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ABSTRACT

Generating physically realistic 3D molecular structures remains a core challenge in
molecular generative modeling. While diffusion models equipped with equivariant
neural networks have made progress in capturing molecular geometries, they often
struggle to produce equilibrium structures that adhere to physical principles such as
force field consistency. To bridge this gap, we propose Reinforcement Learning
with Physical Feedback (RLPF), a novel framework that extends Denoising
Diffusion Policy Optimization to 3D molecular generation. RLPF formulates
the task as a Markov decision process and applies proximal policy optimization
to fine-tune equivariant diffusion models. Crucially, RLPF introduces reward
functions derived from force-field evaluations, providing direct physical feedback
to guide the generation toward energetically stable and physically meaningful
structures. Experiments on the QM9 and GEOM-drug datasets demonstrate that
RLPF significantly improves molecular stability compared to existing methods.
These results highlight the value of incorporating physics-based feedback into
generative modeling.

1 INTRODUCTION

Recent advancements in generative models have demonstrated remarkable potential for generating
diverse and high-quality molecular structures. Among these, diffusion models (Ho et al., 2020) have
emerged as a prominent area of research in molecular generation due to their superior generative
capabilities and theoretical soundness. While other generative models, such as Generative Adversarial
Networks (GANs) (Goodfellow et al., 2020) and Variational Autoencoders (VAEs) (Kingma et al.,
2019), have also made significant progress, diffusion models have shown particularly compelling
performance in generating complex molecular structures.

Integrating these models with equivariant graph neural networks (Satorras et al., 2021; Liao & Smidt,
2022; Thomas et al., 2018) further enhances their performance by explicitly considering the geometric
properties and physical constraints of molecules (Xu et al., 2022; Jing et al., 2022). This combination
allows for improved generation of molecules with desired properties, as equivariant graph neural
networks ensure equivariance to rotations, translations, and reflections, resulting in physically more
realistic and stable conformations. Building upon these advancements, Equivariant Diffusion Models
(EDMs) (Hoogeboom et al., 2022) have emerged as particularly promising within this landscape. A
key advantage of EDMs lies in their ability to operate on both continuous (3D conformation) and
categorical features (atom types), rather than solely focusing on generating molecular conformations.
This enhanced capability makes EDMs particularly well-suited for de novo drug discovery, where
precise control over molecular properties and functionalities is essential.

Despite the successes of the aforementioned approaches, we observe a notable limitation: the
stability of the generated molecular structures. Specifically, when evaluating generated conformations
using physical force fields, we frequently observe high residual atomic forces (as illustrated in
Figure 1), indicating significant strain and instability. This suggests that while the models may
produce chemically valid molecules, they often fail to generate physically plausible and energetically
favorable conformations.

This naturally raises a crucial question: how can we guide generative models towards producing
more stable molecular structures? Inspired by recent advances in Large Language Models (LLMs),
particularly Reinforcement Learning from Human Feedback (RLHF) (Stiennon et al., 2020), we
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explore a novel paradigm for training molecular diffusion models. Traditional diffusion models
are trained via maximum likelihood estimation, akin to Supervised Fine-Tuning (SFT) in LLMs.
However, RLHF shows that reward-based fine-tuning can dramatically improve alignment with
human or domain-specific preferences.

Drawing this analogy, we propose a new approach: Reinforcement Learning with Physical Feed-
back (RLPF), which integrates reinforcement learning with equivariant diffusion models using
physically grounded rewards. Specifically, RLPF leverages reward signals derived from force
field-based metrics to fine-tune pretrained diffusion models, thereby encouraging the generation of
physically realistic and energetically stable molecules. These signals can be computed from classical
force fields, quantum mechanical approximations, or other structure-informed heuristics, and serve as
a domain-specific counterpart to human feedback in RLHF.
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Figure 1: Overall workflow of the RLPF algorithm. RLPF fine-tunes a pretrained diffusion model for
molecular generation in three steps. First, the model pθ generates molecular trajectories. Second,
molecule stability is evaluated using force field metrics such as classical or quantum energy gradients.
Unstable molecules typically exhibit large residual forces. Third, reinforcement learning is used
to refine the model using a PPO-style policy gradient, guided by computed rewards and advantage
estimates.

RLPF formulates the denoising process in diffusion models as a Markov Decision Process (MDP)
(Puterman, 1990). Each reverse step of the diffusion process corresponds to an action within the
MDP, and the reward is assigned at the final denoising step based on the physical plausibility of the
generated molecule. As shown in Figure 1, upon reaching the terminal state, the molecule is evaluated
for physical stability (e.g., force residual), and this reward is used to optimize the model parameters
via the REINFORCE algorithm (Williams, 1992), with further stabilization via PPO-style clipping.

RLPF is model-agnostic and can be applied to any diffusion-based molecular generation framework.
In this work, we instantiate RLPF on Equivariant Diffusion Model (EDM (Hoogeboom et al., 2022)),
which have demonstrated state-of-the-art performance. We further validate the generalizability of
RLPF by applying it to GeoLDM (Xu et al., 2023) and UniGEM (Feng et al., 2024). We evaluate our
method on two benchmark datasets: QM9 (Ramakrishnan et al., 2014) for small organic molecules,
and GEOM-drug (Axelrod & Gomez-Bombarelli, 2022) for drug-like molecular structures. Empirical
results show that RLPF significantly improves the quality of the generated molecules, outperforming
both baseline EDM and supervised fine-tuned variants.
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Contributions:

1. We propose RLPF, a novel method that integrates physics-informed reinforcement learning
with equivariant diffusion models, using force field-based feedback for 3D molecular
generation.

2. RLPF substantially improves the quality of the molecules generated in both the QM9 and
GEOM drug, achieving better performance than existing diffusion-based methods in multiple
stability and validity metrics.

3. RLPF is model-agnostic and demonstrates strong generalizability, effectively improving
generation quality when applied to diverse backbones.

2 RELATED WORK

In the field of 3D molecular generation, generative models can be broadly classified into two
categories: autoregressive models and diffusion models.

Autoregressive models generate molecules sequentially, atom by atom or bond by bond, where each
generation step is conditioned on the previously generated substructure. This sequential nature allows
for precise control over the molecular construction process. Early works in this area often employed
recurrent neural networks (RNNs) to generate SMILES strings, a linear representation of molecular
structures (Gómez-Bombarelli et al., 2018). However, SMILES-based approaches can suffer from
issues related to canonicalization and the difficulty of capturing 3D structural information. More
recent approaches have focused on generating molecular graphs directly, using geometrical graph
neural networks to represent and process molecular structures. These graph-based autoregressive
models generate molecules by iteratively adding nodes (atoms) and edges (bonds) to the growing
graph (Gebauer et al., 2019; Daigavane et al., 2023).

