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A Latent-Variable Model for Intrinsic Probing
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Abstract

The success of pre-trained contextualized rep-
resentations has prompted researchers to an-
alyze them for the presence of linguistic in-
formation. Indeed, it is natural to assume
that these pre-trained representations do en-
code some level of linguistic knowledge as
they have brought about large empirical im-
provements on a wide variety of NLP tasks,
which suggests they are learning true linguis-
tic generalization. In this work, we focus on
intrinsic probing, an analysis technique where
the goal is not only to identify whether a rep-
resentation encodes a linguistic attribute, but
also to pinpoint where this attribute is encoded.
We propose a novel latent-variable formulation
for constructing intrinsic probes and derive a
tractable variational approximation to the log-
likelihood. Our results show that our model is
versatile and outperforms two intrinsic probes
previously proposed in the literature. Finally,
we find empirical evidence that pre-trained rep-
resentations develop a cross-lingually entan-
gled notion of morphosyntax.1

1 Introduction

There have been considerable improvements to
the quality of pre-trained contextualized represen-
tations in recent years (e.g., Peters et al., 2018;
Devlin et al., 2019; Raffel et al., 2020). These
advances have sparked an interest in understanding
what linguistic information may be lurking within
the representations themselves (Poliak et al., 2018;
Zhang and Bowman, 2018; Rogers et al., 2020, in-
ter alia). One philosophy that has been proposed to
extract this information is called probing, the task
of training an external classifier to predict the lin-
guistic property of interest directly from the repre-
sentations. The hope of probing is that it sheds light
onto how much linguistic knowledge is present in
representations and, perhaps, how that information
is structured. Probing has grown to be a fruitful
area of research, with researchers probing for

1Code is available at: http://anonymized.
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Figure 1: The percentage overlap between the top-
30 most informative number dimensions in BERT for
the probed languages. Statistically significant over-
lap, after Holm–Bonferroni family-wise error correc-
tion (Holm, 1979), with α = 0.05, is marked with an
orange square.

morphological (Tang et al., 2020; Ács et al., 2021),
syntactic (Voita and Titov, 2020; Hall Maudslay
et al., 2020; Ács et al., 2021), and semantic (Vulić
et al., 2020; Tang et al., 2020) information.

In this paper, we focus on one type of probing
known as intrinsic probing (Dalvi et al., 2019;
Torroba Hennigen et al., 2020), a subset of which
specifically aims to ascertain how information is
structured within a representation. This means that
we are not solely interested in determining whether
a network encodes the tense of a verb, but also in
pinpointing exactly which neurons in the network
are responsible for encoding the property. Unfor-
tunately, the naïve formulation of intrinsic probing
requires one to analyze all possible combinations of
neurons, which is intractable even for the smallest
representations used in modern-day NLP. For exam-
ple, analyzing all combinations of 768-dimensional
BERT word representations would require us to
train 2768 different probes, one for each combina-
tion of neurons, which far exceeds the estimated
number of atoms in the observable universe.

To obviate this difficulty, we introduce a novel

http://anonymized
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latent-variable probe for discriminative intrinsic
probing. The core idea of this approach is that
instead of training a different probe for each com-
bination of neurons, we introduce a subset-valued
latent variable. We approximately marginalize
over the latent subsets using variational inference.
Training the probe in this manner results in a set of
parameters which work well across all possible sub-
sets. We propose two variational families to model
the posterior over the latent subset-valued random
variables, both based on common sampling designs:
Poisson sampling, which selects each neuron based
on independent Bernoulli trials, and conditional
Poisson sampling, which first samples a fixed num-
ber of neurons from a uniform distribution and then
a subset of neurons of that size (Lohr, 2019). Con-
ditional Poisson sampling offers the modeler more
control over the distribution over subset sizes; they
may pick the parametric distribution themselves.

We compare both variants to the two main in-
trinsic probing approaches we are aware of in
the literature (§5.1). To do so, we train probes
for 29 morphosyntactic properties across 6 lan-
guages (English, Portuguese, Polish, Russian, Ara-
bic, and Finnish) from the Universal Dependen-
cies (UD; Nivre et al. 2017) treebanks. We show
that, in general, both variants of our method yield
tighter estimates of the mutual information, though
the model based on conditional Poisson sampling
yields slightly better performance. This suggests
that they are better at quantifying the informational
content encoded in m-BERT contextual representa-
tions (Devlin et al., 2019). Further, we conduct a
qualitative analysis of the most informative neurons
(§5.2). We also analyze whether neural represen-
tations are able to learn cross-lingual abstractions
from multilingual corpora. We confirm this state-
ment and observe a strong overlap in the most infor-
mative dimensions, especially for number (Fig. 1).
Additionally, we show that our method supports
training deeper probes (App. B.1), though the ad-
vantages of non-linear probes over their linear coun-
terparts are modest.

