© N O O A~ W N =

20

21
22
23

24
25
26
27

28
29
30
31

How Do Transformers Align Tokens?

Anonymous Author(s)
Affiliation
Address

email

Abstract

How can language models align words in translated sentences with different syntac-
tic structures? Can they compute edit distances—or even sort arbitrary sequences?
These tasks are examples of assignment problems. We prove a carefully engineered
prompt enables a transformer to approximate the solution of assignment. This
prompt induces attention layers to simulate gradient descent on the dual objective
of assigment. We establish an explicit approximation bound that improves with
transformer depth. A striking implication is that a single transformer can sort inputs
of arbitrary length—proving a form of out-of-distribution generalization.

1 Introduction

Token matching is a core operation in natural language processing. Consider the example of machine
translation: “I really liked this book.” becomes “Ce livre m’a beaucoup plu.” Although “Ce livre”
(meaning “this book’) appears first in French, it is the last phrase in English. How does a language
model align words to their translations? Assignment (or matching) is a fundamental computational
task with broad applications in data mining [Peyré et al.,[2019]], bioinformatics [[Schiebinger et al.,
2019], and natural language processing. Assignment includes computing the edit distance [Munkres|
1957)] and sorting [Brockett, [1991]].

Mathematically, the assignment problem is formulated as finding a permutation matrix P, that
matches two sets of d-dimensional points, {z1,...,2,} and {y1, ..., Y, }, with minimal cost as

= 1 .. R— . 2 3 1 1 .
P, :=arg pluin Z Pi;llyi — x;]|5 subject to P being a permutation matrix.)
ij

Motivated by the remarkable performance of language models, we ask: can transformers solve
assignment problems via in-context learning?

Recent work highlights the ability of transformers to perform in-context learning [Brownl [2020]:
inference based solely on data presented in the prompt, without parameter updates. For the assignment
problem, in-context learning can be formulated as

Prompt: 21,¥1,...,Zn,¥n = Output: P, [z1 ... In]—r i 2)

The matrix product on right aligns the x;’s to their corresponding y;’s using P;. A model that learns
in-context must generalize to arbitrary n and all input sets {1, ..., 2z, }. As an example, one can
prompt GPT-4 with: Prompt: sort(2, 1,4, 3) = Output: (1,2, 3,4). But can GPT-4 sort arbitrary lists
of any length?

We prove that transformers are capable of in-context assignment. Specifically, we show that softmax
attention can implement gradient descent (with adaptive step sizes) on the dual objective of assignment

with entropy regularization. Each transformer layer with two attention heads simulates one gradient
descent step, and stacking layers simulates multiple iterations. This yields an explicit approximation

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

32

33
34
35

36

37
38
39

40
41
42
43
44
45

46
47
48
49
50

51

52
53
54

bound: for any two sets of n points in R?, a transformer can estimate the solution up to
3/2 .
0] (W) -accuracy for all integers n. 3)

This implies a form of out-of-distribution generalization in the number of tokens. Crucially, the result
is enabled by careful prompt engineering, which allows the transformer to read and write intermediate
computations across layers—thereby simulating an algorithm.

2 Motivation

Before delving into the theory, we motivate our study with a striking observation. The following
experiment aims to demonstrate the in-context learning capability of transformers on the assignment
problem. We generate random data and train a transformer to solve the assignment task by minimizing

2

N x|
X »n X
minE | £ | =P 4
¢ Xu Y ;
| n
where expectation is taken over randomly generated inputs 1, . . ., x,, and the ll marks engineered

part of the input. For clarity, we defer the training details to Section[A] After training with n = 7, we
observe that the attention weights in the transformer approximate the assignment solution for both
n = 8and n = 9, as illustrated in Figure[I] This observation suggests a form of out-of-distribution
generalization, since the model successfully adapts to a significantly different distribution from
training data distribution.

Importantly, transformers naturally accept inputs of varying lengths, making them particularly well-
suited for tasks involving variable-length sequences such as natural language. This contrasts with
other neural architectures like convolutional neural networks, which typically require fixed-size
inputs. Our goal is to theoretically investigate how this flexible input structure enables transformers
to align tokens of different sizes.

AG) A(10) A(15) A(20) P*

Figure 1: In-context Assignment after Training. Rows: n = 8 and 9; Columns: attention matrices A®
defined in (T0) for £ = 5, 10, 15, 20. The last columns shows the assignment solution P* in (I). We observe a
good approximation with attenion in the last layer. See Appendix@ for details.

3 Preliminaries

Regularized Assignment. While assignment involves optimization over the combinatorial set of
permutation matrices, it can be relaxed to optimization over a continuous set. The state-of-the-art
method is based on linear programming, namely

P= arg min P;;C;;, subject to P being a doubly stochastic matrix,

PGR" Xn
j

55
56
57
58

59

60
61
62

63
64
65

66
67

68
69
70

71
72

73
74
75
76

77
78

79
80

81
82
83

where C' € R"*" C;; = |ly; — z;||*>. Comparing the above problem with the original problem in
(T), we notice that the constraint requiring P to be a permutation matrix has been relaxed to allowing
P to be a doubly stochastic matrix. Recall the solutions of linear programs lie among the extreme
points of the constraint set. Since the extreme points of doubly stochastic matrices are permutation

matrices [Conte et al.,[1991]], the above linear program has the same solution as (1)), i.e., P, = P.

