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ABSTRACT

Fine-tuning pre-trained LLMs typically requires a vast amount of GPU memory.
Standard first-order optimizers like SGD face a significant challenge due to the
large memory overhead from back-propagation as the size of LLMs increases,
which necessitates caching activations during the forward pass and gradients dur-
ing the backward pass. In contrast, zeroth-order (ZO) methods can estimate gra-
dients with only two forward passes and without the need for activation caching.
Additionally, CPU resources can be aggregated and offloaded to extend the mem-
ory and computational capacity of a single GPU. To enable efficient fine-tuning
of LLMs on a single GPU, we introduce ZO-Offloading, a framework that strate-
gically utilizes both CPU and GPU resources for ZO. ZO-Offloading dynamically
offloads model parameters to the CPU and retrieves them to the GPU as needed,
ensuring continuous and efficient computation by reducing idle times and maxi-
mizing GPU utilization. Parameter updates are integrated with ZO’s dual forward
passes to minimize redundant data transfers, thereby improving the overall effi-
ciency of the fine-tuning process. The ZO-Offloading framework also incorporates
a novel low-bit precision technique for managing data transfers between the CPU
and GPU in AMP mode, as well as asynchronous checkpointing for LLM fine-
tuning. With ZO-Offloading, for the first time, it becomes possible to fine-tune
extremely large models, such as the OPT-175B with over 175 billion parameters,
on a single GPU with just 24GB of memory—a feat unattainable with conven-
tional methods. Moreover, our framework operates without any additional time
cost compared to standard ZO methodologies.

1 INTRODUCTION

As the scale of Large Language Models (LLMs) continues to grow, reaching parameter counts in
the hundreds of billions like OPT-175B (Zhang et al., 2022) and Llama 3.1 405B (Dubey et al.,
2024), managing GPU memory resources effectively becomes crucial. Efficient GPU memory man-
agement is crucial not only because it directly influences model performance and training speed,
but also because GPU memory is both expensive and limited in quantity. However, this creates a
significant challenge in handling ever-larger models within the physical constraints of current hard-
ware technologies. CPU offloading has become a crucial technique for overcoming the challenge.
It involves transferring computations and data from the GPU to the CPU, specifically targeting data
or parameters that are less frequently accessed (“inactive”). Specifically, it leverages the typically
larger and more cost-effective CPU memory (DDR SDRAM) compared to the more expensive and
less abundant GPU memory (HBM). By offloading these inactive tensors of the neural network,
CPU offloading effectively alleviates the memory and computational pressures on GPUs. While
CPU offloading has been commonly applied in inference to manage memory-intensive tasks like
KV cache offloading (Ge et al., 2023; Sheng et al., 2023) and Mixture of Experts (MoE) offloading
(Eliseev & Mazur, 2023; Xue et al., 2024), its application in training, especially fine-tuning, remains
less explored.

Recently, some works (Rajbhandari et al., 2020; Ren et al., 2021) have tried to introduce CPU of-
floading into LLM training. However, they are typically constrained by the capabilities of first-order
optimizers such as SGD and Adaptive Moment Estimation (AdamW) (Loshchilov & Hutter, 2017),
and limited GPU memory, restricting large-scale model scalability on single GPU systems. In de-
tail, using first-order optimizers introduces two major inefficiencies in CPU offloading: (1) Multiple
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communication operations: During the training of LLMs, parameters are used not only for com-
puting the loss during the forward pass but also for gradient computation in the backward pass. This
necessitates offloading the same data (parameter) twice—once for each pass (see Appendix Figure
5a for an illustration). Such redundancy not only doubles the communication volume between the
CPU and GPU but also introduces significant latency and inefficiency due to repetitive data transfers.
(2) Huge data transfer volume per communication operation: Furthermore, both parameters and
activations (hidden states) are required in the backward pass to complete gradient computations.
This means that parameters and activation values must be offloaded during each forward pass and
re-uploaded to the GPU for the backward pass. The result is a significant increase in the volume of
data transferred, which severely impacts training throughput and efficiency.

On the other hand, compared to first-order optimization methods, zeroth-order (ZO) methods offer
a novel approach to fine-tuning LLMs (Zhang et al., 2024; Malladi et al., 2023; Gautam et al.,
2024). These methods utilize dual forward passes to estimate parameter gradients and subsequently
update parameters, as illustrated in Figure 5b. This approach eliminates the traditional reliance on
backward passes, thereby streamlining the training process by significantly reducing the number of
computational steps required.

