

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GUIDING DIFFUSION MODELS WITH REINFORCEMENT LEARNING FOR STABLE MOLECULE GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Generating physically realistic 3D molecular structures remains a core challenge in molecular generative modeling. While diffusion models equipped with equivariant neural networks have made progress in capturing molecular geometries, they often struggle to produce equilibrium structures that adhere to physical principles such as force field consistency. To bridge this gap, we propose **Reinforcement Learning with Physical Feedback (RLPF)**, a novel framework that extends Denoising Diffusion Policy Optimization to 3D molecular generation. RLPF formulates the task as a Markov decision process and applies proximal policy optimization to fine-tune equivariant diffusion models. Crucially, RLPF introduces reward functions derived from force-field evaluations, providing direct physical feedback to guide the generation toward energetically stable and physically meaningful structures. Experiments on the QM9 and GEOM-drug datasets demonstrate that RLPF significantly improves molecular stability compared to existing methods. These results highlight the value of incorporating physics-based feedback into generative modeling.

1 INTRODUCTION

Recent advancements in generative models have demonstrated remarkable potential for generating diverse and high-quality molecular structures. Among these, diffusion models (Ho et al., 2020) have emerged as a prominent area of research in molecular generation due to their superior generative capabilities and theoretical soundness. While other generative models, such as Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) and Variational Autoencoders (VAEs) (Kingma et al., 2019), have also made significant progress, diffusion models have shown particularly compelling performance in generating complex molecular structures.

Integrating these models with equivariant graph neural networks (Satorras et al., 2021; Liao & Smidt, 2022; Thomas et al., 2018) further enhances their performance by explicitly considering the geometric properties and physical constraints of molecules (Xu et al., 2022; Jing et al., 2022). This combination allows for improved generation of molecules with desired properties, as equivariant graph neural networks ensure equivariance to rotations, translations, and reflections, resulting in physically more realistic and stable conformations. Building upon these advancements, Equivariant Diffusion Models (EDMs) (Hoogeboom et al., 2022) have emerged as particularly promising within this landscape. A key advantage of EDMs lies in their ability to operate on both continuous (3D conformation) and categorical features (atom types), rather than solely focusing on generating molecular conformations. This enhanced capability makes EDMs particularly well-suited for de novo drug discovery, where precise control over molecular properties and functionalities is essential.

Despite the successes of the aforementioned approaches, we observe a notable limitation: the stability of the generated molecular structures. Specifically, when evaluating generated conformations using physical force fields, we frequently observe high residual atomic forces (as illustrated in Figure 1), indicating significant strain and instability. This suggests that while the models may produce chemically valid molecules, they often fail to generate physically plausible and energetically favorable conformations.

This naturally raises a crucial question: *how can we guide generative models towards producing more stable molecular structures?* Inspired by recent advances in Large Language Models (LLMs), particularly Reinforcement Learning from Human Feedback (RLHF) (Stiennon et al., 2020), we

explore a novel paradigm for training molecular diffusion models. Traditional diffusion models are trained via maximum likelihood estimation, akin to Supervised Fine-Tuning (SFT) in LLMs. However, RLHF shows that reward-based fine-tuning can dramatically improve alignment with human or domain-specific preferences.

Drawing this analogy, we propose a new approach: **Reinforcement Learning with Physical Feedback (RLPF)**, which integrates reinforcement learning with equivariant diffusion models using physically grounded rewards. Specifically, RLPF leverages reward signals derived from force field-based metrics to fine-tune pretrained diffusion models, thereby encouraging the generation of physically realistic and energetically stable molecules. These signals can be computed from classical force fields, quantum mechanical approximations, or other structure-informed heuristics, and serve as a domain-specific counterpart to human feedback in RLHF.