The above linear program has O(n?) variables. Due to the quadratic growth with n, solving the linear
program becomes computationally challenging for large n. |Cuturi| [2013]] proposes a computationally
efficient alternative based on regularization with entropy:

Py = arg Pgll{iglx . Z P;;C;; + AP;jlog(P;;), subject to P is a doubly stochastic matrix ~ (5)
ij

The Lagrangian dual of the above program has only O(n) variables which is considerably fewer than

O(n?) variables for the original linear program. Introducing the dual parameters v € R™ and u € R",

the Lagrangian function is defined as follows:

1 1
P.Cii +AY Pilog(P)—u' (Pl,—=1,) -0 [PT1,—=1,].
30+ AL Pyton(Fy) =T (L= 1) =T (P01,

. . —Cijtvitui
Itis easy to check Pis P;; = e x
the Lagrangian function yields

1 1
. L =)\ (7Cij+u1+vj)/)\71 - ;i — — ; 6
arg min (u,v) g e . E v - % U 6)

v, u€R™ T
)

~! minimizes the Lagrangian function. Plugging this into

It is easy to check that L is convex in v and v as its Hessian is diagonally dominant, hence positive
semi-definite. Thus, standard first-order optimization can optimize L such as gradient descent with
adaptive coordinate-wise stepsizes:

{WH =wuy — D¢V L(ug, ve)
Vo1 = V¢ — DV, L(ug, vp)

N

where V,, L denotes the gradient of L with respect to « and Dy, D, € R"*" are diagonal matrices
with positive diagonal elements (stepsizes).

Self-attention layers. Attention layers are fundamental building blocks of neural networks, de-
veloped over decades of research. We study the mechanism of self-attention layers rely on a
convex combination [Vaswani, 2017]. Let Z € R™*%. An attention layer is a function denoted by
atteny : R"*4 — R"*? with parameters 0 := [wk, Wy, Wq € RdXd] defined as

—1

n
atteng(2) = AZw,, A;; = elwrziwazj) Ze<w’“z’““"lzj> ,
j=1

where z; and z; are rows of Z. The convex combination of data points imposes a local dependency
between representations of tokens, i.e. rows of Z.

The Engineered Prompt. We propose a particular input denoted by Z, € R(*+1*(2d+9) {5 encode
the assignment problem:

2

z1oy el ol 14 03

zo Y2 |lwl® w2l 14 03

Zo=1|: 1 : : . @®)
Tn Yn HilanQ Hyn,”2 14 05
O O 0 0 — ’U/l/n 03

The elements in blue are the original prompts, which are sufficient for the assignment. The elements
in red are carefully engineered. 14 denotes the all-ones 4-dimensional vector, O3 denotes the all-zeros
3-dimensional vector, and vy = [0, 0,0, 1].

84
85
86

87
88

89
90
91
92

93

94
95

96

97
98
99
100

101

102
103

104

105
106
107
108
109
110
111
112
113

114
115
116
17
118

119
120
121
122
123

Transformer. We consider a specific transformer architecture composed of multiple attention
and feedforward layers, all connected via residual connections. Let Z, denote the intermediate
representation of the input Z, at layer £ which obeys the following recurrence

2
Zoor = Zg+ Y attenyo (Z0)B, 9)
J

Jj=1

where 0% are parameters of the attention layers, B](»Z) € R >4 gre the weights to combine attention
heads. Remarkably, the model has two attention heads.

Notations. Let Z, € R™*? denote the input to the transformer. Its representation at layer £
is denoted by Z,. The input matrix Z, contains the points zi,...,x, and yi,...,y, from the
assignment problem. Let P* be the optimal assignment solution, and let P} be its approximation
obtained via entropy regularization. The transformer is parameterized by 6, which includes all

attention parameters 9;0 at layer ¢ and attention head j. The vectors u; and v, denote the gradient
descent iterates on the dual objective function L, as defined in Equation @ For a matrix M, we use
the notation [M]; ; to refer to the entry in row ¢ and column j.

4 The Mechanism of Softmax Attention

As shown in Figure I} the trained transformer successfully solves the assignment problem for varying
values of n. We explain this capability by analyzing the computational power of the softmax
attention mechanism. Specifically, we prove that softmax attention can simulate gradient descent on
the objective function L defined in (6).

Theorem 4.1. There exists a configuration of parameters indepdent from n such that

{[Zl](lzn),(2d+7) =y — D¢V L(ug, vp)
[Ze](1:m),(2d48) = Ve — DyVy L(ug, vp)

holds for all integer values of n, where uy and vy are gradient descent in iterations starting from
ug = vg = 0 with the following adaptive stepsizes

(Dela) ™ = D Ot DA g (9[D))) = Y el Gt Ay g,
J %

Note: ~y, are arbitrary scalars.

Linear attention has been shown to simulate gradient descent on mean squares to solve linear
regression [Ahn et al., 2024} Von Oswald et al., 2023]]. The result above holds for standard softmax
attention. In particular, we show that softmax attention is especially well-suited to implementing gra-
dient descent on the objective function L, as defined in @ Remarkably, attention mechanisms cannot
simulate the gradient of an arbitrary function and exhibit inherent limitations in their computational
capabilities. In particular, linear attention is well-suited for problems such as linear regression, where
the underlying objective is quadratic |Ahn et al.,[2024, [Von Oswald et al., | 2023]]. In contrast, softmax
attention is better aligned with tasks involving token alignment, which has profound applications in
natural language processing, including translation and sequence matching.