Figure 1: Single GPU memory usage compar-
ison for training LLMs across different opti-
mizers (AdamW, SGD, ZO, and ZO-Offloading)
and model sizes (OPT-6.7B, OPT-13B, OPT-30B,
OPT-175B). The ‘X’ indicates that training was
not feasible due to excessive memory demand.

Based on the above observations, we conjec-
ture that ZO’s architecture is particularly well-
suited for CPU offloading strategies. Intu-
itively, by eliminating backward passes and the
need to store activation values, it can signifi-
cantly reduce GPU memory demands through
efficient parameter offloading. However, de-
spite these advantages, ZO training via CPU
offloading introduces new challenges, particu-
larly in the realm of CPU-to-GPU communica-
tion. Transferring parameters between the CPU
and GPU, which is crucial for maintaining gra-
dient computation and model updates, becomes
a critical bottleneck due to inherent communi-
cation delays. Although ZO methods inherently
extend computation times because of the dual
forward passes, potentially allowing for better
overlap between computation and communica-
tion (Section 5.1), there remain significant inefficiencies. The necessity to upload parameters to the
GPU for upcoming computations introduces a large volume of communications. Additionally, when
employing Automatic Mixed Precision (AMP) (Micikevicius et al., 2017) training, which acceler-
ates computation using NVIDIA’s Tensor Cores 1, the discrepancy between the rapid computation
and slower communication phases is further magnified as AMP only accelerates the computation
but does not accelerate the communication. This is because, although AMP computes using a faster
bit format, the underlying storage format retains its original bit width. Consequently, the volume of
data communicated remains unchanged.

To tackle the inefficiencies highlighted, we introduce ZO-Offloading, a novel framework specif-
ically designed for ZO fine-tuning in LLMs with CPU offloading. This framework utilizes the
unique dual forward pass architecture of ZO methods to optimize interactions between CPU and
GPU, significantly enhancing both computational and communication efficiency. By building a
high-performance dynamic scheduler, ZO-Offloading achieves substantial overlaps in communi-
cation and computation. Our strategy further integrates AMP training, which not only improves
computation throughput but also incorporates low-bit weight compression during both parameter
uploads and offloads, further reducing the data transfer volume necessary for AMP training. To en-
hance practical usability and efficiency, we also propose asynchronous checkpointing for ZO LLM
training. These innovations make it feasible to fine-tune extremely large models, such as the OPT-
175B (Zhang et al., 2022) with over 175 billion parameters, on a single GPU equipped with just
24GB of memory—a capability previously unattainable with conventional methods (Figure 1). Ad-

1https://www.nvidia.com/en-us/data-center/tensor-cores/
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ditionally, our efficient framework operates without any extra time cost and decreases in accuracy
compared to standard ZO methodologies. Our contributions can be summarized as follows:

• Innovative use of CPU-offloading for ZO methods: We pioneer the application of CPU
offloading in the context of ZO optimization methods to dramatically reduce GPU mem-
ory requirements. This method allows for the efficient handling of model parameters by
dynamically transferring inactive data between the CPU and GPU, significantly extending
the capacity to train large models like OPT-175B on a single GPU.

• Low memory but high-throughput framework: We introduce a series of optimized fea-
tures that substantially reduce GPU memory use while maintaining high throughput. Our
dynamic scheduler improves GPU utilization by optimizing computation and communi-
cation overlaps. Reusable memory blocks minimize overhead and stabilize memory use,
while efficient parameter updating synchronizes updates with dual forward passes to reduce
data transfers. Extended AMP support and asynchronous checkpointing boost computa-
tional speed and reduce training interruptions, ensuring efficient training on constrained
hardware with minimal memory footprint.

• Empirical Validation and Experimentation: Our experiments demonstrate that ZO-
Offloading can efficiently fine-tune the OPT-175B model, with over 175 billion parame-
ters, on a single 24GB GPU—previously impossible with traditional methods. Crucially,
this is achieved with no additional time cost and decreases in accuracy, showcasing the
framework’s effectiveness and efficiency for large-scale model training.

2 RELATED WORK

Zeroth-Order (ZO) Optimization. ZO optimization offers a gradient-free alternative to first-order
(FO) optimization by approximating gradients through function value-based estimates. These es-
timates theoretically require only two forward passes but are believed to be prohibitively slow for
optimizing large models. Despite this limitation, ZO methods have been utilized in deep learning
to generate adversarial examples or adjust input embeddings (Sun et al., 2022a;b), though they have
not been widely adopted for direct optimization of large-scale models (Liu et al., 2020). Several
acceleration techniques have been proposed to address the scaling challenges of ZO optimization
and some of them have been used for LLM fine-tuning. These include using historical data to im-
prove gradient estimators (Cheng et al., 2021), exploiting gradient structures (Singhal et al., 2023) or
sparsity to reduce the dependence of ZO methods on the size of the problem (Chen et al., 2024; Cai
et al., 2022; 2021), and reusing intermediate features (Chen et al., 2024) and random perturbation
vectors (Malladi et al., 2023) during the optimization process. These advancements suggest that ZO
optimization could increasingly be applied to more complex and large-scale ML problems. While
previous ZO optimization efforts have primarily targeted algorithmic improvements for GPU mem-
ory efficiency, our approach extends these optimizations to the system level, enabling more robust
memory management and enhanced performance for large-scale machine learning applications.

