Adaptive Pseudo-labeling for Quantum Calculations
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Abstract

Machine learning models have recently shown promise in predicting molecular
quantum chemical properties. However, the path to real-life adoption requires (1)
learning under low-resource constraint and (2) out-of-distribution generalization
to unseen, structurally diverse molecules. We observe that these two challenges
originate from label scarcity issue. We hypothesize that pseudo-labeling on vast
array of unlabeled molecules can serve as proxies as gold-label to greatly expand
the training labeled data. The challenge in pseudo-labeling is to prevent the bad
pseudo-labels from biasing the model. We develop a simple and effective strategy
PSEUDo that can assign pseudo-labels, detect bad pseud-labels through evidential
uncertainty, and then prevent them from biasing the model using adaptive weighting.
Empirically, PSEUDo improves quantum calculations accuracy across full data,
low data and out-of-distribution settings.

1 Introduction

Accurate quantum mechanical (QM) calculations of drug-like molecules at CCSD(T) or MP2 level
of theory, which are essential to characterize biomolecular interactions continue to be prohibitively
expensive, despite recent advances in hardware capabilities. Machine learning (ML) models have
astonishing performance in approximating these calculations at a fraction of the computational cost
[L8]. In the absence of large-scale benchmark data sets reporting CCSD(T) or MP2 level calculations,
most publications on this topic have relied on QM9, a standard benchmark of DFT-level energy and
properties, for training and evaluating QM/ML models. However, it is unclear how the reported
architectures (e.g. SchNet) would perform in the regime of low but accurate data (CCSD(T) or MP2).

Two challenges remain in the way of realistic adoption of ML-aided QM calculations. Firstly, training
molecules only cover part of the distribution and real-world adoption requires out-of-distribution
generalization. Secondly computing QM properties for datasets of the size of QM9 is very expensive.
Widespread applicability of ML for QM (e.g. such as to CCSD(T)/MP2) thus requires models to
generalize well given low-data constraints.

Both challenges listed above can be attributed to the difficulty and cost to generate experimental data
in chemistry and materials science. If we have a large and diverse set of labeled molecules, the ML
model can then generalize to larger chemical spaces and achieve better predictive performance.

Our key observation is that state-of-the-art ML models can obtain a low-precision estimation of the
properties even given a small set of labeled molecules. This suggests that the ML predicted label for
any unlabelled molecule can be used as a low-precision estimation of the true label.
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Figure 1: PSEUDo illustration. In every episode k, PSEUDo assigns pseudo-labels along with their evidential
uncertainty using trained neural network f*~%) from previous episode. The uncertainty is used as weight to

adaptively adjust the loss in this episode’s neural network f (k) training to reduce the effect of bad pseudo-labels
in an inner-loop training with N epochs.

In our study, we develop a simple, effective, and model-agnostic pseudo-labeling strategy called
PSEUDo. Particularly, we solicit a large array of unlabeled molecules from PC9 dataset [4] where a
ML model assigns pseudo-labels for them. This generates a large set of "labeled" training set, even
when only a relative small number of reference QM properties are available for training. As the
unlabeled dataset is diverse and unseen in QM9, it also helps generalization to unseen data. One
crucial issue in pseudo-labeling is the introduced bias from low-quality pseudo-labels. To resolve
this, we rely on a key observation that a data point with less evidence/higher model uncertainty is
more likely to be of low-quality pseudo-label (Sectiond). Thus, we use model-generated evidential
uncertainty to quantify each unlabeled data and use it to adaptively lower the weight of bad pseudo-
labels in the training loss to reduce the bias effect. Empirically, PSEUDo can improve QM accuracy
for any atomistic model across full-data, low-data, and out-of-distribution settings.

2 Related Works

ML-aided quantum calculations. Prior work on improving accuracy on QM9 mainly focus on
improving the physics-based representation in the full QM9 dataset setting [[14} 17, 2} [11} (7,110, [12].
In contrast, our work approaches this problem by improving the training strategy. PSEUDo is model-
agnostic and it can improve on any atomistic model. Additionally, we focus on realistic application
scenarios such as learning in low-data regimes and out-of-distribution inference.

Pseudo-labeling. Previous works have generated pseudo-labels for unlabeled data through trained
ML model prediction [9] and label propagation[[15}5]. PSEUDo is different as it focuses on how to
detect and prevent bad pseudo-labels from affecting the model. More related is a concurrent work
[L3] that develops an uncertainty-aware pseudo-labeling strategy, but they remove pseudo-labels at
some uncertainties. In contrast, PSEUDo uses an effective adaptive weighting scheme. Additionally,
PSEUDo is the first method that studies pseudo-labeling in quantum calculations.

