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ABSTRACT

Composite materials have become indispensable in aerospace, automotive, and marine
industries due to their exceptional mechanical properties. Composites are typically manu-
factured via autoclave curing processes, that demand precise control over temperature and
pressure profiles. Optimizing the cure cycle as well as equipment design parameters is cru-
cial for attaining the desired properties in the manufactured part. Traditional optimization
methods require substantial computational time and effort due to the reliance on resource-
intensive simulations like finite element analysis and the complexity of rigorous optimiza-
tion algorithms. Data-agnostic AI-based surrogate models such as Physics-Informed Neu-
ral Operators (PINOs) offer a promising alternative for these conventional simulations
with drastically reduced inference time, unparalleled data efficiency, and zero-shot super-
resolution capability. Furthermore, their differentiable nature enables integrated gradient-
based optimization within the simulation framework. This work presents an end-to-end
accelerated AI-driven optimization framework for the manufacture of advanced compos-
ite materials. In particular, a novel Physics-Informed DeepONet (PIDON) architecture
is proposed to accurately model the nonlinear behavior of composites’ thermochemical
evolution during the curing process for a high-dimensional design space, surpassing the
performance of SOTA models. Leveraging PIDON’s differentiability, we then employ a
gradient-based optimization using Adam optimizer, achieving a 3× speedup in obtaining
optimal design variables compared to gradient-free counterparts. The proposed frame-
work delivers a scalable and efficient solution for optimizing curing processes and holds
potential for broader applications in materials design.

1 INTRODUCTION

Composite materials are extensively used in advanced engineering applications, including aerospace, auto-
motive, and marine industries, due to their high strength, durability, and lightweight properties (Li et al.,
2020). These materials are typically processed in an autoclave through a polymerization process governed
by a predefined temperature and pressure cycle, known as the cure cycle (Strong, 2008). The cure cycle
configuration is critical, as it directly impacts the final properties of the composites (Yuan et al., 2021). It
must ensure uniform resin curing while minimizing residual stress and deformation (Hubert et al., 2001).
Changes in the part geometry or material properties often require adjustments to the cure cycle, making
optimization essential to produce high-quality and reliable composites.
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Optimization methods using process models are widely employed to determine optimal cure profiles in com-
posites processing. Simulation-based numerical methods, such as finite element-based approaches, are com-
monly employed with various optimization algorithms (Struzziero & Skordos, 2017; Dolkun et al., 2018;
Tang et al., 2022). However, these methods are computationally expensive and time-intensive, making them
less practical for real-time or iterative-based design processes (Zimmerling et al., 2022). To address these
challenges, machine learning-based surrogate models have been developed as alternatives to reduce compu-
tational costs (Pfrommer et al., 2018; Tifkitsis et al., 2018; Yuan et al., 2021). Once trained, these models
provide fast predictions, enabling near real-time optimization. However, surrogate models often require
large datasets for training, which is prohibitive in many industrial scenarios with data scarcity, resulting in
unreliable or physically implausible predictions.

Recently, Raissi et al. (2019) introduced Physics-Informed Neural Networks (PINNs), which incorporate
governing partial differential equations (PDEs) into the loss function of a neural network, allowing the
model to learn directly from the underlying equations. Variants of PINNs have been developed for compos-
ites manufacturing, including applications to the thermochemical curing process of composite-tool systems
(Niaki et al., 2021), a sequential meta-transfer framework for efficient adaptation to new configurations
(Ramezankhani & Milani, 2024), and cost optimization in composites manufacturing (Würth et al., 2023).
A key limitation of PINNs is that they are typically trained on specific initial conditions (ICs) and bound-
ary conditions (BCs), making them less practical for iterative design optimization tasks with varying system
configurations (e.g., different ICs). To address these limitations, neural operators have been introduced to di-
rectly map infinite-dimensional input-output function spaces on bounded domains, enabling the learning of a
family of PDEs rather than a single instance (Boullé & Townsend, 2023; Kovachki et al., 2023). Inspired by
PINNs, Physics-Informed Neural Operators (PINOs) have been developed to solve entire families of PDEs
without relying on data (Wang et al., 2021; Goswami et al., 2023). Unlike PINNs, PINOs enable real-time
predictions under varying conditions, making them ideal for AI-driven material design optimization.