CPU Offloading for LLMs. With recent advancements in LLMs, several approaches have emerged
to offload data to CPU memory, mitigating GPU memory limitations. One such method is vLLM
(Kwon et al., 2023), which utilizes PagedAttention to dynamically manage the key-value (KV) cache
at a granular block level. Portions of the KV cache can be temporarily swapped out of GPU memory
to accommodate new requests. Llama.cpp (Gerganov, 2023) addresses oversized LLMs by using
static layer partitioning. It stores certain contiguous layers in CPU memory while keeping others
in GPU memory. During computation, the CPU handles the layers in its memory, followed by
the GPU computing its assigned layers. FlexGen (Sheng et al., 2023), a GPU-centric inter-layer
pipeline method, seeks to improve throughput by pinning some model weights in GPU memory
for each layer. During computation, it overlaps GPU processing of the current layer with data
loading for the next. DeepSpeed (Rajbhandari et al., 2020) introduces a technique to offload the
first-order optimizer state to the CPU, significantly reducing GPU memory requirements during
training. Zero-offload (Ren et al., 2021) extends the DeepSpeed approach by not only offloading
data to the CPU but also engaging the CPU in computational tasks. Despite these advancements,
the predominant focus of previous research has been on optimizing LLM inference or first-order
optimization through strategic CPU-GPU data transfers. Our work, in contrast, introduces a novel
approach by implementing CPU offloading specifically for zeroth-order optimization and fine-tuning
of LLMs.
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3 PRELIMINARIES ON ZO AND ZO-SGD
ZO optimization offers a gradient-free alternative to first-order (FO) optimization by approximating
gradients through function value-based estimates. There are different ZO optimizers for estimating
the gradient. To better illustrate our framework, in this paper, we focus on the randomized gradient
estimator (RGE) proposed by (Nesterov & Spokoiny, 2017), which approximates the FO gradient
using finite differences of function values along randomly chosen direction vectors and has been
used widely in the ZO optimization literature. Our idea can be applied to other ZO optimizers.

Given a scalar-valued function f(·) and a model x with parameters in d dimensions, the RGE em-
ployed by (Malladi et al., 2023), referred to as r̂f(x), is to approximate rf(x) and is expressed
using central difference:

r̂f(x) = gz 2 Rd
, (1)

g =
f(x+ ✏z)� f(x� ✏z)

2✏
2 R1

, (2)

where z is a random direction vector drawn from the standard Gaussian distribution N (0, I), and
✏ > 0 is a small perturbation step size, also known as the smoothing parameter. g represents the
projected gradient computed using the model’s dual-forward passes. Notably, g 2 R1 is just a
scalar value and requires minimal memory space. The rationale behind RGE stems from the con-
cept of the directional derivative (Duchi et al., 2015). As ✏ approaches 0, the directional derivative
provides us an unbiased gradient estimator of rf(x). Thus, the RGE r̂f(x) can be interpreted as
an approximation of the FO gradient rf(x) using the directional derivative (Zhang et al., 2024).
Zeroth-order stochastic gradient descent (ZO-SGD) follows a similar algorithmic framework to its
first-order counterpart, SGD, but replaces the gradient with an estimated gradient via zeroth order
(function value) information for the descent direction.

Fine-tuning pre-trained LLMs typically demands substantial GPU memory. Previous first-order
methods encounter major challenges as LLM sizes grow, primarily due to the significant memory
overhead required for backpropagation, which involves storing activations during the forward pass
and gradients during the backward pass. In contrast, ZO can estimate gradients with only forward
passes, eliminating the need for activation caching. (Malladi et al., 2023) utilized the classical ZO
algorithm (based on RGE), named MeZO, to fine-tune pre-trained LLMs with up to 30 billion pa-
rameters on a single GPU. They capitalized on the memory-efficient nature of ZO optimization,
which eliminates the need for backpropagation and reduces memory costs. Since CPU resources
can be combined and offloaded, the memory and computational capacity of the GPU can be ex-
panded. To facilitate efficient fine-tuning of LLMs on a single GPU, we introduce ZO-Offloading, a
framework that strategically leverages both CPU and GPU resources for ZO.

