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Abstract

How can language models align words in translated sentences with different syntac-1

tic structures? Can they compute edit distances—or even sort arbitrary sequences?2

These tasks are examples of assignment problems. We prove a carefully engineered3

prompt enables a transformer to approximate the solution of assignment. This4

prompt induces attention layers to simulate gradient descent on the dual objective5

of assigment. We establish an explicit approximation bound that improves with6

transformer depth. A striking implication is that a single transformer can sort inputs7

of arbitrary length—proving a form of out-of-distribution generalization.8

1 Introduction9

Token matching is a core operation in natural language processing. Consider the example of machine10

translation: “I really liked this book.” becomes “Ce livre m’a beaucoup plu.” Although “Ce livre”11

(meaning “this book”) appears first in French, it is the last phrase in English. How does a language12

model align words to their translations? Assignment (or matching) is a fundamental computational13

task with broad applications in data mining [Peyré et al., 2019], bioinformatics [Schiebinger et al.,14

2019], and natural language processing. Assignment includes computing the edit distance [Munkres,15

1957] and sorting [Brockett, 1991].16

Mathematically, the assignment problem is formulated as finding a permutation matrix P∗ that17

matches two sets of d-dimensional points, {x1, . . . , xn} and {y1, . . . , yn}, with minimal cost as18

P∗ := arg min
P∈Rn×n

∑
ij

Pij∥yi − xj∥22 subject to P being a permutation matrix. (1)

Motivated by the remarkable performance of language models, we ask: can transformers solve19

assignment problems via in-context learning?20

Recent work highlights the ability of transformers to perform in-context learning [Brown, 2020]:21

inference based solely on data presented in the prompt, without parameter updates. For the assignment22

problem, in-context learning can be formulated as23

Prompt: x1, y1, . . . , xn, yn ⇒ Output: P∗ [x1 . . . xn]
⊤
. (2)

The matrix product on right aligns the xj’s to their corresponding yi’s using P∗. A model that learns24

in-context must generalize to arbitrary n and all input sets {x1, . . . , xn}. As an example, one can25

prompt GPT-4 with: Prompt: sort(2, 1, 4, 3) ⇒ Output: (1, 2, 3, 4). But can GPT-4 sort arbitrary lists26

of any length?27

We prove that transformers are capable of in-context assignment. Specifically, we show that softmax28

attention can implement gradient descent (with adaptive step sizes) on the dual objective of assignment29

with entropy regularization. Each transformer layer with two attention heads simulates one gradient30

descent step, and stacking layers simulates multiple iterations. This yields an explicit approximation31
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bound: for any two sets of n points in Rd, a transformer can estimate the solution up to32

O
(

n3/2

depth1/2

)
-accuracy for all integers n. (3)

This implies a form of out-of-distribution generalization in the number of tokens. Crucially, the result33

is enabled by careful prompt engineering, which allows the transformer to read and write intermediate34

computations across layers—thereby simulating an algorithm.35

2 Motivation36

Before delving into the theory, we motivate our study with a striking observation. The following37

experiment aims to demonstrate the in-context learning capability of transformers on the assignment38

problem. We generate random data and train a transformer to solve the assignment task by minimizing39

min
θ

! fθ

x1 y1
x2 y2
⋮ ⋮
xn yn……

− P*

x1
x2
⋮
xn

2

, (4)

where expectation is taken over randomly generated inputs x1, . . . , xn, and the ■ marks engineered40

part of the input. For clarity, we defer the training details to Section A. After training with n = 7, we41

observe that the attention weights in the transformer approximate the assignment solution for both42

n = 8 and n = 9, as illustrated in Figure 1. This observation suggests a form of out-of-distribution43

generalization, since the model successfully adapts to a significantly different distribution from44

training data distribution.45

Importantly, transformers naturally accept inputs of varying lengths, making them particularly well-46

suited for tasks involving variable-length sequences such as natural language. This contrasts with47

other neural architectures like convolutional neural networks, which typically require fixed-size48

inputs. Our goal is to theoretically investigate how this flexible input structure enables transformers49

to align tokens of different sizes.50
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Figure 1: In-context Assignment after Training. Rows: n = 8 and 9; Columns: attention matrices A(ℓ)

defined in (10) for ℓ = 5, 10, 15, 20. The last columns shows the assignment solution P ∗ in (1). We observe a
good approximation with attenion in the last layer. See Appendix A for details.

3 Preliminaries51

Regularized Assignment. While assignment involves optimization over the combinatorial set of52

permutation matrices, it can be relaxed to optimization over a continuous set. The state-of-the-art53

method is based on linear programming, namely54

P̂ = arg min
P∈Rn×n

∑
ij

PijCij , subject to P being a doubly stochastic matrix,
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where C ∈ Rn×n, Cij = ∥yi − xj∥2. Comparing the above problem with the original problem in55

(1), we notice that the constraint requiring P to be a permutation matrix has been relaxed to allowing56

P to be a doubly stochastic matrix. Recall the solutions of linear programs lie among the extreme57

points of the constraint set. Since the extreme points of doubly stochastic matrices are permutation58

matrices [Conte et al., 1991], the above linear program has the same solution as (1), i.e., P∗ = P̂ .59

The above linear program has O(n2) variables. Due to the quadratic growth with n, solving the linear60

program becomes computationally challenging for large n. Cuturi [2013] proposes a computationally61

efficient alternative based on regularization with entropy:62

P ∗
λ := arg min

P∈Rn×n

∑
ij

PijCij + λPij log(Pij), subject to P is a doubly stochastic matrix (5)

The Lagrangian dual of the above program has only O(n) variables which is considerably fewer than63

O(n2) variables for the original linear program. Introducing the dual parameters v ∈ Rn and u ∈ Rn,64

the Lagrangian function is defined as follows:65 ∑
ij

PijCij + λ
∑
ij

Pij log(Pij)− u⊤
(
P1n − 1

n
1n

)
− v⊤

(
P⊤1n − 1

n
1n

)
.

