Learning Optimal Advantage from Preferences
and Mistaking it for Reward

W. Bradley Knox ! > Stephane Hatgis-Kessell ! Sigurdur Orn Adalgeirsson’ Serena Booth>® Anca Dragan*
Peter Stone ' > Scott Niekum ¢

Abstract

We consider algorithms for learning reward func-
tions from human preferences over pairs of trajec-
tory segments—as used in reinforcement learning
from human feedback (RLHF)—including those
used to fine tune ChatGPT and other contemporary
language models." Most recent work on such al-
gorithms assumes that human preferences are gen-
erated based only upon the reward accrued within
those segments, which we call their partial return
function. But if this assumption is false because
people base their preferences on information other
than partial return, then what type of function is
their algorithm learning from preferences? We ar-
gue that this function is better thought of as an ap-
proximation of the optimal advantage function, not
as a partial return function as previously believed.

1. Introduction

The dominant model of human preference is the partial
return preference model, wherein preferences are deter-
mined only by accumulated reward during each segment.
Knox et al. (2022) recently argued that the partial return
preference model has fundamental flaws that are removed
or ameliorated by a model of human preference based
upon the optimal advantage of each segment, therein cast
as (negated) regret. Optimal advantage is a measure of
deviation from optimal decision-making.

This past work provides arguments for the superiority of
the regret preference model (1) by intuition, regarding how
humans are likely to give preferences (e.g., see Figure 2);
(2) by theory, regarding how we would normatively want

"University of Texas at Austin >Google Research *MIT CSAIL
4UC Berkeley *Sony Al ®*University of Massachusetts Amherst.
Correspondence to: W. Bradley Knox <bradknox @cs.utexas.edu>.

The Many Facets of Preference Learning Workshop at the Interna-
tional Conference on Machine Learning (ICML), Honolulu, Hawaii,
USA, 2023. Copyright 2023 by the author(s).

'They are a special case where segments include only one state-
action pair.

humans to give preference labels to improve the alignment
of the resulting learned reward function with their true
preferences; (3) by descriptive analysis, showing that the
likelihood of a human preferences dataset is higher under
the regret preference model than under the partial return
preference model; and (4) and by empirical results, showing
that with both human and synthetic preference labels, the
regret preference model is consistently more sample efficient,
requiring fewer preference labels to reach a certain level of
performance. Section 2 of this paper provides details on the
general problem setting and on these two models.

In Section 3, we assume that preference labels are based
upon regret and then explore the consequences for these
common algorithms that assume the partial return preference
model. The discussion is built from the insight that these
algorithms are using optimal advantage as reward.

We then show in Section 4 that recent algorithms used to fine-
tune state-of-the-art language models ChatGPT (OpenAl,
2022), Sparrow (Glaese et al., 2022), and others (Ziegler
et al., 2019; Ouyang et al., 2022; Bai et al., 2022) can be
viewed as an instance of learning an optimal advantage
function and, surprisingly (because their authors describe
them as learning a reward function), treating it as one. In
multi-turn (i.e., sequential) settings such as that of ChatGPT,
Sparrow, and research by Bai et al. (2022), this alternative
framing allows the removal of an arbitrary and perplexing
assumption of these algorithms: that a reward function
learned for a sequential task is instead used in a bandit
setting, effectively setting the discount factor ~y to 0.

2. Preliminaries: Preference
models for learning reward functions

The background from here through Section 2.2 is lightly
modified text from Knox et al. (2022) (used with permission).