2 Intrinsic Probing

The success behind pre-trained contextual rep-
resentations such as BERT (Devlin et al., 2019)
suggests that they may offer a continuous analogue
of the discrete structures in language, such as
morphosyntactic attributes number, case, or tense.
Intrinsic probing aims to recognize the parts of

a network (assuming they exist) which encode
such structures. In this paper, we will operate
exclusively at the level of the neuron—in the
case of BERT, this is one component of the
768-dimensional vector the model outputs. How-
ever, our approach can easily generalize to other
settings, e.g., the layers in a transformer or filters
of a convolutional neural network. Identifying
individual neurons responsible for encoding
linguistic features of interest has previously been
shown to increase model transparency (Bau et al.,
2019). In fact, knowledge about which neurons
encode certain properties has also been employed
to mitigate potential biases (Vig et al., 2020), for
controllable text generation (Bau et al., 2019), and
to analyze the linguistic capabilities of language
models (Lakretz et al., 2019).

To formally describe our intrinsic probing frame-
work, we first introduce some notation. We define
Π to be the set of values that some property of in-
terest can take, e.g., Π = {SINGULAR, PLURAL}
for the morphosyntactic number attribute. Let
D = {(π(n),h(n))}Nn=1 be a dataset of label–
representation pairs: π(n) ∈ Π is a linguistic prop-
erty and h(n) ∈ Rd is a representation. Addition-
ally, let D be the set of all neurons in a representa-
tion; in our setup, it is an integer range. In the case
of BERT, we have D = {1, . . . , 768}. Given a
subset of dimensions C ⊆ D, we write hC for the
subvector of h which contains only the dimensions
present in C.

Let pθ(π(n) | h(n)
C ) be a probe—a classifier

trained to predict π(n) from a subvector h(n)
C . In

intrinsic probing, our goal is to find the size k sub-
set of neurons C ⊆ D which are most informative
about the property of interest. This may be written
as the following combinatorial optimization prob-
lem (Torroba Hennigen et al., 2020):

C? = argmax
C⊆D,
|C|=k

N∑
n=1

log pθ

(
π(n) | h(n)

C

)
(1)

To exhaustively solve eq. (1), we would have to
train a probe pθ(π | hC) for every one of the ex-
ponentially many subsets C ⊆ D. Thus, exactly
solving eq. (1) is infeasible, and we are forced
to rely on an approximate solution, e.g., greedily
selecting the dimension that maximizes the objec-
tive. However, greedy selection alone is not enough
to make solving eq. (1) manageable; because we
must retrain pθ(π | hC) for every subset C ⊆ D
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considered during the greedy selection procedure,
i.e., we would end up training O(k |D|) classifiers.
As an example, consider what would happen if
one used a greedy selection scheme to find the 50
most informative dimensions for a property on 768-
dimensional BERT representations. To select the
first dimension, one would need to train 768 probes.
To select the second dimension, one would train an
additional 767, and so forth. After 50 dimensions,
one would have trained 37893 probes. To address
this problem, our paper introduces a latent-variable
probe, which identifies a θ that can be used for
any combination of neurons under consideration
allowing a greedy selection procedure to work in
practice.

3 A Latent-Variable Probe

The technical contribution of this work is a novel
latent-variable model for intrinsic probing. Our
method starts with a generic probabilistic probe
pθ(π | C,h) which predicts a linguistic attribute
π given a subset C of the hidden dimensions; C is
then used to subset h into hC . To avoid training a
unique probe pθ(π | C,h) for every possible sub-
set C ⊆ D, we propose to integrate a prior over
subsets p(C) into the model and then to marginal-
ize out all possible subsets of neurons:

pθ(π | h) =
∑
C⊆D

pθ(π | C,h) p(C) (2)

Due to this marginalization, our likelihood is not
dependent on any specific subset of neurons C.
Throughout this paper we will take p(C) to be
uniform, but other distributions are also possible;
in this work, we opted for a non-informative prior.

