we use the method similar to
Pidstrigach [2022], we obtain that the optimal solution of Vt is m2

tC
′ + σ2

t I. ■

Lemma B.2. Let m̄t and Vt be the optimal mean and covariance operator from Lemma B.1. Then

KL (qt|N (m̄t, Vt)) ≤
1

2
log

(∏d
i=1

(
m2

t ci + σ2
t

)
(σ2

t )
d

)
+

R2mt

σ2
t

≤ dm2
t c

2σ2
t

+
R2mt

σ2
t

+ o(
m2

t c

σ2
t

) ,

KL
(
N (m̄t, Vt)|(N (0, σ2

t )
)
≤

m2
t

∑d
i=1 ci

2σ2
t

+
m2

t (E[q0])2

2σ2
t

+
1

2
log

(
(σ2

t )
d∏d

i=1 (m
2
t ci + σ2

t )

)

≤
m2

t

∑d
i=1 ci

2σ2
t

+
m2

t (E[q0])2

2σ2
t

+
dm2

t c

2σ2
t

+ o(
m2

t c

σ2
t

) ,

where ci are the eigenvalues of Cov [q0], and c is the eigenvalue with the largest absolute value.

Proof. For t ≥ 0, we directly calculate the KL divergence for this term:

KL (qt | N (m̄t, Vt)) = −H (qt) +
1

2
log (det (2πVt)) +

1

2
tr
((
m2

tC
′ + σ2

t I
)
V −1
t

)
= −H (qt) +

1

2
log (det (2πVt)) +

d

2

= −H (qt) +
d

2
log(2π) +

1

2
log

(
d∏

i=1

(
m2

t ci + σ2
t

))
+

d

2
,

where ci are the eigenvalues of Cov [q0]. Now, we only need to calculate H(qt):

−H (qt) = EXt
[log qt (Xt)] = EXt

[
log

(
EX0

[
(2πσ2

t )
−d/2 exp

(
− 1

2σ2
t

∥Xt −X0∥2
)])]

.

By Assumption 4.1, it is clear that

exp

(
− 1

2σ2
t

∥Xt −X0∥2
)

≤ exp

(
− 1

2σ2
t

(
∥Xt∥2 + 2⟨Xt, X0⟩

))
.

Then, we know that

E
[
log

(
EX0

[
(2πσ2

t )
−d/2 exp

(
− 1

2σ2
t

∥Xt −X0∥2
)])]

≤E
[
log
(
(2πσ2

t )
−d/2

)
− 1

2σ2
t

(
∥Xt∥2 + 2⟨Xt, X0⟩

)]
≤− d

2
log(2π)− 1

2
log
(
(σ2

t )
d
)
− 1

2σ2
t

E
[
∥Xt∥2

]
+

R2mt

σ2
t

.

we also know that

E
[
∥Xt∥2

]
= m2

tE
[
∥X0∥2

]
+ σ2

tE
[
∥Z∥2

]
= E

[
∥X0∥2

]
+ tE

[
∥Z∥2

]
= m̄2

0 + V0 + σ2
t d .

Finally, put these terms together, we have:

KL (qt|N (m̄t, Vt)) ≤
1

2
log

(∏d
i=1

(
m2

t ci + σ2
t

)
(σ2

t )
d

)
+

R2mt

σ2
t

,

where ci are the eigenvalues of Cov [q0]. Then by choosing the largest absolute value eigenvalue
largest absolute value, we can use the Taylor expansion to obtain the first results of this lemma. For
the second result of this lemma, we directly compute the KL divergence between N (m̄t, Vt) and
N (0, σ2

t ) to obtain the final results. ■
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Theorem 4.2. Assume Assumption 4.1 and 3.1. Let qτ∞ = N (0, σ2
T I). With mT , σT defined in

Equation (4), we have TV(qτT , q
τ
∞) ≤ √

mT D̄/σT , where D̄ = d|c| + E[q0] + R and c is the
eigenvalue of Cov[q0] with the largest absolute value.

Proof. We know that

∥qT − qτ∞∥TV

≤ ∥qT −N (mTE[q0],m2
T Cov[q0] + σ2

T I)∥TV + ∥N (mTE[q0],m2
T Cov[q0] + σ2

T I)− qτ∞∥TV .

By directly using the Pinsker’s inequality and Lemma B.2, we complete the proof. ■

C The Proof of the Polynomial Complexity for Reverse SDE

In this section, we prove Corollary 5.4. First, we recall the Girsanov’s Theorem [Le Gall, 2016] used
in Chen et al. [2023c]:

Lemma C.1 (Girsanov’s theorem). Let PT and QT be two probability measures on path space
C
(
[0, T ];Rd

)
. Suppose that under PT , the process (Xt)t∈[0,T ] follows

dXt = b̃t dt+ αt dB̃t

where B̃ is a PT -Brownian motion, and under QT , the process (Xt)t∈[0,T ] follows

dXt = bt dt+ αt dBt

where B is a QT -Brownian motion. We assume that for each t > 0, αt is a d× d symmetric positive
definite matrix. Then, provided that Novikov’s condition holds,

EQT
exp

(
1

2

∫ T

0

∥∥∥α−1
t

(
b̃t − bt

)∥∥∥2 dt

)
< ∞,

we have that

dPT

dQT
= exp

(∫ T

0

α−1
t

(
b̃t − bt

)
dBt −

1

2

∫ T

0

∥∥∥α−1
t

(
b̃t − bt

)∥∥∥2 dt

)
.

If the Novikov’s condition is satisfied, we apply the Girsanov theorem by choosing PT =

R
qτT
K , QT = Q

qτT
tK , b̃t = βT−t

{
1
τ Ỹt + 2s(T − tk, Ỹt)

}
(for t ∈ [tk, tk+1]), bt =

βT−t

{
1
τYt +

(
1 + η2

)
∇ log qT−t (Yt)

}
, and αt =

√
2βT−tId.

Then, similar to Chen et al. [2023c], we have the following lemma.

Lemma C.2. Assuming that RqτT
K and Q

qτT
tK satisfy Novikov’s condition, it holds that

KL
(
Q

qτT
tK∥RqτT

K

)
= E

Q
qτ
T

tK

ln
dQ

qτT
tK

dR
qτT
K

=

K−1∑
k=0

E
Q

qτ
T

tK

∫ tk+1

tk

2βT−t ∥s (T − tk,Ytk)−∇ ln qT−t (Yt)∥2 dt .

Before using the Girsanov’s Theorem, we need to check the Novikov’s condition. We use almost
the same proof process compare to Chen et al. [2023c]. The key proof of the Novikov’s condition
is Lemma 19 of Chen et al. [2023c]. Hence, we give a complete proof of Lemma 19 in Chen et al.
[2023c] under our drifted VESDE. Before the proof, we first introduce a smooth cuttoff function for
truncating the drift terms.

Lemma C.3 (lemma 17 of Chen et al. [2023c]). For any R̄ > 0, there is a smooth function
ϕR : Rd → [0, 1] satisfying: 1. ϕR̄(x) = 1 for all ∥x∥ ≤ R̄, 2. ϕR̄(x) = 0 for all ∥x∥ ≥ 2R̄, 3. ϕR̄
is O(1/R̄)-Lipschitz.
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Note that R̄ is not R in Assumption 4.1 and will goes to +∞ in the proof of Chen et al. [2023c].
Similar to Chen et al. [2023c], we also introduce a L∞ and a modified process with truncation
argument for t ∈ [tk, tk+1]. Define the bad set

Bt := {∥st −∇ ln qt∥ ≥ εscore ,∞} ,

where εscore, ∞ > 0 is a parameter to be chosen later. We define the L∞-accurate score estimate to be

s∞t := st1Bc
t
+∇ ln qt1Bt

.

We note that ∥s∞t −∇ ln qt∥ ≤ εscore ,∞.

The modified process with truncation argument for t ∈ [tk, tk+1] is

dY∞
t = βT−t

{
Y∞

t /τ + 2∇ log qτT−t (Y
∞
t )
}
dt+

√
2βT−t dBt ,

dỸ∞
t = βT−t

{
Ỹ∞

t /τ + 2s(T − tk, Ỹ
∞
t )
}
dt+

√
2βT−t dBt ,

where Y∞
0 = Ỹ∞

0 is obtained by sampling Y∞
0 ∼ qτT and setting Ỹ∞

0 = XT if ∥XT ∥ ≤ R̄ and
setting Ỹ∞

0 = 0 otherwise. Then, we ara ready to prove the following lemma.

Lemma C.4 (Modified key lemma for Novikov’s condition).