4 ZO-OFFLOADING FRAMEWORK

Figure 2: Workflow of the ZO-Offloading framework (non-AMP) for fine-tuning LLMs.

In this section, we first provide an overview and a brief introduction to our ZO-Offloading frame-
work. To better illustrate our idea, we first describe the computation workflow of the original ZO op-
timization procedure for LLM fine-tuning. Initially, input data is loaded from the disk into the CPU
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and subsequently transferred to the GPU. Within the GPU, each module—including the embedding
layer, transformer blocks, and the language model (LM) head—executes dual forward computations
to estimate the projected gradient and update parameters. From the system perspective, traditional
deep learning frameworks like PyTorch (Paszke et al., 2019) typically manage both communication
(via interconnections, e.g., PCIe) and computation tasks with a single CUDA stream2, leading to
significant inefficiencies. Specifically, for ZO optimization, the i-th transformer block is uploaded
from the CPU to the GPU (the GPU is designated for computation-intensive tasks using its CUDA
and Tensor Cores, and the CPU memory is used for parameter storage), undergoes dual forward
computation, and then is offloaded back to the CPU. The i+1-th block must wait for the offloading
of the i-th block to finish before its uploading, leading to idle CUDA and Tensor Cores during com-
munication while the interconnection remains idle during computation. See Figure 6 in Appendix
for an illustration.

Figure 3: Workflow of the ZO-Offloading framework (AMP mode) for fine-tuning LLMs.

Central to our ZO-Offloading framework is the strategic utilization of CPU and GPU resources
(Section 5.1). This approach involves dynamically offloading model parameters to the CPU and
uploading them back to the GPU as needed for computation. Specifically, for the transformer model
structure, each transformer block is individually uploaded for processing and subsequently offloaded
post-computation, thus balancing communication and computation across blocks. As illustrated in
Figure 2, while the i-th transformer block is being computed, the i+1-th block is pre-uploaded, and
the i � 1-th block is offloaded simultaneously. This strategic overlapping ensures continuous and
efficient computation, reducing idle times and maximizing GPU utilization. In the uploading phase
of ZO-Offloading, transformer blocks are transferred into a reusable memory space on the GPU,
eliminating the extra time typically required for CUDA memory allocation (Section 5.2). Moreover,
parameter updates are ingeniously fused with the dual forward passes to minimize redundant data
transfers, thereby enhancing the overall efficiency of the model training process (Section 5.3).

Our ZO-Offloading framework further integrates a novel low-bit precision technique that efficiently
manages data transfers between the CPU and GPU in the AMP mode (see Figure 3 for an illustra-
tion). This technique is aligned with AMP protocols by ensuring that high-bit precision is main-
tained for parameter updates, while low-bit precision data is used for computation on the GPU
(Section 5.4). This dual-precision approach significantly reduces the communication overhead, op-
timizing memory usage without compromising computational accuracy. The adoption of low-bit
compression during both the upload and offload phases further minimizes the data transfer volume,
streamlining the training process and allowing for the efficient handling of large-scale models on
constrained hardware setups.

In the following section, we will provide challenges and details of our framework.

2https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
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5 DESIGN AND IMPLEMENTATION DETAILS

Algorithm 1 ZO-Offloading Dynamic Scheduler

Require: Transformer blocks {Wi}Ni=1 with number of transformer blocks N , embedding parame-
ters Embedding, and LM head LMhead.

1: Initialize a dynamic scheduler S{·} to control dual forward computation C(·), uploading U(·),
and offloading O(·) operations.

2: Asynchronously launch S{U(W1), C(Embedding)}.
3: for i = 1 to N � 1 do
4: Synchronously wait until U(Wi) finished.
5: if i = 1 then
6: Asynchronously launch S{U(Wi+1), C(Wi)}.
7: else
8: Synchronously wait until C(Wi�1) finished.
9: Asynchronously launch S{U(Wi+1), C(Wi), O(Wi�1)}.

10: end if
11: end for
12: Synchronously wait until U(WN ) and C(WN�1) finished.
13: Asynchronously launch S{C(WN ), O(WN�1)}.
14: Synchronously wait until C(WN ) finished.
15: Asynchronously launch S{C(LMhead), O(WN )}.

5.1 DYNAMIC SCHEDULER DESIGN FOR EFFICIENT OVERLAP

To overlap the data loading and computation process, we propose a dynamic scheduler, utilizing
the asynchronous execution on different CUDA streams. Specifically, our scheduler includes three
CUDA streams (Figure 2), which are utilized to control the i-th transformer block’s computation,
the i + 1-th block’s uploading, and the i � 1-th block’s offloading can occur concurrently. This
design minimizes data transfer conflicts and maximizes GPU utilization by keeping computational
and communication channels active.