Our goal is to estimate the parameters θ. We
achieve it by maximizing the log-likelihood of the
training data

∑N
n=1 log

∑
C⊆D pθ(π(n), C | h(n))

with respect to the parameters θ. Unfortunately, di-
rectly computing this involves a sum over all possi-
ble subsets of D—a sum with an exponential num-
ber of summands. Thus, we resort to a variational
approximation. Let qφ(C) be a distribution over
subsets, parameterized by parameters φ; we will
use qφ(C) to approximate the true posterior distri-
bution. Then, the log-likelihood is lower-bounded

as follows using Jensen’s inequality:

N∑
n=1

log
∑
C⊆D

pθ(π(n), C | h(n)) (3)

≥
N∑

n=1

(
Eq

[
log pθ(π(n), C | h(n))

]
+H(q)

)
(4)

where H(qφ) is the entropy of qφ.2

Our likelihood is general, and can take the form
of any objective function. This means that we can
use this approach to train intrinsic probes with any
type of architecture amenable to gradient-based
optimization, e.g., neural networks. However, in
this paper, we use a linear classifier, unless stated
otherwise. Further, note that eq. (13) is valid for
any choice of qφ. We explore two variational fam-
ilies for qφ, each based on a common sampling
technique. The first (herein POISSON) applies Pois-
son sampling (Hájek, 1964), which assumes each
neuron to be subjected to an independent Bernoulli
trial. The second one (CONDITIONAL POISSON;
Aires, 2000) corresponds to conditional Poisson
sampling, which can be defined as conditioning a
Poisson sample by a fixed sample size.

3.1 Parameter Estimation

As mentioned above, exact computation of the log-
likelihood is intractable due to the sum over all
possible subsets of D. Thus, we optimize the varia-
tional bound presented in eq. (13). We optimize the
bound through stochastic gradient descent with re-
spect to the model parameters θ and the variational
parameters φ, a technique known as stochastic vari-
ational inference (Hoffman et al., 2013). One final
trick is necessary, however: The variational bound
itself still includes a sum over all subsets in the first
term. Thus, we have

∇θEq

[
log pθ(π(n), C | h(n))

]
(5)

= Eq

[
∇θ log pθ(π(n), C | h(n))

]
≈

M∑
m=1

[
∇θ log pθ(π(n), C(m) | h(n))

]
where we take M Monte Carlo samples to approxi-
mate the sum. In the case of the gradient with re-
spect to φ, we also have to apply the REINFORCE

2See App. A for the full derivation.
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trick (Williams, 1992):

∇φEq

[
log pθ(π(n), C | h(n))

]
(6)

= Eq

[
log pθ(π(n), C | h(n))∇φ log qφ(C)

]
≈

M∑
m=1

[
log pθ(π(n), C(m) | h(n))∇φ log qφ(C)

]
where we again takeM Monte Carlo samples. This
procedure leads to an unbiased estimate of the gra-
dient of the variational approximation.

3.2 Choice of Variational Family qφ(C).

We consider two choices of variational family
qφ(C), both based on sampling designs (Lohr,
2019). Each defines a parameterized distribution
over all subsets of D.

Poisson Sampling. Poisson sampling is one of
the simplest sampling designs. In our setting, each
neuron d is given a unique non-negative weight
wd = exp(φd). This gives us the following param-
eterized distribution over subsets:

qφ(C) =
∏
d∈C

wd

1 + wd

∏
d6∈C

1

1 + wd
(7)

The formulation in eq. (7) shows that taking a sam-
ple corresponds to |D| independent coin flips—one
for each neuron—where the probability of heads is
wd

1+wd
. The entropy of a Poisson sampling may be

computed in O(|D|) time:

H(qφ) = logZ −
|D|∑
d=1

wd

1 + wd
logwd (8)

where logZ =
∑|D|

d=1 log(1 + wd). The gradient
of eq. (8) may be computed automatically through
backpropagation. Poisson sampling automatically
modules the size of the sampled set C ∼ qφ(·) and
we have the expected size E[|C|] =

∑|D|
d=1

wd
1+wd

.