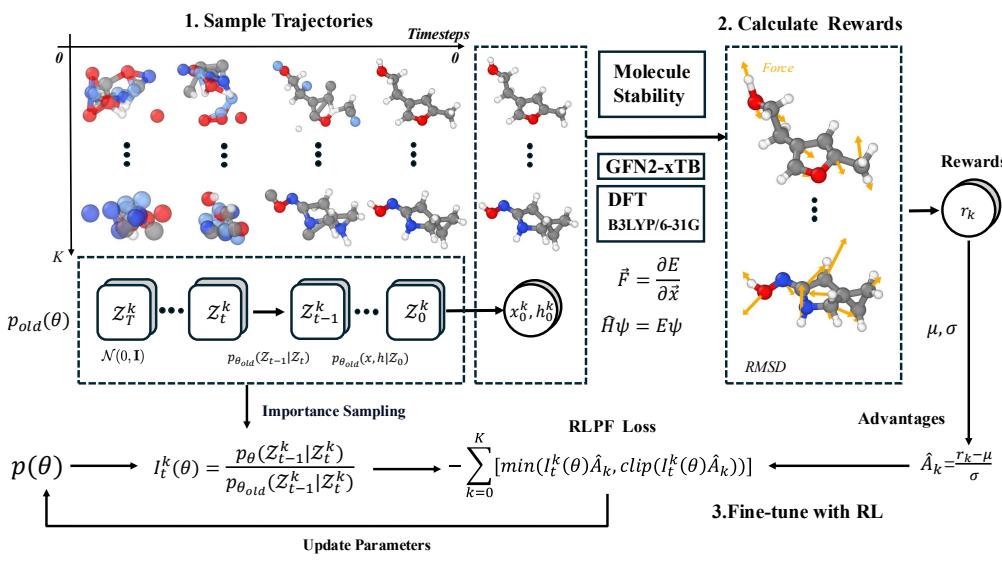


Figure 1: Overall workflow of the RLPF algorithm. RLPF fine-tunes a pretrained diffusion model for molecular generation in three steps. First, the model p_θ generates molecular trajectories. Second, molecule stability is evaluated using force field metrics such as classical or quantum energy gradients. Unstable molecules typically exhibit large residual forces. Third, reinforcement learning is used to refine the model using a PPO-style policy gradient, guided by computed rewards and advantage estimates.

RLPF formulates the denoising process in diffusion models as a Markov Decision Process (MDP) (Puterman, 1990). Each reverse step of the diffusion process corresponds to an action within the MDP, and the reward is assigned at the final denoising step based on the physical plausibility of the generated molecule. As shown in Figure 1, upon reaching the terminal state, the molecule is evaluated for physical stability (e.g., force residual), and this reward is used to optimize the model parameters via the REINFORCE algorithm (Williams, 1992), with further stabilization via PPO-style clipping.

RLPF is model-agnostic and can be applied to any diffusion-based molecular generation framework. In this work, we instantiate RLPF on Equivariant Diffusion Model (EDM (Hoogeboom et al., 2022)), which have demonstrated state-of-the-art performance. We further validate the generalizability of RLPF by applying it to GeoLDM (Xu et al., 2023) and UniGEM (Feng et al., 2024). We evaluate our method on two benchmark datasets: QM9 (Ramakrishnan et al., 2014) for small organic molecules, and GEOM-drug (Axelrod & Gomez-Bombarelli, 2022) for drug-like molecular structures. Empirical results show that RLPF significantly improves the quality of the generated molecules, outperforming both baseline EDM and supervised fine-tuned variants.

108
109**Contributions:**110
111
112
113
114
115
116
117
118
119
120

1. We propose **RLPF**, a novel method that integrates physics-informed reinforcement learning with equivariant diffusion models, using force field-based feedback for 3D molecular generation.
2. RLPF substantially improves the quality of the molecules generated in both the QM9 and GEOM drug, achieving better performance than existing diffusion-based methods in multiple stability and validity metrics.
3. RLPF is model-agnostic and demonstrates strong generalizability, effectively improving generation quality when applied to diverse backbones.

121
122**2 RELATED WORK**123
124
125

In the field of 3D molecular generation, generative models can be broadly classified into two categories: autoregressive models and diffusion models.

126
127
128
129
130
131
132
133
134
135

Autoregressive models generate molecules sequentially, atom by atom or bond by bond, where each generation step is conditioned on the previously generated substructure. This sequential nature allows for precise control over the molecular construction process. Early works in this area often employed recurrent neural networks (RNNs) to generate SMILES strings, a linear representation of molecular structures (Gómez-Bombarelli et al., 2018). However, SMILES-based approaches can suffer from issues related to canonicalization and the difficulty of capturing 3D structural information. More recent approaches have focused on generating molecular graphs directly, using geometrical graph neural networks to represent and process molecular structures. These graph-based autoregressive models generate molecules by iteratively adding nodes (atoms) and edges (bonds) to the growing graph (Gebauer et al., 2019; Daigavane et al., 2023).