However, designing this dynamic scheduler presents challenges when communication tasks outlast
computation tasks, leading to potential errors. For example, if the upload of the i-th block is incom-
plete when its computation begins, this can lead to errors, as the GPU computes with an incomplete
set of parameters. Similarly, if the computation of the i-th block is still ongoing when its offloading
begins, it can also result in errors because the computation is disrupted by the removal of necessary
data. To address this, our scheduler implements a locking mechanism for each block’s computation
task, ensuring it only starts once its corresponding upload is confirmed complete. While this solution
mitigates the issue of incomplete parameters, it can still potentially create bottlenecks if communica-
tion tasks consistently outlast computation tasks. Surprisingly, our evaluations show that with ZO’s
unique dual forward passes, which extend computation times, communication delays are no longer
the primary bottleneck in most scenarios.

Moreover, special attention needs to be given to the embedding parameters and the LM head, as
they represent the beginning and end of the model, respectively. By consistently maintaining both
the embedding and LM head on the GPU, we circumvent the overhead linked to frequent transfers.
For the embedding layer, simultaneous uploading of input data and embedding parameters could
compete for interconnection bandwidth. Moreover, keeping the embedding layer on the GPU en-
ables the pre-uploading of the first transformer block, effectively overlapping with the computations
of the embedding layer. Meanwhile, continuously keeping the LM head on the GPU removes delays
associated with its offloading—since no subsequent block computations overlap with this offload-
ing—and facilitates weight sharing with the embedding layer, as noted in some conditions (Radford
et al., 2019), thus consolidating related computations and enhancing operational efficiency. The
detailed scheduler design to apply ZO-Offloading on LLMs is shown in Algorithm 1.

5.2 EFFICIENT MEMORY MANAGEMENT VIA REUSABLE ONE BLOCK SPACE ON GPU
We can further optimize memory management by initially pre-allocating a reusable transformer
block of memory on the GPU. This strategy is implemented to circumvent the substantial time
overhead associated with repeated CUDA memory allocations (malloc) and frees, which are typi-
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cally required each time when data is transferred between the CPU and the GPU. By establishing a
dedicated memory space initially and reusing it for each transformer block, we avoid the need for
multiple malloc and free operations overhead the training process.

This reusable memory space is dynamically assigned to accommodate the parameters of each trans-
former block sequentially. Once a block’s computation is complete and its data is offloaded back to
the CPU, the same GPU memory space is immediately prepared to receive the next block’s parame-
ters from the CPU. This approach not only expedites the data transfer process but also stabilizes the
GPU’s memory usage, preventing fluctuations that could otherwise impact computational efficiency
and performance.

5.3 EFFICIENT PARAMETER UPDATE STRATEGY

In the ZO-Offloading framework, the parameter update strategy is meticulously designed to precede
the dual forward computations of each transformer block. Traditionally, each transformer block is
subjected to two distinct data transfer phases (Figure 7a): one for the dual forward computations and
another for applying gradient updates. This requirement stems from the fact that the (approximated)
gradients are obtained only after completing the dual forward computations for the entire model.
Consequently, parameters must be uploaded for the computation phase, offloaded upon comple-
tion, and then re-uploaded and offloaded again for the gradient update phase. This iterative process
effectively doubles the communication load and extends the duration of training.

By implementing preemptive parameter updates, the framework significantly curtails the number of
data transfers required per iteration (Figure 7b). With this strategy, once blocks are updated with the
last iteration’s gradients, only a single upload and offload cycle is necessary for each block. This
adjustment not only halves the usage of interconnection bandwidth but also enhances the efficiency
of the training process, thereby streamlining operations and reducing overhead.

5.4 ZO-OFFLOADING IN AMP MODE

Figure 3 illustrates the workflow of the ZO-Offloading framework under AMP mode, which employs
reduced precision formats to accelerate the training of LLMs. AMP leverages formats such as Tensor
Float Point 32 (TF32), which provides higher computational throughput compared to Float Point 32
(FP32). This acceleration is critical for enhancing training efficiency but introduces challenges in
maintaining effective computation-communication overlap, as the data transfer still utilizes the FP32
format.

To address this, the ZO-Offloading framework incorporates a compression mechanism where pa-
rameters are compressed to low-bit formats during offloading from GPU to CPU. This compression
significantly reduces the data volume, enabling quicker transfers and mitigating bandwidth limita-
tions. The current compression settings include bfloat16 and float16, which reduce the data size by
50%, and more aggressive reductions like float8, which compress to 25% of the original size.