‘We assume that the task environment is a Markov decision
process (MDP) specified by the tuple (S, A, T, 7y, Do, 7). S
and A are the sets of possible states and actions, respectively.
T is a transition function, T: S x A — S. -~ is the discount
factor and Dy is the distribution of start states. Unless
otherwise stated, we assume undiscounted tasks (i.e., y=1)

Dataset created by
reward function 7 and

Algorithm for learning
from preferences

partial return learning g

preference model

regret learning by regret algorithm

preference model

regret learning g

preference model

Output of learning
from preferences

Additional step to create policy
(other than greedy action selection)

- policy improvement ~ %k
- olicy improvement ~ 3k
r policy imp| 7T7"
A * ~ %
A; T,

Figure 1. Three algorithms that are each justified by their assumed preference model. The top algorithm was popularized by Christiano et al.
(2017) and the middle algorithm was proposed by Knox et al. (2022). Here we briefly discuss the bottom algorithm. The reward function 7,

*

optimal advantage function Az, and optimal policy 7 are merely approximations of the true versions of these functions. The function g is
defined in Equation 6 and allows for different interpretations of what the learned g function represents, including A;: or 7. This paper
focuses on what occurs when one believes they are running the top algorithm but have actually learned A;: and are using it as the reward

function.

that have terminal states, after which only O reward can be
received. r is a reward function, 7 : S x A x S — R, where
the reward r; at time ¢ is a function of s;, a;, and s441. An
MDP\r is an MDP without a reward function.

Throughout this paper, r refers to the ground-truth reward
function for some MDP; 7 refers to a learned approximation
of r; and 7 refers to any reward function (including r or
7). A policy (7 : S x A — [0,1]) specifies the probability
of an action given a state. Q% and V; refer respectively to
the state-action value function and state value function for
an optimal policy, 7*, under 7. The optimal advantage
function is defined as A%(s,a) £ Q%(s,a) — VZ(s). Like
our notation for reward, Q}f, V;.*, and /1; express learned
approximations of Q%, V, and A? for some reward function
7, and Q%, Vi, and A% represent both approximations
and ground-truth functions. Throughout this paper, the
ground-truth reward function r is used to algorithmically
generate preferences when they are not human-generated,
is hidden during reward learning, and is used to evaluate the
performance of optimal policies under a learned 7.

2.1. Reward learning from pairwise preferences

A reward function can be learned by minimizing the
cross-entropy loss—i.e., maximizing the likelihood—of
observed human preference labels, a common approach in
recent literature (Christiano et al., 2017; Ibarz et al., 2018;
Wang et al., 2022; Biyik et al., 2021; Sadigh et al., 2017; Lee
etal., 2021a;b; Ziegler et al., 2019; Ouyang et al., 2022; Bai
etal., 2022; Glaese et al., 2022; OpenAl, 2022).

Segments Let o denote a segment starting at state
sg. Its length |o| is the number of transitions within the
segment. A segment includes |o|+1 states and |o| actions:
(s§,a8,s7,af,...,s7,). Inthis problem setting, segments
lack any reward information. As shorthand, we define
or = (s7,a7,s7,) and allow functions to ignore the s7,
component of o, when their input does not include the next

state. A segment o is optimal with respect to 7 if, for every
i€{l,...,]o]-1}, Qi(s7,a7) = VF(s7). A segment that is
not optimal is suboptimal. Given some 7 and a segment o,

7 £7(s7,a7,s7, 1), and the partial return of a segment o

is Z‘;'(; 1fytft, denoted in shorthand as ¥, 7.

Preference datasets Each preference over a pair of seg-
ments creates a sample (o1,09,4) in a preference dataset D .
Vector p = (p1,u2) represents the preference; specifically, if
o1 is preferred over oo, denoted o1 > 02, = (1,0). pis (0,1)
if 01 <03 and is (0.5,0.5) for o1 ~ 09 (no preference). We
assume that the two segments in a sample are equally sized.

Loss function To learn a reward function from a preference
dataset, D., a common assumption is that the preference
labels were generated by a preference model P that arises
from an unobservable ground-truth reward function . We
approximate r by minimizing cross-entropy loss to learn 7:

loss(7,Ds)=

—Z p1logP(oy = 02|f)+ pelog P01 < 02| 7) M
(Jl,Ug,M)ED>

This loss is under-specified until P(oy > o3|7) is defined,
which is the focus of Knox et al. (2022) and this paper.

Preference models A preference model determines the
probability of one trajectory segment being preferred over
another, P(o1 > 02|7"). Preference models could be applied
to model preferences provided by humans or other systems.
Preference models can also directly generate preferences,
and in such cases we refer to them as preference generators.