Numerous studies have utilized PINO models to simulate the thermochemical evolution of composites dur-
ing autoclave curing. Chen et al. (2023) developed a Physics-guided Neural Operator for composites man-
ufacturing, while Meng et al. (2023) applied the Fourier Neural Operator to analyze the curing process of
carbon-fiber composites. Ramezankhani et al. (2025) introduced a Physics Informed DeepONet enhanced
with features such as nonlinear decoders and curriculum learning. However, the predictive performance of
these models remains satisfactory only when applied to single-variable designs, limited design spaces, or sys-
tems with low behavioral complexity. This limitation may arise from the inherent constraints of the original
neural operator architecture in handling nonlinear and stiff problems, as well as complex physics-informed
loss landscape (Krishnapriyan et al., 2021) and neural network’s spectral bias (Rahaman et al., 2019). To
address these challenges and ensure that the developed surrogate model remains accurate when exposed to
high-dimensional and large design spaces for optimization tasks, we propose an advanced Physics Informed
DeepONet (PIDON) architecture. In particular, it incorporates domain decomposition with separate Deep-
ONets allocated to each temporal subdomain, and input coordinate normalization to mitigate spectral bias
(Moseley et al., 2023). Furthermore, each DeepONet module is equipped with a nonlinear decoder to better
capture the complex dynamics of the PDE. The proposed PIDON model serves as an efficient and accurate
surrogate for inverse design, enabling near real-time spatiotemporal predictions for given design configura-
tions. Leveraging the differentiability of PIDON (Li et al., 2024), we utilize a gradient-based optimization
technique, which significantly reduces the number of function evaluations and improves scalability for larger
design spaces compared to gradient-free methods (Allen et al., 2022). The Adam optimizer (Kingma, 2014)
is used to obtain the optimal design variables. We benchmark this framework against gradient-free methods,
including Particle Swarm Optimization (PSO) (Miranda, 2018) and Genetic Algorithms (GA) (Solgi, 2020).
The main contributions of this paper are summarized as: 1) Design and implement an improved PIDON
model for composites manufacturing, enabling an accurate and accelerated exploration of high-dimensional
and large design spaces, and 2) Develop an end-to-end AI-driven design optimization framework enabling
3× speedup over conventional gradient-free approaches.
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Figure 1: a) Schematic representation of the composite-tool system inside an autoclave, including local co-
ordinates x1 and x2 (adopted from Ramezankhani et al. (2025)). b) Architecture of the proposed sub-PIDON
model for predicting part temperature GTc . The same architecture is utilized for other output variables, in-
cluding DOC Gα and tool temperature GTt . c) Illustration of the proposed PIDON framework with temporal
domain decomposition, designed for thermochemical analysis of composites curing process.

2 METHODOLOGY

2.1 COMPOSITES AUTOCLAVE PROCESSING

The autoclave processing in the manufacture of composites involves placing resin-impregnated fibers and a
tool into an autoclave, where the system undergoes a cure cycle to achieve the desired material properties,
as illustrated in Figure 1.a. The temperature distribution within the part (Tc) and tooling (Tt), along with
the progression of the resin’s degree of cure (DOC), are critical state variables in composite systems. More
details can be found in the Appendix A. A typical two-hold cure cycle consists of two distinct stages where
the air temperature is held constant at specific levels for predetermined durations. This approach enables
a controlled progression of the curing process, allowing optimal material properties to be achieved while
minimizing potential issues such as under-curing or over-curing (Fabris, 2018). The cure cycle is defined
using six key design variables: heating rates r1 and r2 (the rate at which the air temperature inside the
autoclave increases), hold durations hd1 and hd2 (the time periods for which the temperature is maintained
constant at the respective hold temperatures) and hold temperatures ht1 and ht2 (the target temperatures
held during the first and second stages.)

2.2 DIFFERENTIABLE SIMULATOR: PHYSICS INFORMED DEEPONET

The architecture of DeepONet consists of two primary components: a branch network and a trunk
network (Lu et al., 2019). The branch network takes as input the sensor point evaluations u =
[u(x1), u(x2), . . . , u(xm)] and generates a finite-dimensional feature representation b = [b1, b2, . . . , bq]

T ∈
Rq as its output. Similarly, the trunk network encodes the spatiotemporal coordinates of the PDE system y
into a feature embedding t = [t1, t2, . . . , tq]

T ∈ Rq , with the same dimensionality as the output of the branch
network. The outputs from these networks are combined using an element-wise product operation, followed
by summation, to produce the final output of the DeepONet Gθ(u)(y) =

∑q
k=1 bktk + b0. Data-driven

DeepONet often requires large amounts of training data, which can be difficult to access in many real-world
engineering applications. The physics-informed variant of DeepONet, namely PIDON, integrates governing
equations directly into the loss function as regularizers, eliminating DeepONet’s reliance on data. Specif-
ically, the output of the PIDON is constrained to satisfy the governing equations by minimizing the loss
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function:
L(θ) = LIC(θ) + LBC(θ) + Lphysics(θ) (1)

where LIC , LBC and Lphysics represent the IC loss, BC loss, and physics loss, respectively. Further details
regarding the definition of each loss term are provided in the Appendix B.

2.2.1 PROPOSED ARCHITECTURE OF PIDON

Network architecture. We introduce a novel PIDON architecture designed to model the highly nonlinear
dynamics of composite-tool systems during the curing process. This architecture incorporates a branch net-
work, a trunk network, and a nonlinear decoder, drawing inspiration from advancements in operator learning
(Seidman et al., 2022; Haghighat et al., 2024; Ramezankhani et al., 2025). As illustrated in Figure 1.b, the
branch network is designed with multi-input functionality, accommodating 9 input parameters: six cure cycle
parameters (r1, r2, hd1, hd2, ht1, ht2), two equipment design parameters (htop, hbot, representing the con-
vective heat transfer coefficients on the top and bottom surfaces of the composite-tool system, respectively),
and one tool design parameter (tool thickness, Lt). The trunk network takes spatio-temporal coordinates
t and z as inputs. Standard DeepONet architectures with linear decoders require a large output dimension
for branch and trunk networks to model nonlinear systems, making them computationally expensive and
ineffective in such scenarios. In this work, we incorporate a nonlinear decoder by introducing an additional
neural network that takes as input the combined output of the branch and trunk networks and generates the
final output of PIDON.