Diffusion models offer an alternative approach to molecular generation by learning to reverse a noise
corruption process. These models operate by progressively adding noise to a data distribution (e.g.,
molecular structures) until it becomes a simple, tractable distribution (e.g., Gaussian noise). The
model is then trained to learn the reverse process, i.e., denoising, allowing it to generate new samples
by iteratively removing noise from the simple distribution. In the context of molecular generation,
diffusion models have been applied to various molecular representations, including point clouds,
graphs, and voxel grids. Xu et al. (2022) introduced GeoDiff, a diffusion model specifically designed
for 3D molecular conformation generation in the Euclidean space. TorsionDiff (Jing et al., 2022)
applies the diffusion process over the torsion angles and leaves the other degrees of freedom fixed.
Hoogeboom et al. (2022) proposed EDM, where the model learns to denoise a diffusion process that
operates on both continuous coordinates and categorical atom types. Equivariant neural diffusion
(EDN) (Cornet et al., 2024)generalizes EDM, by defining the forward process through a learnable
transformation and extending the flexibility of the hidden state in the diffusion model. Igashov
et al. (2024) investigated the use of equivariant neural networks within the diffusion framework
for molecular linker design. Equivariance ensures that the model’s predictions are consistent with
the underlying symmetries of the molecular system (e.g., rotations and translations), leading to
more physically plausible generated structures. Diffusion models, while computationally more
demanding than autoregressive models, have demonstrated the ability to generate high-quality and
diverse molecular structures.

While generative models for molecules have demonstrated the ability to produce reasonably stable
structures, they still lag behind the advancements of deep learning in natural language processing
(NLP) and computer vision (CV), as highlighted in (Zhao et al., 2023). Notably, reinforcement
learning (RL) has proven effective in fine-tuning diffusion models for text-to-image generation (Black
et al., 2023; Fan et al., 2024), enabling these models to leverage feedback and improve performance.
Similarly, RL has been successfully applied to fine-tune autoregressive molecular generation mod-
els (Hastrup & Bhowmik, 2024) and 2D graph diffusion models (Liu et al., 2024). However, a key gap
remains: effective methods for fine-tuning molecular generative diffusion models using RL are still
lacking. Consequently, these models have yet to fully exploit their own generated data as feedback to
enhance molecule stability and ensure alignment with force-field-stable structures.
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3 PRELIMINARIES

This section introduces the foundational concepts of equivariant diffusion models and outlines the
reinforcement learning formulation adopted in the DDPO framework.

3.1 EQUIVARIANT DIFFUSION MODEL

The Equivariant Diffusion Model (EDM) (Hoogeboom et al., 2022) generates 3D molecules while
respecting E(3) symmetries (translation, rotation, reflection) via an EGNN-based denoiser (Satorras
et al., 2021). Given atom coordinates x and features h, EDM learns a joint denoising process over
zt = [xt,ht] with Gaussian forward noise:

q(zt | x,h) = Nxh

(
zt
∣∣αt[x,h], σ

2
t I
)
, (1)

and enforces equivariance

p(y | x) = p(Ry | Rx) for any orthogonal R. (2)

An EGNN ϕ predicts noise at step t to t− 1,

ϵ̂
(x)
t , ϵ̂

(h)
t = ϕ

(
z
(x)
t , [z

(h)
t , t/T ]

)
− [z

(x)
t , 0], (3)

and is trained by a weighted denoising objective (SNR weighting omitted for brevity),

L = Eϵ∼N (0,I)

[
∥ϵ− ϕ(zt, t)∥2

]
. (4)

Sampling starts from standard Gaussian noise and iteratively applies the reverse transition p(zt−1 |
zt):

zs =
1

αt|s
zt −

σ2
t|s

αt|sσt|s
ϕ(zt, t) + σt→sϵ, s = t− 1, (5)

until t = 0, yielding final coordinates x and features h that define the molecule.

3.2 DENOISING DIFFUSION POLICY OPTIMIZATION

DDPO (Black et al., 2023) formulates the diffusion sampling process as a multi-step Markov Decision
Process (MDP), enabling policy gradient methods to optimize user-defined reward functions over
generated samples.

The MDP is defined as:

• State: st = (c, t, xt), where c is context, t the timestep, and xt the latent at step t.
• Action: at = xt−1, the output of the reverse diffusion step.
• Policy: π(at|st) = pθ(xt−1|xt, c).
• Reward: R(st, at) = r(x0, c) if t = 0, and 0 otherwise.

A trajectory spans denoising steps from t = T to 0, yielding final sample x0. The training objective
is to maximize the expected reward:

∇θJDDPO = E

[
T∑

t=0

∇θ log pθ(xt−1|xt, c) · r(x0, c)

]

To enable multiple updates per trajectory, an importance sampling estimator is introduced:

∇θJDDPO = E

[
T∑

t=0

pθ(xt−1|xt, c)

pθold(xt−1|xt, c)
∇θ log pθ(xt−1|xt, c) · r(x0, c)

]

For stability, DDPO further adopts a clipped surrogate objective in the style of PPO, constraining
policy updates across iterations.
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Algorithm 1 Reinforcement Learning with Physical Feedback (RLPF)
Input: pretrained diffusion model pθpre , diffusion model pθ, the old diffusion model pθold , the
number of sampling trajectories N , the reward model M, the time-steps T , the Advantage A, the
importance sampling ratio Ikt
Initialize pθ = pθold = pθpre

while θ not converged do
Collect N samples from diffusion model pθ: D = {(x, h, z0, · · · , zt) ∼

πθ(x, h|z0)πθ(z0|z1) · · ·πθ(zT−1|zT )p(zT )}
Compute reward with reward model M : r = M(x, h)

Compute the gradient Et

[∑K
k=0 min

(
Ikt (θ)Â

k
t , clip(Ikt (θ), 1− ϵ, 1 + ϵ)Âk

t

)]
for each time-

step t and each trajectory k, update θ
pθold = pθ

end while
Output: Fine-tuned diffusion model pθ

4 RLPF: REINFORCEMENT LEARNING WITH PHYSICAL FEEDBACK

Although RLPF builds upon the general DDPO (Black et al., 2023) framework originally developed
for vision tasks, its core contribution lies in the nontrivial adaptation of this paradigm to 3D molecular
generation. Specifically, RLPF casts the denoising diffusion trajectory as a Markov Decision Process
(MDP) over spatial molecular structures, and incorporates domain-specific reward functions based
on physically grounded force-field evaluations, such as xTB or DFT. This adaptation is technically
challenging due to the geometric equivariance, size variability, and chemical validity constraints
unique to molecular systems—factors not present in typical visual domains. To the best of our
knowledge, RLPF is the first approach to integrate reinforcement learning with diffusion models
using physics-informed rewards for stable molecule generation.

4.1 PROBLEM STATEMENT

The pretrained diffusion model generates a sample distribution pθ through a fixed sampling process
for molecular generation. The goal of the equivariant denoising diffusion reinforcement learning
framework is to optimize the reward function r, which is defined over the generated molecules.

The objective function for this optimization is defined as:

JRLPF(θ) = E(x,h)∼pθ
[r(x, h)], (6)

where atom coordinates x and atom features h are sampled from the final latent state z0, i.e., the
molecule generated by the diffusion process.

4.2 DENOISING AS A MARKOV DECISION PROCESS

To optimize JRLPF using RL, the denoising process is formulated as a sequence of multi-step MDPs.
The elements of this MDP are defined as follows:

st ≜ (zt, t),

π(at|st) ≜ pθ(zt−1|zt),

R(st, at) ≜

{
r(x, h), if t = 0,

0, otherwise,

P (st+1|st, at) ≜ (δt−1, δzt−1).