E
Q

qτ
T

,∞
tK

exp

(
K−1∑
k=0

∫ tk+1

tk

βT−tk

∥∥ϕR̄

(
Y∞

T−tk

)
s∞T−tk

(
Y∞

T−tk

)
− ϕR̄

(
Y∞

T−tk

)
∇ ln qT−t

(
Y∞

T−tk

)∥∥2 dt

)
< ∞

Proof. We note that due to the manifold hypothesis (Assumption 4.1), if R̄ ≥
√
dT 2 +R2, then the

marginal distribution of Y∞
T−tk

is exactly the same compared to Xtk . We also recall that R̄ → +∞
in Chen et al. [2023c] (Theorem 21 of Chen et al. [2023c]). Hence, we can use Lemma E.1 to prove
that∥∥∥√βT−tkϕR̄

(
Y∞

T−tk

)
s∞T−tk

(
Y∞

T−tk

)∥∥∥ ≤ sup
t∗∈[0,T−δ]

√
βT−t∗

∥∥s∞T−t∗ (YT−t∗)
∥∥ =: A′ < ∞ .

and∥∥∥√βT−tkϕR̄

(
Y∞

T−tk

)
∇ ln qT−t

(
Y∞

T−tk

)∥∥∥ ≤ sup
t∗∈[0,T−δ]

√
βT−t∗ ∥∇ ln qT−t∗ (YT−t⋆)∥ =: B′ < ∞ .

Then, the left hand of this lemma is at most exp
(
2T
(
A′2 +B′2)) < ∞ as claimed. ■

After obtaining the above inequality, the remaining proof for Novikov’s condition are exactly com-
pared to Chen et al. [2023c].

Since we assume the accurate score function in this work, this lemma need to control

sup
x∗∈B(0,R),t∗∈[0,T−δ]

2βT−t∗ ∥∇ ln qT−t∗ (x
∗)∥ =: B < ∞ .

As we shown in Lemma E.1, we know that with the early stopping parameter δ, ∥∇ ln qT−t∗ (x
∗)∥

is controlled. By using Assumption 4.1, we know that 1
βT−t∗

≤ β̄. Finally, with similar process to
Chen et al. [2023c], we can proof that the Novikov’s condition is satisfied. The following lemma
show the discretization error for our drifted VESDE with reverse SDE.

Lemma C.5 (Discretization). Suppose that Assumption 4.1 and Assumption 5.1 holds. Let γ̄K =

argmaxk∈{0,...,K−1} γk, γK = δ. If τ ∈ [1, T 2] and βt ∈ [1, t2], then with Q
qτT
tK and R

qτT
K defined in

Lemma C.2,

TV
(
R

qτT
K , Q

qτT
tK

)2
≲

R4TτβT d

σ8
δ

γ̄K +
R6TτβT

σ8
δ

γ̄2
K + ϵ2scoreTβT .
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Proof. First, we control the discretization error in an interval t ∈ [tk, tk+1]:

E
Q

qτ
T

tK

[
∥s (T − tk,Ytk)−∇ ln qT−t (Yt)∥2

]
≲ ϵ2score + E

Q
qτ
T

tK

[
∥∇ ln qT−tk (Ytk)−∇ ln qT−t (Ytk)∥

2
]

+ E
Q

qτ
T

tK

[
∥∇ ln qT−t (Ytk)−∇ ln qT−t (Yt)∥2

]
≲ E

Q
qτ
T

tK

[∥∥∥∥∇ ln
qT−tk

qT−t
(Ytk)

∥∥∥∥2
]
+ L2E

Q
qτ
T

tK

[
∥Ytk −Yt∥2

]
+ ϵ2score

≲ τL2dγ̄K + τL2γ̄2
K

(
dτ +R2

)
+ τL3γ̄2

K + L2(βT dγ̄K +R2γ̄2
K) + ϵ2score

≲ τL2dγ̄K + τL2R2γ̄2
K + ϵ2score ,

where L = maxt∈[0,T−δ]

∥∥∇2 log qT−t (Yt)
∥∥ ≤

(
1 +R2

)
/σ4

δ and the third inequality follows
Lemma E.5. Then, we know that

K−1∑
k=0

E
Q

qτ
T

tK

∫ tk+1

tk

2βT−t ∥s (T − tk,Ytk)−∇ ln qT−t (Yt)∥2 dt

≲ τTβTL
2dγ̄K + L2R2τTβT γ̄

2
K + ϵ2scoreTβT

≲
R4τTβT d

σ8
δ

γ̄K +
R6τTβT

σ8
δ

γ̄2
K + ϵ2scoreTβT .

After obtaining the general discretization error for our drifted VESDE, we focus on two special cases.
For τ = T 2 and βt = t2, we have that

K−1∑
k=0

E
Q

qτ
T

tK

∫ tk+1

tk

2βT−t ∥s (T − tk,Ytk)−∇ ln qT−t (Yt)∥2 dt

≲ T 3βTL
2dγ̄K + L2R2T 3βT γ̄

2
K + ϵ2scoreTβT

≲
R4T 3βT d

σ8
δ

γ̄K +
R6T 3βT

σ8
δ

γ̄2
K + ϵ2scoreTβT

=
R4T 5d

σ8
δ

γ̄K +
R6T 5

σ8
δ

γ̄2
K + ϵ2scoreT

3 .

For τ = T and βt = t, we know that

K−1∑
k=0

E
Q

qτ
T

tK

∫ tk+1

tk

2βT−t ∥s (T − tk,Ytk)−∇ ln qT−t (Yt)∥2 dt

≲ T 3L2dγ̄K + L2R2T 3γ̄2
K + ϵ2scoreT

2

≲
R4T 3d

σ8
δ

γ̄K +
R6T 3

σ8
δ

γ̄2
K + ϵ2scoreT

2 .

■

Combined with the reversing beginning error controlled by Theorem 4.2, we can obtain the conver-
gence guarantee for the general drifted VESDE with reverse SDE.

Theorem 5.2. Assume Assumption 3.1, 4.1, 5.1. Let D̄ defined in Theorem 4.2, γ̄K =
argmaxk∈{0,...,K−1}γk, τ = T 2 and βt ∈ [1, t2]. Then, we have that

TV
(
R

qτ∞
K , qδ

)
≤

D̄
√
mT

σT
+

R2
√
d

σ4
δ

√
γ̄KβT τT + ϵscore

√
βTT .
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Proof. By the data processing inequality, we know that

TV
(
R

qτ∞
K , qδ

)
≤ TV

(
R

qτ∞
K , R

qτT
K

)
+TV

(
R

qτT
K , Q

qτT
tK

)
≤ TV (qτT , q

τ
∞) + TV

(
R

qτ∞
K , Q

qτT
tK

)
.

Combined with Theorem 4.2 and Lemma C.5, we achieve the final result. ■

C.1 The Sample Complexity for Drifted VESDE

As shown in Theorem 5.2, the general convergence guarantee is

D̄
√
mT

σT
+

R2
√
d

σ4
δ

√
γ̄KβT τT + ϵscore

√
βTT .

In this section, we provide the sample complexity for different βt and τ .

The results of τ = 1 and βt = 1. When considering βt = 1 and τ = 1, the drifted VESDE
becomes VPSDE and mT = exp (−T ), which indicates T is a logarithmic term and the dominated
term of the convergence guarantee is the discretization term Õ(R2

√
dγ̄K/σ4

δ ). To make this term
smaller than ϵTV, we require γ̄K ≤ σ8

δϵ
2
TV/(R

4d). To make sure that W 2
2 (q0, qδ) ≤ ϵ2W2

, we require

σ2
δ ≤ ϵ2W2

d+R
√
d

. Then, we achieve the final sample complexity

K ≤ Õ

(
dR4(d+R

√
d)4

ϵ8W2
ϵ2TV

)
.

We note that this results is exactly the same with Chen et al. [2023c], which means our drifted VESDE
covers VPSDE setting.

C.1.1 The results of τ = T 2 with different βt

In this part, we analyze the influence of βt under setting τ = T 2 and show the power of our drifted
VESDE.

The aggressive βt (τ = T 2). When considering aggressive βt = tα1 where 2 ≥ α1 ≥ 1 + ln(T −
ln(T ))/ ln(T ),

√
mT /σT ≥ exp (−T/2), which means T is a logarithmic term and can be ignored.

After that, the analysis process is exactly the same with the above VPSDE setting, and we achieve the
sample complexity

K ≤ Õ

(
dR4(d+R

√
d)4

ϵ8W2
ϵ2TV

)
.

Defined by R
qτ∞
K,R0

the output Rqτ∞
K projected onto B (0, R0) for R0 = Θ̃(R). Following exactly the

same proof process of Chen et al. [2023c] (Corollary 5), we have that

W2(R
qτ∞
K,R0

, q0) ≤ ϵW2

with sample complexity

K ≤ Õ

(
dR8(d+R

√
d)4

ϵ12W2

)
.