Temporal domain decomposition. The composites curing process is a time-consuming process which re-
quires solving the corresponding PDE equations over a long temporal domain. This poses some training
challenges due to spectral bias and training difficulties such as activation saturation from large input coor-
dinates. Wang & Perdikaris (2023) proposed a temporal domain decomposition strategy, training a single
DeepONet with ICs as additional input functions. This enables the model to independently learn solution
operators for different subdomains while ensuring temporal continuity. However, inaccuracies in predicting
ICs can introduce and propagate errors in the model predictions. Our framework improves temporal domain
decomposition by employing a dedicated DeepONet with separate spatiotemporal input normalization for
each subdomain. In particular, the temporal domain is divided into n smaller temporal subdomains based on
the system’s physical characteristics, with each subdomain modeled by an independent DeepONet, termed
sub-PIDON (Figure 1.c). This setup enables each sub-PIDON to accurately capture the dynamics specific
to its respective subdomain while reducing errors associated with relying on a single model to represent
both initial conditions and other input functions within the system. The incorporation of separate subdomain
normalization alongside domain decomposition effectively mitigates spectral bias over extended temporal
domains by ensuring that the solution frequency encountered within each subdomain remains low (Moseley
et al., 2023).

Multi-output functionality. The PIDON framework predicts three key state variables for the thermochem-
ical evolution in the composites curing process: Tc, Tt, and α. Due to the system’s complexity, a DeepONet
with multiple output heads may not effectively learn all these variables. Instead, we utilized three dedicated
and decoupled DeepONets: GTc for composite temperature, GTt for tool temperature, and Gα for the DOC,
with each model specifically designed for training on its respective variable while maintaining a consistent
architecture. Thus, for each subdomain (highlighted with light and dark grey in Figure 1.c), we train three
sub-PIDON, each dedicated to an output variable.

2.3 AI-DRIVEN ACCELERATED DESIGN OPTIMIZATION FRAMEWORK

We developed an AI-driven accelerated design optimization framework for composites processing in auto-
clave, as illustrated in Figure 2. This framework integrates a generalized, accurate, and computationally
efficient PIDON model, serving as a differentiable simulator to optimize the curing process. By leveraging
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the zero-shot super-resolution capabilities of PIDON across diverse design parameters and its differentiabil-
ity for gradient-based optimizers like Adam, our framework enables rapid and efficient exploration of design
variables.

2.3.1 OPTIMIZATION DESIGN TASK

Several studies have focused on optimizing the cure cycle for composites processing to achieve various
objectives. For example, Shah et al. (2018) aimed to minimize residual stress and ensure uniform curing,
while Vafayan et al. (2015) focused on maximizing the DoC, controlling peak temperature, minimizing
post-gelation gradients, and reducing curing time.

This study aims to optimize the cure cycle of AS4/8552 composites by balancing mechanical perfor-
mance and structural integrity through four key objectives. The first objective is achieving a desired DOC
within the range 0.85 < α

∣∣
t=t

< 0.95, ensuring optimal mechanical properties while avoiding brittleness
(Rothenhäusler & Ruckdaeschel, 2023). Second, minimizing DoC gradients ∂α

∂x

∣∣
t=t

is critical for reducing
residual stress and shrinkage (Yuan et al., 2021). Third, maximum part temperature (exotherm) must remain
below 185 ◦C to prevent thermal degradation (Fabris, 2018). Finally, controlling thermal lag (∆T < 20 ◦C)
ensures even curing by limiting temperature differences between autoclave air and composite parts (Fabris,
2018). These objectives are essential to optimize curing for performance and material integrity.
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Figure 2: Accelerated AI-driven gradient-based design optimization framework: Using the PIDON model,
the framework predicts the spatio-temporal evolution of part temperature and DOC, calculates the loss, and
iteratively adjusts design variables through gradient-based optimization to identify the optimal design.

2.3.2 OPTIMIZER

As elaborated in subsection 2.1, we consider nine design variables (i.e., six parameters re-
lated to the cure cycle and three associated with tool/equipment design) represented as: u =
[r1, r2, hd1, hd2, ht1, ht2, htop, hbot, Lt]. The optimization problem is formulated to minimize a total loss
function L(u), composed of four individual loss terms representing the objectives defined in the above sub-
section:

L(u) = L1(u) + L2(u) + L3(u) + L4(u) (2)

Using the PIDON model as a surrogate, we predict part temperature and DOC, used in the loss calculations
(details in the appendix C.1). The optimization is formulated as:

u∗ = argmin
u

L(u),

subject to: umin ≤ u ≤ umax.
(3)
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The bounds umin and umax define the feasible design space for the design variables u and are summarized
in Table 4. They are typically defined by the inherent physical constraints of the process, such as the range
of HTCs and temperature achievable by the autoclave oven. These constraints also align with the ranges
of the input functions used during the training of the PIDON model. By adhering to these bounds, the
design variables remain within the range of values on which the PIDON model was trained, ensuring it
provides accurate and reliable predictions. The solution u∗ represents the optimal set of design parameters
that minimizes the total loss L(u), while satisfying all objectives, constraints, and bounds.