Prompt engineering is essential for the proof of Theoremd.1] Expanding the input size by adding
columns and rows creates an extended data representation matrix across the layers. Attention layers
can utilize a part of this matrix as memory to store the iterates of gradient descent . Furthermore,
the input dependent part of the prompt supplies the necessary statistics for the attention layers to
implement gradient descent.

The result above holds with a choice of parameters that is independent of the input size n. This
implies that a single attention layer with fixed parameters can implement gradient descent on the dual
objective function L, regardless of sequence length. We leverage this key property to show that a
transformer can align an arbitrary number of tokens which theoretically explains the observation in

Figure

124

125
126

127
128

129
130

131

132
133
134
135

136
137
138

139
140

141

142

143
144
145

146
147
148
149
150

151

152
153
154
155
156

157
158

5 Provable Assignment

Attention matrices can approximate the entropy-regularized assignment solution, denoted by Py, as
defined in Equation (). Consider the block of attention matrices A®) € R™ " defined by
-1

n
e, e 4 e, e 14
AD _ w0 w0 20) Zem; D2 w020
17

; (10)
j=1

where zi(z) is the i-th row of Z,, representing the token embeddings at layer ¢, and w((f"l), w,(f’l) are

the query and key weight matrices of attention head 1 at layer £.

We prove the attention matrix A() converges to the regularized optimal assignment matrix Py inan
appropriate metric for certain choice of parameters of attention layers,.

As discussed, solution Py in (3] can be written as

Py = diag(p*)@Qdiag(¢”), p*,¢" €RY, Q€eRP™, (11)

C;
where diag(v) is a diagonal matrix whose diagonal element in row ¢ is v;, Q;; = e~ Y -1
Dy = e¥i/Xand ¢t = €%i/*. Ttis easy to check that replacing p* and ¢* with c¢p* and ¢* /¢ leads to

the same matrix]-]’; for all ¢ € R;.. [Franklin and Lorenz| [[1989] introduce a metric that accounts for
this particular scaling invariance:

qiq;

iq

1(q,q') = log (m,ax J,) : (12)
vl 459;

Remarkably, v is a metric that satisfies the triangle inequality [Franklin and Lorenz, [1989]. However,

14 is not a norm, as p(q, ¢') = 0 only implies that there exists a constant ¢ such that ¢ = cq’. The next

theorem establishes an explicit convergence rate for the attention matrices A“) to P in p.

Theorem 5.1. There exists a choice of parameters independent from n that ensures A can be
written as AY) = diag(p,)Qdiag(qe), where Q is defined in (TT) and p;, q¢ € Ri obey

seneriyr [= e =ptllE + o = 75,
min max {u(pr, "), plar: 4°)} < Vi n= (6@ - D/(&(Q)*"* +1),
) 7 $(Q) = maxijn Q1 /(QuQu),

as long as { > 64n3 exp(3r/))r.

According to the theorem, the attention matrices converge to P5 at a rate of O (W), implying

that performance improves with increasing depth. This convergence holds for any integer n. Thus, a
transformer can solve the assignment problem for any number of points without changes in parameters.
This result mathematically proves transformers are capable of seen generalization in Figure [T}

An application of the last theorem is that transformers can be used to sort lists. As discussed, sorting
is a specific instance of assignment problem for d = 1 with y; < --- < y,,. Thus, transformer can
sort with an error that vanishes with \. \Graves| [2014]] experimentally demonstrate that the neural
Turing machine can sort. Here, we theoretically prove this capability for transformers by establishing
an approximation bound.

6 Experiments

Theorems [5.1] and i.T] convey four key insights: (i) Transformers approximate sorting, (ii) their
attention matrices converge to P5 from (3)), (iii) they solve assignment for any n without parameter
adaptation, and (iv) they handle high-dimensional inputs. We validate (i)-(ii) for a particular choice
of parameters defined in the proof of Theorem [4.I[see the Appendix). We study training in the
Appendix [A]

Data. z1,...,x, are a random permutation of [L/n,2/n,...,7/n], and we set y; = ¢/n in our
experiments. The default regularization constant is A = 0.005.

159
160
161

162
163

164

165

166
167
168
169

170
171
172
173
174

175
176
177
178

179

180
181

182
183
184

186
187

(i) Convergence. Figure 2| illustrates the convergence of the attention matrices A®) to Py, as
established in Theorem 5.1} Notably, the attention matrices retain high rank, contrasting with the
rank collapse phenomenon observed in other settings; see the remarks in Section [3]

05 03 o5
00 00 00

00
05 05 05 020
10 10 10

o 01
15 15 15 .
20 20 20 20 010
25 25 25 25
s0 30 30 20
s s 33 a5 000

05 00 05 25 20 33 05 0o o5 25 30 35 05 00 o 3 3 205 0o 05 1o 1s 20 25 30 35

A(l) A(SOO) A(600) P;\k

Figure 2: Convergence of attention matrices. The plotted matrices are A, AG%®) and A(®°?) defined in
(T0). We observe these matrices converge to Py (the rightmost plot), which is proven by Theorem|[5.1

(ii) Samplesize. Figure [3] illustrates that a single transformer can approximate the solution for
different n without changing the parameters.

o 03
1 . 00 o5
2 N 05 o0 o8
3 2 1o 05
4 3 15
s - 20 . os
i 0z = 25
) 01 20 a0
i
00 s as
56 05 0o 05 10 1s 20 25 30 35 o5 00 o5 10 15 20 25 30 35

o 1 2 3 4 7 o1 oz o3 a4 o5 & o3

A(2000) P; A(2000) P

Figure 3: Sample Size. left: n = 8, right: n = 4. The transformer weights remain exactly the same.