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Diffusion models offer an alternative approach to molecular generation by learning to reverse a noise corruption process. These models operate by progressively adding noise to a data distribution (e.g., molecular structures) until it becomes a simple, tractable distribution (e.g., Gaussian noise). The model is then trained to learn the reverse process, i.e., denoising, allowing it to generate new samples by iteratively removing noise from the simple distribution. In the context of molecular generation, diffusion models have been applied to various molecular representations, including point clouds, graphs, and voxel grids. Xu et al. (2022) introduced GeoDiff, a diffusion model specifically designed for 3D molecular conformation generation in the Euclidean space. TorsionDiff (Jing et al., 2022) applies the diffusion process over the torsion angles and leaves the other degrees of freedom fixed. Hoogeboom et al. (2022) proposed EDM, where the model learns to denoise a diffusion process that operates on both continuous coordinates and categorical atom types. Equivariant neural diffusion (EDN) (Cornet et al., 2024) generalizes EDM, by defining the forward process through a learnable transformation and extending the flexibility of the hidden state in the diffusion model. Igashov et al. (2024) investigated the use of equivariant neural networks within the diffusion framework for molecular linker design. Equivariance ensures that the model’s predictions are consistent with the underlying symmetries of the molecular system (e.g., rotations and translations), leading to more physically plausible generated structures. Diffusion models, while computationally more demanding than autoregressive models, have demonstrated the ability to generate high-quality and diverse molecular structures.

While generative models for molecules have demonstrated the ability to produce reasonably stable structures, they still lag behind the advancements of deep learning in natural language processing (NLP) and computer vision (CV), as highlighted in (Zhao et al., 2023). Notably, **reinforcement learning** (RL) has proven effective in fine-tuning diffusion models for text-to-image generation (Black et al., 2023; Fan et al., 2024), enabling these models to leverage feedback and improve performance. Similarly, RL has been successfully applied to fine-tune autoregressive molecular generation models (Hastrup & Bhowmik, 2024) and 2D graph diffusion models (Liu et al., 2024). However, a key gap remains: effective methods for fine-tuning molecular generative diffusion models using RL are still lacking. Consequently, these models have yet to fully exploit their own generated data as feedback to enhance molecule stability and ensure alignment with force-field-stable structures.

162 **3 PRELIMINARIES**

164 This section introduces the foundational concepts of equivariant diffusion models and outlines the
 165 reinforcement learning formulation adopted in the DDPO framework.

167 **3.1 EQUIVARIANT DIFFUSION MODEL**

169 The Equivariant Diffusion Model (EDM) (Hoogeboom et al., 2022) generates 3D molecules while
 170 respecting $E(3)$ symmetries (translation, rotation, reflection) via an EGNN-based denoiser (Satorras
 171 et al., 2021). Given atom coordinates \mathbf{x} and features \mathbf{h} , EDM learns a joint denoising process over
 172 $\mathbf{z}_t = [\mathbf{x}_t, \mathbf{h}_t]$ with Gaussian forward noise:

$$173 \quad q(\mathbf{z}_t \mid \mathbf{x}, \mathbf{h}) = \mathcal{N}_{xh}(\mathbf{z}_t \mid \alpha_t[\mathbf{x}, \mathbf{h}], \sigma_t^2 \mathbf{I}), \quad (1)$$

175 and enforces equivariance

$$176 \quad p(\mathbf{y} \mid \mathbf{x}) = p(R\mathbf{y} \mid R\mathbf{x}) \quad \text{for any orthogonal } R. \quad (2)$$

178 An EGNN ϕ predicts noise at step t to $t-1$,

$$179 \quad \hat{\epsilon}_t^{(x)}, \hat{\epsilon}_t^{(h)} = \phi(z_t^{(x)}, [z_t^{(h)}, t/T]) - [z_t^{(x)}, 0], \quad (3)$$

181 and is trained by a weighted denoising objective (SNR weighting omitted for brevity),

$$183 \quad \mathcal{L} = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{I})} [\|\epsilon - \phi(\mathbf{z}_t, t)\|^2]. \quad (4)$$

185 Sampling starts from standard Gaussian noise and iteratively applies the reverse transition $p(\mathbf{z}_{t-1} \mid$
 186 $\mathbf{z}_t)$:

$$187 \quad \mathbf{z}_s = \frac{1}{\alpha_{t|s}} \mathbf{z}_t - \frac{\sigma_{t|s}^2}{\alpha_{t|s} \sigma_{t|s}} \phi(\mathbf{z}_t, t) + \sigma_{t \rightarrow s} \epsilon, \quad s = t-1, \quad (5)$$

190 until $t=0$, yielding final coordinates \mathbf{x} and features \mathbf{h} that define the molecule.