To solve this optimization problem, we employ a gradient-based approach, leveraging the differentiability
of the PIDON model. Gradient-based methods are particularly advantageous for differentiable objective
functions, as they use gradient information to efficiently explore the design space (Allen et al., 2022; Um
et al., 2020). In this case, the loss function depends on the output of PIDON, which itself is a function
of the input (i.e., design variables). By leveraging automatic differentiation, we can compute the gradient
of the loss with respect to the design variables by propagating the gradients through the PIDON using the
chain rule. These methods converge with fewer function evaluations, making them computationally efficient
compared to sampling-based or heuristic approaches (Allen et al., 2022). Specifically, we apply the Adam
optimizer (Kingma, 2014), which adapts the learning rate during optimization, improving the convergence
speed and stability. The optimization process (Figure 2) consists of following steps:

1. Initial Guess: Select the initial design parameters u0, either randomly or based on domain knowl-
edge, and pass them to the PIDON model.

2. Forward Prediction: Use the PIDON model to predict the spatio-temporal evolution of part tem-
perature and DOC across the laminate based on the current design variables.

3. Loss Evaluation: Compute the individual loss functions based on the predicted temperature and
DOC values.

4. Gradient Computation: Utilize automatic differentiation to compute the gradients of the total
loss function L(u) with respect to the design parameters u. This step involves back-propagating
the gradients through the PIDON model.

5. Update Design Variables: Apply a gradient-based optimizer (e.g., Adam) to update the design
variables u in the direction that minimizes the loss function using the computed gradients.

3 RESULTS AND DISCUSSION

3.1 VALIDATION OF PIDON MODEL

To train the PIDON model, the time domain was divided into 11 subdomains with various lengths, accom-
modating the level of complexity within each subdomain. All PIDON models used an identical architecture,
as detailed in Table 3. We trained the model with 600 random input parameter combinations (i.e., in-
put functions) spanning a wide range of values (Table 4). We evaluated the model against finite element
simulations as ground truth across five different test cases. Figure 5 demonstrates PIDON’s prediction per-
formance for the part temperature and DOC at the midpoint of the composite part. We also benchmarked
its performance against previously developed operator-based models for composites processing, namely the
Physics-Informed Neural Operator (PINO) (Ramezankhani et al., 2025) and the physics-informed Fourier
Neural Operator (FNO) (Meng et al., 2023) (Table 1). We used mean absolute error (MAE) and mean max-
imum error as the evaluation metrics to compare model predictions with finite element simulations. The
MAE was computed by averaging the absolute errors within and across all test cases. The mean maximum
error was obtained by averaging the maximum errors from each test case. The results clearly show that
the PIDON outperforms both PINO and FNO models, achieving MAE and mean maximum error that are
approximately 50% lower than those reported for the other models, despite being trained on a wider range
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Table 1: Comparison of PIDON (ours), PINO (Ramezankhani et al., 2025), and FNO (Meng et al., 2023)
based on mean absolute error (MAE) and mean maximum error (MAX) for temperature and DOC predic-
tions.

Variable PIDON (ours) PINO FNO

MAE MAX MAE MAX MAE MAX

Tc(°C) 0.189 0.94 0.362 2.231 0.226 3.2

α 0.001 0.008 0.002 0.02 0.008 0.03

Table 2: Performance comparison between gradient-based (i.e., Adam and NAdam) and gradient-free (i.e.,
PSO and GA) optimization models, highlighting computational time, PIDON Model calls and optimization
objective metrics. Gradient-based optimizer results are averaged over 10 initial guesses, while gradient-free
results use a single run. Model calls indicate the total number (forward + backward) function calls
per optimization iteration.

Optimizer Time
(Min.)

Model Calls
(per iteration)

Mean DOC
Gradient

Max. Tc

(=<185)

Mean
Thermal Lag

(=<20)

Mean DOC
(>=0.85)

Adam 20.37 1 + 2 0.0044±0.0002 185.21±0.25 14.10±0.67 0.853±0.0002

NAdam 20.02 1 + 2 0.0043±0.0001 185.12±0.16 14.16±0.61 0.852±0.00008

PSO 58.7 10× (1 + 1) 0.0057 185.18 14.11 0.847

GA 69.03 100× (1 + 1) 0.0045 185.07 14.91 0.852

of input functions. This demonstrates the superior accuracy and reliability of the proposed PIDON approach
for predicting temperature and DOC in composite systems.