2.2. Two preference models: partial return and regret

Partial return The aforementioned recent work assumes
human preferences are generated by a Boltzmann distribu-
tion over the two segments’ partial returns, expressed here

as a logistic function:?

Px (01> 0o|) :logistic(Eglf— S, r))

Regret We introduce an alternative preference model
that Knox et al. (2022) designed to reflect segments’
deviations from optimal decision-making, based on the
regret of each transition in a segment. We first focus on
segments with deterministic transitions. For a transition
(8¢,a¢,5:41) in a deterministic segment, regrety(o:|7) =
Vi (s7) =7+ VZ(s7,1)]. For afull deterministic segment,
lo|—1

regretq(o|F) = regretq(o|T
gd(\);gd(t\) 3)

=Vi (sg) = (Bo+VE (s7,))),

with the right-hand expression arising from cancelling out in-
termediate state values. Therefore, deterministic regret mea-
sures how much the segment reduces expected return from
VZ(sg). An optimal segment, o*, always has 0 regret, and
a suboptimal segment, o ¥, will always have positive regret.

Stochastic transitions, however, can result in
regrety(o*|f) > regrety(o~*|7), losing the property
above. To retain it, we note that the effect on expected return
of transition stochasticity from a transition (s,a¢,8¢41) is
[Ft + VZ(s¢11)] — QE(s¢,a¢) and add this expression once
per transition to get regret(o), removing the subscript d
that refers to determinism. The regret for a single transition
becomes regret(o|F) = [VF(s7) — [Fr + V(s)] +
(17 + V7 (55,1 = Qs ,a0)] = Vi (s7) — Qi (s af) =
—A%(s7,a7). Regret for a full segment is

lo|—1

regret(o|r) = Z regret(o¢|7)
t=0

lo]—1

=3 [wen-Qisian] @

=) —A(s7.a]).

The regret preference model is the Boltzmann distribution
over negated regret:

Pregret (01 > 0’2|7Z)

£ Jogistic (regret(ag |7)—regret(oq |F))

(5)
[o1]—1 lo2|—1
:logistic(Z Ax(o}) - Z A;(J?))
t=0 t=0

(Recall A%(oy) = A%(s7,a).) Lastly, we note that if two
segments have deterministic transitions, end in terminal

Unless otherwise stated, we ignore the temperature because
scaling reward has the same effect.

states, and have the same starting state, this regret model
reduces to the partial return model: Pregret (+|7) = Ps,. (|T).

Algorithms in this paper All algorithms for learning from
preferences can be summarized simply as “minimize Equa-
tion 1”. The two algorithms for learning reward functions
differ only in how the preference probabilities are calculated.

Suboptimal segment Optimal segment

I

Equal partial return
Lower regret

GOAL GOAL

2

Equal partial return
Higher regret

Figure 2. Two segments in an undiscounted task with —1 reward
each time step. The partial return of both segments with respect to
the true reward function is —2. The regret of the left segment is 4.
The right segment is optimal and therefore has a regret of 0. The
regret preference model is more likely to prefer the right segment—
as we suspect our human readers are—whereas the partial return
preference model is equally likely to prefer each segment.

2.3. Past results comparing these preference models

In addition to intuitively considering how each of these
preference models fit human preferences (see Figure 2),
Knox et al. (2022)’s main analyses of these two preference
models focus on two questions.

Normative analysis First, they ask which preference
model is a more desirable generator of preferences, ignoring
how well a human can follow the preference model.

Part of their analysis focuses on the property of reward
identifiability. Reward identifiability holds if, for any MDP,
an exhaustively infinite dataset labeled by a preference
model will always contain the information needed to recover
a reward function with the same set of optimal policies as
the ground-truth reward function underlying the preferences.
Knox et al. prove that the regret preference model has reward
identifiability with either noiseless or stochastic preferences.
And they prove that the partial return preference model lacks
reward identifiability for noiseless preferences.