Conditional Poisson Sampling. We also con-
sider a variational family that factors as follows:

qφ(C) = qCP
φ (C | |C| = k)︸ ︷︷ ︸
Conditional Poisson

qsizeφ (k) (9)

In this paper, we take qsizeφ (k) = Uniform(D), but
a more complex distribution, e.g., a Categorical,
could be learned. We define qCP

φ (C | |C| = k) as
a conditional Poisson sampling design. Similarly

to Poisson sampling, conditional Poisson sampling
starts with a unique positive weight associated with
every neuron wd = exp(φd). However, an addi-
tional cardinality constraint is introduced. This
leads to the following distribution

qCP
φ (C) = 1{|C| = k}

∏
d∈C wd

ZCP (10)

A more elaborate dynamic program which runs in
O(k |D|) may be used to compute ZCP efficiently
(Aires, 2000). We may further compute the entropy
H(qφ) and its the gradient in O(k |D|) time us-
ing the expectation semiring (Eisner, 2002; Li and
Eisner, 2009). Sampling from qCP

φ can be done effi-
ciently using quantities computed when running the
dynamic program used to compute ZCP (Kulesza,
2012). In practice, we use the semiring implemen-
tations by Rush (2020).

4 Experimental Setup

Our setup is virtually identical to the morphosyntac-
tic probing setup of Torroba Hennigen et al. 2020.
This consists of first automatically mapping tree-
banks from UD v2.1 (Nivre et al., 2017) to the
UniMorph (McCarthy et al., 2018) schema.3 Then,
we compute multilingual BERT (m-BERT) repre-
sentations4 for every sentence in the UD treebanks.
After computing the m-BERT representations for
the entire sentence, we extract representations for
individual words in the sentence and pair them
with the UniMorph morphosyntactic annotations.
We estimate our probes’ parameters using the UD
training set and conduct greedy selection to approx-
imate the objective in eq. (1) on the validation set;
finally, we report the results on the test set, i.e.,
we test whether the set of neurons we found on
the development set generalizes to held-out data.
Additionally, we discard values that occur fewer
than 20 times across splits. Finally, when feeding
hC as input to our probes, we set any dimensions
that are not present in C to zero.

4.1 Baselines
We compare our latent-variable probe against two
other recently proposed intrinsic probing methods
as baselines.

• Torroba Hennigen et al. (2020): Our first
baseline is generative probe, which models the

3We use the code available at: https://github.
com/unimorph/ud-compatibility.

4We use the implementation by Wolf et al. (2020).

https://github.com/unimorph/ud-compatibility
https://github.com/unimorph/ud-compatibility
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joint distribution of representations and their
properties p(h, π) = p(h | π) p(π), where
the representation distribution p(h | π) is as-
sumed to be Gaussian. Torroba Hennigen et al.
(2020) report that a major limitation of this
probe is that if certain dimensions of the rep-
resentations are not distributed according to a
Gaussian distribution, then probe performance
will suffer.

• Dalvi et al. (2019): Our second baseline is a
linear classifier, where dimensions not under
consideration are zeroed out during evalua-
tion (Dalvi et al., 2019; Durrani et al., 2020).5

Their approach is a special case of our pro-
posed latent-variable model, where qφ is fixed,
so that on every training iteration the entire
set of dimensions is sampled.

4.2 Metrics
We compare our proposed method to the baselines
above under two metrics: accuracy and mutual in-
formation (MI). Accuracy is a standard measure
for evaluating probes as it is for evaluating classi-
fiers in general. Next, we also report mutual infor-
mation, which has recently been proposed as an
evaluation metric for evaluating probes (Pimentel
et al., 2020). More formally, mutual information
(MI) is a function between a random variable over
a Π-valued random variable P and a R|C|-valued
random variable HC over masked representations:

MI(P ;HC) = H(P )−H(P | HC) (11)

where H(P ) is the inherent entropy of the property
being probed and is constant with respect to HC ;
H(P | HC) is the entropy over the property given
the representations HC . Exact computation of the
mutual information is intractable, however; luck-
ily, we can lower-bound the MI by approximating
H(P | HC) using our probe’s average negative
log-likelihood: − 1

N

∑N
n=1 log pθ(π(n) | C,h(n))

on held-out data. See Brown et al. (1992) for a
derivation; H(P ) is constant.

We also normalize the mutual information (NMI)
by dividing the MI by the entropy which turns
it into a percentage and is, arguably, more inter-
pretable. We refer the reader to Gates et al. (2019)
for a discussion of the normalization of MI.

5We note that they do not conduct intrinsic probing via
dimension selection: Instead, they use the absolute magnitude
of the weights as a proxy for dimension importance. In this
paper, we adopt the approach of (Torroba Hennigen et al.,
2020) and use the performance-based objective in eq. (1).