(7)

The sequence consists of T time steps, after which the process transitions to a termination state. The
cumulative reward of each trajectory is equal to r(x, h). Therefore, maximizing JRLPF is equivalent
to maximizing JRL in this MDP.

5
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4.3 POLICY GRADIENT ESTIMATION

The RLPF framework aims to optimize the expected reward over the denoising trajectories:

JRLPF(θ) = E(x,h)∼pθ
[r(x, h)], (8)

However, directly optimizing this objective is challenging due to the non-differentiability of reward
functions and the sequential nature of the denoising steps. Instead, we adopt a policy optimization
approach and follow the DDPO (Black et al., 2023) formulation, which views the denoising trajectory
as a latent Markov Decision Process and applies Proximal Policy Optimization (PPO) for stable
fine-tuning.

In particular, we use a PPO-style clipped surrogate objective , denoted as LCLIP
RLPF(θ), to guide the

optimization. For each time step t and trajectory k, we define the importance sampling ratio:

Ikt (θ) :=
pθ(z

k
t−1|zkt )

pθold(z
k
t−1|zkt )

, (9)

where pθold denotes the diffusion model before the current update. The advantage estimate Âk
t is

computed via standardization of the scalar reward:

Âk
t :=

rk(xk, hk)− µ

δ
, (10)

where µ and δ are the running mean and standard deviation of recent rewards across trajectories.

The PPO-style clipped surrogate objective is defined as:

LCLIP
RLPF(θ) := Et

[
K∑

k=0

min
(
Ikt (θ)Â

k
t , clip(Ikt (θ), 1− ϵ, 1 + ϵ)Âk

t

)]
, (11)

which ensures stable updates by penalizing large deviations from the current policy.

Although LCLIP
RLPF(θ) is not the true gradient of JRLPF(θ), it serves as a stable and effective proxy

objective for gradient-based optimization. This formulation allows RLPF to improve molecular
generation performance while avoiding issues such as reward overfitting and policy collapse.

4.4 REWARD FUNCTION FOR MOLECULAR GENERATION

To guide the diffusion model toward physically meaningful outputs, we use a reward function based
on molecular force deviation. This metric evaluates how well the generated molecular conformations
align with equilibrium configurations under a given force field.

We compute the Root Mean Square Deviation (RMSD) of atomic forces using two methods: quantum
mechanical calculations at the B3LYP/6-31G(2df,p) level of theory and the semi-empirical GFN2-
xTB force field (Bannwarth et al., 2019). The former offers high accuracy but is computationally
expensive, while the latter enables efficient force estimation for large-scale generation. This reward
reflects how close the generated molecule is to a physically relaxed structure. Formally, it is defined
as:

rforce =

√∑N
i=1(f

2
ix

+ f2
iy
+ f2

iz
)

3N
, (12)

where fix , fiy , fiz denote the x, y, and z components of the predicted force on atom i, and N is the
total number of atoms in the molecule.

This physically grounded reward encourages the model to generate conformations that are not only
chemically valid but also energetically favorable.

4.5 SIZE-INVARIANT LOG-LIKELIHOOD ESTIMATION

To accommodate variable-size molecular graphs and ensure consistent policy gradient estimation,
we modify the computation of the reverse transition log-probability at each denoising step using a
masking mechanism.

6
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Specifically, under the assumption that the reverse transition p(zt−1|zt) follows a Gaussian distribu-
tion, the log-probability log p(zs | zt) is defined as:

log p(zs | zt) = −1

2
·
∑
i

Mi · d−1
∑
j

Mi ·

(
z
(s)
i,j − µij

σij

)2

(13)

where:

• z
(s)
i,j denotes the j-th feature of the i-th atom in the denoised latent zs,

• µij and σij are the predicted mean and standard deviation from zt,
• d is the number of features per atom (e.g., 3D coordinates and atom-type encoding),
• Mi ∈ {0, 1} is a binary mask indicating valid atoms in the molecule.

This masked average ensures that molecules with different numbers of atoms contribute equally
and meaningfully to the policy objective, regardless of zero-padding or batch structure. Such size-
invariant log-likelihood estimation is critical for stabilizing reinforcement learning in molecular
settings, and is absent in prior DDPO implementations on vision or language tasks.We omit the
Gaussian normalization constant log(2πσ2), which cancels out when computing the importance-
weighted policy ratio Ikt (θ) (see Equation equation 9) during optimization.

5 EXPERIMENTS

In this section, we evaluate our proposed reinforcement learning framework RLPF on two standard
molecular datasets: QM9 and GEOM-drug. We compare RLPF-enhanced models with a range of
state-of-the-art generative baselines, including EDM (Hoogeboom et al., 2022), EDM-BRIDGE (Wu
et al., 2022), GEOLDM (Xu et al., 2023), EDN (Cornet et al., 2024), GeoBFN (Song et al., 2024), and
UniGEM (Feng et al., 2024).Our evaluations focus on key molecular quality metrics, such as atom
stability, molecule stability, chemical validity, uniqueness, and novelty. We show that EDM-RLPF
substantially improves generation performance across these dimensions. We also demonstrate that
RLPF generalizes across model backbones, such as GeoLDM, by fine-tuning in latent space while
preserving decoding fidelity. This highlights the flexibility of RLPF as a general reinforcement-
based fine-tuning framework. Additional details—including training configurations, reward design,
sampling strategies, ablation studies, and property-conditioned generation experiments—are provided
in Appendix D.

Table 1: Evaluation metrics for 3D molecular generation on QM9: Atom stability (A), molecule
stability (M), validity (V), and Validity×Uniqueness (V×U). EDM-RLPF fine-tunes the EDM model
using DFT-calculated forces. Bold indicates best performance; underline indicates second-best.

Model A [%] ↑ M [%] ↑ V [%] ↑ V×U[%] ↑
EDM (Hoogeboom et al., 2022) 98.70 82.00 91.90 90.7
EDM-BRIDGE (Wu et al., 2022) 98.80 84.60 92.00 90.7
GEOLDM (Xu et al., 2023) 98.90 89.40 93.80 92.7
END (Cornet et al., 2024) 98.90 89.10 94.80 92.6
UniGEM (Feng et al., 2024) 99.0 89.8 95.0 93.2
GeoBFN (Song et al., 2024) 99.08 90.87 95.31 92.96

EDM-RLPF (ours) 99.08 ± 0.05 93.37 ± 0.25 98.22 ± 0.15 92.87± 0.07

Data (Ground Truth) 99.00 95.20 97.70 97.70

5.1 MOLECULE GENERATION ON QM9

Dataset The QM9 dataset (Ramakrishnan et al., 2014) contains approximately 130k small organic
molecules, with up to nine heavy atoms and up to 29 atoms including hydrogens. Following Anderson

7
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et al. (2019), we divide the dataset into training, validation, and test sets with 100k, 13k, and 18k
molecules, respectively.