Additionally, they consider how performant reward functions
are that are learned by each preference model under the
seemingly ideal conditions of having each model generate
its own preferences dataset, making each preference model
exactly correct for its own training set. On 100 randomly
generated grid world MDPs, near-optimal performance is
defined as having mean return that is no more than 10%
of the distance from an optimal policy’s mean return to

a uniformly random policy’s mean return. They find that
learning with the regret preference model results in a
near-optimal policy more often in these MDPs than with the
partial return preference model, consistently across training
set sizes from 3 to 3000 preferences.

Analysis with human-generated preferences Second,
Knox et al. ask which preference model is more compatible
with human-generated preferences. On a rich grid world
MDP, they gathered a dataset of 1812 preferences from 50
subjects. This dataset has higher likelihood under the regret
preference model than under the partial return preference
model. Although learning a reward function with either
model reaches near-optimal performance on the full human
preferences dataset, when presented with smaller subsets
of the dataset, the regret preference model more frequently
produces a near-optimal policy.

Based on both types of analysis, they thus conclude that
the regret preference model is superior to the (heretofore
standard in the literature) partial return model. However,
they do not examine the implications of assuming that people
are providing preference labels based on the partial return
model when they are actually doing so based on the regret
model. That is the question examined in this paper.

3. Learning optimal advantage
from preferences and using it as reward

Here we examine what is actually learned when preferences
are assumed to arise from partial return but actually come
from regret (Equation 2). To start, let us unify the two
preference models from Section 2.2 into a single general
preference model.

lo1]—1 lo2]—1
P(gl>-o—2|f):logistic(> gloh)= > g(af)) ©)
t=0 t=0

In the above unification, the segment statistic in the
preference model is expressed as a sum of some
function ¢g over each transition in the segment:

2ot (o) = S0t a(s7, a7, s71). When the
partial return preference model generates preferences,
g(oy) = 7(s7,a7,s7, 1), and the parameters of the reward
function 7 are learned via Equation 1.

However, evidence suggests that human preferences are more
likely to be generated by the regret preference model (Knox
et al., 2022). When the regret preference model generates
preferences, we instead define g(0) = A% (o) = A%(s7,a9)
and the parameters of this optimal advantage function can be
learned directly, also via Equation 1. This creates the bottom
algorithm of Figure 1, deviating from the middle algorithm
there by Knox et al., for learning a reward function. No
reward function is represented or learned, though we still
assume that preferences in the training set were generated

by regret under the hidden reward function r. Therefore,
the A’ that is estimated as A; is the advantage function for
an optimal policy under this hidden, preference-generating
reward function, 7.

3.1. Using A’ as a reward function

Under our assumption of regret-based preferences, learning
a reward function with the partial return preference
model—the dominant method of RLHF—effectively uses
an approximation of A7 as a reward function, 7 = flﬁ. Let
us first assume perfect inference of A* (i.e., that A* = A*),
and consider the consequences.

Optimal policies are preserved. Contrary to our initial
intuition, using A’ as a reward function preserves the set of
optimal policies. The proof sketch follows.

Let M be the ground-truth MDP, with r, and M’ be M
modified such that its reward function is ' = A%. In M,
A (s,a)=0if and only if action a is optimal in state s under
the ground-truth reward function r. Otherwise, A% (s,a) <0.
Therefore, only trajectories that are optimal with respect to
r will consist of transitions whose optimal advantages are
all 0. Consequently a trajectory will have a return of 0 in M’
if and only if it is optimal in M.

In M, since A}(s,a) < O for any state and action and
AZ%(s,a) =0 for at least one action per state, the maximum
from any state in M’ is 0. Therefore, in M’, a trajectory is
optimal if and only if its return is 0.

Putting together the final assertions of each of the previous
two paragraphs, a trajectory is optimal in M if and only if
itis optimal in M.