4.3 What Makes a Good Probe?

Since we report a lower bound on the mutual in-
formation (§4), we deem the best probe to be the
one that yields the tightest mutual information es-
timate, or, in other words, the one that achieves
the highest mutual information estimate; this is a
equivalent to having the best cross-entropy on held-
out data, which is the standard evaluation metric
for language modeling.

However, in the context of intrinsic probing, the
topic of primary interest is what the probe reveals
about the structure of the representations. For
instance, does the probe reveal that the information
encoded in the embeddings is focalized or
dispersed across many neurons? Several prior
works (e.g., Lakretz et al., 2019) focus on the
single neuron setting, which is a special, very focal
case. To engage with this prior work, we compare
probes not only with respect to their performance
(MI and accuracy), but also with respect to the size
of the subset of dimensions being evaluated, i.e.,
the size of set C.

We acknowledge that there is a disparity between
the quantitative evaluation we employ, in which
probes are compared based on their MI estimates,
and qualitative nature of intrinsic probing, which
aims to identify the substructures of a model that
encode a property of interest. However, it is non-
trivial to evaluate fundamentally qualitative pro-
cedures in a large-scale, systematic, and unbiased
manner. Therefore, we rely on the quantitative
evaluation metrics presented in §4.2, while also
including a qualitative analysis (§5.2).

4.4 Training and Hyperparameter Tuning

We train our probes for a maximum of 2000 epochs
using the Adam optimizer (Kingma and Ba, 2015).
We add early stopping with a patience of 50 as a
regularization technique. Early stopping is con-
ducted by holding out 10% of the training data; our
development set is reserved for the greedy selection
of subsets of neurons. Our implementation is built
with PyTorch (Paszke et al., 2019). To execute a
fair comparison with Dalvi et al. (2019), we train
all probes other than the Gaussian probe using Elas-
ticNet regularization (Zou and Hastie, 2005), which
consists of combining both L1 and L2 regulariza-
tion, where the regularizers are weighted by tunable
regularization coefficients λ1 and λ2, respectively.
We follow the experimental set-up proposed by
Dalvi et al. (2019), where we set λ1, λ2 = 10−5
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Figure 2: Comparison of the POISSON and CONDITIONAL POISSON methods to the DALVI (Dalvi et al., 2019) and
GAUSSIAN, when probing selected multilingual BERT (Devlin et al., 2019) representations. For each of the subset
sizes shown on the x-axis, we sampled 100 different subsets of BERT dimensions at random. Note that in some
cases (e.g., Polish tense), GAUSSIAN does not obtain positive mutual information (§4) in any of dimensionalities,
hence it does not appear on the graph.

for all probes. In a preliminary experiment, we per-
formed a grid search over these hyperparameters to
confirm that the probe is not very sensitive to the
tuning of these values (unless they are extreme) as
Dalvi et al. (2019) claims. For GAUSSIAN, we take
the MAP estimate, with a weak data-dependent
prior (Murphy, 2012, Chapter 4).

5 Results and Discussion

In this section, we present the results of our em-
pirical investigation. First, we address our main
research question: Does our latent-variable probe
presented in §3 outperform previously proposed
intrinsic probing methods (§5.1)? Second, we ana-
lyze the structure of the most informative m-BERT
neurons for the different morphosyntactic attributes
we probe for (§5.2). Finally, we investigate whether
knowledge about morphosyntax encoded in neural
representations is shared across languages (§5.3).
In App. B.1, we show that our latent-variable probe
is flexible enough to support deep neural probes.

5.1 How Do Our Methods Perform?

The main question we ask is how the performance
of our models compares to existing intrinsic prob-
ing approaches. To investigate this research ques-
tion, we compare the performance of the POISSON

and CONDITIONAL POISSON probes to DALVI

(Dalvi et al., 2019) and GAUSSIAN (Torroba Hen-
nigen et al., 2020). Refer to §4.3 for a discussion
of the limitations of our method.

Experimental Setup. Since the performance of
a probe on a specific subset of dimensions is re-
lated to both the subset itself (e.g., whether it is
informative or not) and the number of dimensions
being evaluated (e.g., if a probe is trained to ex-
pect 768 dimensions as input, it might work best
when few or no dimensions are filled with zeros),
we sample 100 subsets of dimensions with 5 dif-
ferent possible sizes (we considered 10, 50, 100,
250, 500 dim.) and compare every model’s per-
formance on each of those subset sizes. As the
UPPER BOUND baseline needs to be retrained for
every set of dimensions under consideration,6 we
limit our comparisons with UPPER BOUND to 6
randomly chosen morphosyntactic attributes, each
in a different language.