Uncertainty. Model uncertainty is a well-studied subject [6} (8} [3]. [1] use evidential uncertainty
to add a prior over the gaussian parameters to search for higher-order patterns for regression task.
PSEUDo leverages evidential uncertainty as the uncertainty measure. Recently, [16] adapt evidential
uncertainty and have shown it can successfully help guide property prediction. In contrast, we
leverage evidential uncertainty as a proxy for pseudo-label quality.

3 PSEUDo: Adaptive Pseudo-labeling with Uncertainty

Problem Formulation. In this work, we focus on the regression task by establishing a map from
the space of molecules X = {x1,...,xx} to a space of scalar properties ) = {y1,...yn} . Our
dataset D = {X, Y} of size | X| consists of pairs of molecules with atomic positional coordinates and
calculated quantum mechanical properties. Every molecule x; is uniquely defined by 3d coordinates
{(ai, bi, ¢i)} %2, for N; atoms in the molecule. Let Xy, = {x;}| be the unlabeled dataset. Denote
an atomistic model fp(-) parametrized by a set of learnable parameters  where it can map input
molecule to a predicted property label f(x;) = ;. Given D U U, we aim to model parameters 6 that
can maximize the likelihood pg ()| X) of the labeled training data. For low-data learning, the number
of labeled data |D]| is kept minimal.



Table 1: PSEUDo improves on full data setting. Reported metric is MAE. The lower the better.
Property  Unit \ SchNet PhysNet Cormorant MGCN DimeNet++ SphereNet \ PSEUDo-S  PSEUDo-D

emomo ~ meV 41 329 36 42.1 24.6 23.6 329 20.4
ELUMO meV 34 24.7 36 574 19.5 18.9 24.7 18.2

Table 2: PSEUDo improves on low-data regime. Reported metric is MAE. The lower the better.
Low-Data Setting ‘ 1% QM9 (1,100) ‘ 10% QM9 (11,000)
Property Unit | SchNet — PSEUDo  DimeNet++ — PSEUDo | SchNet — PSEUDo  DimeNet++ — PSEUDo

+10.8 —18.7 —30.2 —13.7

enoro  meV | 2654 T8 0760 2489 78T, 0302 119.0 =202, g3 8 81.1 =37 674
oMo meV | 290.6 =22 232.8 229.3 =22, 204.1 93.3 =129 783 60.8 =% 592

Episodic Pseudo-labeling. Pseudo-labeling mainly consists of three stages. In first stage, regular
training is conducted on labeled data D. In the second stage, the updated model conduct inference on
the unlabeled data and combine the pseudo-labeled dataset with the labeled data. In the third stage,
the model is further trained using the combined dataset. The second and third stage forms an episode
and is reiterated till the loss stops decreasing or reaches a predefined maximum episode number.

Note that in contrast to noisy-student training, we do not retrain a separate student model but to
continue from the checkpoint. In comparison to standard pseudo-labeling where pseudo-labels are
regenerated every epoch, we devise a episodic training strategy, where each episode consists of
multiple epochs and pseudo-labels are regenerated once an episode ends. This is important since it
gives the model more time to absorb useful information from a given set of pseudo-labels. For each
episode, we also reinitialize the learning rate with a small step-wise decay strategy to allow the model
a chance to jump out of local optimum from the previous set of pseudo-labels.

Evidential uncertainty quantification. Pseudo-labels are noisy. Many are incorrect and can poten-
tially bias the model. Thus, it is the key to first detect the low-quality pseudo-labels in each episode.
Our key observation is that low-quality pseudo-labels have high model uncertainty. Thus, we can use
uncertainty as a proxy to detect these bad labels. We can model the label probabilistically as it is
drawn from a Gaussian (y1,- - - ,4;) ~ N (11, 0%), where the parameters are unknown. To estimate
them, we pose a normal prior A/ (y, o2v~1) for u, and inverse-gamma prior I'~!(«, 3) for o, where
the parameters ¢ are an instantiation of the posterior p(j, 02|y, v, i, 3). Assuming the posterior
can be factorized independently, the posterior becomes a NormallnvGamma(~, v, «, 3) where the

maximum likelihood estimation of 6 can be analytically found as E[u] = ~ and E[0?] = % The

uncertainty of the model prediction, i.e. epistemic uncertainty, becomes Var[u] = E[0?]/v = v(();‘%l)

and the uncertainty of the data, i.e. aleatoric uncertainty is E[0]. As the MLE is deterministic, the
model can output the four prior parameters {~, v, o, §} directly where the prediction and uncertainty
can be derived from them analytically [1]]. The prior is optimized by evidential loss £¥}, where one
term is to fit the training label and a second term is a regularizer that encourages higher uncertainty
when the prediction gap is high [1].