3.2 DESIGN OPTIMIZATION VIA DIFFERENTIABLE NEURAL OPERATOR

A trained PIDON model is used as a surrogate model to identify the optimal design parameters for the
autoclave curing process. Losses are evaluated using a 20×100 grid of collocation points, with 20 points
in the spatial domain (z) and 100 in the time domain. The performance of the framework was evaluated
for two composite part thicknesses: 20 mm, as discussed in this section, and 30 mm, which is detailed
in Appendix D. Figure 3 shows the key outcomes of the optimization procedure for a random initial state
u0 = [2.5, 1.5, 56, 117, 112, 176, 75, 100, 2.2]. Figure 3.a shows the evolution of the total loss during each
iteration of the optimization process using the Adam optimizer. Figure 3.b compares the initial and opti-
mized cure cycle profiles, including the part temperature behavior at the midpoint of the composite. Al-
though the air temperature is higher for the optimized design compared to the initial design, the maximum
part temperature remains below the threshold in both cases. The initial and optimal DOC distributions
across the laminate thickness are compared in Figure 3.c. In the initial design, the DOC remains way below
the 0.85 threshold, while the optimized design achieves a DOC exceeding 0.85 across the entire laminate
thickness. These results clearly demonstrate the effectiveness of the proposed framework in achieving sub-
stantial improvements in cure cycle performance. The optimization framework yields the optimized design
variables u∗ = [2.61, 1.2, 70, 125, 119, 183.9, 52.68, 91.61, 2.75] which satisfies all objectives, ensuring a
high-quality manufactured part. The total computation time for a single optimization run is 20.37 minutes.
The obtained optimal design aligns very well with the theoretical expectations. Specifically, a higher value
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Figure 3: a) Evolution of the total loss during each iteration of the optimization process using the Adam
optimizer. b) Comparison of the initial (blue) and optimized (red) cure cycle profiles and the corresponding
part temperature (Tc) behavior at the composite part’s midpoint. c) DOC evolution across the laminate
thickness from the initial (blue) to optimized (red) design variables. All results correspond to an initial guess
for the design parameters u0 = [2.5, 1.5, 56, 117, 112, 176, 75, 100, 2.2].

of r1 and a lower value of r2 ensures efficient heating during the first ramp phase while preventing excessive
heat buildup (caused by resin polymerization) during the second phase. The optimal design has the highest
ht1 to maximize heat during the first hold, ensuring a cure rate above 0.85 while avoiding excess heat in the
second hold. For Lt, the optimal design selects a mid-range value. While a higher tool thickness can help
mitigate excessive exothermic reactions, it may lead to a non-uniform DOC across the laminate, thus the
chosen thickness can balance these effects (Fabris, 2018).

Further, to demonstrate the robustness of our framework, we present the optimization results using Adam for
10 different initial guesses. The average objective evolution across these runs is shown in Figure 4. The fig-
ure illustrates the progression of key objectives during optimization, including the average DOC across the
laminate (Figure 4.a), maximum part temperature (Figure 4.b), average axial cure gradient (Figure 4.c), and
average thermal lag (Figure 4.d). The blue line represents the mean value across the 10 initial guesses, while
the shaded band indicates the standard deviation. From the figure, it is evident that in some initial designs,
the DOC is below 0.85. However, the optimal designs consistently achieve a DOC exceeding 0.85 across the
laminate thickness. Additionally, the variation in DOC across the thickness is significantly reduced in the op-
timized designs compared to the initial designs. This improvement is further reflected in the steady decrease
of the DOC gradient with each optimization step. Since DOC and maximum part temperature are correlated,
initial designs with higher DOC exhibit higher part temperatures. In the optimization process, the maximum
part temperature, which initially varies widely, stabilizes precisely at 185°C in the optimized designs. Lastly,
the average thermal lag successfully remains below 20°C throughout the optimization procedure.

3.3 COMPARISON TO GRADIENT-FREE METHODS

In addition to our proposed optimization framework, we implemented and compared alternative optimiza-
tion techniques, including NAdam, PSO, and GA, to evaluate their performance. The NAdam was executed
for 180 iterations. The PSO was implemented with a swarm of 20 particles, running for 25 iterations, while
the GA utilized a population size of 100 and was executed for 100 iterations. The performance of these
optimizers, along with their computation times, is summarized in Table 2. For gradient-based optimizers,
such as Adam and NAdam, the results are averaged over 10 different initial guesses to assess robustness.
For population-based optimizers, since they are less sensitive to initial guesses, a single optimization run
was executed and reported. In terms of the achieved optimal states, the gradient-based and gradient-free
methods resulted in comparable performance. In terms of the number of function calls during the opti-
mization process, gradient-based methods call the PIDON model once for forward prediction and twice for
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Figure 4: Evolution of key metrics during optimization: a) Average DOC across the laminate thickness, b)
Maximum Temperature observed in the laminate, c) Average Axial Cure Gradient, and d) Average Thermal
lag, at each optimization step. Results are averaged over 10 different initial guesses, with shaded bands
representing ± standard deviation to indicate variability across the optimization runs.

backward propagation (axial DOC gradient calculation and optimizer gradient update) per iteration (1 +
2). In contrast, gradient-free methods require one forward and one backward call for axial DOC gradient
calculation for each individual in the population per iteration (1 + 1) × p, where p is the population size.
This makes gradient-based optimizers significantly more efficient with fewer function evaluations during
the optimization process. Hence, the gradient-based optimizers demonstrated a significant computational
advantage, converging approximately three times faster than their gradient-free counterparts. This clearly
indicates the advantage of utilizing a differentiable neural operator model in conjunction with a gradient-
based optimization approach for accelerated and robust design optimization in advanced manufacturing and
materials processing applications.