6The UPPER BOUND yields the tightest estimate on the
mutual information, however as mentioned in §2, this is un-
feasible since it requires retraining for every different com-
bination of neurons. For comparison, in English number, on
an Nvidia RTX 2070 GPU, our POISSON, GAUSSIAN and
DALVI experiments take a few minutes or even seconds to run,
compared to UPPER BOUND which takes multiple hours.
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Results. We compare the performance of the
probes on 29 different language–attribute pairs (re-
fer to App. C for a listing). Our results suggest that
both variants of our latent-variable model from §3
are effective and generally outperform the two base-
lines we consider. In particular, CONDITIONAL

POISSON tends to outperform POISSON at lower
dimensions, however, POISSON tends to catch up
as more dimensions are added. We plot these re-
sults for six randomly selected language–attribute
pairs in Fig. 2 in terms of NMI. See Fig. 6 in the
App. D an equivalent plot for accuracy.

When evaluating CONDITIONAL POISSON on
few dimensions (e.g., 10), we find that it gener-
ally provides a low but positive mutual information
estimate, whereas DALVI and POISSON can yield
negative mutual information estimates. Notably,
negative mutual information only arises because
the model underperforms a random-guessing base-
line. In contrast, the GAUSSIAN method tends to
perform well at low dimensions, and it even out-
performs CONDITIONAL POISSON for language–
attribute pairs such as English number and Por-
tuguese gender. We assume this can be attributed
to GAUSSIAN’s ability to model non-linear deci-
sion boundaries (Murphy, 2012, Chapter 4). How-
ever, GAUSSIAN’s performance is not stable and
can yield low or even negative mutual information
estimates across all subsets of dimensions, e.g.,
for Polish tense and Russian voice representations.
Adding a new dimension can never decrease the
mutual information, so the observable decreases oc-
cur because the generative model deteriorates upon
adding another dimension, which corroborates Tor-
roba Hennigen et al.’s claim that some dimensions
are not adequately modeled by the Gaussian as-
sumption. We include some additional compar-
isons in App. B.

Finally, we compare the POISSON and CONDI-
TIONAL POISSON probes to the UPPER BOUND

baseline. This is expected to be the highest per-
forming since it is re-trained for every subset under
consideration. This is feasible because we only
evaluate subsets discovered by the greedy selection
procedure. The difference between our probes’ per-
formance and the UPPER BOUND baseline’s perfor-
mance can be seen as the cost of sharing parameters
across all subsets of dimensions, and an effective
intrinsic probe should minimize this. This is illus-
trated in Fig. 7 in the Appendix. As expected, our
results suggest that both methods achieve perfor-

mance that is close to the UPPER BOUND method.
This tells us that the latent-variable approach is
nearly as good as if we retrained our probe from
scratch knowing the subset of neurons of interest a
priori.

5.2 A Taste of Analysis

To better understand the behavior of our probes, we
follow Torroba Hennigen et al. (2020) in investigat-
ing the structure of the top two most informative
neurons in the final layer selected by our CONDI-
TIONAL POISSON probe for particular language–
attribute pairs. We observe that the activations
of the two neurons for the majority of language–
attribute pairs are largely overlapping, regardless
of how many values are in the set Π. While tense
in Finnish shows strong separation of values for
all sets Π, we observe that Russian voice is the
most dispersed of all language-attribute pairs. We
present selected results in Fig. 3.

5.3 Cross-lingual Overlap

We use our probe to analyze whether the most in-
formative dimensions are shared in m-BERT em-
beddings across languages in order to validate the
hypothesis by Torroba Hennigen et al. (2020) of
BERT leveraging data from other languages to de-
velop a cross-lingually entangled notion of mor-
phosyntax. Indeed, an inspection of the overlap
in informative dimensions in BERT across lan-
guages reveals evidence of cross-lingual neuron
reuse when encoding morphosyntactic attributes.
We observe a strong overlap in the most informa-
tive dimensions, especially for number (Fig. 1) and
to a lesser extent in other attributes such as gender
and case (Fig. 8). This suggests that BERT may be
leveraging data from other languages to develop a
cross-lingually entangled notion of morphosyntax.
A significant overlap in the salient case neurons for
Russian and Polish might indicate additionally that
morphosyntactic representations are similar across
languages within the same language genus.