It is easy to check P is Pij = e
−Cij+vj+ui

λ −1 minimizes the Lagrangian function. Plugging this into66

the Lagrangian function yields67

arg min
v,u∈Rn

L(u, v) := λ

∑
ij

e(−Cij+ui+vj)/λ−1

− 1

n

∑
vi −

1

n

∑
i

ui

 (6)

It is easy to check that L is convex in u and v as its Hessian is diagonally dominant, hence positive68

semi-definite. Thus, standard first-order optimization can optimize L such as gradient descent with69

adaptive coordinate-wise stepsizes:70 {
uℓ+1 = uℓ −Dℓ∇uL(uℓ, vℓ)

vℓ+1 = vℓ −D′
ℓ∇vL(uℓ, vℓ)

, (7)

where ∇uL denotes the gradient of L with respect to u and Dℓ, D
′
ℓ ∈ Rn×n are diagonal matrices71

with positive diagonal elements (stepsizes).72

Self-attention layers. Attention layers are fundamental building blocks of neural networks, de-73

veloped over decades of research. We study the mechanism of self-attention layers rely on a74

convex combination [Vaswani, 2017]. Let Z ∈ Rn×d. An attention layer is a function denoted by75

attenθ : Rn×d → Rn×d with parameters θ :=
[
wk, wv, wq ∈ Rd×d

]
defined as76

attenθ(Z) = AZwv, Aij = e⟨wkzi,wqzj⟩

 n∑
j=1

e⟨wkzi,wqzj⟩

−1

,

where zi and zj are rows of Z. The convex combination of data points imposes a local dependency77

between representations of tokens, i.e. rows of Z.78

The Engineered Prompt. We propose a particular input denoted by Z0 ∈ R(n+1)×(2d+9) to encode79

the assignment problem:80

Z0 =


x1 y1 ∥x1∥2 ∥y1∥2 14 03
x2 y2 ∥x2∥2 ∥y2∥2 14 03
...

...
...

...
...

xn yn ∥xn∥2 ∥yn∥2 14 03
0 0 0 0 −v4/n 03

 . (8)

The elements in blue are the original prompts, which are sufficient for the assignment. The elements81

in red are carefully engineered. 14 denotes the all-ones 4-dimensional vector, 03 denotes the all-zeros82

3-dimensional vector, and v4 = [0, 0, 0, 1].83

3



Transformer. We consider a specific transformer architecture composed of multiple attention84

and feedforward layers, all connected via residual connections. Let Zℓ denote the intermediate85

representation of the input Z0 at layer ℓ which obeys the following recurrence86

Zℓ+1 = Zℓ +

2∑
j=1

atten
θ
(ℓ)
j
(Zℓ)B

(ℓ)
j , (9)

where θ(ℓ)j are parameters of the attention layers, B(ℓ)
j ∈ Rd′×d′

are the weights to combine attention87

heads. Remarkably, the model has two attention heads.88

Notations. Let Z0 ∈ Rn×d denote the input to the transformer. Its representation at layer ℓ89

is denoted by Zℓ. The input matrix Z0 contains the points x1, . . . , xn and y1, . . . , yn from the90

assignment problem. Let P ∗ be the optimal assignment solution, and let P ∗
λ be its approximation91

obtained via entropy regularization. The transformer is parameterized by θ, which includes all92

attention parameters θ(ℓ)j at layer ℓ and attention head j. The vectors uℓ and vℓ denote the gradient93

descent iterates on the dual objective function L, as defined in Equation (6). For a matrix M , we use94

the notation [M ]i,j to refer to the entry in row i and column j.95

4 The Mechanism of Softmax Attention96

As shown in Figure 1, the trained transformer successfully solves the assignment problem for varying97

values of n. We explain this capability by analyzing the computational power of the softmax98

attention mechanism. Specifically, we prove that softmax attention can simulate gradient descent on99

the objective function L defined in (6).100

Theorem 4.1. There exists a configuration of parameters indepdent from n such that101 {
[Zℓ](1:n),(2d+7) = uℓ −Dℓ∇uL(uℓ, vℓ)

[Zℓ](1:n),(2d+8) = vℓ −D′
ℓ∇vL(uℓ, vℓ)

,

holds for all integer values of n, where uℓ and vℓ are gradient descent in (7) iterations starting from102

u0 = v0 = 0 with the following adaptive stepsizes103

(γ[Dℓ]ii)
−1 =

∑
j

e(−Cij+[uℓ]i+[vℓ]j)/λ−1 + 1, (γ[D′
ℓ]jj)

−1 =
∑
i

e(−Cij+[uℓ]i+[vℓ]j)/λ−1 + 1.