4 CONCLUSIONS

In this work, we present an end-to-end AI-driven accelerated design optimization framework for the auto-
clave curing process in composite materials processing. At the core of the framework is an enhanced PIDON
model, specifically designed to capture the nonlinear dynamics of the autoclave process with high accuracy.
The improved PIDON integrates a nonlinear decoder and temporal domain decomposition techniques, deliv-
ering superior performance compared to existing neural operator-based models across wide range of diverse
input functions and extended temporal domains. By leveraging the differentiability of the trained PIDON
model, the framework utilizes the gradient-based Adam optimizer to efficiently identify optimal design pa-
rameters. When benchmarked against gradient-free methods such as PSO and GA, the Adam optimizer
achieves comparable performance while operating approximately three times faster. This enables the accel-
erated and accurate identification of optimal design states for the autoclave curing process. Furthermore, the
framework is highly adaptable and can be extended to address other advanced engineering design challenges,
making it well-suited for digital twin applications.
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A GOVERNING EQUATIONS

The thermochemical behavior of a 1D composite-tool system in an autoclave is described by the following
one-dimensional anisotropic heat conduction equation:

∂Tt

∂t
= at

∂2Tt

∂z2
, z ∈ [0, Lt]

∂Tc

∂t
= ac

∂2Tc

∂z2
+ bc

∂α

∂t
, z ∈ [Lt, Lc]

(4)

Here, T is the temperature, α is DOC, Lc is the material length, Lt is the tool length, and t and z are
the spatiotemporal coordinates. The subscripts t, c, and r represent the tool, composite part, and resin,
respectively. The parameter a denotes the thermal diffusivity, and b represents the heat generation coefficient.
For the curing process of a composite system with thermoset resin, the cure rate is governed by the resin’s
cure kinetics, which are typically represented by an ordinary differential equation. For the AS4/8552 epoxy
resin system, it can be expressed as follows(Hubert et al., 2001):

∂α

∂t
= A exp

(
−∆E

RT

)
1

1 + exp (C(α− (C0 + CTT )))
αm(1− α)n (5)

Here, ∆E represents the activation energy, R is the gas constant, and C0, CT , m, n, and A are experi-
mentally determined constants and parameter. The values used for this study can be found in (Johnston,
1997). Considering the convective heat transfer between the autoclave air Ta and the composite system, the
boundary conditions are governed by:

(Ta − Tc

∣∣
z=Lc

) =
kc
htop

∂Tc

∂z

∣∣∣∣∣
z=Lc

(Tt

∣∣
z=0

− Ta) =
kt
hbot

∂Tt

∂z

∣∣∣∣∣
z=0

(6)

Here, htop and hbot are the convective heat transfer coefficients (HTCs) on the top and bottom surfaces of
the composite-tool system, respectively, while kc and kt represent the thermal conductivity of the composite
and tool, respectively. The initial temperature of the part is typically assumed to be uniform throughout. For
this study, we assume an initial temperature of 20°C. The initial DOC is assumed to be either zero or a very
small value for an uncured part and in this study, is set to 0.05.

For this study, the part thickness is fixed during the training, while the tool thickness is included as one of
the design variables (input functions). To manage inconsistencies in the total system length and interface
location resulting from variations in tool thickness, local coordinates are introduced, following the approach
outlined by (Ramezankhani et al., 2025).

B PIDON MODEL

Assuming a constant initial condition and a Robin boundary condition in the introduced composites case
study, LIC and LBC can be expressed as:

LIC(θ) =
1

NQic

N∑
i=1

Qic∑
j=1

∣∣∣Gθ(u
(i))(y

(i)
j )− s(i)(y

(i)
j )

∣∣∣2 (7)

LBC(θ) =
1

NQbc

N∑
i=1

Qbc∑
j=1

∣∣∣αGθ(u
(i))(y

(i)
j ) + β∇Gθ(u

(i))(y
(i)
j )− γ

∣∣∣2 (8)
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Here, u(i) denotes the i-th input function, y(i)j represents the j-th collocation point , and Gθ is the output of

the PIDON. The term s(i)(y
(i)
j ) corresponds to the solution of the partial differential equation (PDE) at y(i)j ,

conditioned on the i-th input function. For the Robin boundary condition, α, β, and γ are non-zero constants
determined by the physical characteristics of the problem. The physics loss Lphysics is defined as:

Lphysics(θ) =
1

NQ

N∑
i=1

Q∑
j=1

∣∣∣N (u(i)(x), Gθ(u
(i))(y

(i)
j ))

∣∣∣2 (9)

Here, N denotes the nonlinear differential operator. The parameter N represents the number of distinct input
function combinations sampled from the design space, whereas Q indicates the number of residual points
employed to enforce the physical constraints. These N and Q are hyperparameters that can be tuned to
balance the model’s performance and computational efficiency. The hyperparameters for each sub-PIDON
model are summarized in Table 3, including network architectures, optimizer settings, training parameters,
and hardware specifications. Additionally, The range of input functions for which PIDON is trained is
presented in Table 4.

B.1 TRAINING PROCEDURE

As depicted in Figure 1.c, the proposed PIDON framework is trained sequentially across multiple temporal
subdomains. The training process begins with the initialization and training of the first sub-PIDON mod-
ule (sub-PIDON 1) using the system’s global IC across the design space (i.e., input functions). Upon
completion of its training, this module generates predictions that serve as the local IC for the subsequent
sub-PIDON module (sub-PIDON 2). In this manner, the IC for each subdomain is determined based on
the predictions of the preceding sub-PIDON model, as indicated by the green arrows in Figure 1.c. This
iterative process continues until all sub-PIDON modules corresponding to the defined subdomains are fully
trained. The subdomains are initially partitioned into segments of equal width; however, their widths are
adaptively refined during training. Specifically, if the total training loss for a given subdomain fails to reach
a predefined threshold, the subdomain is further subdivided into two smaller intervals, thereby simplifying
the learning task for the corresponding sub-PIDON modules. This adaptive approach enables more sub-
stantial progression in regions of the time domain where nonlinearity is less pronounced, while ensuring
that highly complex regions are modeled with finer resolution. As a result, the framework maintains both
computational efficiency and predictive accuracy across varying levels of system complexity.