Experimental setup Following the workflow outlined in Section F, we first trained an EDM model
on the QM9 dataset to generate molecules with 3D coordinates and atom types. Our training
configuration aligns with the original EDM paper, and full implementation details are provided in
Appendix E.1.1. During the RLPF fine-tuning phase, sampling is conducted using the same denoising
diffusion process as in the original EDM model, requiring no additional dataset beyond the pretraining
data. The number of denoising time steps T is set to 1000, with K = 512 sampled trajectories per
epoch. We fine-tune the EDM model using RLPF with force deviation computed via DFT at the
B3LYP/6-31G(2df,p) level. Notably, reward computation is performed entirely on CPU without GPU
acceleration. To improve parallel efficiency, we adopt batch sampling and pipeline-parallel reward
evaluation. Detailed hyperparameters and training setup are provided in Appendix E.2.

After fine-tuning, we evaluate molecular quality using four key metrics: atom stability (proportion
of atoms with valid valency), molecule stability (proportion of fully stable molecules), validity
(RDKit-filtered chemical validity), and Validity×Uniqueness. For each evaluation, we sample 10,000
molecules and report the mean over three independent runs.

Results As shown in Table 1, the EDM fine-tuned with RLPF achieves consistent improvements
in all evaluation metrics. The molecular stability increases from 82.0% to 93.37%, and the atom
stability reaches 99.08%, matching or exceeding prior state-of-the-art models. The validity increases
to 98.22%, and the combined Validity×Uniqueness score of 92.87% suggests improved chemical
quality while preserving the diversity of the sample. These results indicate that RLPF contributes to
enhancing the quality of molecular generation. Additionally, EDM-RLPF achieves consistently high
stability across different sampling steps; see Appendix D.3 for details.

Table 2: Evaluation metrics for 3D molecular generation on GEOM-drug. Atom stability and Validity.
EDM-RLPF is fine-tuned using force deviation from GFN2-xTB. Bold indicates best performance,
underline indicates second-best.

Model Atom Stability (%) ↑ Validity (%) ↑
EDM (Hoogeboom et al., 2022) 81.3 91.9
EDM-BRIDGE (Wu et al., 2022) 82.4 91.9
GEOLDM (Xu et al., 2023) 84.4 99.3
END (Cornet et al., 2024) 87.0 92.9
UniGEM (Feng et al., 2024) 85.1 98.4
GeoBFN (Song et al., 2024) 85.6 92.08

EDM-RLPF (ours) 87.52 ± 0.001 99.20± 0.06

Data (Ground Truth) – 86.5

5.2 MOLECULE GENERATION ON GEOM-DRUG

Dataset Compared to the small molecules in QM9, the GEOM-drug (Axelrod & Gomez-Bombarelli,
2022) dataset consists of more complex molecules with approximately 430,000 conformers. The
largest molecule in this dataset contains 181 atoms, with an average of 44.4 atoms per molecule. This
makes GEOM-drug a more challenging benchmark for evaluating 3D molecular generation.

Experimental setup For this experiment, we fine-tuned the model using the publicly available pre-
trained weights of EDM (Hoogeboom et al., 2022). During sampling, we collected 1,024 molecules
in total, sampled in batches of 64. Given the larger size and higher complexity of the molecules in the
GEOM-drug, we used GFN2-xTB to calculate molecular forces, providing an efficient approximation
of the potential energy surface for larger molecular structures. We retained atomic stability and
validity as primary evaluation metrics, consistent with previous reports (e.g., EDM and EDN).

Results The performance of our method on the GEOM-drug dataset is summarized in Table 2.
Compared to the base EDM model, EDM-RLPF improves atom stability from 81.3% to 87.53% and
raises validity from 91.9% to 99.20%. While EDM-RLPF achieves the highest atom stability overall,
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its validity is slightly lower than GEOLDM, which leads the category. EDM-RLPF improves both
molecule stability and validity, suggesting enhanced generation quality for larger molecules.

5.3 GENERALIZATION TO OTHER BACKBONES

To evaluate the generalizability of our reinforcement learning framework, we apply RLPF to two
state-of-the-art generative backbones beyond EDM: GeoLDM (Xu et al., 2023) and UniGEM (Feng
et al., 2024). GeoLDM is a latent diffusion model designed for 3D molecular geometry generation.
It introduces an encoder–decoder architecture where a point-structured latent space is constructed
to preserve critical roto-translational equivariance properties. Diffusion is performed in this latent
space using both invariant scalar and equivariant tensor features. Compared to coordinate-space
diffusion, this formulation improves controllability and generation efficiency. UniGEM, on the other
hand, unifies molecular generation and property prediction in a diffusion-based framework, using
a two-phase generative process to balance both tasks effectively. We conduct molecule generation
experiments on the QM9 dataset using both GeoLDM and UniGEM. Following the same procedure
as with EDM-RLPF, we use GFN2-xTB force deviation as the reward signal for fine-tuning. To
maintain the integrity of pretrained backbones, we freeze non-diffusion modules (e.g., decoders)
during RLPF fine-tuning and update only the diffusion-related parameters.

As shown in Table 3, RLPF consistently improves atom stability, molecule stability, and validity
across all backbones. These results demonstrate that RLPF is a versatile reinforcement learning
framework that can be flexibly integrated into diverse diffusion architectures, enabling physically
grounded fine-tuning for higher-quality molecular generation.

Table 3: Evaluation metrics for 3D molecular generation on QM9 using EDM, GeoLDM, and
UniGEM backbones. Metrics include atom stability (A), molecule stability (M), validity (V), and
Validity×Uniqueness (V×U). Bold indicates best performance; underline indicates second-best.

Model A [%] ↑ M [%] ↑ V [%] ↑ V × U [%] ↑
EDM (Hoogeboom et al., 2022) 98.70 82.00 91.90 90.70
EDM-RLPF (ours) 99.37± 0.01 94.25± 0.13 97.02 ± 0.08 88.59± 0.04

GeoLDM (Xu et al., 2023) 98.90 89.40 93.80 92.70
GeoLDM-RLPF (ours) 99.43 ± 0.02 95.34 ± 0.15 96.28± 0.11 90.66± 0.19

UniGEM (Feng et al., 2024) 99.0 89.8 95.0 93.2 –
UniGEM-RLPF (ours) 99.17± 0.01 91.28± 0.14 95.57± 0.35 97.8 ± 0.10

Discussion on stability–diversity trade-off. While RLPF consistently improves stability and
validity across backbones, we also observe a trade-off: the product metric Validity × Uniqueness
(V×U) decreases for EDM and GeoLDM, but increases for UniGEM. We attribute this to how
RLPF interacts with the backbone architecture. In EDM and GeoLDM, diffusion jointly operates
on coordinates and atom types, so physically grounded rewards encourage the model to focus on
narrow high-reward regions, boosting stability but reducing structural diversity. By contrast, UniGEM
applies diffusion only on coordinates while predicting atom types once with a frozen head; thus RLPF
fine-tunes only the coordinate denoiser, preserving atom-type diversity and yielding higher V×U.

6 CONCLUSION

We propose Reinforcement Learning with Physical Feedback (RLPF) to fine-tune equivariant
diffusion models for 3D molecular generation. By formulating the denoising process as a Markov
decision process and optimizing force-field-based rewards, RLPF enhances the quality of generated
molecules. Furthermore, RLPF is compatible with various generative backbones, demonstrating
strong extensibility across different molecular diffusion architectures.