Note: γℓ are arbitrary scalars.104

Linear attention has been shown to simulate gradient descent on mean squares to solve linear105

regression [Ahn et al., 2024, Von Oswald et al., 2023]. The result above holds for standard softmax106

attention. In particular, we show that softmax attention is especially well-suited to implementing gra-107

dient descent on the objective function L, as defined in (6). Remarkably, attention mechanisms cannot108

simulate the gradient of an arbitrary function and exhibit inherent limitations in their computational109

capabilities. In particular, linear attention is well-suited for problems such as linear regression, where110

the underlying objective is quadratic [Ahn et al., 2024, Von Oswald et al., 2023]. In contrast, softmax111

attention is better aligned with tasks involving token alignment, which has profound applications in112

natural language processing, including translation and sequence matching.113

Prompt engineering is essential for the proof of Theorem 4.1. Expanding the input size by adding114

columns and rows creates an extended data representation matrix across the layers. Attention layers115

can utilize a part of this matrix as memory to store the iterates of gradient descent . Furthermore,116

the input dependent part of the prompt supplies the necessary statistics for the attention layers to117

implement gradient descent.118

The result above holds with a choice of parameters that is independent of the input size n. This119

implies that a single attention layer with fixed parameters can implement gradient descent on the dual120

objective function L, regardless of sequence length. We leverage this key property to show that a121

transformer can align an arbitrary number of tokens which theoretically explains the observation in122

Figure 1.123
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5 Provable Assignment124

Attention matrices can approximate the entropy-regularized assignment solution, denoted by P ∗
λ , as125

defined in Equation (5). Consider the block of attention matrices A(ℓ) ∈ Rn×n, defined by126

A
(ℓ)
ij = e⟨w

(ℓ,1)
k z

(ℓ)
i ,w(ℓ,1)

q z
(ℓ)
j ⟩

 n∑
j=1

e⟨w
(ℓ,1)
k z

(ℓ)
i ,w(ℓ,1)

q z
(ℓ)
j ⟩

−1

, (10)

where z
(ℓ)
i is the i-th row of Zℓ, representing the token embeddings at layer ℓ, and w

(ℓ,1)
q , w(ℓ,1)

k are127

the query and key weight matrices of attention head 1 at layer ℓ.128

We prove the attention matrix A(ℓ) converges to the regularized optimal assignment matrix P ∗
λ in an129

appropriate metric for certain choice of parameters of attention layers,.130

As discussed, solution P ∗
λ in (5) can be written as131

P ∗
λ = diag(p∗)Qdiag(q∗), p∗, q∗ ∈ Rn

+, Q ∈ Rn×n
+ , (11)

where diag(v) is a diagonal matrix whose diagonal element in row i is vi, Qij = e−
Cij

λ −1,132

p∗i = ev
∗
i /λ and q∗j = eu

∗
j /λ. It is easy to check that replacing p∗ and q∗ with cp∗ and q∗/c leads to133

the same matrix P ∗
λ for all c ∈ R+. Franklin and Lorenz [1989] introduce a metric that accounts for134

this particular scaling invariance:135

µ(q, q′) = log

(
max
ij

qiq
′
j

qjq′i

)
. (12)

Remarkably, µ is a metric that satisfies the triangle inequality [Franklin and Lorenz, 1989]. However,136

µ is not a norm, as µ(q, q′) = 0 only implies that there exists a constant c such that q = cq′. The next137

theorem establishes an explicit convergence rate for the attention matrices A(ℓ) to P ∗
λ in µ.138

Theorem 5.1. There exists a choice of parameters independent from n that ensures A(ℓ) can be139

written as A(ℓ) = diag(pℓ)Qdiag(qℓ), where Q is defined in (11) and pℓ, qℓ ∈ Rd
+ obey140

min
k≤ℓ

max {µ(pk, p∗), µ(qk, q∗)} ≤ 36n
3/2e

r/λ
√
r√

ℓ(1− η)
,


(1/4)r2 = ∥p1 − p∗∥22 + ∥q1 − q∗∥22,
η = (ϕ(Q)1/2 − 1)/(ϕ(Q)1/2 + 1),

ϕ(Q) = maxijkl QikQjl/(QjkQil),

as long as ℓ ≥ 64n3 exp(3r/λ)r.141

According to the theorem, the attention matrices converge to P ∗
λ at a rate of O

(
1

depth1/2

)
, implying142

that performance improves with increasing depth. This convergence holds for any integer n. Thus, a143

transformer can solve the assignment problem for any number of points without changes in parameters.144

This result mathematically proves transformers are capable of seen generalization in Figure 1.145

An application of the last theorem is that transformers can be used to sort lists. As discussed, sorting146

is a specific instance of assignment problem for d = 1 with y1 < · · · < yn. Thus, transformer can147

sort with an error that vanishes with λ. Graves [2014] experimentally demonstrate that the neural148

Turing machine can sort. Here, we theoretically prove this capability for transformers by establishing149

an approximation bound.150

6 Experiments151

Theorems 5.1 and 4.1 convey four key insights: (i) Transformers approximate sorting, (ii) their152

attention matrices converge to P ∗
λ from (5), (iii) they solve assignment for any n without parameter153

adaptation, and (iv) they handle high-dimensional inputs. We validate (i)-(ii) for a particular choice154

of parameters defined in the proof of Theorem 4.1(see the Appendix). We study training in the155

Appendix A.156

Data. x1, . . . , xn are a random permutation of [1/n, 2/n, . . . , n/n], and we set yi = i/n in our157

experiments. The default regularization constant is λ = 0.005.158
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(i) Convergence. Figure 2 illustrates the convergence of the attention matrices A(ℓ) to P ∗
λ , as159

established in Theorem 5.1. Notably, the attention matrices retain high rank, contrasting with the160

rank collapse phenomenon observed in other settings; see the remarks in Section 5.161

A(1) A(300) A(600) P ∗
λ

Figure 2: Convergence of attention matrices. The plotted matrices are A(1), A(300) and A(600) defined in
(10). We observe these matrices converge to P ∗

λ (the rightmost plot), which is proven by Theorem 5.1.