The conservative βt = t. In this case, the first term is D̄/T . To make this term smaller than ϵTV,
we require T ≥ D̄/ϵTV. For the stepsize, we require γ̄K ≤ σ8

δϵ
2
TV/(R

4dT 4), which means the
sample complexity is

K ≤ O

(
dR4(d+R

√
d)4D̄5

ϵ8W2
ϵ7TV

)
.
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The most conservative βt = 1. In this case, mT = exp (−1/T ) and σ2
t = τ(1 − m2

t ) =
T 2(1− exp (−2/T ). When T is large enough, mT = Θ(1) and σ2

T = T , which indicates the first
term is D̄/

√
T . To make this term smaller than ϵTV, we require T ≥ D̄2/ϵ2TV. For the second term,

we require γ̄K ≤ σ8
δϵ

2
TV/(R

4dT 3) Then, the final complexity is

K ≤ O

(
dR4(d+R

√
d)4D̄8

ϵ8W2
ϵ10TV

)
.

C.1.2 The results of τ = T with different βt

At the remaining part, we show the sample complexity of setting τ = T with different βt.

The results for setting τ = T and βt = t. For this setting, as shown in Lemma C.5, the
discretization error is

TV
(
R

qτT
K , Q

qτT
tK

)2
≲

R4T 3d

σ8
δ

γ̄K +
R6T 3

σ8
δ

γ̄2
K + ϵ2scoreT

2 .

Furthermore, we choose an aggressive βt, which indicates T is a logarithmic term. Then, by choosing

σ2
δ ≤ ϵ2W2

(d+R
√
d)

and γ̄K ≤ σ8
δϵ

2
TV ln3

(
D̄/ϵTV

)
/
(
R4d

)
, we obtain the sample complexity

K =
T

γ̄K
≤ Õ

(
dR4(d+R

√
d)4

ϵ8W2
ϵ2TV

)
.

The results for setting τ = T and βt = 1. In this setting, the reverse beginning error is
bounded by D̄/

√
T , which indicates T ≥ D̄2/ϵ2TV. For the discretization term, we require

γ̄K ≤ σ8
δϵ

2
TV/(R

4dT 2). Then, the sample complexity is bounde by

K =
T

γ̄K
≤ O

(
dR4(d+R

√
d)4D̄6

ϵ8W2
ϵ8TV

)
.

D The Proof of the Convergence Guarantee in the Unified Framework

In this work, we introduce an indicator i ∈ {1, 2} for σT−tK to represent different βt. We use τ = T 2

as an example. When βt = t2 is aggressive, we choose i = 1 , η = 1 and σ−2
T−tK

(i = 1) ≤ 1
τ + β̄

δ3 .

When βt = t is conservative, we choose i = 2, η ∈ [0, 1) and σ−2
T−tK

(i = 2) ≤ 1
τ + β̄

δ2 . In the proof
process of Lemma 6.3, Lemma D.1, Lemma D.2 and Lemma D.3, we ignore the indicator i since
this lemma does not involve the specific value of σ2

T−tK
(i). Before the proof of this section, we first

recall the stochastic flow of the reverse process for any x ∈ Rd and s, t ∈ [0, T ] with t ≥ s:

dYx
s,t = βT−t

{
Yx

s,t/τ +
(
1 + η2

)
∇ log qT−t

(
Yx

s,t

)}
dt+ η

√
2βT−tdBt, Yx

s,s = x ,

and the interpolation of its discretization for any k ∈ {0, ...,K} and t ∈ [sk, tk+1):

dȲx
s,t(k) = βT−t

{
Ȳx

s,t/τ +
(
1 + η2

)
s
(
T − sk, Ȳ

x
s,t

)}
dt+ η

√
2βT−tdBt, Ȳx

s,s = x ,

where sk = max (s, tk). To deal with the discretization error, we use the approximation technique
used in Bortoli [2022]. Hence, we introduce the tangent process:

d∇Yx
s,t = βT−t

{
I/τ +

(
1 + η2

)
∇2 log qT−t(Y

x
s,t)
}
∇Yx

s,tdt, ∇Yx
s,s = I .

Then, we discuss the interpolation formula, which is used to control the discretization error.
Proposition 1. For s, t ∈ [0, T ) with s < t, any k ∈ {0, ...,K} and (ωv)v∈[s,T ], we define that

bu(ω) = βT−u(
1

τ
ωu + (1 + η2)∇ log qT−u(ωu)) ,

b̄u(ω) = βT−u(
1

τ
ωu + (1 + η2)s(T − sk, ωsk)) , ∆bu(ω) = bu(ω)− b̄u(ω) ,
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where sk = max(s, tk) and u ∈ [sk, tk+1). Then, for any x ∈ Rd, we have that

Yx
s,t − Ȳx

s,t =

∫ t

s

∇Yx
u,t

(
Ȳx

s,u

)⊤
∆bu

((
Ȳx

s,v

)
v∈[s,T ]

)
du,

where for any u ∈ [0, T ), there exists a k ∈ {0, ...,K} satisfies u ∈ [sk, tk+1).

For reverse SDE, the augmentation is similar to Bortoli [2022] (Appendix E). When η = 0, the
stochastic extension of the Alekseev–Gröbner formula [Del Moral and Singh, 2022] degenerates into
the original version [Alekseev, 1961]. After that, we control the tangent process.

Lemma 6.3. Assume Assumption 3.1 and 4.1. For ∀s ∈ [0, tK ] and x ∈ Rd, we have

∥∇Yx
s,tK ,i∥ ≤ exp

(
R2

2σ2
T−tK

+
(1− η2)

2

∫ tK

0

βT−u

τ
du

)
.

If
∥∥∇2 log qt (xt)

∥∥ ≤ Γ/σ2
t , ∥∇Yx

s,tK ,i∥ ≤ σ
−(1+η2)Γ
T−tK

exp
(((

1 + η2
)
Γ + 2

) ∫ tK
0

βT−u

τ du
)

.

Proof. Using the definition of the tangent process and Lemma E.1, we have

d
∥∥∇Yx

s,t

∥∥2
≤ 2βT−t

(
1

τ

∥∥∇Yx
s,t

∥∥2 − (1 + η2
) (

1−m2
T−tR

2/
(
2σ2

T−t

))
/σ2

T−t

∥∥∇Yx
s,t

∥∥2)dt .

Using Lemma F.1, we have∫ t

s

βT−u

(
1

τ
−
(
1 + η2

)
/σ2

T−u +
(
1 + η2

)
m2

T−uR
2/2σ4

T−u

)
du

≤
((
1 + η2

)
R2/4

) (
σ−2
T−t − σ−2

T−s

)
+

1− η2

2

∫ t

s

βT−u

τ
du

≤
(
1 + η2

)
R2

4σ2
T−t

+
1− η2

2

∫ t

s

βT−u

τ
du .

Note that ∇Ys,s = I, we get

∥∇Yx
s,tK∥2 ≤ exp

[(
1 + η2

)
R2

2σ2
T−t

+ (1− η2)

∫ tK

0

βT−u

τ
du

]
.

When we assume
∥∥∇ log q2t (xt)

∥∥ ≤ Γ/σ2
t , we know that

d
∥∥∇Yx

s,t

∥∥2 ≤ 2βT−t

(
1

τ
−
(
1 + η2

)
Γ

σ2
T−t

)∥∥∇Yx
s,t

∥∥2 dt .
Using Lemma F.1, we have

2

∫ t

s

βT−u/σ
2
T−udu

≤ log

(
exp

[
2

∫ T−s

0

βT−u

τ
du

]
− 1

)
− log

(
exp

[
2

∫ T−t

0

βT−u

τ
du

]
− 1

)

≤ log
(
σ2
T−s

)
− log

(
σ2
T−t

)
+

∫ T−s

T−t

βu

τ
du .

Then we have

∥∇Yx
s,tK∥2 ≤ σ

−(1+η2)Γ
T−tK

exp

[((
1 + η2

)
Γ + 2

) ∫ tK

0

βT−u

τ
du

]
.

Thus we complete our proof. ■
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After bounding the gradient of the tangent process, the remaining term is ∥∆b∥:

∥∆b∥ ≤ ∥∆(a,b)b∥+ ∥∆(b,c)b∥+ ∥∆(c,d)b∥ , (7)

where b(a) = b and b(d) = b̄. Moreover,

b(b)u (ω) = βT−u(
1

τ
ωu + (1 + η2)∇ log qT−sk(ωu)) ,

b(c)u (ω) = βT−u(
1

τ
ωu + (1 + η2)∇ log qT−sk(ωsk)) ,

∆a,b
b = b(a) − b(b), ∆b,c

b = b(b) − b(c), ∆c,d
b = b(c) − b(d) .

We then control ∥∆(a,b)b∥, ∥∆(b,c)b∥, ∥∆(c,d)b∥ separately. In this section, ∥∆(c,d)b∥ = 0 since
we assume that the accurate score function is achieved. For

∥∥∆(a,b)bu(ω)
∥∥, we have the following

lemma.
Lemma D.1. For s, u ∈ [0, T ) such that u ≥ s, u ∈ [sk, tk+1) and ω = (ωv)v∈[s,T ] we have

∥∆(a,b)bu (ω) ∥
≤
(
1 + η2

)
βT−u sup

v∈[T−u,T−tk]

(
βv/σ

6
v

) (
2 +R2

)
(R+ ∥ωu∥) γk.