9
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A ADDITIONAL STATEMENTS

LLMs were employed during the writing of this paper to polish the text and correct grammatical
errors. The prompt used was: “Please detect and correct any grammatical errors in the following text,
and polish it to enhance its academic expression. <text>".

B ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimen-
tation was involved. All datasets used were sourced in compliance with relevant usage guidelines,
ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory out-
comes in our research process. No personally identifiable information was used, and no experiments
were conducted that could raise privacy or security concerns. We are committed to maintaining
transparency and integrity throughout the research process.

C REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code
and datasets have been made publicly available in an anonymous repository to facilitate replication
and verification. The experimental setup, including training steps, model configurations, and hardware
details, is described in detail in the paper. Our work is reproducible, and the code is openly available
at: https://anonymous.4open.science/r/RLPF-55FC/.

D EXTENDED EXPERIMENTS AND ANALYSIS

D.1 CONDITIONAL MOLECULE GENERATION ON QM9

In this section, we investigate whether the RLPF algorithm improves molecular stability during
conditional generation. We evaluated three molecular properties on the QM9 dataset: polarizability
(α), HOMO-LUMO gap, and LUMO. For dataset partitioning, we follow the same strategy as EDM,
splitting QM9 into two subsets, Da and Db, each containing 50,000 samples. The EDM model is first
trained on Db and then fine-tuned using RLPF with the same configuration as described in Section 5.1,
where force deviation computed via GFN2-xTB serves as the primary reward signal.

To guide conditional generation, we incorporate an augmented reward that balances physical
stability with alignment to the target property. Specifically, the reward is defined over molecular
coordinates x, atom types h, and target property c as:

r(x, h, c) = −λ · RMSDxTB(x, h)− η · |ω(x, h)− c| , (14)

where ω(x, h) is a pretrained property predictor that estimates the property value of the generated
molecule. The term RMSDxTB(x, h) reflects the deviation from equilibrium as computed using GFN2-
xTB, and the term |ω(x, h)− c| encourages alignment with the target context c. Hyperparameters λ
and η control the trade-off between force-based stability and property accuracy.

This composite reward encourages the model to generate molecules that are both physically stable
and property-aligned, leading to improved conditional generation performance.

Results As shown in Table 4, EDM-RLPF achieves the lowest mean absolute error polarizability (α)
gap prediction. Specifically, it improves α to 2.29 Bohr3, outperforming all baselines, including
GeoBFN. For the HOMO-LUMO gap (∆ε) and LUMO energy (εLUMO), EDM-RLPF also yields
clear improvements over EDM, reducing the errors from 655 to 622 meV and from 584 to 521 meV,
respectively. These results demonstrate that reinforcement learning with physical feedback enhances
property controllability on top of EDM.

Ablation study on reward weighting. To investigate the impact of balancing force stability and
property accuracy, we conduct an ablation study on the weighting factor η in the augmented reward
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Table 4: Mean Absolute Error for molecular property prediction. A lower number indicates a better
controllable generation result. Results are predicted by a pretrained EGNN classifier ω on molecular
samples extracted from individual methods. Our method (EDM-RLPF) is fine-tuned using force
deviation feedback from the GFN2-xTB force field. The results of QM9 and Random can be viewed
as lower and upper bounds of MAE on all properties.

Property α ∆ε εLUMO

Units Bohr3 meV meV

QM9 0.10 64 36

Random 9.01 1470 1457
Natoms 3.86 866 813
EDM (Hoogeboom et al., 2022) 2.76 655 584
GeoLDM (Xu et al., 2023) 2.37 587 522
GeoBFN (Song et al., 2024) 2.34 577 516
EDM-RLPF 2.29 ± 0.03 622± 0.8 521± 0.35

function defined in Eq. (1), keeping λ = 1.0 fixed. We evaluate conditional generation on the QM9
dataset for the polarizability (α) property using the same setup as in Section D.1.

Table 5: Ablation study on reward weighting for conditional generation of polarizability (α). Lower
MAE (Mean Absolute Error) indicates better property alignment. Each result is averaged over 3 runs
using a pretrained EGNN predictor ω.

η MAE on α (Bohr3) ↓
1.0 2.31± 0.03
0.5 2.29± 0.02
0.1 2.79± 0.04

We observe that an intermediate value (η = 0.5) yields the best performance, suggesting that moderate
emphasis on property alignment helps optimize controllable generation without sacrificing force
stability. Too little weight (η = 0.1) leads to under-conditioning, while overly strong alignment
(η = 1.0) may interfere with physical consistency.

D.2 FAIRNESS AGAINST CONTINUED TRAINING

To evaluate whether the performance gains achieved by RLPF stem from reinforcement learning
rather than from continued training or increased data exposure, we conducted a control experiment
on the QM9 dataset under molecular generation.

Specifically, we generated 51,200 molecules from the pretrained EDM model and retained only
those that passed chemical validity checks (e.g., valency and structural correctness). This number
matches the total number of samples generated during the RLPF fine-tuning phase (100 epochs × 512
trajectories per epoch). The accepted molecules were then used as additional training data for further
supervised fine-tuning of the EDM model. By keeping the data volume consistent, this control setup
allows for a fair comparison, isolating the effect of reinforcement learning from that of simple data
augmentation.

Results: This experiment demonstrates that while continued training with additional valid data
improves diversity-related metrics (such as uniqueness and novelty), it does not yield comparable
improvements in structural or force-based stability. The RLPF approach, in contrast, directly opti-
mizes for physically meaningful rewards and produces molecules with significantly better equilibrium
stability. These findings underscore the value of reward-guided fine-tuning in RLPF over traditional
data-driven augmentation in the QM9 setting.
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Table 6: Comparison of EDM-RLPF with supervised fine-tuning using rejection-sampled molecules
on QM9. Evaluation metrics include atom stability (A), molecule stability (M), validity (V), unique-
ness (U), and novelty (N). Bold indicates best performance.

Model A [%] ↑ M [%] ↑ V [%] ↑ U [%] ↑ N [%] ↑
EDM (Hoogeboom et al., 2022) 98.70 82.00 91.90 90.70 65.70
EDM-Continue 98.99± 0.03 89.47± 0.21 93.20± 0.52 99.36 ± 0.05 81.45 ± 0.46
EDM-RLPF 99.08 ± 0.05 93.37 ± 0.25 98.22 ± 0.15 92.87± 0.07 58.57± 0.24

Table 7: Effect of denoising steps on molecule generation performance (QM9). Evaluation metrics
include molecule stability (M), atom stability (A), validity (V), validity × uniqueness (V×U), and
novelty (N). For EDM, results at 100/250/500 steps use official checkpoints. Best and second-best
results per step are marked in bold and underlined, respectively.