(ii) Samplesize. Figure 3 illustrates that a single transformer can approximate the solution for162

different n without changing the parameters.163

A(2000) P ∗
λ A(2000) P ∗

λ

Figure 3: Sample Size. left: n = 8, right: n = 4. The transformer weights remain exactly the same.

7 Limitations and Future Works164

Our findings open several avenues for future research.165

According to Theorem 5.1, a transformer with depth O(ϵ−2) can achieve an O(ϵ)-accurate solution,166

following the established convergence rate for gradient descent with adaptive step sizes. However,167

only O(log(1/ϵ)) Sinkhorn iterations are needed for the same accuracy. We believe this gap arises168

from a loose convergence analysis, which can be refined in future work.169

We prove that a transformer with fixed parameters can solve the assignment problem for any arbitrary170

n. This striking generalization has practical benefits: it can drastically reduce both training time and171

memory usage for assignment tasks, since the transformer can be trained on prompts with a constant172

number of tokens. A natural question arises: what is the minimal value of n sufficient for the model173

to learn the assignment task?174

We theoretically and experimentally demonstrate that prompt engineering is essential for in-context175

assignment. However, the underlying mechanism of prompt engineering remains understudied in a176

broader context. Our findings motivate further study of prompt engineering from a computational177

perspective, highlighting its role in enhancing the computational expressivity of transformers.178
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Appendix257

A Additional Experiments258

We have theoretically and experimentally demonstrated that transformers can solve the assignment259

problem. But can they learn the assignment directly from data? Figure 1, previously discussed,260

provides evidence that they can. In this section, we present the details of that experiment and elaborate261

on the critical role of prompt engineering in assigment.262

Training Protocol. The training objective shown in (4) where fθ : Rm×d → Rn is the output263

function of a transformer with parameters θ. To generate outputs, we use an attention layers as264

fθ(Z0) = [attenθ([Zℓ]1:n,:)]:,0:d (13)
where [Zℓ]1:n,: denotes the first n rows of Zℓ in (9). The above indexing allows us to generate265

outputs of size n × d. The expectation in (4) is taken over 1000 random samples generated with266

n = 7 (see Data). For training, we run 104 iterations of Adam [Kingma, 2014] with stepsize267

0.001. Parameters are initialized randomly from a Gaussian distribution with variance 1/(2d + 9).268

We set B(ℓ)
j = (1/20)Id′ , and optimize attention parameters θ := {[w(m,j)

k , w
(m,j)
q , w

(m,j)
v ]}ℓm=1.269

Furthermore, we use the reparameterization Qℓ := w
(ℓ)
k (w

(ℓ)
q )⊤ and optimize Qℓ. All experiments270

are implement in PyTorch [Paszke et al., 2019] and executed on the Google Colab platform using a271

T4 GPU. We also used POT library [Flamary et al., 2021] to compute P∗.272

Results. Figure 1 shows the attention matrices, A(ℓ) in (10), across the layers where we observe that273

these patterns are converging to the optimal solution. This observation validates that transformers274

iteratively solve the assignment problem across their layers (similar to gradient descent on L). While275

the the transformer is trained for n = 7, we observe a good approximation for n = 8 and n = 9 after276

training for n = 7. Theorem 5.1 confirms this generalization capability.277

The role of prompt engineering. To study the impact of the engineered prompt (8), we remove278

additional columns in the engineered prompt as279

Z ′ =

x1 y1 0
...

...
...

xn yn 0

 ∈ Rn×3. (14)

We train the transformer following the Training Protocol. Figure 4 shows that the trained transformer280

cannot approximate P∗ without prompt engineering, but prompt engineering significantly improves281

the approximation.282
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without prompt engineering (14) with the engineered prompt (8) optimal solution P∗

Figure 4: The Significance of Prompt Engineering. Left: Attention pattern in the last layer (see (10)) without
prompt engineering. Middle: Attention pattern in the last layer with the engineered prompt from (8). Right:
Optimal solution. The attention pattern approximates P∗ when proper prompt engineering is applied. See
Section 6 for details.

B Related works283

Our study is motivated by a recent line of research exploring how transformers can perform regression284

using in-context samples Garg et al. [2022], Von Oswald et al. [2023], Akyürek et al. [2022], Ahn285
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et al. [2024]. Garg et al. [2022] propose analyzing regression tasks encoded directly within the286

prompts of language models. Von Oswald et al. [2023] show that linear attention mechanisms can287

implement gradient descent on the mean squared error to solve such tasks. Building on this, Ahn et al.288

[2024] investigate how data distribution influences the in-context learning behavior of transformers.289

Their results suggest that data can guide linear attention to learn a wider class of algorithms, including290

preconditioning strategies for ill-conditioned problems. In this work, we extend these ideas to the291

assignment problem—a fundamental computation with applications in natural language processing.292

The computational power of transformers extends beyond statistical regression. Wang et al. [2024]293

prove that linear attention mechanisms can implement temporal difference algorithms for the evalu-294

ation problem in reinforcement learning. de Luca and Fountoulakis [2024] prove transformers are295

capable of simulating several graph algorithms. In this paper, we investigate how computational296

capabilities interact with prompt engineering and generalization.297

Prompting language models is an art as a proper prompting can substantially enhance their response.298

For instance, using phrases like "let’s think step by step" into prompts has been shown to helps299

language models to produce more accurate solution with logical reasoning [Kojima et al., 2022].300