191 **3.2 DENOISING DIFFUSION POLICY OPTIMIZATION**

193 DDPO (Black et al., 2023) formulates the diffusion sampling process as a multi-step Markov Decision
 194 Process (MDP), enabling policy gradient methods to optimize user-defined reward functions over
 195 generated samples.

197 The MDP is defined as:

- 198 • **State:** $s_t = (c, t, x_t)$, where c is context, t the timestep, and x_t the latent at step t .
- 199 • **Action:** $a_t = x_{t-1}$, the output of the reverse diffusion step.
- 200 • **Policy:** $\pi(a_t | s_t) = p_\theta(x_{t-1} | x_t, c)$.
- 201 • **Reward:** $R(s_t, a_t) = r(x_0, c)$ if $t=0$, and 0 otherwise.

204 A trajectory spans denoising steps from $t=T$ to 0, yielding final sample x_0 . The training objective
 205 is to maximize the expected reward:

$$206 \quad \nabla_\theta J_{\text{DDPO}} = \mathbb{E} \left[\sum_{t=0}^T \nabla_\theta \log p_\theta(x_{t-1} | x_t, c) \cdot r(x_0, c) \right]$$

209 To enable multiple updates per trajectory, an importance sampling estimator is introduced:

$$211 \quad \nabla_\theta J_{\text{DDPO}} = \mathbb{E} \left[\sum_{t=0}^T \frac{p_\theta(x_{t-1} | x_t, c)}{p_{\theta_{\text{old}}}(x_{t-1} | x_t, c)} \nabla_\theta \log p_\theta(x_{t-1} | x_t, c) \cdot r(x_0, c) \right]$$

214 For stability, DDPO further adopts a clipped surrogate objective in the style of PPO, constraining
 215 policy updates across iterations.

216 **Algorithm 1** Reinforcement Learning with Physical Feedback (RLPF)

217 **Input:** pretrained diffusion model $p_{\theta_{\text{pre}}}$, diffusion model p_{θ} , the old diffusion model $p_{\theta_{\text{old}}}$, the
 218 number of sampling trajectories N , the reward model \mathcal{M} , the time-steps T , the Advantage A , the
 219 importance sampling ratio I_t^k
 220 Initialize $p_{\theta} = p_{\theta_{\text{old}}} = p_{\theta_{\text{pre}}}$
 221 **while** θ not converged **do**
 222 Collect N samples from diffusion model p_{θ} : $\mathcal{D} = \{(x, h, z_0, \dots, z_t) \sim$
 223 $\pi_{\theta}(x, h|z_0)\pi_{\theta}(z_0|z_1)\dots\pi_{\theta}(z_{T-1}|z_T)p(z_T)\}$
 224 Compute reward with reward model \mathcal{M} : $r = \mathcal{M}(x, h)$
 225 Compute the gradient $E_t \left[\sum_{k=0}^K \min \left(I_t^k(\theta) \hat{A}_t^k, \text{clip}(I_t^k(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t^k \right) \right]$ for each time-
 226 step t and each trajectory k , update θ
 227 $p_{\theta_{\text{old}}} = p_{\theta}$
 228 **end while**
 229 **Output:** Fine-tuned diffusion model p_{θ}

232 **4 RLPF: REINFORCEMENT LEARNING WITH PHYSICAL FEEDBACK**

233
 234 Although RLPF builds upon the general DDPO (Black et al., 2023) framework originally developed
 235 for vision tasks, its core contribution lies in the nontrivial adaptation of this paradigm to 3D molecular
 236 generation. Specifically, RLPF casts the denoising diffusion trajectory as a Markov Decision Process
 237 (MDP) over spatial molecular structures, and incorporates domain-specific reward functions based
 238 on physically grounded force-field evaluations, such as xTB or DFT. This adaptation is technically
 239 challenging due to the geometric equivariance, size variability, and chemical validity constraints
 240 unique to molecular systems—factors not present in typical visual domains. To the best of our
 241 knowledge, RLPF is the first approach to integrate reinforcement learning with diffusion models
 242 using physics-informed rewards for stable molecule generation.

243
 244 **4.1 PROBLEM STATEMENT**

245 The pretrained diffusion model generates a sample distribution p_{θ} through a fixed sampling process
 246 for molecular generation. The goal of the equivariant denoising diffusion reinforcement learning
 247 framework is to optimize the reward function r , which is defined over the generated molecules.