Adaptive weighting. The evidential uncertainty detects the low-quality pseudo-labels. The next
step is to remove the noisy effect of them from the model training. Naive method include removal
based on a threshold [13]]. However, it has the following two disadvantages: (1) it introduces a
new hyperparameter; (2) it removes a large set of unlabeled data which reduces the diversity of
the training space, harming the OOD generalization. Instead, we propose an adaptive weighting
mechanism that adapts the evidential loss given the inverse epistemic uncertainty. Intuitively, a
higher uncertainty requires lower effect in the loss function. Thus, the final loss becomes £ =
-1
ﬁ Sien LY cu %Lf“ where the first part is without weighting because they are
all gold-labeled. This adaptive loss solves the two disadvantages since it has zero hyperparameter
and it removes the effect of bad pseudolabels while retaining all training examples to maximize the
diversity of the training space.

4 Experiments

Dataset and Setups. We evaluate PSEUDo using QM9 dataset under two settings. (A) Full-data:
We follow the previous works [10, [7] where a 110,000/10,000/10,831 training/validation/testing
set is obtained. For the unlabeled data, we solicit to PC9, a dataset of 99,234 molecules of similar



Table 3: Out-of-distribution best validation MAE.
Property ~ Unit | SchNet DimeNet++ PSEUDo-D

OHOMO meV 2434 230.4 214.4
oLumo  meV | 225.0 184.2 175.8

Table 4: Ablation using SchNet as backbone.
Property ~Unit | PSEUDo  -pseudo-label —-uncertainty -student —-uniform

eaomo ~ meV 329 38.9 47.7 41.4 37.2
ELUMO meV 24.7 27.2 32.1 31.4 28.8

characteristics as QM9, curated by [4]. (B) Low-data: we set k% of QM9 full training set as the
training set (i.e. £ x 110,000) and we remove the label of (1-k%) QM9 full training set and make it
as the unlabeled set. We evaluate in two k values, 1 and 10, which means only 1,100/11,000 data
points is trained respectively.

PSEUDc is model-agnostic. We evaluate it with two model backbones SchNet [14] (PSEUDo-
S) and DimeNet++ [7] (PSEUDo-D). We conduct two hyperparameter tunings on ogomo Wwith
SchNet backbone on the validation MAE with full data/low-data setting respectively. The optimal
hyperparameter is then used for all targets. Our preliminary result is conducted on four targets

M, &, CHOMO, OLUMO-

PSEUDo improves on fully supervised QM calculations. We compare PSEUDo against 7
state-of-the-art models [14} (17, 12, [11} [7, [10] in Table E} PSEUDo-D surpasses all baselines
in u,ocnomo,oLumo. Particularly, comparing PSEUDo-S with SchNet and PSEUDo-D with
DimeNet++, we find PSEUDo can consistently improve even on fully supervised setting, highlighting
the utility of PSEUDo and the high quality of PC9 as unlabeled data.

PSEUDo significantly improves on low-data QM calculations. In Table 2] we investigate how
PSEUDo can improve on low-data regime with only 1%, 10% training data point. We observe
PSEUDo can consistently and significantly improve the prediction in u, cgomo, oLuMmo across both
low-data setting, and both model backbones, suggesting PSEUDo can help prediction in realistic
low-data quantum calculations. Notably, the performance on « is not ideal across the board, requiring
further investigation of PSEUDo’s behavior across targets as our hyperparameter is tuned on oponmo-

PSEUDo improves out-of-distribution QM calculations. Another realistic challenge is to infer
accurately on unseen data distribution away from QM9. We conduct inference on the PC9 dataset
where it has calculated ogomo, oLumo. We find PSEUDo can again significantly improve OOD
accuracy in DimeNet++ backbone, highlighting the robustness of PSEUDo.

Evidential uncertainty highly correlates to label quality. In this
experiment, we train on the full QM9 training set with evidential
uncertainty and then infer on the QM9 testing set. We find that
non-parametric Spearman correlation between MAE and epistemic
uncertainty is 0.42 with p-value < le-16. Additionally, we evaluate
on PC9 out-of-distribution set and the Spearman correlation is 0.35
with p-value < le-16, suggesting our uncertainty is a robust measure
of label quality.

p=0418

Increasing Error

Increasing Log-Epistemic Uncertainty

Ablations. Table[dshows that each component is indispensable for ~Figure 2: Uncertainty highly cor-
PSEUDo. The comparison with -pseudo-label shows the usefulness ~ relates to label quality.

of the general pseudo-labeling strategy. The -comparison test shows that vanilla pseudo-labeling does
not work well for QM calculations, calling for specialized strategy design. The -student test shows
that self-distillation to retrain a model in every episode as in [19] is the key. Experiments with adding
noise to the 3D positions degrade performance. The -uniform test, which uses the same weight for all
pseudo-labels, shows the importance of detection and adaptive removal of bad pseudo-labels.

5 Conclusion

PSEUDo is a simple, effective, model-agnostic pseudo-labeling strategy that can improve quantum
calculations accuracy in abundant data, low data and out-of-distribution settings.
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