This insight has inspired a growing body of research aimed at automating prompting to enhance the301

performance of language models. Among the key directions are two prominent areas of focus: the302

automation of prompt engineering through reinforcement learning-based chain-of-thought prompt-303

ing [Wei et al., 2022, Zhang et al., 2022, Su et al., 2022, Zhou et al., 2022], and prompt optimization304

techniques [Cheng et al., 2023, Pryzant et al., 2023, Hsieh et al., 2023, Rubin et al., 2021]. We305

study the essence of prompt engineering from a computational perspective, demonstrating that it can306

significantly enhance the computational capabilities of transformers.307

C The Aligning Transformer308

The theoretical and experimental results presented are based on a specific choice of parameters for309

the attention layers. These parameters are used both to generate the plots in Figures 2–?? and to310

establish the main theorems. Recall the attention layers atten
θ
(ℓ)
j

, where θ
(ℓ)
j denotes the parameters311

of attention head j at layer ℓ, given by θ
(ℓ)
j = [w

(ℓ,j)
k , w

(ℓ,j)
q , w

(ℓ,j)
v ].312

We define Q(ℓ,j) = w
(ℓ,j)
k (w

(ℓ,j)
q )⊤. Let d′ = 2d+ 9, and let ei ∈ Rd′

denote the i-th standard basis313

vector, defined by [ei]j =

{
1 if i = j,

0 otherwise
. We choose the parameters such that:314

λQ(ℓ,1) = [0d′×d 2e1, 2e2 . . . , 2ed 0d′ −e2d+3 −e2d+1 e2d+7 −λe2d+5 0d′×2 e2d+5 0d′ ]

λQ(ℓ,2) = [2ed+1, . . . , 2e2d 0d′×d −e2d+3 0d′ −e2d+2 e2d+8 −λe2d+5 0d′ e2d+5 0d′×2]

[w(ℓ,1)
v ]ij =

{
1 i = 2d+ 6 and j = 2d+ 7

0 otherwise
,

[w(ℓ,2)
v ]ij =

{
1 i = 2d+ 6 and j = 2d+ 8

0 otherwise
,

B
(ℓ)
j = γℓId′×d′ .

(15)
Notably, there are many choices for w(ℓ,j)

k and w
(ℓ,j)
q that ensure the above equations hold.315

D Proof of Theorem 4.1316

We demonstrate that two attention heads can jointly implement a single step of gradient descent317

(with adaptive step sizes) on L(u, v). By induction, multiple attention heads can implement several318

iterations of gradient descent with adaptive step sizes. The proof is constructive, explicitly determining319

the choice of parameters specified in Section C.320
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Gradient descent iterates in closed form. Recall uℓ, vℓ ∈ Rn are iterations of gradient descent321

(with adaptive coordinate-wise stepsize) on Lagrangian function L defined in (7):322 {
uℓ+1 = uℓ −Dℓ∇uL(uℓ, vℓ)

vℓ+1 = vℓ −D′
ℓ∇vL(uℓ, vℓ)

, L(u, v) := λ

∑
ij

e(−Cij+ui+vj)/λ−1

− 1

n

∑
vi −

1

n

∑
i

ui

where the coordinate-wise stepsizes are323

(γℓ[Dℓ]ii)
−1 =

∑
j

e(−Cij+[uℓ]i+[vℓ]j)/λ−1 + 1, (γℓ[D
′
ℓ]jj)

−1 =
∑
i

e(−Cij+[uℓ]i+[vℓ]j)/λ−1 + 1.

Remarkably, the subscript ℓ on γ was omitted in the main submission.324

Define x = [x1, . . . , xn], y = [y1, . . . , yn] ∈ Rn×d and x2 = [∥x1∥2, . . . , ∥xn∥2], y2 =325

[∥y1∥2, . . . , ∥yn∥2] ∈ Rn. Let H(ℓ) ∈ Rn×n obeys326

H(ℓ) = 1
λ

(
−x21⊤

n + 2xy⊤ − 1n(y
2)⊤ + uℓ1⊤n + 1n(vℓ)⊤

)
− 1n1⊤n (16)

Define M (ℓ) ∈ Rn×n defines as M (ℓ)
ij = eH

(ℓ)
ij . Gradient descent thus follows:327

µℓ+1 = µℓ −Dℓ(M
(ℓ)1n − 1

n
1n) (17)

vℓ+1 = vℓ −D′
ℓ((M

(ℓ))⊤1n − 1

n
1n) (18)

Induction statement. Assuming that the statement holds for ℓ, we prove that it holds for ℓ + 1.328

Thus, the induction hypothesis is329

Zℓ =


x1 y1 ∥x1∥2 ∥y1∥2 14 [uℓ]1 [vℓ]1 0
x2 y2 ∥x2∥2 ∥y2∥2 14 [uℓ]2 [vℓ]2 0
...

...
...

...
...

...
...

...
xn yn ∥xn∥2 ∥yn∥2 14 [uℓ]d [vℓ]d 0
0 0 0 0 −v4/n ? ? 0

 ∈ R(n+1)×(2d+9),

where 14 denotes the all-ones 4-dimensional vector, v4 = [0, 0, 0, 1], and [u]i denotes element i330

of vector u. It is easy to check that the above equation holds for ℓ = 0 as u0 = v0 = 0n. The331

choice of w(ℓ,j)
v ensure that only the 2d+ 7-th and 2d+ 8-th columns of Zℓ change with ℓ, which are332

highlighted in . We prove that333

Zℓ+1 =


x1 y1 ∥x1∥2 ∥y1∥2 14 [uℓ+1]1 [vℓ+1]1 0
x2 y2 ∥x2∥2 ∥y2∥2 14 [uℓ+1]2 [vℓ+1]2 0
...