B.2 EFFECT OF NONLINEAR DECODER AND DOMAIN DECOMPOSITION ON PREDICTIVE ACCURACY

The impact of integrating nonlinear decoders into the DeepONet architecture has been demonstrated in the
literature (Seidman et al., 2022; Ramezankhani et al., 2025), highlighting the limitations of vanilla Deep-
ONet in achieving high predictive accuracy and the advantages of incorporating a nonlinear decoder. By
enabling efficient representation of nonlinear mappings, nonlinear decoders reduce the need for large output
dimensions in branch and trunk networks, making the model more effective and computationally efficient.
In the case of domain decomposition, a separate DeepONet (sub-PIDON) is trained for each sub-domain. As
the number of sub-domains increases, the accuracy of PIDON improves. However, since each sub-domain
requires an independent DeepONet, the total number of networks also increases, leading to a higher number
of parameters in PIDON. Consequently, a trade-off must be considered between improved accuracy and the
associated computational complexity (Moseley et al., 2023; Ramezankhani et al., 2024).
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Table 3: Hyperparameters of the PIDON model.

Branch Network [50, 50, 50]

Trunk Network [50, 50, 50, 50, 50]

Non-linear Decoder [50, 50, 50, 50]

Optimizer Adam

Initial Learning Rate 1× 10−3

Learning Rate Decay Decay rate of 0.9
every 1000 steps

Training Epochs 200

Training Library JAX

Hardware NVIDIA T4 GPU with
104 GB of memory

Table 4: Design variables (input functions) and
their corresponding ranges.

Design Parameter Range

r1 (°C/min) [1.2, 3]

r2 (°C/min) [1.2, 3]

hd1 (min) [50, 70]

hd2 (min) [115, 125]

ht1 (°C) [100, 120]

ht2 (°C) [175, 185]

htop (W/m2K) [70, 120]

hbot (W/m2K) [40, 90]

Lt (cm) [2, 4]

C OPTIMIZATION DETAILS

This section provides additional details on the optimization process. Design variables are clipped within the
specified bounds in Table 4 to prevent erroneous predictions—values exceeding the upper limit are clipped to
the upper bound, while those below the lower limit are clipped accordingly. Each loss function is normalized
to maintain consistent scales and prevent any objective from dominating.

C.1 LOSS FORMULATION

For the first objective, a penalty function is defined based on the desired DOC. A penalty function ensures
the DOC remains within the desired range of 0.85 to 0.95. If the DOC falls outside this range: either the
minimum of DOC across the laminate is below 0.85 or the maximum of DOC across the laminate exceeds
0.95, a penalty is applied; otherwise, the loss is zero.This can be expressed as:

L1(u) =


|0.85−min(Gα

θ (u)(yt))| , if min(Gα
θ (u)(yt)) < 0.85,

|max(Gα
θ (u)(yt))− 0.95| , if max(Gα

θ (u)(yt)) > 0.95,

0, else.
(10)

Here, yt = [t|t=t, z] and z is the collocation points in the spatial domain z. A second objective is to minimize
the gradient of the DOC across the laminate at the end of the curing process. Since the PIDON model is
differentiable, the gradient is computed using automatic differentiation across the laminate thickness, and it
is then averaged. This can be expressed as follows:

L2(u) =
1

Nz

Nz∑
i=1

∣∣∣∣∣∂(Gα
θ (u)(y

(i)
t ))

∂z

∣∣∣∣∣ (11)

Here, Nz is the number of collocation points along the z-coordinate. The third objective ensures that the
maximum part temperature does not exceed 185°C. To address this, a penalty function is introduced as
follows:

L3(u) =

{
|185−max(Gt

θ(u)(y))| , if max(Gt

θ(u)(y)) > 185,

0, else
(12)
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The fourth objective aims to limit the thermal lag to values below 20°C. This objective can be expressed as
follows:

L4(ϕ) =
1

N

N∑
i=1

{∣∣20− (Ta(y
(i))−Gt

θ(ϕ)(y
(i)))

∣∣ , if (Ta(y
(i))−Gt

θ(ϕ)(y
(i))) > 20,

0, else
(13)

C.2 HYPER-PARAMETERS OF OPTIMIZERS

For the Adam optimizer, a custom dynamic learning rate mechanism is implemented. If the loss does not
improve for a specified number of iterations (defined by patience), the learning rate is reduced by the fac-
tor reduction factor, with a lower bound set by min lr. The optimizer starts with an initial learning
rate of 0.01, performs up to 180 steps, and reduces the learning rate by a factor of 0.5 if no improvement is
observed after 10 iterations, with the learning rate not dropping below 1×10−5. A similar dynamic learning
rate mechanism is employed for the Nadam optimizer.