Model Steps M [%] ↑ A [%] ↑ V [%] ↑ V×U [%] ↑ N [%] ↑
EDM 100 78.01 ± 0.27 98.00 ± 0.04 90.15 ± 0.17 98.76 ± 0.12 68.03 ± 0.26
EDM 250 80.07 ± 0.10 98.23 ± 0.07 90.76 ± 0.10 98.83 ± 0.06 66.47 ± 0.43
EDM 500 80.78 ± 0.17 98.26 ± 0.02 91.84 ± 0.07 98.73 ± 0.11 66.67 ± 0.17
EDM (Hoogeboom et al., 2022) 1000 82.00 98.70 91.90 90.70 65.70

END (Cornet et al., 2024) 100 87.40 98.80 94.10 92.30 –
END (Cornet et al., 2024) 250 88.80 98.90 94.70 92.60 –
END (Cornet et al., 2024) 500 88.80 98.90 94.80 92.80 –
END (Cornet et al., 2024) 1000 89.10 98.90 94.80 92.60 –

EDM-RLPF (ours) 100 91.14 ± 0.07 98.91 ± 0.07 97.81 ± 0.25 92.84 ± 0.34 60.92 ± 0.60
EDM-RLPF (ours) 250 92.86 ± 0.24 99.05 ± 0.08 98.20 ± 0.34 92.62 ± 0.39 58.75 ± 0.49
EDM-RLPF (ours) 500 93.06 ± 0.26 99.01 ± 0.02 98.30 ± 0.15 92.41 ± 0.09 58.83 ± 0.15
EDM-RLPF (ours) 1000 93.37 ± 0.25 99.08 ± 0.05 98.22 ± 0.15 92.87 ± 0.07 58.57 ± 0.24

D.3 IMPACT OF SAMPLING STEPS ON GENERATION QUALITY

To investigate how the number of denoising steps influences molecular generation quality, we con-
ducted an ablation study on the QM9 dataset under the molecule generation setting. We compare
our fine-tuned EDM-RLPF model against two baselines: the original EDM and END (Cornet et al.,
2024).

For EDM, we evaluated the model at 100, 250, and 500 denoising steps using the official pretrained
checkpoints released by the authors. The 1000-step EDM result, as well as all reported END
results across different step counts, are extracted directly from their original publications to ensure
consistency. For EDM-RLPF, we perform fine-tuning and evaluation using our implementation under
the same denoising configurations.

All models are evaluated using five key metrics: molecule stability, atom stability, chemical validity
(as computed by RDKit), uniqueness (percentage of unique valid molecules), and novelty (percentage
of valid molecules not seen during training). Results are reported as averages over three independent
runs where applicable.

Table 7 summarizes the performance comparison. We observe that increasing the number of sampling
steps generally leads to improved molecular stability and validity across all models. Notably,
EDM-RLPF consistently achieves the highest molecule and atom stability at every step size,
while maintaining competitive uniqueness and novelty, demonstrating its effectiveness in improving
physical plausibility under varying sampling regimes.

D.4 REJECTION SAMPLING EFFICIENCY WITH RLPF FINE-TUNING

To assess the efficiency gains brought by RLPF, we conducted a rejection sampling experiment under
the QM9 molecule generation setting. Specifically, we compare the original EDM model with the
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EDM model fine-tuned using RLPF. Both models use rejection sampling at inference time, allowing
us to isolate the impact of RLPF fine-tuning on sample efficiency.

Experiment setup:

• Goal: Generate 10,000 stable molecules from either the original EDM or the RLPF-finetuned
EDM model.

• Stability Criterion: A molecule is considered stable if the RMSD of its atomic forces
(computed via GFN2-xTB) is less than 0.2 eV/Å.

• Sampling Method: Rejection sampling is applied to filter out unstable molecules. We
measure how many total molecules need to be generated—and how long it takes—to collect
10,000 stable ones.

Table 8: Rejection sampling efficiency under molecule generation on QM9. RLPF significantly
reduces the number of samples and inference time needed to collect 10,000 stable molecules. Results
are averaged over three runs with different random seeds.

Model Time (s) ↓ Molecules Sampled ↓
EDM (w/o RLPF) 1418.45± 24.41 36, 400± 346.41
EDM-RLPF (fine-tuned) 791.91± 8.22 19,400± 163.30

Results Despite using the same rejection sampling strategy during inference, the RLPF-finetuned
model yields a much higher proportion of stable molecules. This leads to a 44% reduction in sampling
time and nearly half the number of samples required, demonstrating the effectiveness of RLPF in
enhancing generation efficiency.

D.5 ABLATION STUDY ON REWARD FUNCTIONS

To better understand how the choice of reward function influences the performance of RLPF, we
conducted an ablation study across three reward designs:

• Stability Reward: Based on atom valency correctness. See detailed definition below.

• Force Deviation (xTB): Calculated using GFN2-xTB.

• Force Deviation (DFT): Calculated using B3LYP/6-31G(2df,p) DFT.

Definition of stability reward. Following the metric proposed by Garcia Satorras et al., we first
predict the bond type between each pair of atoms (i, j) based on their Euclidean distance and atomic
types. These predicted bonds are used to compute the valency of each atom. A molecule is considered
stable if every atom satisfies its standard valency constraint.

Let vi be the predicted valency of atom i, and vtarget
i be its expected valency based on the atom

type (e.g., vtarget
C = 4 for carbon). A molecule is considered stable if every atom in it satisfies the

corresponding valency constraint. Formally, we define the molecule-level binary reward as:

rstable =

{
1 if ∀i ∈ {1, . . . , N}, vi = vtarget

i ,

0 otherwise,
(15)

where N is the number of atoms in the molecule.

This binary reward is applied at the final time step of the denoising process and encourages generation
of chemically plausible molecules.

We evaluated the fine-tuned models using four metrics: molecule stability, validity, and the product
of validity and uniqueness (V×U). Results are reported in Table 9.
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Table 9: Impact of reward functions on 3D molecular generation quality on QM9. Metrics include
molecule stability (M), atom stability (A), validity (V), validity × uniqueness (V×U), and novelty
(N). Bold indicates best performance; underline indicates second-best.

Reward Type M [%] ↑ A [%] ↑ V (%) ↑ V × U (%) ↑ N (%) ↑
Stability 96.45 ± 0.03 99.60 ± 0.04 98.97 ± 0.07 87.74± 0.10 57.70± 0.29
Force (xTB) 96.45 ± 0.02 99.37± 0.01 97.02± 0.08 88.59± 0.04 53.63± 0.30
Force (DFT) 93.37± 0.25 99.08± 0.05 98.22± 0.15 92.87 ± 0.07 58.57 ± 0.24

Results The valency-based stability reward produces high chemical validity and diversity but is
less effective at promoting physically meaningful structures. In contrast, rewards based on force
deviation—especially those computed via DFT—better align the model with physically plausible
configurations while maintaining strong chemical validity. Notably, xTB-based rewards offer similar
benefits at significantly lower computational cost, serving as a practical surrogate for DFT. These
findings highlight a trade-off in reward design between chemical correctness and physical grounding,
and underscore the flexibility of RLPF in supporting diverse objectives.

Training curves under different reward functions To further analyze the effect of each reward
design on model behavior, we visualize the training dynamics of RLPF with DFT-based force
deviation, valency-based stability, and xTB-based force deviation rewards. The plot in Figure 2
shows the evolution of five key metrics—molecule stability, atom stability, validity, uniqueness, and
novelty—across training epochs for each reward type.

Figure 2: Training curves of generation metrics under three reward types: DFT-based force (left),
valency-based stability (middle), and xTB-based force (right). Dashed lines indicate baseline EDM
scores for reference.