6 Related Work

A growing interest in interpretability has led to
a flurry of work in trying to assess exactly what
pre-trained representations know about language.
To this end, diverse methods have been employed,
such as the construction of specific challenge sets
that seek to evaluate how well representations
model particular phenomena (Linzen et al., 2016;
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Figure 3: Scatter plots for the two most informative dimensions selected by the CONDITIONAL POISSON probe
for m-BERT representations for a range of language–attribute pairs.

Gulordava et al., 2018; Goldberg, 2019; Goodwin
et al., 2020), methods for determining whether cer-
tain capabilities help to achieve accurate models
of particlar data (Perez et al., 2021), as well as
visualization methods (Kádár et al., 2017; Reth-
meier et al., 2020). Work on probing comprises a
major share of this endeavor (Belinkov and Glass,
2019; Belinkov, 2021). This has taken the form of
both focused studies on particular linguistic phe-
nomena (e.g., subject-verb number agreement, Giu-
lianelli et al., 2018) to broad assessments of contex-
tual representations in a wide array of tasks (Şahin
et al., 2020; Tenney et al., 2018; Conneau et al.,
2018; Liu et al., 2019; Ravichander et al., 2021,
inter alia).

Efforts have ranged widely, but most of these fo-
cus on extrinsic rather than intrinsic probing. Most
work on the latter has focused primarily on ascrib-
ing roles to individual neurons through methods
such as visualization (Karpathy et al., 2015; Li
et al., 2016) and ablation (Li et al., 2017). For
example, recently Lakretz et al. (2019) conduct
an in-depth study of how long–short-term memory
networks (LSTMs; Hochreiter and Schmidhuber,
1997) capture subject–verb number agreement, and
identify two units largely responsible for this phe-
nomenon.

More recently, there has been a growing interest
in extending intrinsic probing to collections of neu-
rons. Bau et al. (2019) utilize unsupervised meth-
ods to identify important neurons, and then attempt
to control a neural network’s outputs by selectively
modifying them. Bau et al. (2020) pursue a sim-
ilar goal in a computer vision setting, but ascribe

meaning to neurons based on how their activations
correlate with particular classifications in images,
and are able to control these manually with inter-
pretable results. Aiming to answer questions on
interpretability in computer vision and natural lan-
guage inference, Mu and Andreas (2020) develop
a method to create compositional explanations of
individual neurons and investigate abstractions en-
coded in them. Vig et al. (2020) analyze how cer-
tain information is encoded in individual neurons
and how it is being propagated through different
model components such as neurons and attention
heads and apply their method to study gender and
other societal biases.

7 Conclusion

In this paper, we introduce a new method for train-
ing discriminative intrinsic probes that can perform
well across any subset of dimensions. To do so, we
train a probing classifier with a subset-valued latent
variable and demonstrate how the latent subsets can
be marginalized using variational inference. We
propose two variational families, based on com-
mon sampling designs, to model the posterior over
subsets: Poisson sampling and conditional Pois-
son sampling. We demonstrate that both variants
outperform our baselines in terms of mutual infor-
mation, and that using a conditional Poisson varia-
tional family gives optimal performance. Further,
we demonstrate that our method has the flexibil-
ity to be used with linear and deeper probes. Fi-
nally, we find empirical evidence for overlap in the
specific neurons used to encode morphosyntactic
properties across languages.
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A Variational Lower Bound

The derivation of the variational lower bound is
shown below:

N∑
n=1

log
∑
C⊆D

pθ(π(n), C | h(n)) (12)

=
N∑

n=1

log
∑
C⊆D

qφ(C)
pθ(π(n), C | h(n))

qφ(C)

=
N∑

n=1

logEq

[
pθ(π(n), C | h(n))

qφ(C)

]

≥
N∑

n=1

Eq

[
log

pθ(π(n), C | h(n))

qφ(C)

]
(13)

=
N∑

n=1

(
Eq

[
log pθ(π(n), C | h(n))

]
+ H(q)

)
B Additional Intrinsic Probe

Comparisons

We also conduct a direct comparison of DALVI,
GAUSSIAN, POISSON and CONDITIONAL POIS-
SON when used to identify the most informative
subsets of dimensions. The average MI reported
by each model across all 29 morphosyntactic
language–attribute pairs is presented in Fig. 4.
On average, CONDITIONAL POISSON offers
comparable performance to GAUSSIAN at low di-
mensionalities for both NMI and accuracy, though
the latter tends to yield a slightly higher (and
thus a tighter) bound on the mutual information.
However, as more dimensions are taken into consid-
eration, our models vastly outperform GAUSSIAN.
POISSON and CONDITIONAL POISSON perform
comparably at high dimensions, but CONDI-
TIONAL POISSON performs slightly better for
1–20 dimensions. POISSON outperforms DALVI

at high dimensions, and CONDITIONAL POISSON

outperforms DALVI for all dimensions considered.