...
...

...
...

...
...

...
xn yn ∥xn∥2 ∥yn∥2 14 [uℓ+1]d [vℓ+1]d 0
0 0 0 0 −v4/n ? ? 0

 ∈ R(n+1)×(2d+9),

Indeed, the extended prompt offers sufficient memory to store the iterates of gradient descent.334

Induction proof. We begin by computing the output of the first attention head in layer ℓ+ 1, step335

by step. Through straightforward algebra, we obtain the following:336

ZℓQ
(ℓ,1) =

[
0 2x/λ 0n −1n/λ −∥x∥2/λ uℓ/λ −1n 02×n 1n/λ 0
0 0 0 0 0 0 0 02×1 0 0

]
∈ R(n+1)×d′

where matrices x and y are defined earlier in the proof. With these notations and the preceding337

equation, we proceed as follows:338

ZℓQ
(ℓ,1)Z⊤

ℓ =

[
H(ℓ) 0n

0⊤
n 0

]
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which obtains339

exp(ZℓQ
(ℓ,1)Z⊤

ℓ ) =

[
M (ℓ) 1n
1⊤
n 1

]
(19)

Furthermore, the choice of parameters w(ℓ,1)
v obtains340

Zℓw
(ℓ,1)
v = −γ

[
0n . . . 0n 1n 0n 0n
0 . . . 0 −1/n 0 0

]
Stitching all equations together yields341

atten
θ
(ℓ)
1
(Zℓ)B

(ℓ)
1 =

[
0n . . . 0n −Dℓ(M

(ℓ)1n − 1
n1n) 0n 0n

0
... 0 n− 1/n 0 0

]
Observe that the matrix above contains the gradient ∇uL(uℓ, vℓ) from Eq. (18), which is required to342

compute the next gradient descent iterate uℓ+1. Similarly, we can show that343

atten
θ
(ℓ)
2
(Zℓ)B

(ℓ)
2 =

[
0n . . . 0n 0n −D′

ℓ(M
(ℓ))⊤1n − 1

n1n) 0n

0
... 0 0 n− 1/n 0

]
,

which computes vℓ+1 in parallel using a second attention head. Thus, replacing the last two equations344

into (9) concludes the induction proof.345

E Proof of Theorem 5.1346

According to Thm. 4.1, a transformer can implement gradient descent. Therefore, the proof casts347

to analyzing gradient descent (with specific coordinate-wise stepsizes) on the convex L. However,348

we cannot directly apply existing convergence results from convex optimization. The existing349

convergence results for smooth convex optimization are in terms of function value L when L is not350

strongly convex1. But, the theorem statement aims at the convergence to a minimizer.351

Figure 5: Proof sketch for Theorem 5.1. We first prove that the attention matrix converges to a local
neighborhood of the set of doubly stochastic matrices. This convergence is illustrated by the blue curves
converging to a small circle. Next, we show that this convergence implies convergence to the minimizer. To
establish this, we hypothetically run Sinkhorn’s iterations and leverage their known convergence rate. The red
curve illustrates these hypothetical Sinkhorn iterations. This figure was generated with the assistance of GPT-4o.

The proof consists of two key steps: (i) the convergence of attention matrix A(ℓ) to a matrix that is352

approximately doubly stochastic, and (ii) a hypothetical simulation of Sinkhorn’s recurrence. See353

Figure 5 for the illustration.354

(i) As shown in Thm. 4.1, the transformer can perform gradient descent with an adaptive355

step size on the convex function L. Since L is convex, gradient descent is guaranteed356

to converge to a stationary point where the gradient norm becomes zero. Specifically,357

it is straightforward to verify that ∇uL = M1 − 1
n1 and ∇vL = M⊤1 − 1

n1, where358

Mij = exp
(

−Cij+ui+vj
λ − 1

)
. Therefore, small gradients for u and v imply that M is359

close to being doubly stochastic.360

1It is easy to check that L is not strongly convex since it Hessian has a zero eigenvalue.
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(ii) We demonstrate that when the matrix M is approximately doubly stochastic, it is near the361

desired solution P ∗
λ . To establish this, we (hypothetically) run Sinkhorn’s recurrence starting362

from M and use its contraction property proven by [Franklin and Lorenz, 1989].363

Before elaborating on the details of (i) and (ii), we present two propositions.364

Preliminaries. Define the functions row : Rn×n
+ → Rn

+ and col : Rn×n
+ → Rn

+ as365

row(A)i =
1

n
∑

j Aij
, col(A)j =

1

n
∑

i Aij
.

We also introduce functions f, g : Rn×n → Rn×n defined as366

f(A) = Adiag(col(A)), g(A) = diag(row(A))A.

Indeed, f(A) (resp. g(A)) normalizes the columns (resp. rows) of A by a scaling factor of their367

average. We will later use f and g to formulate Sinkhorn’s recurrence, which iteratively normalizes368

the rows and columns of a matrix with positive elements. The next proposition proves that an almost369

doubly stochastic matrix remains almost doubly stochastic under f and g. To formulate the statement,370

we introduce a set containing matrices that almost doubly stochastic matrices:371

Sϵ :=
{
A ∈ Rn×n

+ | ∥A1n − 1
n1n∥∞ ≤ ϵ and ∥A⊤1n − 1

n1n∥∞ ≤ ϵ
}
.