7 Limitations and Future Works

Our findings open several avenues for future research.

According to Theorem a transformer with depth O(e~2) can achieve an O(¢)-accurate solution,
following the established convergence rate for gradient descent with adaptive step sizes. However,
only O(log(1/¢€)) Sinkhorn iterations are needed for the same accuracy. We believe this gap arises
from a loose convergence analysis, which can be refined in future work.

We prove that a transformer with fixed parameters can solve the assignment problem for any arbitrary
n. This striking generalization has practical benefits: it can drastically reduce both training time and
memory usage for assignment tasks, since the transformer can be trained on prompts with a constant
number of tokens. A natural question arises: what is the minimal value of n sufficient for the model
to learn the assignment task?

We theoretically and experimentally demonstrate that prompt engineering is essential for in-context
assignment. However, the underlying mechanism of prompt engineering remains understudied in a
broader context. Our findings motivate further study of prompt engineering from a computational
perspective, highlighting its role in enhancing the computational expressivity of transformers.

References

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355-607, 2019.

Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon,
Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, et al. Optimal-transport analysis of single-cell
gene expression identifies developmental trajectories in reprogramming. Cell, 176(4):928-943,
2019.

James Munkres. Algorithms for the assignment and transportation problems. Journal of the society
for industrial and applied mathematics, 5(1):32-38, 1957.

188
189

190

191
192
193
194

195

197

198
199
200

201
202
203

204
205

206

207
208

209
210
211
212
213
214

215
216
217
218
219

220
221
222

223
224
225

226
227

228
229

230
231
232

234
235

Roger W Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve linear program-
ming problems. Linear Algebra and its applications, 146:79-91, 1991.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

G Conte, AM Perdon, B Wyman, Roger W Brockett, and Wing Shing Wong. A gradient flow for
the assignment problem. In New Trends in Systems Theory: Proceedings of the Universita di
Genova-The Ohio State University Joint Conference, July 9—11, 1990, pages 170-177. Springer,
1991.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. Advances in Neural Information Processing

Systems, 36, 2024.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pages 35151-35174. PMLR, 2023.

Joel Franklin and Jens Lorenz. On the scaling of multidimensional matrices. Linear Algebra and its
applications, 114:717-735, 1989.

Alex Graves. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mehdi Alaya, Aurélien Boisbunon, Stanislas
Chambon, Laetitia Chapel, Adrien Corenflos, Kevin Fatras, Nicolas Fournier, Lucas Gautheron,
Nathalie Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antoine
Schutz, Vivien Seguy, Leo Sellem, and Titouan Vayer. Pot: Python optimal transport. Journal of
Machine Learning Research, 22(78):1-8, 2021.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing

Systems, 35:30583-30598, 2022.

Ekin Akyiirek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Jiuqi Wang, Ethan Blaser, Hadi Daneshmand, and Shangtong Zhang. Transformers learn temporal
difference methods for in-context reinforcement learning. arXiv preprint arXiv:2405.13861, 2024.

Artur Back de Luca and Kimon Fountoulakis. Simulation of graph algorithms with looped transform-
ers. arXiv preprint arXiv:2402.01107, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199-22213, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

236
237

238
239
240

241
242
243

244
245
246

247
248

249
250

251
252

253
254

255
256

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. arXiv preprint arXiv:2210.03493, 2022.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang, Mari
Ostendorf, Luke Zettlemoyer, Noah A Smith, et al. Selective annotation makes language models
better few-shot learners. arXiv preprint arXiv:2209.01975, 2022.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022.

Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning Wang, Yuxiao Dong, Jie Tang, and Minlie
Huang. Black-box prompt optimization: Aligning large language models without model training.
arXiv preprint arXiv:2311.04155, 2023.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with" gradient descent" and beam search. arXiv preprint arXiv:2305.03495, 2023.

Cho-Jui Hsieh, Si Si, Felix X Yu, and Inderjit S Dhillon. Automatic engineering of long prompts.
arXiv preprint arXiv:2311.10117, 2023.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633, 2021.

Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The
American Mathematical Monthly, T4(4):402-405, 1967.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

257

258

259
260
261
262

264

265
266
267
268

269

270
271
272

273
274
275
276
277

278
279

280
281
282

283

284

Appendix

A Additional Experiments

We have theoretically and experimentally demonstrated that transformers can solve the assignment
problem. But can they learn the assignment directly from data? Figure[I] previously discussed,
provides evidence that they can. In this section, we present the details of that experiment and elaborate
on the critical role of prompt engineering in assigment.