Proof. Without loss of generality, we assume s ≤ tk. Then

∥∆(a,b)bu (ω) ∥ ≤
(
1 + η2

)
βT−u∥∇ log qT−u (ωu)−∇ log qT−tk (ωu) ∥

≤
(
1 + η2

)
βT−uγk sup

v∈[T−u,T−tk]

∥∂v∇ log qT−v (ωu) ∥.

Then by Lemma E.4, we have

∥∆(a,b)bu (ω) ∥
≤
(
1 + η2

)
βT−u sup

v∈[T−u,T−tk]

(
βv/σ

6
v

) (
2 +R2

)
(R+ ∥ωu∥) γk .

■

For
∥∥∆(b,c)bu(ω)

∥∥, we have the following lemma.

Lemma D.2. For s, u ∈ [0, T ) such that u ≥ s, u ∈ [sk, tk+1) and ω = (ωv)v∈[s,T ] we have

∥∆(b,c)bu (ω) ∥ ≤
(
1 + η2

) (
βT−u/σ

4
T−u

) (
1 +R2

)
∥ωu − ωsk∥ .

Proof. Without loss of generality, we assume s ≤ tk. In this case sk = tk, Then

∥∆(b,c)bu (ω) ∥ ≤
(
1 + η2

)
βT−u∥∇ log qT−tk (ωtk)−∇ log qT−tk (ωu) ∥

≤
(
1 + η2

)
βT−u sup

v∈[u,T−tk]

∥∇2 log qT−tk (ωv) ∥∥ωu − ωtk∥ .

Using Lemma E.2, we have that

∥∆(b,c)bu (ω) ∥ ≤
(
1 + η2

) (
βT−u/σ

4
T−u

) (
1 +R2

)
∥ωu − ωtk∥ .

Then the proof is complete. ■

We need to control the reverse process when dealing with ∆b. The following lemma shows an upper
bound for the reverse Yk.

Lemma D.3. Assume Assumption 3.1 ,Assumption 4.1, and there exists δ > 0 such that γkβT−tk

σ2
T−tk

≤
δ ≤ 1/28 for any k ∈ {0, · · · ,K}, then we have

E[∥Yk∥2] ≤ U(τ) = τd+B(1/A+ δ) ,
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where

A = 4η2 + 2− 2δ − 4(1 + η2)(1 + δ)µR

B = 4(1 + η2)R2δ + 2(1 + η2)(1 + δ)
R

µ
+ 4η2τd

and µ is an arbitrary positive number which makes A > 0. In particular, if δ ≤ 1/28, then

E[∥Yk∥2] ≤ U0(τ) = 111R2 + 13τd .

Proof. Recall the discretization of the backward process (the explicit form of Equation (6))

Yk+1 = Yk + γ1,k

(
1

τ
Yk + (1 + η2)s (T − tk, Yk)

)
+ η
√
2γ2,kZk ,

γ1,k = exp

[∫ T−tk

T−tk+1

βs ds

]
− 1, γ2,k =

(
exp

[
2

∫ T−tk

T−tk+1

βs ds

]
− 1

)
/2 ,

where {Zk}k∈K are independent Gaussian random variables. It is clear that γ1,k ≤ γ2,k ≤ 2γ1,k,
and using Lemma E.1 we have

⟨xt, s(t, xt)⟩ = ⟨xt,∇ log qt(xt)⟩
≤ −∥xt∥2/σ2

t +mtR∥xt∥/σ2
t

≤ (−1 + µmtR)∥xt∥2/σ2
t + (mtR/µ)/σ2

t ,

where the first equality follows that we assume the accurate score function. For any µ > 0. Again
using Lemma E.1, we have

∥s(t, xt)∥2 = ∥∇ log qt(xt)∥2

≤ 2∥xt∥2/σ4
t + 2m2

tR
2/σ4

t .

Combining the results above, we have

E[∥Yk+1∥2] = (1 +
γ1,k
τ

)2E[∥Yk∥2] + (1 + η2)2γ2
1,kE[∥s(T − tk, Yk)∥2]

+ 2(1 + η2)(1 +
γ1,k
τ

)γ1,kE[⟨Yk, s(T − tk, Yk)⟩] + 2η2γ2,kd

≤ ((1 +
γ1,k
τ

)2 + 2(1 + η2)2γ2
1,k/σ

4
T−tk

+ 2(1 + η2)(1 +
γ1,k
τ

)γ1,k(−1 + µmT−tkR)/σ2
T−tk

)E[∥Yk∥2]

+
2m2

T−tk
R2

σ4
T−tk

(1 + η2)2γ2
1,k +

mT−tkR

µσ2
T−tk

(1 + η2)(1 +
γ1,k
τ

)γ1,k + 4η2γ1,kd .

If we denote δk = γ1,k/σ
2
T−tk

and notice the fact that mt ∈ [0, 1], σ2
t ∈ [0, τ ], η ∈ [0, 1], then we

have

E[∥Yk+1∥2] ≤ (1 + 2δk + δ2k)E[∥Yk∥2] + 8δ2kE[∥Yk∥2]

+ 2(1 + δk)δk(−1 + µR)E[∥Yk∥2] + 8R2δ2k +
2R

µ
δk(1 + δk) + 4τδkd .

We also have that

γ1,k = exp[

∫ T−tk

T−tk+1

βsds]− 1 ≤ exp[βT−tkγk]− 1 ≤ 2βT−tkγk ,

where the last inequality follows that γk = exp (−T ), βT−tkγk ≤ 1/2 for small enough stepsize,
and eω − 1 ≤ 2ω for any ω ∈ [0, 1/2]. We get δk ≤ 2γkβT−tk/σ

2
T−tk

≤ 2δ. Thus

E[∥Yk+1∥2] ≤ (1 + 2δk + 2δkδ)E[∥Yk∥2] + 16δkδE[∥Yk∥2]

+ 4(1 + δ)(−1 + µR)δkE[∥Yk∥2] + 16R2δkδ + 4(1 + δ)
R

µ
δk + 4τdδk .
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Hence, we have

E[∥Yk+1∥2] ≤ (1 + δk[−2 + 14δ + 4(1 + δ)µR])E[∥Yk∥2]

+ δk[16R
2δ + 4(1 + δ)

R

µ
+ 4τd] .

We denote A = 2− 14δ − 4(1 + δ)µR and B = 16R2δ + 4(1 + δ)
R

µ
+ 4τd, then

E[∥Yk+1∥2] ≤ (1− δkA)E[∥Yk∥2] + δkB .

Notice that E[∥Y0∥2] = dτ and if E[∥Yk∥2] ≥ B/A it is decreasing, if E[∥Yk∥2] ≤ B/A we have
E[∥Yk+1∥2] ≤ B/A+ δB. so

E[∥Yk∥2] ≤ τd+B(1/A+ δ) .

Notice that when δ ≤ 1/28,if we choose µ = 1/(4(1 + δ)R), A ≥ 1/2, and

B ≤ 37R2 + 4τd .

Then, the proof is complete. ■

The following lemma shows a discretization error in the k-the interval.
Lemma D.4. Assume Assumption 3.1,Assumption 4.1 and γkβT−tk/σ

2
T−tk

≤ 1/28 for any k ∈
{0, · · · ,K − 1}. Then for any k, t ∈ [tk, tk+1] and i ∈ {1, 2}, we have that

E[∥Ȳt − Ȳtk∥2] ≤ Li(τ)βT−tkγk ,

where Li(τ) = γ̄Kκi(τ)(
64

σ2
T−tK

(i)
+

8

τ
)U0(τ) + 64R2 γ̄Kκi(τ)

σ2
T−tK

(i)
+ 4d, γ̄K , κi(τ) is defined in

Lemma D.5 and U0(τ) is defined in Lemma D.3.

Proof. Recall the discretized backward process

Ȳt = Ȳtk + (exp[

∫ T−tk

T−t

βsds]− 1)(
1

τ
Ȳtk + (1 + η2)s(T − tk, Ȳtk))

+ η(exp[2

∫ T−tk

T−t

βsds− 1])1/2Z ,

where Z is a standard Gaussian random variable. By directly calculating, we have that

E[∥Ȳt − Ȳtk∥2] = 2(exp[

∫ T−tk

T−t

βsds]− 1)2(
1

τ2
E[∥Ȳtk∥2] + (1 + η2)2E[∥s(T − tk, Ȳtk)∥2])

+ η2(exp[2

∫ T−tk

T−t

βsds]− 1)d .

By Lemma E.1 and accurate score function assumption,

∥s(T − tk, Ȳtk)∥2 ≤ 2∥Ȳtk∥2/σ4
T−tk

(i) + 2m2
T−tk

R2/σ4
T−tk

(i) .