Proposition E.1. Suppose that A ∈ Sϵ; then f(A) ∈ S3ϵ and g(A) ∈ S3ϵ, as long as ϵ < 1/(3n).372

Recall the metric d defined in (12). The next proposition establishes a particular property of f and g373

with respect to d.374

Proposition E.2. Let A ∈ Sϵ be decomposed as A = diag(w)Qdiag(q), where w, q ∈ Rn
+.375

(i) For f(A) = diag(w)Qdiag(q′), d(q, q′) ≤ 4nϵ holds for ϵ < 1
4n .376

(ii) For g(A) = diag(w′)Qdiag(q), d(w,w′) ≤ 4nϵ holds for ϵ < 1
4n .377

(i) Convergence Analysis. According to Theorem 4.1, there is a choice of parameters such that378

A
(ℓ)
ij = e

−Cij+[uℓ]i+[vℓ]j
λ −1,

where uℓ and vℓ are the iterates defined in (7). The following lemma establishes that, as the number379

of iterations ℓ increases, A(ℓ) meets a neighborhood of doubly stochastic matrices.380

Lemma E.3. For γ−1
k = (n+ 2)e

2r/λ, there exists a k ≤ ℓ such that381

A(k) ∈ Sϵ, where ϵ2 :=

(
1

ℓ

)
3ne

3r/λr.

Notably, the matrix A(k) has a specific structure that ensures A(k) ∈ Sϵ is sufficient to approximate382

P ∗
λ . To prove this statement, we leverage the contraction property of Sinkhorn’s recurrence.383

Contractive Sinkhorn’s Process. According to the last lemma, there exists an iteration k ≤ ℓ such384

that A(k) ∈ Sϵ. We then apply Sinkhorn’s recurrence starting from A1 = g(A(k)) as:385

Am+1/2 = f(Am), Am+1 = g(Am+1/2).

Notably, we utilize the above recurrence solely for the proof; hence, there is no need for a trans-386

former to implement this recurrence. According to the definition, Am can be decomposed as387

diag(wm)Qdiag(qm), where Qij = e−Cij/λ−1 and qm, wm ∈ Rn
+. Sinkhorn [1967] proves that388

there exist unique vectors w∗, q∗ ∈ Rn
+ such that P ∗

λ = diag(w∗)Qdiag(q∗), where w∗
i = eu

∗
i /λ and389

q∗j = ev
∗
j /λ. [Franklin and Lorenz, 1989] establish the linear convergence of (wm, qm) to (w∗, q∗):390 {

µ(wm+1, w
∗) ≤ ηµ(wm, w∗)

µ(qm+1, q
∗) ≤ ηµ(qm, q∗)

, η =
ϕ(A1)

1/2 − 1

ϕ(A1)1/2 + 1
< 1, (20)

where ϕ(A) = maxijkl
AikAjl

AjkAil
. Since A1 = diag(w1)Qdiag(q1), we have ϕ(A1) = ϕ(Q).391
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(ii) Approximating the Optimal Solution. Propositions E.1 and E.2 enable us to demonstrate that392

there exists a constant c such that cA1 lies within a neighborhood of P ∗
λ . Proposition E.1 combined393

with Lemma E.3 ensure A1 ∈ S3ϵ. Thus, we can apply Proposition E.2 to obtain: µ(q2, q1) ≤ 12nϵ.394

Using Proposition E.1 again, we find that A1+1/2 ∈ S9ϵ. Consequently, we can invoke Proposition E.2395

once more to yield: µ(w2, w1) ≤ 36nϵ. Applying the triangle inequality together with 20 completes396

the proof:397

36nϵ ≥ µ(w2, w1) ≥ µ(w1, w
∗)− µ(w2, w

∗) ≥ (1− η)d(w1, w
∗)

12nϵ ≥ µ(q2, q1) ≥ µ(q1, q
∗)− µ(q2, q

∗) ≥ (1− η)µ(q1, q
∗).

F Proof of Lemma E.3398

Notations. Define the concatenated vector of iterates as399

θk =

[
uk

vk

]
,

and consider the following block diagonal matrix:400

Λk =

[
Dk 0
0 D′

k

]
,

where Dk and D′
k are diagonal matrices at iteration k defined in Theorem 4.1. Define the ball401

B(r) = {θ ∈ Rn | ∥θ∥ ≤ r}. If θk ∈ B(r), then402

γk
n exp(r/λ) + 1

In ⪯ Λk ⪯ γkIn. (21)

Smoothness of L. The Hessian of L has the following form403

∇2L :=

[
∇2

uuL ∇2
uvL

∇2
vuL ∇2

vvL

]
=

diag(
∑

i Mij) M

M⊤ diag(
∑

j Mij)

 (22)

We will prove that the Hessian bounded within the domain θ ∈ B(r). For all v :=

[
s ∈ Rn

s′ ∈ Rn

]
such404

that ∥v∥2 = 1, we have405

v⊤∇2Lv = ∥s∥2diag(
∑

i Mij)
+ 2s⊤Ms′ + ∥s′∥2diag(

∑
j Mij)

(23)

where ∥v∥2A = v⊤Av. Recall Mij = e
−Cij+ui+vj

λ −1, hence406 ∑
ij

sis
′
jMij =

∑
ij

sie
ui/λsje

vj/λe−
Cij/λ−1 (24)

≤
∑
ij

sie
ui/λsje

vj/λ (25)

≤
√∑

i

s2i e
2ui/λ

√∑
i

(s′i)
2e2vi/λ (26)