Observation All reward functions lead to increasing molecule and atom stability over time, con-
firming that RLPF can effectively optimize for structural correctness. Among them, the DFT-based
reward achieves strong stability improvements while inducing a relatively smaller drop in uniqueness
and novelty. This indicates that DFT feedback better preserves generative diversity while enforcing
physical plausibility.

D.6 EFFECT OF CLIPPING THRESHOLD IN RLPF FINE-TUNING

To understand how the PPO clipping threshold ϵ affects the fine-tuning process in RLPF, we conducted
an ablation study under the molecule generation setting on the QM9 dataset. We compared three
different values of ϵ: 0.05, 0.2, and 100 (no clipping). All experiments followed the same training
setup as described in Appendix E.1.1.

Observations:

• When ϵ is very large (e.g., 100), the reward increases rapidly at first but becomes unstable
and collapses in the later stages, as the policy diverges from the pretrained model (shown by
the spike in KL divergence).

• Smaller ϵ values (0.05 and 0.2) result in smoother and more stable training, with consistent
gains in molecule stability.
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Figure 3: Effect of PPO clipping threshold ϵ during RLPF training on QM9. Left: KL divergence to
pretrained model; Middle: training reward; Right: molecule stability.

• ϵ = 0.2 strikes a better balance between reward improvement and policy stability, making it
the default value in our main experiments.

This ablation highlights the importance of policy regularization via clipping in ensuring stable and
effective RLPF training.

D.7 RESIDUAL FORCE ANALYSIS

To further examine the physical plausibility of generated molecules, we evaluated the residual
atomic forces of sampled conformations. We generated 10,000 molecules from each model. For the
baseline EDM, we used the official pretrained checkpoint; for EDM-RLPF, we evaluated intermediate
checkpoints during reinforcement learning fine-tuning (as in Table 1), where the reward was based on
DFT force deviations.

Residual forces for each molecule were computed using DFT with the B3LYP functional and the
6-31G(2df,p) basis set. We report the root-mean-square deviation (RMSD) of atomic forces in
eV/Å, where lower values indicate geometries closer to equilibrium.

Table 10: Residual atomic forces (RMSD in eV/Å) of generated molecules. EDM-RLPF significantly
reduces residual forces compared to the EDM baseline.

Model Force RMSD (eV/Å) ↓
EDM 0.8932
EDM-RLPF 0.5845

Discussion. Since our task is 3D molecular generation rather than explicit conformation optimization,
the generated geometries are not guaranteed to be fully relaxed under a quantum force field, and
residual forces are not minimized to zero as in geometry optimization. Nevertheless, residual forces
serve as a meaningful proxy for physical plausibility. The results above show that EDM-RLPF
generates molecules with significantly lower residual forces than the EDM baseline, confirming
that reinforcement learning with physically grounded rewards encourages the model to produce
geometries closer to equilibrium.

D.8 GEOMETRY OPTIMIZATION ANALYSIS

To further evaluate whether RLPF improves the physical plausibility of generated structures, we
compared conformations sampled from the original EDM and our fine-tuned EDM-RLPF (trained
with DFT force rewards). For each model, we sampled 1,000 molecules and optimized them using
DFT with the B3LYP functional and 6-31G(2df,p) basis set, under a convergence criterion of
fmax = 0.05 eV/Å. We recorded the following metrics:

• RMSD between pre- and post-optimization structures (lower is better);
• Average number of optimization steps (fewer is better);
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• Optimization success rate, i.e., the proportion of molecules converging under the specified
criterion.

Table 11: Comparison of DFT geometry optimization efficiency. EDM-RLPF produces molecules
that are closer to equilibrium, requiring fewer optimization steps and converging more reliably.

Model RMSD (Å) ↓ Optimization Steps ↓ Success Rate (%) ↑
EDM 0.0981 29.14 83.6
EDM-RLPF 0.0482 18.58 94.4

Optimization failures are primarily due to charge imbalance or chemically invalid species (e.g.,
molecules with inconsistent valence or lacking charge neutrality), which prevent stable SCF conver-
gence. Interestingly, the observed failure rate closely matches the molecule stability metric in our
main evaluation, confirming that stability is predictive of downstream simulation reliability.

In summary, RLPF not only improves molecular stability but also reduces reliance on expensive
geometry optimization, leading to more efficient downstream simulations.

D.9 ADDITIONAL DOCKING EXPERIMENT

To further examine whether the improved stability from our method translates to downstream tasks,
we conducted an additional molecular docking experiment. In standard docking workflows, ligands
are usually pre-optimized to their lowest-energy conformations before docking (Guedes et al., 2014;
Sulimov et al., 2017; Brylinski & Skolnick, 2008). Here, we instead evaluate molecules generated
directly by the models, without conformer optimization.

Setup.

• Protein target: TYK2 (PDB ID: 8S9A).
• Ligands: 1,000 molecules generated by (i) the baseline EDM model and (ii) our EDM

fine-tuned with RLPF. Both models were trained on QM9.
• Docking protocol: Protein prepared with standard preprocessing; ligands docked directly

without additional geometry optimization.
• Metrics: Average docking score (more negative is better) and docking success rate.

Table 12: Docking performance on TYK2 (PDB: 8S9A). RLPF improves both docking score and
success rate.

Model Avg. Docking Score ↓ Success Rate (%) ↑
EDM −4.8363 95.4
EDM-RLPF −4.9438 97.7

Discussion. These results show that molecules generated by EDM-RLPF yield both a better average
docking score and a higher docking success rate compared to EDM. We believe this improvement
arises because RLPF encourages generation of molecules that are closer to low-energy, physically
stable conformations. Such stability reduces docking errors, accelerates post-processing, and improves
the reliability of downstream predictions.

E IMPLEMENTATION AND EXPERIMENTAL DETAILS

E.1 PRETRAINING CONFIGURATIONS

E.1.1 THE EDM PRETRAINED ON THE QM9

The EDM model consists of 9 layers, with each hidden layer having a dimension of 256. The SiLU
activation function is used, and the Adam optimizer is employed for the optimization process. We set
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the batch size to 64 and configured the learning rate to 1× 10−4. For the final model, we selected the
version obtained at the 2161st epoch, as this is when the loss reached its lowest value, signaling the
end of the pretraining phase.

E.1.2 THE EDM PRETRAINED ON THE GEOM-DRUG

In this experiment, we directly used the GEOM-drug model parameters provided by EDM.
On the GEOM dataset, EDM is trained using EGNNs with 256 hidden features and a 4-
layer architecture. The models were trained for 13 epochs, which corresponds to approxi-
mately 1.2 million iterations with a batch size of 64. The pretrained weights are available at:
https://github.com/ehoogeboom/e3_diffusion_for_molecules/tree/main/outputs/edm_geom_drugs.

E.2 FINE-TUNING WITH RLPF

We fine-tuned the pretrained EDM models on both the QM9 and GEOM-drug datasets using our
proposed RLPF framework. All experiments were conducted under the molecule generation setting.
The reward signals were derived from either force deviations (computed using DFT or xTB) or
valency-based stability checks.