B.1 How Do Deeper Probes Perform?
Multiple papers have promoted the use of linear
probes (Tenney et al., 2018; Liu et al., 2019), in part
because they are ostensibly less likely to memorize
patterns in the data (Zhang and Bowman, 2018;
Hewitt and Liang, 2019), though this is subject
to debate (Voita and Titov, 2020; Pimentel et al.,
2020). Here we verify our claim from §3 that our
probe can be applied to any kind of discriminative
probe architecture as our objective function can be
optimized using gradient descent.

Experimental Setup. We follow the setup of He-
witt and Liang (2019), and test MLP-1 and MLP-
2 probes alongside a LINEAR probe. The MLP-
1 and MLP-2 probes are multilayer perceptrons
(MLP) with one and two hidden layer(s), respec-
tively, and Rectified Linear Unit (ReLU; Nair and
Hinton, 2010) activation function.

Results. In Fig. 5, we can see that our method
not only works well for deeper probes, but also out-
performs the linear probe in terms of NMI. How-
ever, at higher dimensionalities, the advantage of a
deeper probe diminishes. We also find that the dif-
ference in performance between MLP-1 and MLP-
2 is negligible.

C List of Probed Morphosyntactic
Attributes

The 29 language–attribute pairs we probe for in
this work are listed below:

• Arabic: Aspect, Case, Definiteness, Gender,
Mood, Number, Voice

• English: Number, Tense

• Finnish: Case, Number, Person, Tense, Voice

• Polish: Animacy, Case, Gender, Number,
Tense

• Portuguese: Gender, Number, Tense

• Russian: Animacy, Aspect, Case, Gender,
Number, Tense, Voice

D Supplementary Results

Fig. 6 compares the accuracy of our two mod-
els, POISSON and CONDITIONAL POISSON, to
the DALVI and GAUSSIAN baselines. The figure
reflects the trends observed in §5.1: With the ex-
ception of the few dimension regimen of GAUS-
SIAN, POISSON and CONDITIONAL POISSON out-
perform the DALVI and GAUSSIAN baselines.

Fig. 7 compares the NMI of our two models,
POISSON and CONDITIONAL POISSON, to the UP-
PER BOUND baseline. The figure reflects the trends
observed in §5.1: POISSON and CONDITIONAL

POISSON achieve performance that is close to the
UPPER BOUND baseline.
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Figure 4: Comparison of the POISSON, CONDITIONAL POISSON, DALVI (Dalvi et al., 2019) and GAUSSIAN (Tor-
roba Hennigen et al., 2020) probes. We use the greedy selection approach in eq. (1) to select the most informative
dimensions, and average across all language–attribute pairs we probe for.
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Figure 5: Comparison of a LINEAR probe to non-linear MLP-1 and MLP-2 probes for selected language-attribute
pairs. For each of the subset sizes shown on the x-axis, we sampled 100 different subsets of BERT dimensions at
random.
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Figure 6: Accuracy comparison of the CONDITIONAL POISSON and POISSON methods to the DALVI (Dalvi et al.,
2019) and GAUSSIAN baselines, when probing selected multilingual BERT (Devlin et al., 2019) representations.
For each of the subset sizes shown on the x-axis, we sampled 100 different subsets of BERT dimensions at random.
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Figure 7: Comparison of the POISSON and CONDITIONAL POISSON methods to the UPPER BOUND baseline,
when probing selected representations. For each of the subset sizes shown on the x-axis, we sampled 100 different
subsets of m-BERT dimensions at random.
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Figure 8: The percentage overlap between the top-30 most informative gender (left) and case (right) dimensions
in BERT for the probed languages. Statistically significant overlap, after Holm–Bonferroni family-wise error
correction (Holm, 1979), with α = 0.05, is marked with an orange square.