≤ e
2r/λ (27)

It is easy to check that ∥diag(
∑

i Mij)∥ and ∥diag(
∑

j Mij)∥ are bounded by ne
r/λg. Replacing407

these inequalities into (23) yields408

v⊤∇2Lv ≤ ne
r/λ

∥s∥2 + ∥s′∥2︸ ︷︷ ︸
=1

+ 2e
2r/λ ≤ (n+ 2)e

2r/λ. (28)

Thus, L(θ) is ζ-smooth for ζ := (n+ 2)e
2r/λ when θ ∈ B(r).409
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Boundedness of iterates. The recurrence relation of the iterates defined in (7) leads to the following410

inequality:411

∥θk+1 − θ∗∥2
Λ−1

k

= ∥θk − θ∗∥2
Λ−1

k

− 2⟨θk − θ∗,∇L(θk)⟩+ ∥∇L(θk)∥2Λk
, (29)

recall ∥v∥2A = v⊤Av. Since L is ζ-smooth within B(r), by Theorem 2.1.5 of Nesterov [2013], we412

have413

⟨∇L(θ), θ − θ∗⟩ ≥ 1

ζ
∥∇L(θ)∥2. (30)

Substituting the above inequality into (29) yields414

∥θk+1 − θ∗∥2
Λ−1

k

≤ ∥θk − θ∗∥2
Λ−1

k

−
(
2

ζ
− γk

)
∥∇L(θk)∥2. (31)

Let ∆k := ∥θk − θ∗∥2
Λ−1

k

. For γk = 1
ζ , the above inequality ensures that ∆k is monotonically415

decreasing:416

∆k+1 ≤ ∆k −
(
2

ζ
− γk

)
∥∇L(θk)∥2 ≤ ∆k.

To maintain θk ∈ B(r) for all k, choose r such that417

∥θk∥ ≤ ∆k + ∥θ∗∥Λ−1
k

≤ ∥∆1∥Λ−1
1

+ ∥θ∗∥Λ−1
1

≤ 2 (∥θ1 − θ∗∥+ ∥θ∗∥) = r.

We now show that θk ∈ B(r) concludes the proof.418

Convergence to a stationary point. Since θk ∈ B(r), we can take the average of (31) over419

k = 1, . . . , ℓ:420

ℓ∑
k=1

∥∇L(θk)∥2 ≤ ζ

(
ℓ∑

k=1

∆k −∆ℓ+1

)
≤ ζ∆1 ≤ ζ

(
ne

r/λ + 1
)
r.

The above inequality leads to the following bound on the minimum gradient norm:421

min
k≤ℓ

∥∇L(θk)∥2 ≤ 1
ℓ

ℓ∑
k=1

∥∇L(θk)∥2 ≤
(
1

ℓ

)
ζ(ne

r/λ + 1)r. (32)

Closeness to Doubly Stochastic Matrices. By definition,422

∇L(θk) =

[
M (k)1− 1

n1
(M (k))⊤1− 1

n1

]
, (33)

where 1 denotes the vector of all ones. Substituting the expression for ∇L(θk) into (32) gives423

min
k≤ℓ

(
∥M (k)1− 1

n
1∥2 + ∥(M (k))⊤1− 1

n
1∥2
)

≤ ζ(n exp(r/λ) + 1)r

ℓ
. (34)

G Proof of Proposition E.1424

We prove f(A) ∈ S3ϵ and the proof for g(A) ∈ S3ϵ follows exactly the same. Since A ∈ Sϵ, the425

following two inequalities hold426 ∣∣∣∣∣∑
i

Aij − 1
n

∣∣∣∣∣ ≤ ϵ =⇒
∑
i

Aij ≥ 1
n −

∣∣∣∣∣ 1n −
∑
i

Aij

∣∣∣∣∣ ≥ 1
n − ϵ (35)

Using the above two inequalities, we proceed as427

| Aij

n
∑

i Aij
−Aij | = Aij |1− 1

n
∑

i Aij
| (36)

≤ Aijϵ∑
i Aij

(37)

≤ Aijϵ
1
n−ϵ

. (38)

15



We use the above inequality to complete the proof:428 ∣∣∣∣∣∣
∑
j

Aij

n
∑

i Aij
− 1

n

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
j

Aij

n
∑

i Aij
−
∑
j

Aij

∣∣∣∣∣∣+ |
∑
j

Aij − 1
n | (39)

≤
∑
j

| Aij

n
∑

i Aij
−Aij |+ ϵ (40)

≤ ϵ
1/n−ϵ

∑
j

Aij + ϵ (41)

≤ ϵ
(
1 + 1/n+ϵ

1/n−ϵ

)
(42)

H Proof of Proposition E.2429

We prove part (i), and the proof for part (ii) follows exactly the same. The following inequality holds430

for A ∈ Sϵ:431

∀j :

∣∣∣∣∣∑
i

Aij − 1
n

∣∣∣∣∣ ≤ ϵ. (43)

Using the above inequality, we get:432

|q′j − qj | =
∣∣∣ qj
n
∑

i Aij
− qj

∣∣∣ (44)

= qj |
1

n
∑

i Aij
− 1| (45)

≤ qj

(
ϵ

1
n−ϵ

)
(46)

Plugging the above inequality into µ concludes the proof:433

qiq
′
j

qjq′i
≤ 1

1− 2nϵ
=⇒ µ(q, q′i) ≤ log( 1

1−2nϵ ) ≤
2nϵ

1−2nϵ . (47)
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