An underspecification issue is resolved. As we discuss in
Section 4, when segment lengths are 1, the partial return pref-
erence model ignores the discount factor, making the choice
of ~y arbitrary, despite that its choice often affects the set of
optimal policies. However, in M’ defined above, the discount
factor does not affect the set of optimal policies, as we explain
below. Optimal trajectories have returns of 0 and suboptimal
trajectories have negative returns. This line of separation
remains under any v > 0, since O reward discounted with
~ >0 is still 0 and negative reward discounted with v >0 is
still negative. Fory =0, QF, =r'= A%, and so 7}, (s) =
argmaze[Qr (s,a)] = argmazx,[A%(s,a)] = 7}, also pre-
serving the set of optimal policies from M, which we estab-
lished above has the same optimal policies as M’ with v > 0.

Reward is highly shaped. In the research by Ng et al.
(1999) on potential-based reward shaping, they suggest
that a particularly potent form of their approach is to define
the potential function, ¢(s) = Vs * (s). Some algebraic
manipulation reveals that the resulting MDP uses A as

reward and is the same as M’ defined above. We suspect
further analysis will show that the shaped reward—despite
preserving the set of optimal policies—will generalize
poorly to other MDPs with the same reward function but
different transition dynamics.

Policy improvement wastes computation and environ-
ment sampling. Although conducting policy improvement
in this highly shaped M’ may at first seem appealing, there
is actually nothing that needs to be learned from experience
in the environment: setting 7(s) = argmaz,[A%(s, a))
provides an optimal policy.

3.2. Using the learned flj as a reward function

An important caveat to the preceding analysis is that the
algorithm does not necessarily learn A. Rather it learns its
approximation, Ay.

One potential issue is that adding a constant to /Al;i does not
change the likelihood of a preferences dataset, making the
learned value of mazx,A*(-,a) arbitrary. (For A*, it is 0.)
If tasks have varying horizons, then different choices for
this maximum value can determine different sets of optimal
policies (e.g., by changing whether termination is desirable).
One solution is to convert varying horizon tasks to continuing
tasks by including infinite transitions from absorbing states
after termination, where all such transitions receive 0 reward.
Note that this issue does not exist when acting directly from
Ar—ie., m(s) = argma:ga[flji(s,a)]—for which adding a
constant to the output of A’ does not change 7.

Another issue is that A;", will almost surely have some error,
and adding policy improvement could compound that error
with its own.

3.3. Summary

When regret-based preferences are learned from using the
partial return preference model, the theoretical result is
surprisingly not as harmful as this apparent misuse suggests
it would be. Perhaps this analysis explains why the partial
return preference model—shown by Knox et al. (2022)
to not model human preferences well—nonetheless has
achieved impressive performance on numerous tasks. Yet
it has several potential weaknesses, including potentially
being a waste of computation and environment sampling.

4. Reframing related
work on fine-tuning generative models

We now argue that certain high-profile applications of
the partial return preference model—to fine-tune large
language models for text summarization (Ziegler et al.,
2019), to create InstructGPT and ChatGPT (Ouyang et al.,
2022; OpenAl, 2022), to create Sparrow (Glaese et al.,

2022), and in work by Bai et al. (2022)—include additional
assumptions—one of which appears unjustified in sequential
language tasks—that fortuitously allow an alternative
interpretation of their approach: they are applying a
regret preference model and are learning an optimal
advantage function, not a reward function.

In these approaches, several assumptions are made:

» Preferences are generated by the partial return
preference model.

* During policy improvement, the sequential task is
treated as a bandit task at each time step. That treatment
is equivalent to setting the discount factor to 0 during
policy improvement.

¢ The reward function is R — S x A, not taking the next
state as input.

These approaches learn g as in Equation 6. Since these
algorithms assume that preferences are generated by the
partial return preference model, the learned g function
is a reward function. They also assume v = 0 during
what would be the policy improvement stage. There-
fore, #(s,a) = Q%(s,a), and for any state s, 7i(s) =
argmax,Q(s,a) =argmaz,r(s,a) =argmaz.g(s,a).