Training Protocol. The training objective shown in @) where fp : R™*¢ — R™ is the output
function of a transformer with parameters 6. To generate outputs, we use an attention layers as

fG(ZO) = [attene([Zé]lzn,:)]:,O:d (13)
where [Z¢]1.,,. denotes the first n rows of Z; in @) The above indexing allows us to generate
outputs of size n x d. The expectation in (@) is taken over 1000 random samples generated with
n = 7 (see Data). For training, we run 10 iterations of Adam 2014 with stepsize
0.001. Parameters are initialized randomly from a Gaussian distribution with variance 1/(2d + 9).

We set BJ@) = (1/20)I4, and optimize attention parameters 0 := {[w,gm’j), w((lm’j), wi’"’j)] L
Furthermore, we use the reparameterization Q) := w,(f) (w((f))—'— and optimize @),. All experiments
are implement in PyTorch [Paszke et al,[2019] and executed on the Google Colab platform using a

T4 GPU. We also used POT library [Flamary et al.,[2021] to compute P.

Results. Figure (1| shows the attention matrices, A® in (]m), across the layers where we observe that
these patterns are converging to the optimal solution. This observation validates that transformers
iteratively solve the assignment problem across their layers (similar to gradient descent on L). While
the the transformer is trained for n = 7, we observe a good approximation for n = 8 and n = 9 after
training for n = 7. Theorem [5.I] confirms this generalization capability.

The role of prompt engineering. To study the impact of the engineered prompt (8], we remove
additional columns in the engineered prompt as

1 y1 O
Z'=|: | eR™E (14)
Tn Yn 0

We train the transformer following the Training Protocol. Figure[d]shows that the trained transformer
cannot approximate P, without prompt engineering, but prompt engineering significantly improves

the approximation.
10
0.6
0.8
05 0.7 0.8
0.6
04 06
0.5
03 0.4
0.4
0.2 03
02 0.2
0.1
0.1
0.0 0.0 0.0
o 1 2 3 a 5 6 o 1 2 3 a4 5 6 o 1 2 3 4 5 6

without prompt engineering (T4) with the engineered prompt (8] optimal solution P,

Figure 4: The Significance of Prompt Engineering. Lefi: Attention pattern in the last layer (see (I0)) without
prompt engineering. Middle: Attention pattern in the last layer with the engineered prompt from (8). Right:
Optimal solution. The attention pattern approximates P, when proper prompt engineering is applied. See
Section 6] for details.

B Related works

Our study is motivated by a recent line of research exploring how transformers can perform regression

285 using in-context samples |Garg et al.|[2022], Von Oswald et al.|[2023], |Akyiirek et al.| [2022], Ahn

286 (et al.| [2024]]. |Garg et al.|[2022] propose analyzing regression tasks encoded directly within the
287 prompts of language models. Von Oswald et al.| [[2023]] show that linear attention mechanisms can
288 implement gradient descent on the mean squared error to solve such tasks. Building on this, Ahn et al.
289 [2024] investigate how data distribution influences the in-context learning behavior of transformers.
290 Their results suggest that data can guide linear attention to learn a wider class of algorithms, including
291 preconditioning strategies for ill-conditioned problems. In this work, we extend these ideas to the
292 assignment problem—a fundamental computation with applications in natural language processing.

293 The computational power of transformers extends beyond statistical regression. [Wang et al.| [2024]
2094 prove that linear attention mechanisms can implement temporal difference algorithms for the evalu-
295 ation problem in reinforcement learning. [de Luca and Fountoulakis|[2024]] prove transformers are
296 capable of simulating several graph algorithms. In this paper, we investigate how computational
297 capabilities interact with prompt engineering and generalization.

298 Prompting language models is an art as a proper prompting can substantially enhance their response.
299 For instance, using phrases like "let’s think step by step" into prompts has been shown to helps
s00 language models to produce more accurate solution with logical reasoning [Kojima et al., [2022].
so1 This insight has inspired a growing body of research aimed at automating prompting to enhance the
s02 performance of language models. Among the key directions are two prominent areas of focus: the
303 automation of prompt engineering through reinforcement learning-based chain-of-thought prompt-
so4 ing [Wei et al., 2022} Zhang et al.| [2022] Su et al., 2022 [Zhou et al.,2022]], and prompt optimization
s05 techniques [[Cheng et al.| 2023] |Pryzant et al 2023| Hsieh et al., |2023] [Rubin et al., [2021]]. We
so6 study the essence of prompt engineering from a computational perspective, demonstrating that it can
307 significantly enhance the computational capabilities of transformers.

ss C The Aligning Transformer

309 The theoretical and experimental results presented are based on a specific choice of parameters for
sto the attention layers. These parameters are used both to generate the plots in Figures [2}-?? and to

s11 establish the main theorems. Recall the attention layers atten), where 9]@) denotes the parameters
s12 of attention head j at layer ¢, given by QJ(.Z) = [w,(f’j)7 w((f’j), wff’j)].

a1z We define Q(“7) = w,(f’j) (w((f’j))T. Let d’ = 2d + 9, and let ¢; € R? denote the i-th standard basis
1 ifi =y,