Training setup For QM9, the fine-tuning was performed over 100 epochs, sampling 512 molecules
per epoch, yielding a total of 51,200 molecules. The model was optimized using the AdamW
optimizer with a learning rate of 1× 10−5. The hyperparameters were set to β1 = 0.9, β2 = 0.999,
ϵ = 1× 10−8, and a weight decay of 1× 10−4. To ensure stable policy updates during reinforcement
learning, we used PPO with a clipping threshold of ϵ = 0.2 (see Eq. equation 11) and applied
advantage normalization with a clipping range of 1.0.

Handling invalid structures. When using DFT-based force deviation as the reward, certain invalid
structures occasionally caused failures in the force calculation (e.g., due to unbalanced charge or
highly distorted geometry). In such cases, we assigned a fixed penalty reward of −5 to reduce their
impact on training.

Parallel sampling and reward computation. As shown in Figure 4, reward evaluation does not
require GPU acceleration. To maximize throughput, we employed pipeline parallelism between sam-
pling and reward computation. Molecule batches were generated on GPU and immediately dispatched
to CPU-based workers for reward calculation, allowing both stages to proceed concurrently.

Sampling

Calculating 

Reward

Sampling

Calculating 

Reward

I

O

Training Sampling

I

O

GPU

CPU

Sampling

Calculating 

Reward

Sampling

I

O
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Reward

I

O

Training Sampling

Calculating 

Reward

I

O

SamplingGPU

CPU

Time saved

Figure 4: Schematic diagram of pipeline parallelism between sampling and reward evaluation.

GEOM-drug fine-tuning. For the larger GEOM-drug dataset, we fine-tuned EDM using rewards
computed from GFN2-xTB. Due to the high computational cost of DFT on large molecules, DFT-
based rewards were not used in this setting. Each round of fine-tuning involved sampling 1024
molecules, repeated over 2 rounds. The use of xTB strikes a balance between computational
efficiency and physical accuracy, making it suitable for more complex molecules.
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Diversity and stability trade-off. To evaluate diversity, we report novelty following EDM’s
standard protocol. On QM9, RLPF slightly reduces novelty compared to the pretrained EDM (58.6%
vs. 65.7%), suggesting that the model becomes more concentrated around the training manifold,
thereby improving stability (see Table 1) at the cost of reduced exploration.

Notably, as observed by Vignac & Frossard (2022), the QM9 dataset constitutes a near-complete enu-
meration of stable molecules under certain constraints. In this context, excessively high novelty may
reflect divergence from the true data distribution, increasing the likelihood of generating chemically
implausible structures. Therefore, a moderate drop in novelty may actually indicate better alignment
with valid chemical space, rather than a loss of model quality.

Table 13: Diversity evaluation on QM9. We report novelty among valid and unique molecules.
Results are averaged over three runs.

Model Novelty (%) ↑
EDM (Hoogeboom et al., 2022) 65.7
GeoLDM (Xu et al., 2023) 57.0
GeoBFN (Song et al., 2024) 66.4
EDM-RLPF (ours) 58.57± 0.25

Training convergence criterion We define convergence in RLPF fine-tuning based on either:

• Reaching a maximum of 100 epochs, or
• The average reward entering a stable, high-performance range.

These convergence thresholds vary depending on the reward type:

• For valency-based stability rewards, training is considered converged when the reward
exceeds 0.95.

• For force-based rewards (e.g., xTB RMSD), convergence is reached when the reward exceeds
-0.25.

Figure 5 shows representative reward curves under both reward types. These thresholds were
determined empirically by observing when the reward plateaus or when continued training yields
diminishing returns.

Figure 5: Comparison of training reward curves under valency-based stability (left) and xTB-based
force (right) reward functions.

E.3 COMPUTATION COST ANALYSIS

We report the computational resources required for the fine-tuning of RLPF in different settings.

QM9 (RLPF with DFT and xTB). When fine-tuning the EDM model in the QM9 dataset using
RLPF with DFT-based force deviation rewards, we utilized 13 NVIDIA H100 GPUs for model
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training and 500 CPU cores in parallel for reward computation with the B3LYP/6-31G(2df,p) method.
In contrast, when using GFN2-xTB for force evaluation, the reward computation required only 15
CPU cores in parallel, significantly reducing the computational burden while still providing effective
training signals.

GEOM-drug (RLPF with xTB). For the larger and more complex GEOM-drug dataset, we fine-
tuned the EDM model using RLPF with GFN2-xTB-based rewards. The training process required 10
NVIDIA H100 GPUs, while the reward computation was performed efficiently using 15 CPU cores.
DFT-based rewards were not used in this setting due to their prohibitively high computational cost on
large molecules.

These results highlight the scalability of RLPF: while high-fidelity rewards (e.g., DFT) are computa-
tionally expensive, approximate methods like xTB offer a practical trade-off between accuracy and
efficiency, particularly in large-scale settings.

F FULL WORKFLOW OF RLPF

For completeness, we provide the full workflow of the RLPF algorithm that outlines its procedural
structure and training loop. While the high-level logic is illustrated in Figure 1 and Algorithm 1 in
the main text, the following summary describes each step in detail:

1. Sample Trajectories: The pre-trained model pθold is used to generate K molecular trajec-
tories by denoising latent variables over T timesteps. This captures both the intermediate
states zt and the final molecular structure (x, h).

2. Calculate Rewards: The generated molecules (x, h) are evaluated using physically
grounded reward functions, such as DFT- or xTB-based force deviation, or valency-based
stability. These values serve as scalar rewards r(x, h).

3. Fine-tune with RL: For each trajectory k, the reward r(xk, hk) is normalized to obtain
an advantage estimate Âk

t . The importance sampling ratio Ikt (θ) is computed using log-
likelihood scores from Section 4.5. A PPO-style clipped policy objective is optimized to
update θ.

This pipeline is repeated across multiple epochs in an online fashion, alternating between generation
and policy improvement.

G LIMITATION OF RLPF

While RLPF significantly improves molecular stability through reward-based fine-tuning, its effec-
tiveness hinges on a crucial assumption: the base generative model must be capable of producing
a wide range of samples, including both high-quality and low-quality molecules. This diversity is
essential for the advantage estimation step in reinforcement learning, where advantages are computed
using normalized returns based on mean and variance.

If the pretrained model fails to generate a sufficient number of poor or unstable samples, the estimated
advantages across trajectories may become uniformly small. As a result, the gradient updates
derived from the reinforcement signal will have limited impact, and RLPF may offer only marginal
improvements. In practice, we observe that RLPF is most effective when applied to a base model that
exhibits moderate performance—sufficiently stable to ensure chemical validity, yet diverse enough to
expose room for reward-guided improvement.

This limitation highlights the importance of sampling diversity in reward-based fine-tuning, and
suggests that future work could explore adaptive weighting or trajectory selection strategies to
mitigate this sensitivity.
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H SAMPLES FROM FINE-TUNED MODELS WITH RLPF

Figure 6: Representative samples generated after RLPF fine-tuning. The top row shows molecules
from EDM pretrained on QM9 and fine-tuned using DFT-based force rewards. The second row
shows results using valency-based stability as rewards. The third row depicts fine-tuning with GFN2-
xTB force-based rewards. The bottom row shows molecules generated from EDM pretrained on
GEOM-drug and fine-tuned using xTB forces. RLPF consistently improves structural stability and
equilibrium quality across all reward types.
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