Problems with the above assumptions Many of the lan-
guage models considered here are applied in the sequential
setting of multi-turn, interactive chat, such as ChatGPT (Ope-
nAl, 2022), Sparrow (Glaese et al., 2022), and work by Bai
etal. (2022). Treating these as bandit tasks (or equivalently
setting v=0) is an unexplained decision that contradicts how
reward functions are used in sequential tasks, to accumulate
throughout the task to score a trajectory as return.

Worse, the choice of + is arbitrary in the original framing
of their algorithms. Because they also assume |o| =1, then
the partial return of a segment reduces to the immediate
reward without discounting: ZEJWW(S,‘Z,CL?) =7(sg,ad).
Consequently, v curiously has no impact on what reward
function is learned from the partial return preference model
(assuming the standard definition in this setting that 0° =1).
This lack of impact is a generally problematic aspect of
learning reward functions with partial return preference
models, since changing ~ for a fixed reward function is
known to often change the set of optimal polices. (Otherwise
MDPs could be solved much more easily by setting v =0
and myopically maximizing immediate reward.)

Despite two assumptions that are unjustified and appear
to have significant consequences—that preferences are
driven only by partial return and that v = 0—the technique
is remarkably effective, producing some of the most capable
language models at the time of writing.

Dataset created by
reward function 7" and

Algorithm for learning
from preferences

partial return learning g

preference model

regret learning by regret algorithm

preference model

regret learning g

preference model

Output of learning
from preferences

Additional step to create policy
(other than greedy action selection)

~ nothing ~ X
r oo . T

ecause y=0 and next state is not input to r T

- policy improvement ~ 3k

r d i

A* ~ 3k

r 7T7“

Figure 3. The three algorithms from Figure 1, with the top algorithm modified to reflect the assumptions by related work on fine-tuning
language models, discussed in Section 4. With these assumptions, the top algorithm—Iearning a reward function using the partial return
preference model—is procedurally equivalent to the bottom algorithm for learning an optimal advantage function.

Greedy action
selection as an RL
problem

agent (LM)
agent [:]
(Lm) 1 &

action
(response)

A multi-turn
language problem

agent
(from policy
gradient)

action
(next token)

environment
(token
appender)

observation
(prompt +
tokens so far)

observation
(prompt)

Reward

environment G(response, history) for the final token

(human) 0 for earlier tokens

Figure 4. This paper focuses exclusively on the problem to the left,
which involves multiple turns of the human providing a prompt and
the language-model agent responding. The problem on the right is a
common artificial constraint on action selection to make it tractable,
forcing the policy to choose one token at a time, sequentially; it does
not involve any interaction with the human (i.e., the environment).

Fine-tuning with regret-based preferences Let us
instead assume preferences come from the regret preference
model, which Knox et al. (2022) and we have argued better
describes human preferences. As we subsequently explain,
the v = 0 assumption then has no effect and therefore can
be removed, avoiding both of the troubling assumptions.
Specifically, if preferences come from the regret prefer-
ence model, then the same algorithm’s output g is A
Therefore, under this regret-based framing, for any state s,
i (s) = argmax,A%L(s,a) = argmax,g(s,a). Therefore,
both the learning algorithm and action selection for a greedy
policy are functionally equivalent to their algorithm, but
their interpretations change. Since the discount factor, 7,
is already included in the calculation of advantage, its value
has no effect on action selection (or the learning algorithm)
and the assumption that v =0 can be removed.

In summary, assuming that learning from preferences
produces an optimal advantage function—the consequence
of adopting the more empirically supported regret preference
model—provides a more consistent framing for these
algorithms.

A common source of confusion Greedy action selection
can itself be challenging for large action spaces. These
language models have large action spaces, since choosing
a response to the latest human prompt involves selecting
a large number of tokens. This choice of response is a
single action that results in interaction with the environment,
the human. Instead Ouyang et al. (2022) artificially
restrict the selection of an action to itself be a sequential
decision-making problem, forcing the tokens to be selected
one at a time, in order from the start to the end of the text,
as Figure 4 illustrates. They use a policy gradient algorithm,
PPO (Schulman et al., 2017), to learn a policy for this
sub-problem, where the RL agent receives 0 reward until the
final token is chosen. At that point, under their interpretation,
it receives the learned bandit reward from the left problem in
Figure 4. This paper does not focus on how to do greedy ac-
tion selection, and we do not take a stance on whether to treat
it as a token-by-token RL problem. However, if one desires to
take such an approach to greedy action selection while seek-
ing 7(s) = argmax,|[A*(s,a)], then the bandit reward is
simply replaced by the optimal advantage, again executable
by the same code, since both are simply the outputs of g.