.. We choose the parameters such that:
0 otherwise

a4 vector, defined by [e;]; = {

o1y _

AQUY) = [0pxa 2e1,2e2...,2¢q4 Oy —e2413 —€sar1 €2ar7 —Aeadss Owxo e€aqrs O]
0,2

AQYD = [2e411,...,220 Oarxa —esarsz Oa —ezqra €2dis —Meadrs O eadars Oarxol

D], = 1 i=2d+6andj=2d+7
v 10 otherwise ’

W], = 1 i=2d+6andj=2d+8
710 otherwise g

BJ@) =Yela xar-
(15)

315 Notably, there are many choices for w!*? and w((f’j) that ensure the above equations hold.

sis D Proof of Theorem

317 We demonstrate that two attention heads can jointly implement a single step of gradient descent
s1s (with adaptive step sizes) on L(u,v). By induction, multiple attention heads can implement several
319 iterations of gradient descent with adaptive step sizes. The proof is constructive, explicitly determining
a0 the choice of parameters specified in Section [C|

10

321
322

323

324

325
326

327

328
329

330
331

333

334

335
336

337
338

Gradient descent iterates in closed form. Recall u,, v, € R™ are iterations of gradient descent
(with adaptive coordinate-wise stepsize) on Lagrangian function L defined in (7):

g1 = ug — DgV o L(ug, vp) ._ (—Cij+uitv) A—1 1 1
{ L(ww) =2 Y DI I

Vo+1 = Vg — DZVUL(’M@, Ug) i

where the coordinate-wise stepsizes are
(’YZ[DZ]ii)_l — Ze(—cij‘F[ue]i-ﬁ-[Utz}j)/A—l +1, (’YZ[DHjj)_l — Ze(—cij+[utz]71+[vz].7‘)/>\—1 +1.
j i

Remarkably, the subscript £ on v was omitted in the main submission.

Define z = [71,...,7,),¥y = [Y1,---,yn] € R and 22 = [||lz1|?, ..., |z.]?], 9% =
[lyall?, .., lynll?] € R™. Let H®) € R™*™ obeys
H® = % (—5521:; +2zy " — ln(yg)T + uel,—lr + ln(w)T) - lnl;Lr (16)

Define M (*) € R"*" defines as Ml-(f) — ¢35’ Gradient descent thus follows:

1
fos1 = pre — De(M1,, — ﬁln) (17)

1
Ve = vg — Dy(MO)T1,, — ﬁln) (18)

Induction statement. Assuming that the statement holds for ¢, we prove that it holds for ¢ + 1.
Thus, the induction hypothesis is

zoyr fe® vl e [udi [udi O
T2 y2 lz2* |y 14 [uela [ve]2 O
Ze= | : : : : : 1| e Rt x(2d+9)
T Yo Nzl lwall® 1o fwda [vela 0O
0 0 0 0 —vg/n ? ? 0

where 14 denotes the all-ones 4-dimensional vector, v, = [0, 0,0, 1], and [u]; denotes element i
of vector u. It is easy to check that the above equation holds for ¢ = 0 as ug = vg = 0,. The
choice of wq(f’]) ensure that only the 2d + 7-th and 2d + 8-th columns of Z, change with ¢, which are
highlighted in . We prove that

g1 oyr al® Lo [wea]r [vea]r 0
2 y2 llel® w2l 14 [werale [vere

Z£+1 — : : : : c R(n+1) X (2d+9)’
Tn Yn H?rnHQ HynHQ 1/1 [Uﬁfl]rl [7/’/(+l]rl 0

0 0 —v4/m ? ? 0
Indeed, the extended prompt offers sufficient memory to store the iterates of gradient descent.

Induction proof. We begin by computing the output of the first attention head in layer ¢ 4 1, step
by step. Through straightforward algebra, we obtain the following:

en [0 22/8 0, —L/h —llzl2/A u/A —Ln Osxn LA 0] o msiyea
ZQ77 =1 "o 0 0 0 0 0 0,y 0 ofCEk

where matrices x and y are defined earlier in the proof. With these notations and the preceding
equation, we proceed as follows:

H® 0,
2QUV 2z, = {

o) 0

11

339

340

341

342
343

344
345

346

347
348
349
350
351

352
353
354

355
356
357
358

359

360

which obtains

(0
exp(Z:QUV 2]) = [AfT ﬂ (19)
Furthermore, the choice of parameters w,(f’l) obtains
) _ |0 oo 0, 1, 0, 0,
Zew, ™ = 7[0 . 0 —1/n 0 0

Stitching all equations together yields
0, ... 0, —Dy(M®1,-1211,) 0, 0,
0 : 0 n—1/n 0 0

Observe that the matrix above contains the gradient V., L(uy, v,) from Eq. (I8), which is required to
compute the next gradient descent iterate 1. Similarly, we can show that

0, ... 0, 0, —DyMT1,—-11,) o0,
0 ¢ 0 0 n—1/n 0]’

which computes v, 1 in parallel using a second attention head. Thus, replacing the last two equations
into (9) concludes the induction proof.

¢

attenegm(Zg)B%) — [
‘

atteneée) (Zg)Bé) — [

E Proof of Theorem 5.1

According to Thm. 4.1} a transformer can implement gradient descent. Therefore, the proof casts
to analyzing gradient descent (with specific coordinate-wise stepsizes) on the convex L. However,
we cannot directly apply existing convergence results from convex optimization. The existing
convergence results for smooth convex optimization are in terms of function value L when L is not
strongly convex[ﬂ But, the theorem statement aims at the convergence to a minimizer.