Upon uploading these compressed parameters back to the GPU, they are decompressed and restored
to FP32 for high-precision parameter updates. Subsequent computations, particularly the dual for-
ward passes, are then performed using the TF32 format to exploit the computational speed.

5.5 EXTENSION: ASYNCHRONOUS CHECKPOINTING

Figure 4: Asynchronous checkpointing.

Checkpointing (Rojas et al., 2020) is an indispens-
able technique in the training of LLMs, acting as a
critical safeguard against data loss and enabling the
resumption of training from specified states. This
process involves periodically saving the state of the
model to disk, which becomes increasingly frequent
as the model size increases. This is essential for
preserving significant progress in model training but
introduces substantial computational and communi-
cation challenges. Traditionally, checkpointing a
large-scale LLM interrupts ongoing computations
as the model is transferred from the GPU to the
CPU and subsequently saved to disk. This can be
exceedingly time-consuming; for instance, employ-
ing torch.save() to checkpoint an 11-billion-
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parameter model can take up to 30 minutes.3 The
delays are primarily due to the extensive data involved and the limited bandwidth available for data
transfer.

Asynchronous checkpointing. In the ZO-Offloading framework, we exploit the fact that most pa-
rameters are already stored on the CPU, eliminating the need for a GPU-to-CPU offload during
checkpointing. However, the time required to transfer data from the CPU to the disk remains signif-
icant, often exceeding the time it would take to offload data from the GPU to the CPU.

To address these delays, we have developed a strategy for asynchronous checkpointing (Figure 4)
that allows training to continue uninterrupted. Specifically, the model parameters are conceptually
divided into two equal partitions: p1 and p2. p1 contains the first half of the whole transformer blocks
and the embedding module, while p2 includes the second half and the LM-head, maintaining the
integrity and order of the parameters. The dashed boxes in the figure represent the complete model
parameters. Checkpointing is initiated when p1 has completed its cycle of uploading, computation,
and offloading (UCO), but before p2 begins its cycle. This timing ensures that each part of the model
can be handled independently in terms of data saving.

The asynchronous checkpointing process is structured in three stages: Stage 1: Upon initiating
checkpointing in j-th training iteration, the scheduler launches multiple threads to handle three
tasks concurrently: saving p1 from CPU to disk, creating a self-copy of p1, and managing the UCO
cycle of p2. Stage 2: As the model progresses to the j + 1 training iteration, the scheduler waits
for the completion of p1’s self-copy to ensure data integrity, then asynchronously initiates the UCO
cycle for p1, while simultaneously saving p2 to disk and creating a self-copy of p2. Stage 3: The
scheduler waits for p2’s self-copy to complete before launching its UCO cycle.

The inclusion of self-copying stages is designed to safeguard against potential delays in saving to
disk. Self-copying is not only faster than transferring data from the CPU to the disk but also quicker
than the UCO cycles of p1 or p2. By the end of the j + 1-th iteration, the entire model is copied
on the CPU, ready for immediate use in the j + 2-th iteration’s UCO process without the need
for re-uploading from the disk. However, it is notable that although it increases throughput, this
asynchronous checkpointing method introduces a trade-off by increasing CPU memory usage.

6 EXPERIMENT

The experimental evaluation of our framework was conducted using the PyTorch deep learning li-
brary, integrated with NVIDIA CUDA streams to optimize parallel computation tasks. We selected
the Open Pre-trained Transformer (OPT) (Zhang et al., 2022) model family as the subject of our
experiments due to its open-source availability, widespread adoption in the research community,
and diverse range of model sizes, ranging from 125 million to 175 billion parameters, which allows
for a comprehensive assessment of our framework’s performance across varying scales of model
complexity. In our evaluation, MeZO serves as the baseline method, as it is the most memory-
throughput efficient ZO method currently. Our framework builds upon MeZO, reducing GPU mem-
ory usage while maintaining throughput and precision. All performance evaluation experiments are
done with dataset SST-2 (Socher et al. (2013)). Additional experimental settings, the evaluation of
asynchronous checkpointing, and more extra experiments are included in Appendix C and D.