So we have that

E[∥Ȳt − Ȳtk∥2] ≤ 2(exp[

∫ T−tk

T−t

βsds]− 1)2((
8

σ4
T−tk

(i)
+

1

τ2
)E[∥Ȳtk∥2] +

8R2

σ4
T−tk

(i)
)

+ (exp[2

∫ T−tk

T−t

βsds]− 1)d .

By e2w − 1 ≤ 1 + 4w for any w ∈ [0, 1/2] and γk supv∈[T−tk+1,T−tk]
βv/σ

2
v ≤ 1/28 for any

k ∈ {0, ...,K − 1}, we have

exp[ρ

∫ T−tk

T−t

βsds]− 1 ≤ 2ρβT−tkγk.
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for ρ = 1, 2. And using Lemma D.3 and Lemma F.2 we have

E[∥Ȳt − Ȳtk∥2]

≤ (
64γk

σ4
T−tk

(i)
+

8βT−tkγk
τ2

)U0(τ)βT−tkγk + 64R2 γk
σ4
T−tk

(i)
βT−tkγk + 4dβT−tkγk .

We denote Li(τ) = γ̄Kκi(τ)(
64

σ2
T−tK

(i)
+

8

τ
)U0(τ) + 64R2 γ̄Kκi(τ)

σ2
T−tK

(i)
+ 4d for i ∈ {1, 2} and the

proof is complete. ■

Lemma D.5. Assume Assumption 3.1 and Assumption 4.1, γk supv∈[T−tk+1,T−tk]
βv/σ

2
v ≤ 1/28

for any k ∈ {0, ...,K − 1}. Let γ̄K = argmaxk∈{0,...,K−1}γk, κi(τ) = max{β̄, T 2

T−1+i }σ−2
T−tK

(i),
and

Ci(τ) = 2(2 +R2)(R+ U
1/2
0 (τ)) + 2L

1/2
i (τ)τ3/2(1 +R2) ,

for i ∈ {1, 2}. Then, for any s, u ∈ [0, tK ] with u ≥ s and i ∈ {1, 2}, we have

E[∥∆bu,i((Ȳs,v)v∈[s,T ])∥] ≤ Ci(τ)[κ
2
i (τ)σ

−2
T−tK

(i)γ̄
1/2
K + κ2

i (τ)]γ̄
1/2
K ,

where Ȳs,s ∼ N(0, I).

Proof. Combining Lemma D.1, Lemma D.2 and the exact score function, we get

∥∆bu,i(ω)∥ ≤ (1 + η2) sup
v∈[T−tk+1,T−tk]

(β2
v/σ

6
v(i))(2 +R2)(diam(M+ ∥ωu∥))γk

+ (1 + η2)(βT−u/σ
4
T−u(i))(1 + diam(M2))∥ωu − ωsk∥.

For any u ∈ [T − tK , T ], using Lemma F.3 we have βu/σ
2
u(i) ≤ κi(τ). Hence,

∥∆bu,i(ω)∥ ≤ (1 + η2) sup
v∈[T−tk+1,T−tk]

(β2
v/σ

6
v(i))(2 + diam(M2))(R+ ∥ωu∥)γk

+ (1 + η2)(βT−u/σ
4
T−u(i))(1 + diam(M2))(∥ωu − ωtk∥)

≤ (1 + η2)(κ2
i (τ)/σ

2
T−tk+1

(i))γk(2 + diam(M2))(R+ ∥ωu∥)
+ (1 + η2)κ2

i (τ)(1 +R2)∥ωu − ωtk∥/βT−u.

Combining this with Lemma D.3 and Lemma D.4,

E[∥∆bu,i((Ȳs,v)v∈[s,T ])∥] ≤ (1 + η2)(κ2
i (τ)/σ

2
T−tk+1

(i))γ̄K(2 +R2)(R+ U
1/2
0 (τ))

+ (1 + η2)κ2
i (τ)(1 +R2)L

1/2
i (τ)max{β̄, τ}3/2γ̄1/2

K .

We denote Ci(τ) = 2(2+R2)(R+U
1/2
0 (τ))+2L

1/2
i (τ)τ3/2(1+R2), for i ∈ {1, 2}, then we have

E[∥∆bu,i((Ȳs,v)v∈[s,T ])∥] ≤ Ci(τ)((κ
2
i (τ)/σ

2
T−tk+1

)γ̄K + κ2
i (τ)γ̄

1/2
K ).

■

Lemma D.6. Assume Assumption 3.1 and Assumption 4.1, γk supv∈[T−tk+1,T−tk]
βv/σ

2
v ≤ 1/28

for any k ∈ {0, ...,K − 1}. Let γ̄K = argmaxk∈{0,...,K−1}γk, γK = δ, and δ ≤ 1/32. Then

W1

(
R

qτ∞
K , Q

qτ∞
tK

)
≤ Ci(τ)κ

2
i (τ)T exp

[
R2

2σ2
T−tK

(i)
+

(1− η2)

2

]
[

γ̄
1/2
K

σ2
T−tK

(i)
+ 1]γ̄

1/2
K ,

where Ci(τ), κi(τ) for i ∈ {1, 2} are the same terms to Theorem 6.1.
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Proof. By Proposition 1 we have

∥YtK − YK∥ = ∥YtK − ȲtK∥ ≤
∫ tK

0

∥∇Yu,tK ,i(Ȳ0,u)∥∥∆bu,i((Ȳ0,v)v∈[0,T ])∥du.

∥YtK − YK∥

≤ exp

[(
1 + η2

)
R2

4σ2
T−t(i)

+
(1− η2)

2

∫ tK

0

βT−u

τ
du

]∫ tK

0

∥∆bu,i((Ȳ0,v)v∈[0,T ])∥du .

Then by definition of Wasserstein distance, we have

W1(q∞QtK , q∞RK)

≤ E[∥YtK − YK∥]

≤ exp

[(
1 + η2

)
R2

4σ2
T−tK

(i)
+

(1− η2)

2

∫ tK

0

βT−u

τ
du

]∫ tK

0

E[∥∆bu,i((Ȳ0,v)v∈[0,T ]∥]du

≤ Ci(τ)T exp

[(
1 + η2

)
R2

4σ2
T−tK

(i)
+

(1− η2)

2

]
[κ2

i (τ)σ
−2
T−tK

(i)γ̄
1/2
K + κ2

i (τ)]γ̄
1/2
K .

■

Theorem 6.1. Assume Assumption 3.1 and 4.1, δ ≤ 1/32 and γk supv∈[T−tk+1,T−tk]
βv/σ

2
v ≤ 1/28

for ∀k ∈ {0, ...,K − 1}. Let γK = δ. Then, for ∀τ ∈ [T, T 2]:

(1) If η = 1 (the reverse SDE), choosing βt = t2, W1

(
R

qτ∞
K , q0

)
is bounded by

(
R

τ
+

√
d)
√
δ + exp

(
R2

2
(
β̄

δ3
+

1

τ
)

)(
C1(τ)Tκ

2
1(τ)

(
(
β̄

δ3
+

1

τ
)γ̄

1/2
K + 1

)
γ̄
1/2
K +

D̄e−T/2

√
τ

)
,

where κ1(τ) = T 2(1/τ + β̄/δ3) and C1(τ) is linear in τ2.

(2) If η = 0 (PFODE), choosing a conservative βt (Assumption 3.1), W1

(
R

qτ∞
K , q0

)
is bounded by

(
R

τ
+
√
d)
√
δ + exp

(
R2

2
(
β̄

δ2
+

1

τ
)

)(
C2(τ)κ

2
2(τ)T

(
(
β̄

δ2
+

1

τ
)γ̄

1/2
K + 1

)
γ̄
1/2
K +

D̄√
τ

)
,

where κ2(τ) = T
(
1/τ + β̄/δ2

)
and C2(τ) is linear in τ2.

Proof. To obtain the convergence guarantee, we need to control three error terms:

W1

(
R

qτ∞
K , q0

)
≤ W1

(
R

qτ∞
K , Q

qτ∞
tK

)
+W1

(
Q

qτ∞
tK , Qq0PT

tK

)
+W1

(
Qq0PT

tK , q0

)
.

For term W1

(
R

qτ∞
K , Q

qτ∞
tK

)
, we use Lemma D.6.