Figure 5: Proof sketch for Theorem We first prove that the attention matrix converges to a local
neighborhood of the set of doubly stochastic matrices. This convergence is illustrated by the blue curves
converging to a small circle. Next, we show that this convergence implies convergence to the minimizer. To
establish this, we hypothetically run Sinkhorn’s iterations and leverage their known convergence rate. The red
curve illustrates these hypothetical Sinkhorn iterations. This figure was generated with the assistance of GPT-4o.

The proof consists of two key steps: (i) the convergence of attention matrix A®) to a matrix that is
approximately doubly stochastic, and (ii) a hypothetical simulation of Sinkhorn’s recurrence. See
Figure [5|for the illustration.

(i) As shown in Thm. .1] the transformer can perform gradient descent with an adaptive
step size on the convex function L. Since L is convex, gradient descent is guaranteed
to converge to a stationary point where the gradient norm becomes zero. Specifically,
it is straightforward to verify that V,L = M1 — 11 and V,L = M "1 — 11, where

—Cijtuitv;
A

M;; = exp (— 1). Therefore, small gradients for u and v imply that M is

close to being doubly stochastic.

't is easy to check that L is not strongly convex since it Hessian has a zero eigenvalue.

12

361
362
363

365

366

367
368
369
370
371

372

373
374

375

376

377

378

379
380

381

382
383

385

386
387
388
389

390

391

(i) We demonstrate that when the matrix M is approximately doubly stochastic, it is near the
desired solution Py . To establish this, we (hypothetically) run Sinkhorn’s recurrence starting
from M and use its contraction property proven by [Franklin and Lorenz, |1989].

Before elaborating on the details of (i) and (ii), we present two propositions.

Preliminaries. Define the functions row : R, — R’} and col : R}*™ — R as
_ 1 _ 1
We also introduce functions f, g : R®"*"™ — R™*™ defined as

f(A) = Adiag(col(A)), g¢(A) = diag(row(A))A.

Indeed, f(A) (resp. g(A)) normalizes the columns (resp. rows) of A by a scaling factor of their
average. We will later use f and g to formulate Sinkhorn’s recurrence, which iteratively normalizes
the rows and columns of a matrix with positive elements. The next proposition proves that an almost
doubly stochastic matrix remains almost doubly stochastic under f and g. To formulate the statement,
we introduce a set containing matrices that almost doubly stochastic matrices:

Sei={AeR"|||AL, — 21,]l <eand [AT1, — 11,]| < €}.
Proposition E.1. Suppose that A € S, then f(A) € Ss. and g(A) € Ss., as long as € < 1/3n).

row(A); col(A),

Recall the metric d defined in (I2). The next proposition establishes a particular property of f and g
with respect to d.

Proposition E.2. Let A € S be decomposed as A = diag(w)Qdiag(q), where w,q € R'}.
(i) For f(A) = diag(w)Qdiag(q'), d(q,q') < 4ne holds for e < L.
(ii) For g(A) = diag(w'")Qdiag(q), d(w,w') < 4ne holds for e < .

(i) Convergence Analysis. According to Theorem 4.1} there is a choice of parameters such that
¢ —CiJ+[7‘(]i+["’[]j_1
AZ(.].) —e By ,
where uy and v, are the iterates defined in (7). The following lemma establishes that, as the number
of iterations / increases, A(*) meets a neighborhood of doubly stochastic matrices.

Lemma E.3. For 'ylzl =(n+ 2)62T/>‘, there exists a k < { such that

AR €S, where ¢ ;= (2) 3ne’ .

Notably, the matrix A®*) has a specific structure that ensures A*) € S, is sufficient to approximate
Py . To prove this statement, we leverage the contraction property of Sinkhorn’s recurrence.

Contractive Sinkhorn’s Process. According to the last lemma, there exists an iteration k& < ¢ such
that A(*) € S.. We then apply Sinkhorn’s recurrence starting from A; = g(A®)) as:

Am+1/2 = f(Am); A7rz+1 = g(Am+1/2)-

Notably, we utilize the above recurrence solely for the proof; hence, there is no need for a trans-
former to implement this recurrence. According to the definition, A,, can be decomposed as
diag(w,,)Qdiag(qm,), where Q;; = e~“4/*~1 and ¢,,, w,,, € R'}. |Sinkhorn|[[1967] proves that
there exist unique vectors w*, ¢* € R” such that Py = diag(w*)Qdiag(¢*), where w; = ¢“i/* and
q = %5/, [Franklin and Lorenz, [1989] establish the linear convergence of (Wi, @m) to (W*, ¢*):

*) < * ANY2 -1
{N(wmﬂalf) < Wﬂ(wm7*w) . n= ¢(1)1 - <1, (20)
pGm+1,4%) < 1m0 ¢(A1)'/2 +1
where ¢(A) = max; ﬁj’;’:f . Since A; = diag(w1)Qdiag(q1), we have ¢(A1) = ¢(Q).