6.1 MAIN RESULTS

The performance results of our experiments are presented in Table 1, where we compare the GPU
memory usage and throughput of the MeZO and ZO-Offloading frameworks, employing both FP32
and FP16 data formats. The results demonstrate a consistent advantage of ZO-Offloading in terms
of GPU memory utilization across all model sizes, highlighting significant efficiency improvements,
especially in large-scale models like OPT-175B. This efficiency is attributed to ZO-Offloading’s
design, which strategically utilizes GPU memory to temporarily store only a limited number of
transformer blocks for computation rather than the entire model. Notably, the memory savings
become more pronounced as the model size increases. For smaller models, the GPU memory savings

3https://pytorch.org/blog/reducing-checkpointing-times/
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Table 1: Main results of ZO-Offloading performance for various model configurations and
both FP32 and FP16 modes. Instances of ‘-’ in the table indicate scenarios where the corresponding
method failed to execute due to memory constraints. The values in parentheses (x) represent the ratio
of each measurement compared to the baseline MeZO (first column) configuration.

Model GPU Memory Usage (MB) # Throughput (tokens/sec) "
MeZO(32) ZO-Offload(32) MeZO(16) ZO-Offload(16) MeZO(32) ZO-Offload(32) MeZO(16) ZO-Offload(16)

OPT-125M 3091 2941(x0.95) 1801(x0.58) 1661(x0.54) 14889 13074(x0.89) 31058(x2.09) 31058(x2.09)
OPT-350M 4219 3393(x0.81) 2389(x0.57) 1643(x0.39) 5274 5099(x0.97) 13508(x2.56) 12284(x2.32)
OPT-1.3B 9117 4413(x0.48) 4887(x0.54) 2651(x0.29) 1954 1954(x1.00) 6788(x3.47) 6788(x3.47)
OPT-2.7B 15277 5261(x0.34) 7933(x0.52) 3111(x0.20) 1087 1087(x1.00) 4227(x3.89) 4227(x3.89)
OPT-6.7B 32083 8329(x0.26) 16311(x0.51) 4539(x0.14) 499 499(x1.00) 2455(x4.92) 2455(x4.92)
OPT-13B 58251 12113(x0.21) 29411(x0.50) 6445(x0.11) 270 270(x1.00) 1406(x5.21) 1340(x4.96)
OPT-30B - 18879 63953 10369 - 122 651 597
OPT-66B - 29937 - 14143 - 40 - 273

OPT-175B - 49203 - 24667 - 14 - 37

are less pronounced due to the significant proportion of memory allocated for input data, which
diminishes the relative impact of the memory optimization.

In terms of throughput, ZO-Offloading maintains a performance comparable to MeZO in most tested
scenarios without any additional time overhead. The instances where ZO-Offloading exhibits a
decrease in throughput, such as with the OPT-125M model in FP32 format, can be primarily at-
tributed to the dynamics of computation and communication. In these cases, the computation of
each transformer block’s dual forward passes completes quicker than their corresponding communi-
cation tasks, leading to idle times as the dynamic scheduler (discussed in Section 5.1) synchronizes
and waits for these communication tasks to conclude. It is important to note that our results do
not show a consistent pattern where either smaller or larger models benefit more significantly from
the computation-communication overlap, indicating that the effectiveness of this overlap does not
linearly correlate with model size.

Additionally, our method should maintain accuracy compared to MeZO, as we did not alter the
underlying computation of ZO optimization. We conducted accuracy verification experiments to
confirm this. The results of these experiments are detailed in Table 4 in the Appendix. These tests
affirm that our ZO-Offloading method preserves model accuracy across different model sizes and
data formats, reinforcing the robustness of our approach.

6.2 ABLATION STUDY OF SCHEDULER, REUSABLE MEMORY, AND EFFICIENT UPDATING

Table 2: Throughput (token/sec) results to validate proposed features.

Model MeZO ZO-Offloading ZO-Offloading ZO-Offloading ZO-Offloading(no scheduler overlap) (no reusable memory) (no efficient update)
OPT-1.3B 1954 1109 (x0.57) 735 (x0.38) 1567 (x0.80) 1954 (x1.00)
OPT-2.7B 1087 573 (x0.52) 422 (x0.39) 849 (x0.78) 1087 (x1.00)
OPT-6.7B 499 225 (x0.45) 184 (x0.37) 373 (x0.74) 499 (x1.00)