248 The objective function for this optimization is defined as:
 249

$$250 \quad \mathcal{J}_{\text{RLPF}}(\theta) = \mathbb{E}_{(x,h) \sim p_{\theta}} [r(x, h)], \quad (6)$$

251 where atom coordinates x and atom features h are sampled from the final latent state z_0 , i.e., the
 252 molecule generated by the diffusion process.
 253

254 **4.2 DENOISING AS A MARKOV DECISION PROCESS**

255 To optimize $\mathcal{J}_{\text{RLPF}}$ using RL, the denoising process is formulated as a sequence of multi-step MDPs.
 256 The elements of this MDP are defined as follows:
 257

$$258 \quad \begin{aligned} s_t &\triangleq (z_t, t), \\ 259 \quad \pi(a_t|s_t) &\triangleq p_{\theta}(z_{t-1}|z_t), \\ 260 \quad R(s_t, a_t) &\triangleq \begin{cases} r(x, h), & \text{if } t = 0, \\ 0, & \text{otherwise,} \end{cases} \\ 261 \quad P(s_{t+1}|s_t, a_t) &\triangleq (\delta_{t-1}, \delta_{z_{t-1}}). \end{aligned} \quad (7)$$

262 The sequence consists of T time steps, after which the process transitions to a termination state. The
 263 cumulative reward of each trajectory is equal to $r(x, h)$. Therefore, maximizing $\mathcal{J}_{\text{RLPF}}$ is equivalent
 264 to maximizing \mathcal{J}_{RL} in this MDP.
 265

270 4.3 POLICY GRADIENT ESTIMATION
271272 The RLPF framework aims to optimize the expected reward over the denoising trajectories:
273

274
$$\mathcal{J}_{\text{RLPF}}(\theta) = \mathbb{E}_{(x,h) \sim p_\theta} [r(x, h)], \quad (8)$$

275 However, directly optimizing this objective is challenging due to the non-differentiability of reward
276 functions and the sequential nature of the denoising steps. Instead, we adopt a policy optimization
277 approach and follow the DDPO (Black et al., 2023) formulation, which views the denoising trajectory
278 as a latent Markov Decision Process and applies Proximal Policy Optimization (PPO) for stable
279 fine-tuning.280 In particular, we use a PPO-style **clipped surrogate objective**, denoted as $\mathcal{L}_{\text{RLPF}}^{\text{CLIP}}(\theta)$, to guide the
281 optimization. For each time step t and trajectory k , we define the importance sampling ratio:
282

283
$$I_t^k(\theta) := \frac{p_\theta(z_{t-1}^k | z_t^k)}{p_{\theta_{\text{old}}}(z_{t-1}^k | z_t^k)}, \quad (9)$$

284

285 where $p_{\theta_{\text{old}}}$ denotes the diffusion model before the current update. The advantage estimate \hat{A}_t^k is
286 computed via standardization of the scalar reward:
287

288
$$\hat{A}_t^k := \frac{r^k(x^k, h^k) - \mu}{\delta}, \quad (10)$$

289

290 where μ and δ are the running mean and standard deviation of recent rewards across trajectories.
291292 The PPO-style clipped surrogate objective is defined as:
293

294
$$\mathcal{L}_{\text{RLPF}}^{\text{CLIP}}(\theta) := \mathbb{E}_t \left[\sum_{k=0}^K \min \left(I_t^k(\theta) \hat{A}_t^k, \text{clip}(I_t^k(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t^k \right) \right], \quad (11)$$

295

296 which ensures stable updates by penalizing large deviations from the current policy.
297298 Although $\mathcal{L}_{\text{RLPF}}^{\text{CLIP}}(\theta)$ is not the true gradient of $\mathcal{J}_{\text{RLPF}}(\theta)$, it serves as a stable and effective proxy
299 objective for gradient-based optimization. This formulation allows RLPF to improve molecular
300 generation performance while avoiding issues such as reward overfitting and policy collapse.301 4.4 REWARD FUNCTION FOR MOLECULAR GENERATION
302303 To guide the diffusion model toward physically meaningful outputs, we use a reward function based
304 on molecular force deviation. This metric evaluates how well the generated molecular conformations
305 align with equilibrium configurations under a given force field.
306307 We compute the Root Mean Square Deviation (RMSD) of atomic forces using two methods: quantum
308 mechanical calculations at the B3LYP/6-31G(2df,p) level of theory and the semi-empirical GFN2-
309 xTB force field (Bannwarth et al., 2019). The former offers high accuracy but is computationally
310 expensive, while the latter enables efficient force estimation for large-scale generation. This reward
311 reflects how close the generated molecule is to a physically relaxed structure. Formally, it is defined
312 as:
313