13

392
393
394
395

396
397

398

399

400

401
402

403

404

405

406

(ii) Approximating the Optimal Solution. Propositions and[E.2]enable us to demonstrate that
there exists a constant ¢ such that cA; lies within a neighborhood of P5'. Proposition combined
with Lemma|E.3|ensure A; € Ss.. Thus, we can apply Proposition[E.2|to obtain: (g2, ¢1) < 12ne.
Using Propositionagain, we find that A /5 € Sp.. Consequently, we can invoke Proposition

once more to yield: p(ws, wr) < 36ne. Applying the triangle inequality together with 20| completes

the proof:

36ne > u(ws,wr) > plwr,w*) — plws,w*) > (1 — n)d(wy, w*)

12n€ > p(qa, q1) > (g1, ¢*) — g2, ¢*) > (L —n)u(qr, ¢%).

F Proof of Lemma

Notations. Define the concatenated vector of iterates as

and consider the following block diagonal matrix:

|

Dy,
0

0
D}

where Dy, and D}, are diagonal matrices at iteration k defined in Theorem Define the ball
B(r)y={0 eR" | ||0|| <r}. If0; € B(r), then

nexp(r/\) +1

Vi

Smoothness of L. The Hessian of L has the following form

V2 L V2 L
v2[- wu wv _

We will prove that the Hessian bounded within the domain § € B(r). For all v := [

that ||v|? = 1, we have

di

ag(2_; Mij) M

]\4—r dlag(zj Mz])

v VLo = ||8/|Gugcss, ar,y) 28T Ms' + ||S/||giag(zj Mij)

where |[v]|% = v T Av. Recall M;; = e

j

A

—Cijtuitv;

-1 , hence

si8 My =) s iPgietiPem A1
FRa J
j

< g sieu"/ksj e/
12

S\/28562”/*\/2(82)262”/*

< A

seR”
s’ € R"

2n

(22)
} such
(23)

(24)

(25)

(26)

27)

407 It is easy to check that ||diag(>_, M;;)| and ||diag(3_; M;;)|| are bounded by ne’/*g. Replacing

408

these inequalities into (23)) yields

v V2L < ne’*

Il + Is"I2 | +2¢™7 < (n+2)e™.
—_———

=1

409 Thus, L(6) is ¢-smooth for ¢ := (n 4 2)e*"/* when 6 € B(r).

14

(28)

410
411

412
413

414

415

416

417

418

419
420

421

422

423

424

425
426

427

Boundedness of iterates. The recurrence relation of the iterates defined in (7)) leads to the following
inequality:

1051 = 07132 = 110k = 0713+ — 200 — 0%, VL(0k)) + | VLK), (29)

recall |[v]|% = v Av. Since L is (-smooth within B(r), by Theorem 2.1.5 of Nesterov|[2013], we
have

(VLO).6-0) > ZIVL6)I* (30)
Substituting the above inequality into yields
1 = 07130 < 100 =071 = (2= 20 VLGB G1)
Let Ay := || — 9*||i;1. For v, = %, the above inequality ensures that A is monotonically
decreasing:

2
Brn < 8= (2=) IVLOOIP < A
To maintain 6, € B(r) for all k, choose r such that

101l < Ag + (107 g1 < [Aa- 1074 < 20160 = 07[1 +[167])) = -

We now show that 8, € B(r) concludes the proof.

Convergence to a stationary point. Since 0, € B(r), we can take the average of (3I)) over
k=1,...,¢

4 4
S IVLER)]? < ¢ (Z Ay — AZ+1> <A1 <¢ (ner/* + 1) r.

k=1 k=1
The above inequality leads to the following bound on the minimum gradient norm:

14
1 ,
win V261 < 3 32 IVE6I < (7) ctne™ + 1) ()
- k=1

Closeness to Doubly Stochastic Matrices. By definition,

M®*1 - 11
VL(O) = [(M(k))Tl—nil , (33)
where 1 denotes the vector of all ones. Substituting the expression for VL(6),) into (32) gives
1 . 1 1
k<t n n 14

G Proof of Proposition [E.|

We prove f(A) € Ss. and the proof for g(A) € Ss. follows exactly the same. Since A € S, the
following two inequalities hold

1
ZAij—;Se=>ZAijz;—'n—ZAij >1_¢ (35)
Using the above two inequalities, we proceed as
Aij _ 1
s~ Aul = Aol =] (36)
A€
< 2 j“u 37
< T (38)

n

428 We use the above inequality to complete the proof:

> *% <D Y Au| 1Y A - A (39)
j J J

J J
<Yl — Ayl +e (40)
J
<Y A te (41)
J
<e(1+32%) 42)

29 H Proof of Proposition

430 We prove part (i), and the proof for part (ii) follows exactly the same. The following inequality holds
431 for A € S,:

Vi) A -1l <e 43)
432 Using the above inequality, we get:
14— 45l = s — 0 (44)
1
-1 45
q] | n Zi Az] ‘ ()

< qj (166) (46)

433 Plugging the above inequality into x concludes the proof:

/
4qiq; <
q;q; — 1—2ne

= u(q,q}) <log(15-) < 7255 47)

16

	Introduction
	Motivation
	Preliminaries
	The Mechanism of Softmax Attention
	Provable Assignment
	Experiments
	Limitations and Future Works
	Additional Experiments
	Related works
	The Aligning Transformer
	Proof of Theorem 4.1
	Proof of Theorem 5.1
	Proof of Lemma E.3
	Proof of Proposition E.1
	Proof of Proposition E.2