For the second term, we define
(
Yx

0,t

)
t∈[0,T ]

and
(
Yy

0,t

)
t∈[0,T ]

be the reverse processes with initial
condition x and y. Then we have

∥Yx
0,t −Yy

0,t∥ ≤ ∥x− y∥
∫ 1

0

∥∇Yzλ
0,t∥dλ ,

where zλ = λx + (1 − λ)y. In this work, we choose x ∼ qτ∞ and y ∼ q0PT . Combined with the
above inequality, Theorem 4.2 and Lemma 6.3, we know that:

W1

(
Q

qτ∞
tK , Qq0PT

tK

)
≤ exp

[
R2

2σ2
T−tK

(i)
+

(1− η2)

2

∫ tK

0

βT−u

τ
du

]
∥q0PT − qτ∞∥

≤
√
mT D̄

σT
exp

[
R2

2σ2
T−tK

(i)
+

(1− η2)

2

∫ tK

0

βT−u

τ
du

]
.
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For the last term, we use exactly the same process with Bortoli [2022] with bounded σ2
T−tK

:

W1

(
Qq0PT

tK , q0

)
≤ E [∥X −mT−tKX + σT−tKZ∥]

≤ (
R

τ
+

√
d)σT−tK

≤ 2(
R

τ
+
√
d)
√
δ ,

where the second inequality follows that σ2
T−tK

+ τmT−tK = τ . ■

In the end of the section, we provide the proof of Corollary 6.2.
Corollary D.7. Assume Assumption 3.1, 4.1 and

∥∥∇2 log qt (xt)
∥∥ ≤ Γ/σ2

t . Let η = 0 (reverse
PFODE), δ ∈ (0, 1/32), τ = T 2, βt = t and κ2(τ), C2(τ) defined in Theorem 6.1, we have

W1

(
R

qτ∞
K , q0

)
≤ (

R

τ
+
√
d)
√
δ +

β̄
Γ
2

δΓ
exp

(
Γ + 2

2

)(
C2(τ)κ

2
2(τ)T ((

β̄

δ2
+

1

τ
)γ̄

1/2
K + 1)γ̄

1/2
K +

D̄√
τ

)
.

Proof. The proof of this corollary is almost identical to the proof of Theorem 6.1. We just need to
replace the first bound for the tangent process in Lemma 6.3 by the second bound. ■

E Lemmas for the Logarithmic Density

In this section, we introduce auxiliary lemmas to control the gradient and Hessian of the logarithmic
density under the manifold hypothesis. Lemma E.1, Lemma E.2 and Lemma E.3 come from
Lemma C.1, Lemma C.2, and Lemma C.5 of Bortoli [2022]. Since these lemmas do not involve the
relationship between mt and σt, we can directly use the results from Bortoli [2022]. Following Bortoli
[2022], we also define a empirical version of q0 with N datapoints, i.e. qN0 = (1/N)

∑N
k=1 X

k, with{
Xk
}N
k=1

∼ q⊗N
0 . We denote by

(
qNt
)
t>0

such that for any t > 0 the density w.r.t. the Lebesgue
measure of the distribution of XN

t , and when N → +∞, qNt = qt.

Lemma E.1. Assume Assumption 4.1. Then for any t ∈ (0, T ] and xt ∈ Rd we have that

⟨∇ log qt(xt), xt⟩ ≤ −∥xt∥2/σ2
t +mR∥xt∥/σ2

t .

In addition, we have

∥∇ log qt (xt) ∥2 ≤ 2∥xt∥2/σ4
t + 2m2

tR
2/σ4

t .

Lemma E.2. Assume Assumption 4.1. Then for any t ∈ (0, T ], xt ∈ Rd and M ∈ Md

(
Rd
)

〈
M,∇2 log qt (xt)M

〉
≤ −

(
1−m2

tR
2/
(
2σ2

t

))
/σ2

t ∥M∥2.

In addition, we have ∥∥∇2 log qt (xt)
∥∥ ≤

(
1 +R2

)
/σ4

t .

The following lemma shows that the derivatives up to the fourth order are uniformly bounded since
τ ∈ [T, T 2]. Thus we can use the stochastic extension of the Alekseev–Gröbner formula [Del Moral
and Singh, 2022].
Lemma E.3. Assume Assumption 4.1. Then, there exists C̄ ≥ 0 such that for any t ∈ (0, T ] we have∥∥∇2 log qt(x)

∥∥+ ∥∥∇3 log qt(x)
∥∥+ ∥∥∇4 log qt(x)

∥∥ ≤ C̄/σ8
t .

The following lemma shows that ∥∂t∇ log qt (xt) ∥ is bounded. The proof before using the relation-
ship between σt and mt is identical compared to Lemma C.3 in Bortoli [2022]. For the sake of
completeness, we also give the proof process of this part.
Lemma E.4. Assume Assumption 4.1. Then for any t ∈ (0, T ] and xt ∈ Rd we have

∥∂t∇ log qt (xt) ∥ ≤
(
βt/σ

6
t

) (
2 +R2

)
(R+ ∥xt∥) .
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Proof. Let N ∈ N and t ∈ (0, T ]. We denote for any x ∈ Rd, qNt (x) = q̄Nt (x) /
(
2πσ2

t

)d/2
with

q̄Nt (x) = (1/N)

N∑
k=1

ekt (x) , ekt (x) = exp
[
−∥x−mtX

k∥2/
(
2σ2

t

)]
.

Next we denote fk
t ≜ log ekt . Then we have

∂t log q̄
N
t (x)

N∑
k=1

∂tf
k
t (x) ekt (x) /

N∑
k=1

ekt (x) .

Therefore we have

∂t∇ log q̄Nt (x)

=

N∑
k=1

∂t∇fk
t (x)e

k
t (x)/

N∑
k=1

ekt (x) +

N∑
k=1

∂tf
k
t (x)∇fk

t (x)e
k
t (x)/

N∑
k=1

ekt (x)

−
N∑

k,j=1

∂tf
k
t (x)∇f j

t (x)e
k
t (x)e

j
t (x)/

N∑
k,j=1

ekt (x)e
j
t (x)

=

N∑
k=1

∂t∇fk
t (x)e

k
t (x)/

N∑
k=1

ekt (x)

+ (1/2)

N∑
k,j=1

(
∂tf

k
t (x)− ∂tf

j
t (x)

)(
∇fk

t (x)−∇f j
t (x)

)
ekt (x)e

j
t (x)/

N∑
k,j=1

ekt (x)e
j
t (x).

In what follows, we provide upper bounds for |∂tfk
t − ∂tf

j
t |, ∥∇fk

t −∇f j
t ∥ and ∂t∇fk

t . First we
notice that ∇fk

t (x) = −
(
x−mtX

k
)
/σ2

t , and using mt ≤ 1 we get

∥∇fk
t (x)−∇f j

t (x)∥ ≤ mR/σ
2
t ≤ R/σ2

t .

and

∂tf
k
t (t) = ∂tσ

2
t /
(
2σ4

t

)
∥x−mtX

k∥2 + ∂tmt/σ
2
t

〈
Xk, x−mtX

k
〉
.

Notice the fact that ∂tσ2
t = −2τmt∂tmt = 2βtm

2
t and ∂tmt = −βt

τ
mt, combined with the above

equality, we know that

∂tf
k
t (t) = −βtmt/σ

2
t

[
−
(
mt/σ

2
t

)
∥x−mtX

k∥2 + 1

τ

〈
x−mtX

k, Xk
〉]

= −βtmt/σ
2
t

〈
x−mtX

k,−
(
mt/σ

2
t

) (
x−mtX

k
)
+

1

τ
Xk

〉
= −βtmt/σ

4
t

〈
x−mtX

k,−mtx+

(
m2

t +
σ2
t

τ

)
Xk

〉
= βtmt/σ

4
t

(
mt∥x∥2 +mt

∥∥Xk
∥∥2 + (1 +m2

t

) 〈
x,Xk

〉)
,

where the last equality holds that τm2
t + σ2

t = τ . The rest of the proof is identical to the Lemma C.3
in Bortoli [2022].

So using mt ≤ 1 we have∣∣∣∂tfk
t (x)− ∂tf

j
t (x)

∣∣∣ ≤ 2βtm
2
tR

2/σ4
t + βtmt

(
1 +m2

t

)
R∥x∥/σ4

t

≤ 2
(
βt/σ

4
t

)
R(R+ ∥x∥)

Now we compute ∇∂tf
k
t (x) for any x ∈ Rd

∇∂tf
k
t (x) = 2βtm

2
t/σ

4
t x+

(
βtmt/σ

4
t

) (
1 +m2

t

)
Xk.
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So we can bound the norm of it by

∥∂t∇fk
t (x) ∥ ≤ 2

(
βt/σ

4
t

)
(R+ ∥x∥).

Combining results above we get for any x ∈ Rd∥∥∂t∇ log q̄Nt (x)
∥∥ ≤ 2

(
βt/σ

4
t

)
(R+ ∥x∥) +

(
βt/σ

6
t

)
R2(R+ ∥x∥)

≤
(
βt/σ

6
t

) (
2 +R2

)
(R+ ∥x∥)

Note that

lim
N→+∞

∂t∇ log qNt (xt) = ∂t∇ log qt

and the proof is complete. ■

In the following lemma, similar to Chen et al. [2023c], we obtain a better control on the time
discretization error instead of controlling ∥∂t∇ log qt (xt)∥ for ∀xt ∈ Rd.