314
$$r_{\text{force}} = \sqrt{\frac{\sum_{i=1}^N (f_{i_x}^2 + f_{i_y}^2 + f_{i_z}^2)}{3N}}, \quad (12)$$

315 where $f_{i_x}, f_{i_y}, f_{i_z}$ denote the x , y , and z components of the predicted force on atom i , and N is the
316 total number of atoms in the molecule.317 This physically grounded reward encourages the model to generate conformations that are not only
318 chemically valid but also energetically favorable.
319320 4.5 SIZE-INVARIANT LOG-LIKELIHOOD ESTIMATION
321322 To accommodate variable-size molecular graphs and ensure consistent policy gradient estimation,
323 we modify the computation of the reverse transition log-probability at each denoising step using a
masking mechanism.

324 Specifically, under the assumption that the reverse transition $p(z_{t-1}|z_t)$ follows a Gaussian distribution,
 325 the log-probability $\log p(z_s | z_t)$ is defined as:
 326

$$327 \log p(z_s | z_t) = -\frac{1}{2} \cdot \sum_i M_i \cdot d^{-1} \sum_j M_i \cdot \left(\frac{z_{i,j}^{(s)} - \mu_{ij}}{\sigma_{ij}} \right)^2 \quad (13)$$

330 where:

- 331 • $z_{i,j}^{(s)}$ denotes the j -th feature of the i -th atom in the denoised latent z_s ,
- 332 • μ_{ij} and σ_{ij} are the predicted mean and standard deviation from z_t ,
- 333 • d is the number of features per atom (e.g., 3D coordinates and atom-type encoding),
- 334 • $M_i \in \{0, 1\}$ is a binary mask indicating valid atoms in the molecule.

337 This masked average ensures that molecules with different numbers of atoms contribute equally
 338 and meaningfully to the policy objective, regardless of zero-padding or batch structure. Such size-
 339 invariant log-likelihood estimation is critical for stabilizing reinforcement learning in molecular
 340 settings, and is absent in prior DDPO implementations on vision or language tasks. We omit the
 341 Gaussian normalization constant $\log(2\pi\sigma^2)$, which cancels out when computing the importance-
 342 weighted policy ratio $I_t^k(\theta)$ (see Equation equation 9) during optimization.

344 5 EXPERIMENTS

346 In this section, we evaluate our proposed reinforcement learning framework RLPF on two standard
 347 molecular datasets: QM9 and GEOM-drug. We compare RLPF-enhanced models with a range of
 348 state-of-the-art generative baselines, including EDM (Hoogeboom et al., 2022), EDM-BRIDGE (Wu
 349 et al., 2022), GEOLDM (Xu et al., 2023), EDN (Cornet et al., 2024), GeoBNF (Song et al., 2024), and
 350 UniGEM (Feng et al., 2024). Our evaluations focus on key molecular quality metrics, such as atom
 351 stability, molecule stability, chemical validity, uniqueness, and novelty. We show that EDM-RLPF
 352 substantially improves generation performance across these dimensions. We also demonstrate that
 353 RLPF generalizes across model backbones, such as GeoLDM, by fine-tuning in latent space while
 354 preserving decoding fidelity. This highlights the flexibility of RLPF as a general reinforcement-
 355 based fine-tuning framework. Additional details—including training configurations, reward design,
 356 sampling strategies, ablation studies, and property-conditioned generation experiments—are provided
 357 in Appendix D.

358
 359 Table 1: Evaluation metrics for 3D molecular generation on QM9: Atom stability (A), molecule
 360 stability (M), validity (V), and Validity \times Uniqueness (V \times U). **EDM-RLPF** fine-tunes the EDM model
 361 using DFT-calculated forces. Bold indicates best performance; underline indicates second-best.