The GA used in this study was configured with a population size of 10, a mutation probability of 0.1, an
elitism ratio of 0.01, and a crossover probability of 0.5. The selection process retained the top 30% of
individuals as parents, applying uniform crossover for offspring generation. The PSO algorithm was set
with a cognitive parameter of 0.5, a social parameter of 0.3, and an inertia weight of 0.9.

D ADDITIONAL RESULTS

To demonstrate the robustness of the proposed framework in addressing challenging scenarios, this section
presents results for a 30 mm thick composite part. The optimization problem becomes significantly more
challenging for the 30 mm thick material due to the excessive exothermic heat generation and the conflicting
objectives of minimizing the maximum part temperature while achieving a sufficiently high DOC. The evo-
lution of the total loss during optimization is shown in Figure 6.a, while Figure 6.b compares the initial and
optimized cure cycles, along with the corresponding part temperatures at the composite midpoint. The initial
cure cycle design exhibits excessive heat accumulation, resulting in a significantly elevated maximum part
temperature. In contrast, the optimized design effectively regulates the maximum part temperature, bringing
it to approximately 186.4°C—slightly above the target value of 185°C but still well within the acceptable
range for practical applications (Fabris, 2018). The DOC distribution acrros the laminate thickness for both
the initial and optimized designs is illustrated in Figure 7.a. In the initial design, the DOC remains below
0.85, whereas the optimized design achieves a DOC exceeding 0.85 across all regions, except those near the
tool. Furthermore, the optimized design demonstrates a substantial reduction in DOC variation, as indicated
by the flatter maroon line compared to the darker blue line, which is also reflected in the decreasing DOC
gradient over successive iterations in the Figure 7.c. Figure 7.b depicts the progression of the maximum part
temperature during optimization. Initially extremely high, the temperature progressively decreases and sta-
bilizes at approximately 186.4°C in the final design. Similarly, the average thermal lag evolves as shown in
Figure 7.d. Although it momentarily increases during intermediate steps, the thermal lag ultimately returns
to below 20°C in the final optimized solution, aligning with acceptable design criteria. These findings un-
derscore the framework’s capability to handle complex, high-dimensional design problems with conflicting
objectives, optimizing even for extreme and thick composite materials to yield feasible solutions that satisfy
physical constraints and design objectives.

D.1 COMPARISON TO GRADIENT-FREE METHODS

A comparative analysis of the gradient-based and gradient-free optimization approaches for the 30 mm thick
composite material is presented in Table 2. The hyperparameters for each optimizer remain consistent with
those used for the 20 mm thick material. Notably, gradient-based optimizers demonstrate a threefold speed
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Figure 5: Comparison of PIDON’s part temperature and DOC prediction with finite element simulation at
the midpoint of the composite part with a 20 mm thickness.
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Table 5: Performance comparison between gradient-based (i.e., Adam and NAdam) and gradient-free (i.e.,
PSO and GA) optimization methods, for a 30 mm thick composite part.

Optimizer Computation
Time (Min.)

Mean DOC
(>=0.85)

Mean DOC
Gradient

Max. Tc

(=<185)

Mean
Thermal Lag

(=<20)

Adam 19.7 0.853 0.0083 186.4 19.53

NAdam 19.25 0.853 0.0084 186.38 19.51

PSO 58.68 0.837 0.0098 184.98 19.11

GA 69.12 0.852 0.0091 188.87 15.02

advantage over their gradient-free counterparts. The optimization process for the 30 mm composite part
poses significant challenges due to the conflicting nature of the objectives, including minimizing maximum
part temperature and maximizing DOC. This is evident as gradient-free optimizers, such as GA and PSO,
struggle to achieve a balanced solution. GA achieves a higher DOC but results in a maximum part tem-
perature exceeding 185°C. Conversely, PSO maintains a maximum part temperature below 185°C but fails
to achieve a DOC above 0.85. In contrast, the gradient-based optimizers, Adam and NAdam, demonstrate
an ability to effectively balance these competing objectives. While the maximum part temperature for both
optimizers slightly exceeds the target value of 185°C, stabilizing at 186.4°C, this result is still within an
acceptable range for practical purposes. Additionally, both optimizers achieve a DOC above 0.85, fulfilling
the primary performance objectives. This highlights the capability of gradient-based methods in efficiently
navigating complex, high-dimensional design spaces.

E POTENTIAL EXTENSIONS TO OTHER APPLICATIONS

The proposed AI-driven end-to-end gradient-based design optimization framework is not limited to com-
posite materials but can be extended to various engineering domains. At its core, the framework integrates
a PIDON with gradient-based optimization, enabling efficient and accelerated design exploration. This ap-
proach can be applied to aerofoil design (Shukla et al., 2023), automotive engineering (Li et al., 2023),
and other complex design problems (Azizzadenesheli et al., 2024). For each new application, a domain-
specific PIDON must be developed using the relevant governing equations and design parameters. Once
trained, the PIDON serves as a differentiable surrogate model, providing forward predictions that inform
the optimization process. The optimization problem is then formulated based on design requirements, and
a gradient-based optimizer is integrated to efficiently identify optimal solutions. By leveraging the differen-
tiability of the trained PIDON, this framework offers a scalable and computationally efficient methodology
for solving high-dimensional design optimization problems across multiple engineering disciplines.
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