Lemma E.5. Assume Assumption 4.1 and Xt satisfies the forward process Equation (3). Define
L = maxt∈[0,T−δ]

∥∥∇2 log qT−t (Yt)
∥∥ ≤

(
1 +R2

)
/σ4

δ , then we have that

E
Q

qτ
T

tK

[∥∥∥∥∇ ln
qT−tk

qT−t
(Ytk)

∥∥∥∥2
]

≲ τL2dγ̄K + τL2γ̄2
K(dτ +R2) + τL3γ̄2

K + τL4γ̄2
K(βT dγ̄K +R2γ̄2

K) .

Proof. Due to the property of the forward process, we know that if S : Rd → Rd is the mapping
S(x) := exp(−(t − tk))x, then qT−tk = S#qT−t ∗ normal

(
0, τ

(
1− exp(−2

∫ tk+1

tk
βs/τds)

))
Similar to Chen et al. [2023c], we define α = exp

[∫ tk+1

tk

βs

τ ds
]

= 1 + O(γ̄K) and σ2 =

τ
(
1− exp(−2

∫ tk+1

tk
βs/τds)

)
= O(τ γ̄K). Then we can use Lemma C.12 of Lee et al. [2022] to

obtain

E
Q

qτ
T

tK

[∥∥∥∥∇ ln
qT−tk

qT−t
(Ytk)

∥∥∥∥2
]

≲ τL2dγ̄K + τL2γ̄2
K ∥Ytk∥

2
+ τL2γ̄2

K ∥∇ ln qT−t (Ytk)∥
2

≲ τL2dγ̄K + τL2γ̄2
K(dτ +R2) + τL3γ̄2

K + τL4γ̄2
K(βT dγ̄K +R2γ̄2

K) .

The last inequality follows Lemma F.4 and the fact that

∥∇ ln qT−t (Ytk)∥
2 ≲ ∥∇ ln qT−t (Yt)∥2 + ∥∇ ln qT−t (Ytk)−∇ ln qT−t (Yt)∥2

≲ ∥∇ ln qT−t (Ytk)∥
2
+ L2(βT dγ̄K +R2γ̄2

K)

≲ L+ L2(βT dγ̄K +R2γ̄2
K) .

■

F Auxiliary Lemmas

Lemma F.1. For any s, t ∈ [0, T ] we have∫ t

s

βT−u/σ
2
T−udu =

[
−1

2
log

(
exp

[
2

∫ T−u

0

βv

τ
dv

]
− 1

)]t
s

,

∫ t

s

βT−um
2
T−u/σ

4
T−udu =

[
(1/2τ) /

(
1− exp

[
−2

∫ T−u

0

βv

τ
dv

])]t
s

.
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Proof. We directly compute∫ t

s

βT−u/σ
2
T−udu =

1

τ

∫ t

s

βT−u/

(
1− exp

[
−2

∫ T−u

0

βv

τ
dv

])
du

=
1

τ

∫ t

s

βT−u exp

[
2

∫ T−u

0

βv

τ
dv

]
/

(
exp

[
2

∫ Tu

0

βv

τ
dv

]
− 1

)
du

= −1

2

∫ t

s

∂u log

(
exp

[
2

∫ T−u

0

βv

τ
dv

]
− 1

)
du .

Similarly ∫ t

s

βT−um
2
T−u/σ

4
T−u

=
1

τ2

∫ t

s

βT−u exp

[
−2

∫ T−u

0

βv

τ
dv

]
/

(
1− exp

[
−2

∫ T−u

0

βv

τ
dv

])2

du

= (1/2τ)

∫ s

t

∂u

(
1− exp

[
−2

∫ T−u

0

βv

τ
dv

])−1

du.

■

Lemma F.2. Assume Assumption 3.1. For i ∈ {1, 2}, we have σ2
T−tK

(i) ≤ 2δ and σ−2
u (i) ≤

σ−2
T−tK

(i) ≤ 1

τ
+

β̄

δ4−i
,∀u ∈ [T − tK , T ].

Proof.

σ2
T−tK (i) = τ

(
1− exp

[
−2

∫ T−tK

0

βs

τ
ds

])

≤ 2

∫ T−tK

0

βs ds ≤ 2δ ,

where the first inequality follows from for any a ≥ 0, exp[−a] ≥ 1− a; the second inequlity follows
from Assumption 3.1 and δ ≤ 1.

σ−2
T−tK

(i) =
1

τ

(
1− exp

[
−2

∫ T−tK

0

βs

τ
ds

])−1

≤ 1

τ

1 +

(
2

∫ T−tK

0

βs

τ
ds

)−1


≤ 1

τ
+

β̄

δ4−i
,

where the first inequality follows from for any a ≥ 0, 1/(1+exp[−a]) ≤ 1+1/a, the second inequal-
ity follows from Assumption 3.1. It is easy to check that σ−2

u (i) ≤ σ−2
T−tK

(i),∀u ∈ [T − tK , T ].

■

Using the bound on σ−2
T−tK

(i) immediately yields the following control of βu/σ
2
u(i).

Lemma F.3. Assume Assumption 3.1. Then, we have for any u ∈ [T − tK , T ]: (1) if i = 1, then

βu

σ2
u(i = 1)

≤ κ1(τ) = max{β̄, T 2}
(
1

τ
+

β̄

δ3

)
;

(2) if i = 2, then

βu

σ2
u(i = 2)

≤ κ2(τ) = max{β̄, T}
(
1

τ
+

β̄

δ2

)
.
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Generally speaking, T ≥ β̄ ≥ 1. Hence, We can further simplify the above inequality by removing
max.

In the rest of this section, we provide the useful lemma to achieve polynomial sample complexity for
VE-based models with reverse SDE. As shown in Lemma E.1, we also need to control E[∥Xt∥2] in
the forward process. The following lemmas shows that this term is bounded by the R2 and exploding
variance.

Lemma F.4. Suppose that Assumption 4.1hold. Let (Xt)t∈[0,T ] denote the forward process Equa-
tion (3). Then, for all t ≥ 0,

E
[
∥Xt∥2

]
≤ dσ2

t ∨R2 .

Proof. As shown in Equation (4),

E
[
∥Xt∥2

]
≤ E

[
∥X0∥2

]
+ σ2

t d ≤ dσ2
t ∨R2 .

■

Lemma F.5 (movement bound for VESDE). Let (Xt)t∈[0,T ] denote the forward process Equation (3).
For 0 ≤ s < t with δ := t− s, if δ ≤ 1, then

E
[
∥Xt −Xs∥2

]
≲ 2βtδd+ δ2R2 .

Proof.

E
[
∥Xt −Xs∥2

]
≲ E

[∥∥∥√2βt (Bt −Bs)
∥∥∥2]+ δ

∫ t

s

E
[
∥Xr∥2

]
dr ≲ 2βtδd+ δ2R2 .

■

Similar to Chen et al. [2023c], we can also show that if we do forward process for time δ, qδ will be
close to q0 in W2 distance.

Lemma F.6. Suppose Assumption 4.1 holds. Let ϵW2 > 0. If β2
t = t2 and τ = T 2, we choose

the early stopping parameter δ ≤
ϵ
2/3
W2

(d+R
√
d)1/3

. If βt = t and τ = T , we choose δ ≤ ϵW2

(d+R
√
d)1/2

.

If consider pure VESDE (SMLD) (Equation (2)) with σ2
t = t, we choose δ ≤ ϵ2W2

d . Then we have
W2 (qδ, q0) ≤ ϵW2

.

Proof. For the forward process Equation (3), we know that Xt := mtX0 + σtZ, where Z ∼
normal (0, Id) is independent of X0 and mt ≤ 1. Hence, for δ ≲ 1,

W 2
2 (q0, qδ) ≤ (1−mt)

2E
[
∥X0∥2

]
+ E

[
∥σδZ∥2

]
.

For βt = t2 and τ = T 2, we have that

W 2
2 (q0, qδ) ≤ δ3d+

R2δ6

T 2

Hence, we can take δ ≤
ϵ
2/3
W2

(d+R
√
d)1/3

. For βt = t and τ = T , we have that

W 2
2 (q0, qδ) ≤ δ2d+

R2δ4

T 2

Hence, we can take δ ≤ ϵW2

(d+R
√
d)1/2

. For pure VESDE (Equation (2)) with σt = t, we have

W 2
2 (q0, qδ) ≤ δd .

■
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G Additional Synthetic Experiments

In this section, we do synthetic experiments to show the power of our new forward process with small
drift term in different setting.

G.1 The Synthetic experiments with accurate score function

In this section, we do numerical experiments on 2-dimension Gaussian distribution to show the power
of our new VESDE forward process in balancing different error sources.

Experiment Setting. We set the mean of target distribution E[q0] = [6, 8], the covariance matrix

Cov[q0] =
[
25 5
5 4

]
, the diffusion time T = 2, τ = T 2 and the reverse beginning distribution is

N (0, T 2I). We choose uniform stepsize γk = h,∀k ∈ [K] where h ∈ {0.005, 0.01, 0.02, 0.04}. For
score functions, we directly calculate the ground truth score function instead of learning it by the
score matching objective. We calculate the KL divergence between the generation distribution and
target distribution q0 as the experiments.