363 Model	A [%] \uparrow	M [%] \uparrow	V [%] \uparrow	V \times U [%] \uparrow
364 EDM (Hoogeboom et al., 2022)	98.70	82.00	91.90	90.7
365 EDM-BRIDGE (Wu et al., 2022)	98.80	84.60	92.00	90.7
366 GEOLDM (Xu et al., 2023)	98.90	89.40	93.80	92.7
367 END (Cornet et al., 2024)	98.90	89.10	94.80	92.6
368 UniGEM (Feng et al., 2024)	99.0	89.8	95.0	93.2
369 GeoBNF (Song et al., 2024)	99.08	<u>90.87</u>	<u>95.31</u>	92.96
370 EDM-RLPF (ours)	99.08 \pm 0.05	93.37 \pm 0.25	98.22 \pm 0.15	92.87 \pm 0.07
371 Data (Ground Truth)	99.00	95.20	97.70	97.70

375 5.1 MOLECULE GENERATION ON QM9

376 **Dataset** The QM9 dataset (Ramakrishnan et al., 2014) contains approximately 130k small organic
 377 molecules, with up to nine heavy atoms and up to 29 atoms including hydrogens. Following Anderson

378 **et al. (2019)**, we divide the dataset into training, validation, and test sets with 100k, 13k, and 18k
 379 molecules, respectively.

380 **Experimental setup** Following the workflow outlined in Section F, we first trained an EDM model
 381 on the QM9 dataset to generate molecules with 3D coordinates and atom types. Our training
 382 configuration aligns with the original EDM paper, and full implementation details are provided in
 383 Appendix E.1.1. During the RLPF fine-tuning phase, sampling is conducted using the same denoising
 384 diffusion process as in the original EDM model, requiring no additional dataset beyond the pretraining
 385 data. The number of denoising time steps T is set to 1000, with $K = 512$ sampled trajectories per
 386 epoch. We fine-tune the EDM model using RLPF with force deviation computed via DFT at the
 387 B3LYP/6-31G(2df,p) level. Notably, reward computation is performed entirely on CPU without GPU
 388 acceleration. To improve parallel efficiency, we adopt batch sampling and pipeline-parallel reward
 389 evaluation. Detailed hyperparameters and training setup are provided in Appendix E.2.

390 After fine-tuning, we evaluate molecular quality using four key metrics: atom stability (proportion
 391 of atoms with valid valency), molecule stability (proportion of fully stable molecules), validity
 392 (RDKit-filtered chemical validity), and Validity \times Uniqueness. For each evaluation, we sample 10,000
 393 molecules and report the mean over three independent runs.

394 **Results** As shown in Table 1, the EDM fine-tuned with RLPF achieves consistent improvements
 395 in all evaluation metrics. The molecular stability increases from 82.0% to 93.37%, and the atom
 396 stability reaches 99.08%, matching or exceeding prior state-of-the-art models. The validity increases
 397 to 98.22%, and the combined Validity \times Uniqueness score of 92.87% suggests improved chemical
 398 quality while preserving the diversity of the sample. These results indicate that RLPF contributes to
 399 enhancing the quality of molecular generation. Additionally, EDM-RLPF achieves consistently high
 400 stability across different sampling steps; see Appendix D.3 for details.

401
 402 Table 2: Evaluation metrics for 3D molecular generation on GEOM-drug. Atom stability and Validity.
 403 EDM-RLPF is fine-tuned using force deviation from GFN2-xTB. Bold indicates best performance,
 404 underlined indicates second-best.

406 Model	407 Atom Stability (%) \uparrow	408 Validity (%) \uparrow
409 EDM (Hoogeboom et al., 2022)	410 81.3	411 91.9
412 EDM-BRIDGE (Wu et al., 2022)	413 82.4	414 91.9
415 GEOLDM (Xu et al., 2023)	416 84.4	417 99.3
418 END (Cornet et al., 2024)	419 <u>87.0</u>	420 92.9
421 UniGEM (Feng et al., 2024)	422 85.1	423 98.4
424 GeoBFN (Song et al., 2024)	425 85.6	426 92.08
427 EDM-RLPF (ours)	428 87.52 ± 0.001	429 99.20 ± 0.06
430 Data (Ground Truth)	431 –	432 86.5

433 5.2 MOLECULE GENERATION ON GEOM-DRUG

434 **Dataset** Compared to the small molecules in QM9, the GEOM-drug (Axelrod & Gomez-Bombarelli,
 435 2022) dataset consists of more complex molecules with approximately 430,000 conformers. The
 436 largest molecule in this dataset contains 181 atoms, with an average of 44.4 atoms per molecule. This
 437 makes GEOM-drug a more challenging benchmark for evaluating 3D molecular generation.

438 **Experimental setup** For this experiment, we fine-tuned the model using the publicly available pre-
 439 trained weights of EDM (Hoogeboom et al., 2022). During sampling, we collected 1,024 molecules
 440 in total, sampled in batches of 64. Given the larger size and higher complexity of the molecules in the
 441 GEOM-drug, we used GFN2-xTB to calculate molecular forces, providing an efficient approximation
 442 of the potential energy surface for larger molecular structures. We retained atomic stability and
 443 validity as primary evaluation metrics, consistent with previous reports (e.g., EDM and EDN).