In order to discern the individual contributions of key features within the ZO-Offloading framework
to its overall performance, an ablation study was conducted focusing on three critical components:
the dynamic scheduler (Sec. 5.1), reusable memory (Sec. 5.2), and efficient parameter updating
(Sec. 5.3). This study mainly focused on throughput because the primary objective of the three fea-
tures under investigation was to enhance throughput without impacting ZO-Offloading’s inherent ca-
pability to reduce GPU memory usage. The main results, as presented earlier, clearly demonstrated
that ZO-Offloading effectively decreases GPU memory consumption. Therefore, an ablation study
on memory usage was deemed unnecessary, as the CPU-offloading mechanism inherently manages
to reduce memory demands without the need for additional features aimed specifically at memory
reduction. Given the tightly integrated nature of our system, traditional ablation methodologies that
add one feature at a time to a baseline are impractical. Instead, we adopted a reverse ablation ap-
proach where each feature was individually disabled. This allowed us to observe the decrement in
throughput relative to the fully operational framework, thereby highlighting the significance of each
component. We mainly use OPT-1.3B, OPT-2.7B, and OPT-6.7B in the ablation study. The ablation
study of more models is included in the Appendix (Table 5).
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The results, presented in Table 2, provide a clear illustration of how the absence of each feature
impacts the system’s throughput: (1) Horizontal Comparison. Across all models, the removal of
reusable memory results in the most substantial decrease in throughput, followed by the dynamic
scheduler, and finally, the efficient parameter updating. This order of impact suggests that while
all three features are pivotal, the overhead introduced by CUDA malloc operations, which are elim-
inated by reusable memory, significantly outweighs the communication delays between the CPU
and GPU, managed by the dynamic scheduler and efficient parameter updating. For instance, when
reusable memory is not employed, the throughput drops to 37% of the fully optimized framework
for the OPT-6.7B model, highlighting its critical role in enhancing performance. (2) Vertical Com-
parison. As the model size increases, the relative importance of the dynamic scheduler and efficient
parameter updating grows more pronounced. This trend is observable from the throughput: for
larger models like OPT-6.7B, the reduction in throughput when the scheduler and efficient update
features are disabled is relatively larger than in small models. This indicates that as models become
larger, the complexities and overheads associated with managing and optimizing communications
between CPU and GPU become more critical to maintaining performance. Conversely, the impact
of reusable memory remains relatively constant across different model sizes, reinforcing the idea
that while CUDA malloc operations are significant, their relative burden does not scale in the same
way as communication overheads.

6.3 EVALUATION OF AMP MODE

Table 3: Throughput (token/sec) results to validate AMP Mode. AMP auto-cast with FP16 (top)
and BF16 (below).

Model ZO-Offload ZO-Offload ZO-Offload ZO-Offload
(non-compress) (FP16) (BF16) (FP8)

OPT-1.3B 4827 4770 (x0.988) 4760 (x0.986) 4802 (x0.995)
OPT-2.7B 2811 2974 (x1.058) 2974 (x1.058) 2997 (x1.066)
OPT-6.7B 1271 1641 (x1.291) 1641 (x1.291) 1662 (x1.308)
OPT-1.3B 4565 4430 (x0.970) 4430 (x0.970) 4463 (x0.978)
OPT-2.7B 2778 2816 (x1.014) 2816 (x1.014) 2818 (x1.014)
OPT-6.7B 1273 1594 (x1.252) 1594 (x1.252) 1612 (x1.266)

The efficiency of the AMP mode is shown in Table 3, where we evaluate the throughput using
two AMP auto-cast computational data formats: FP16 and BF16. Additionally, we investigate the
impact of various compression formats (FP16, BF16, and FP8) on communication and computation
performance as detailed in Section 5.4.

Across all models tested, a clear trend emerges: lower-bit compression formats consistently yield
higher throughput. Notably, there is no significant difference in throughput between the 16-bit
formats, FP16 and BF16, suggesting that the compression efficiency rather than the specific format
type is the crucial factor in enhancing communication speed.

In most scenarios (specifically for the OPT-2.7B and OPT-6.7B models), employing low-bit com-
pression results in superior throughput, underscoring the benefits of reducing data transfer vol-
umes. However, exceptions are observed, such as with the OPT-1.3B model, where non-compressed
data slightly outperforms the compressed formats. This outcome is attributed to the system being
computation-bound rather than communication-bound. In such contexts, the additional computa-
tional demands imposed by the compression process do not sufficiently offset the benefits of reduced
data transfer times, thereby introducing an overhead that detracts from the overall system efficiency.

7 CONCLUSION

In this paper, we presented ZO-Offloading, an efficient framework that enables the training of ex-
tremely large language models, such as the OPT-175B, on a single 24GB GPU—a capability pre-
viously unattainable with traditional methods. By effectively integrating CPU offloading, high-
performance dynamic scheduler, efficient memory management, efficient parameter updating, AMP
support, and asynchronous checkpointing, our framework reduces GPU memory demands while
maintaining high throughput without additional time costs. These innovations not only lower the
bar for teams with limited hardware resources and advance the democratization of large models,
but also open new avenues for advancing AI technology more efficiently. Moving forward, we plan
to further enhance ZO-Offloading, exploring synergies with emerging hardware and optimization
techniques to keep pace with the evolving demands of AI model training.
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Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé,
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