The implementable algorithm. We choose three different VESDE forward processes in the
experiments: (1) aggressive βt = t2 with τ = T 2; (2) conservative βt = t with τ = T 2 and (3)
VESDE without drift term Equation (2) with σ2

t = t2. After determining the forward process, we
run the reverse SDE with the above γk, k ∈ [K]. For the discretization scheme, we choose two
common method: exponential integrator (EI) [Zhang and Chen, 2022] and Euler-Maruyama (EM)
discretization [Ho et al., 2020].

Observations. The experimental results are shown in Figure 2. We note that the red line (EI,
VESDE without drift, σ2

t = t2) and orange line (conservative drift VESDE, βt = t and τ = T 2) has
a similar trend. Furthermore, the conservative drift VESDE has better performance compared to pure
VESDE without drift term. Hence, our new forward process is representative enough to represent
current VESDE, as discussed in Section 3.1.

The experimental results also support our theoretical results and show the power of the new forward
process in balancing different error terms. As shown in Figure 2, the process with aggressive βt = t2

with small drift term achieves the best and second performance in EI and EM discretization since it
can balance the reverse beginning and discretization. The third best process is conservative βt = t
with the small drift term. The reason is that though it can not achieve a exp (−T ) forward process
guarantee, it also has a constant decay on prior information, as shown in Section 3.1. This decay
slightly reduces the effect of the reverse beginning error. The worse process is VESDE without drift
term since it is hard to balance different error sources. Our experimental results also show that EI
discretization is better than EM discretization.

G.2 The Synthetic experiments with approximated score function

In this section, instead of using an accurate score function, we train an approximated score function
on the pure VESDE (Equation (2)) without drift term on two synthetic datasets: multiple Swiss rolls
and 1-D GMM. Then, for the drift VESDE, we do not train the approximated score corresponding to
Equation (3); we directly use the approximated score learned by pure VESDE and show that the drift
VESDE can improve the generated distribution without the training process.

Datasets. The 1-D GMM distribution contains three modes:
3

10
N (−8, 0.01) +

3

10
N (−4, 0.01) +

4

10
N (3, 1) .

For multiple Swiss rolls, we use a similar code compared to Listing 2 of Lai et al. [2023], except
Line 6. We change Line 6. to data /=10. to obtain a larger variance dataset. Each dataset contains
50000 datapoints.

The implementable algorithm. In this subsection, we choose two forward processes: (1) conserva-
tive βt = 1 with τ = T ; (2) pure VESDE without drift term (Equation (2)) with σ2

t = t. To match
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Table 1: The KL divergence for pure VESDE (Equation (2)) and conservative drift VESDE with
different sampling method.

Forward Process 1-D GMM Swiss roll
Reverse SDE PFODE Reverse SDE PFODE

Pure VESDE (T = 100) 0.082 0.434 9.58 21.05
Drift VESDE (T = 100) 0.043 0.249 8.71 7.77
Pure VESDE (T = 625) 0.027 0.057 8.00 8.20
Drift VESDE (T = 625) 0.025 0.031 7.95 7.21

our analysis, we choose two sampling methods for the reverse process: Euler-Maruyama method for
reverse SDE and RK45 ODE solver for the reverse PFODE method.

We note that although aggressive setting βt = t and τ = T has shown its power in theory (Lemma C.2)
and the experiments with accurate score (Figure 2), other sampling issues may arise in practice. We
leave the experimental exploration for drift VESDE with aggressive βt as a future work.

The training detail. For each dataset, we train a score function with pure VESDE (Equation (2),
σ2
t = t). We train for 200 epochs with batch size 200 and learning rate 10−4. For both training and

inference, the start time is δ = 10−5. For the conservative VESDE, we directly adapt the checkpoint
learned by the pure VESDE since the conservative drift VESDE has a similar trend compared to pure
VESDE, as shown in Figure 2. The above experiments are runned over 5 random seed and we present
the average over these seeds in Table 1.

The above experiments are conduct on a GeForce RTX 4090. It takes 25 minutes to train a score
function of pure VESDE.

Observation. We do experiments with T = 100 and lager T = 625 and these two choice show
similar phenomenon. In this paragraph, we first use T = 100 as an example to discuss the results. As
shown in Table 1, the conservative drift VESDE has smaller KL divergence compared to pure VESDE
under all sampling methods and datasets. From Figure 1 and Figure 4, it is clear that pure VESDE
has low density on the Swiss roll except the center one, which means that though pure VESDE can
deal with small E[q0], it is hard to deal with large dataset variance Cov[q0], as we discuss in Section 4.
For conservative drift VESDE (βt = 1 and τ = T ), as we discuss in Section 3.1, there is a constant
decay on the prior information E[q0] and Cov[q0], which is helpful in deal with large dataset mean
and variance. The experimental results support our augmentation. Figure 1 (c), Figure 4 (c) and
Figure 5 (c) show that the density of the generated distribution is more uniform compared to pure
VESDE, which means that the drift VESDE can deal with large dataset mean and variance.

We also do experiments with larger T = 625. As we discuss in Section 4, larger T will reduce the
influence of the prior data information and have greater generated distribution, as shown in Figure 4
(c) and Figure 4 (e). The experiments of 1D-GMM (Figure 5) show a similar phenomenon compared
to the multi Swiss rolls.

G.3 The Real-World Experiments on CelebA 256

After achieving great performance under the synthetic data, we show that our conservative drifted
VESDE can improve the results of pure VESDE without training.

Setting. In this experiment, we adapt well-known VESDE implementation [Song et al., 2020b]
and do experiments on CelebA datasets (size: 256 ∗ 256 ∗ 3). More specifically, we use
ve/celebahq_256_ncsnpp_continuous checkpoints provided by [Song et al., 2020b] and modify
the sampling process strictly according to our drifted VESDE. To do a fair comparsion, we fix the
random seed and use the reverse PFODE process. Then, we generate 10000 face images to calculate
the metrics. We note that when using this checkpoint and pure VESDE pipeline provided by [Song
et al., 2020b], the models would generate almost pure noise with a certain probability. Hence, we use
an aesthetic predictor [Schuhmann et al., 2022] (aesthetic score ≥ 5.5) to filter the generated images
to ensure that the images are clear faces.
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(a) Original Figure (b) VESDE (𝑇 = 100) (c) Drifted VESDE (𝑇 = 100)

(d) VESDE (𝑇 = 625) (e) Drifted VESDE (𝑇 = 625)

Figure 4: Experiment results of Swiss roll with reverse PFODE

(a) Original Figure (b) VESDE (𝑇 = 625) (c) Drifted VESDE (𝑇 = 625)

Figure 5: Experiment results of 1D-GMM with reverse PFODE

Discussion. From the qualitative perspective, as shown in Figure 3 (Figure 6 and 7), the images
generated by our drifted VESDE have more detail (such as hair and beard details). On the contrary,
since pure VESDE can not deal with large variance, the images generated by pure VESDE appear
blurry and unrealistic in these details. From the quantitative results, our drifted VESDE achieves
aesthetic score 5.813, and IS 4.174, which is better than the results of baseline pure VESDE (aesthetic
score 5.807 and IS: 4.082). In conclusion, the real-world experiments show the potential of our
drifted VESDE.

We note that the goal of these experiments is to show that our conservative drifted VESDE is plug-
and-play without training instead of achieving a SOTA performance. Hence, we focus on the relative
improvement compared to the baseline [Song et al., 2020b]. There are two interesting empirical
future works. For the conservative drifted VESDE, we will do experiments on the SOTA pure VESDE
models [Karras et al., 2022] and improve their results without training. For the aggressive drifted
VESDE, since this process makes a larger modification compared with the conservative one, we need
to train a new score function instead of directly using a pre-train one to achieve better results.
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Figure 6: The real-world experiments on CelebA256 dataset (More examples)

Figure 7: The real-world experiments on CelebA256 dataset (Detail)

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose a new drifted VESDE forward process and achieve the first
polynomial complexity for reverse SDE (Corollary 5.4). For reverse PFODE, we propose
the firs t quantitative convergence guarantee for VESDE (SOTA) (Theorem 6.1). We also do
synthetic experiments to support our results (Section 7).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss future work and limitation at Section 8.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions, Theorem, Corollary, and proof sketch have been clearly
stated in the main content. The detailed proof appears in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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We has shown all experiments detail including dataset and training detail in Appendix G.
Furthermore, we discuss why these experiments results support our theoretical results in
Section 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: As a theoretical work, we only do simple synthetic experiments to support our
results. All detail and the used checkpoint are shown in Appendix G.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We has shown all experiments detail including dataset and training detail in
Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results of Figure 2 and Table 1 are calculated over 5 random seed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have shown the compute works and computation time in Appendix G.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have checked the code of ethics and make sure that our work satisfies the
code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the broader impacts of our work at the end of main paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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