Implications for future work on fine-tuning language
models and other generative models Extensions of
the discussed fine-tuning work may seek to learn a reward
function to use beyond a bandit setting. Motivations for
doing so include reward functions generalizing better when
transition dynamics change and allowing the language model
to improve its behavior based on experienced long-term out-
comes. To learn a reward function to use in such a sequential
problem setting, framing the preferences dataset as having
been generated by the regret preference model would provide
a different algorithm for doing so (in Section 2). It would
also avoid the arbitrariness of setting v > 0 and learning
with the partial return preference model, which outputs
the same reward function under these papers’ assumptions
regardless of the discount factor. The regret-based algorithm
for learning a reward function is more internally consistent

and appears to be more aligned with human stakeholder’s
preferences. However, it does present research challenges
for learning reward functions in complex tasks such as those
for which these language models are fine-tuned.

References

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A.,
DasSarma, N., Drain, D, Fort, S., Ganguli, D., Henighan,
T., et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862, 2022.

Biyik, E., Losey, D. P, Palan, M., Landolfi, N. C., Shevchuk,
G., and Sadigh, D. Learning reward functions from diverse
sources of human feedback: Optimally integrating demon-
strations and preferences. The International Journal of
Robotics Research, pp. 02783649211041652, 2021.

Christiano, P. F,, Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. In Advances in Neural Information
Processing Systems (NIPS), pp. 4299-4307, 2017.

Glaese, A., McAleese, N., Trebacz, M., Aslanides, J., Firoiu,
V., Ewalds, T., Rauh, M., Weidinger, L., Chadwick, M.,
Thacker, P., et al. Improving alignment of dialogue

agents via targeted human judgements. arXiv preprint
arXiv:2209.14375,2022.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and
Amodei, D. Reward learning from human preferences and
demonstrations in atari. arXiv preprint arXiv:1811.06521,
2018.

Knox, W. B., Hatgis-Kessell, S., Booth, S., Niekum, S.,
Stone, P., and Allievi, A. Models of human prefer-
ence for learning reward functions. arXiv preprint
arXiv:2206.02231, 2022.

Lee, K., Smith, L., and Abbeel, P. Pebble: Feedback-
efficient interactive reinforcement learning via relabeling
experience and unsupervised pre-training. arXiv preprint
arXiv:2106.05091,2021a.

Lee, K., Smith, L., Dragan, A., and Abbeel, P. B-pref:
Benchmarking preference-based reinforcement learning.
arXiv preprint arXiv:2111.03026,2021b.

Ng, A., Harada, D., and Russell, S. Policy invariance under
reward transformations: Theory and application to reward
shaping. Sixteenth International Conference on Machine
Learning (ICML), 1999.

OpenAl. Chatgpt: Optimizing language models for
dialogue. OpenAl Blog https://openai.com/
blog/chatgpt/,2022. Accessed: 2022-12-20.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L.,
Mishkin, P, Zhang, C., Agarwal, S., Slama, K., Ray, A.,
etal. Training language models to follow instructions with
human feedback. arXiv preprint arXiv:2203.02155,2022.

Sadigh, D., Dragan, A. D., Sastry, S., and Seshia, S. A.
Active preference-based learning of reward functions.
Robotics: Science and Systems,2017.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Wang, X., Lee, K., Hakhamaneshi, K., Abbeel, P., and
Laskin, M. Skill preferences: Learning to extract and ex-
ecute robotic skills from human feedback. In Conference
on Robot Learning, pp. 1259-1268. PMLR, 2022.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning
language models from human preferences. arXiv preprint
arXiv:1909.08593,2019.

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