444 **Results** The performance of our method on the GEOM-drug dataset is summarized in Table 2.
 445 Compared to the base EDM model, EDM-RLPF improves atom stability from 81.3% to 87.53% and
 446 raises validity from 91.9% to 99.20%. While EDM-RLPF achieves the highest atom stability overall,

432 its validity is slightly lower than GEOLDM, which leads the category. EDM-RLPF improves both
 433 molecule stability and validity, suggesting enhanced generation quality for larger molecules.
 434

436 5.3 GENERALIZATION TO OTHER BACKBONES

438 To evaluate the generalizability of our reinforcement learning framework, we apply **RLPF** to two
 439 state-of-the-art generative backbones beyond EDM: **GeoLDM** (Xu et al., 2023) and **UniGEM** (Feng
 440 et al., 2024). GeoLDM is a latent diffusion model designed for 3D molecular geometry generation.
 441 It introduces an encoder-decoder architecture where a point-structured latent space is constructed
 442 to preserve critical roto-translational equivariance properties. Diffusion is performed in this latent
 443 space using both invariant scalar and equivariant tensor features. Compared to coordinate-space
 444 diffusion, this formulation improves controllability and generation efficiency. UniGEM, on the other
 445 hand, unifies molecular generation and property prediction in a diffusion-based framework, using
 446 a two-phase generative process to balance both tasks effectively. We conduct molecule generation
 447 experiments on the **QM9** dataset using both GeoLDM and UniGEM. Following the same procedure
 448 as with EDM-RLPF, we use GFN2-xTB force deviation as the reward signal for fine-tuning. To
 449 maintain the integrity of pretrained backbones, we freeze non-diffusion modules (e.g., decoders)
 450 during RLPF fine-tuning and update only the diffusion-related parameters.

451 As shown in Table 3, RLPF consistently improves atom stability, molecule stability, and validity
 452 across all backbones. These results demonstrate that RLPF is a versatile reinforcement learning
 453 framework that can be flexibly integrated into diverse diffusion architectures, enabling physically
 454 grounded fine-tuning for higher-quality molecular generation.

456 Table 3: Evaluation metrics for 3D molecular generation on QM9 using EDM, GeoLDM, and
 457 UniGEM backbones. Metrics include atom stability (A), molecule stability (M), validity (V), and
 458 Validity \times Uniqueness (V \times U). Bold indicates best performance; underline indicates second-best.

459 Model	460 A [%] \uparrow	461 M [%] \uparrow	462 V [%] \uparrow	463 V \times U [%] \uparrow
464 EDM (Hoogeboom et al., 2022)	465 98.70	466 82.00	467 91.90	468 90.70
469 EDM-RLPF (ours)	470 99.37 ± 0.01	471 94.25 ± 0.13	472 97.02 ± 0.08	473 88.59 ± 0.04
474 GeoLDM (Xu et al., 2023)	475 98.90	476 89.40	477 93.80	478 92.70
479 GeoLDM-RLPF (ours)	480 99.43 ± 0.02	481 95.34 ± 0.15	482 <u>96.28</u> ± 0.11	483 90.66 ± 0.19
484 UniGEM (Feng et al., 2024)	485 99.0	486 89.8	487 95.0	488 93.2
489 UniGEM-RLPF (ours)	490 99.17 ± 0.01	491 91.28 ± 0.14	492 95.57 ± 0.35	493 97.8 ± 0.10

494 **Discussion on stability–diversity trade-off.** While RLPF consistently improves stability and
 495 validity across backbones, we also observe a trade-off: the product metric Validity \times Uniqueness
 496 (V \times U) decreases for EDM and GeoLDM, but increases for UniGEM. We attribute this to how
 497 RLPF interacts with the backbone architecture. In EDM and GeoLDM, diffusion jointly operates
 498 on coordinates and atom types, so physically grounded rewards encourage the model to focus on
 499 narrow high-reward regions, boosting stability but reducing structural diversity. By contrast, UniGEM
 500 applies diffusion only on coordinates while predicting atom types once with a frozen head; thus RLPF
 501 fine-tunes only the coordinate denoiser, preserving atom-type diversity and yielding higher V \times U.

497 6 CONCLUSION

498 We propose **Reinforcement Learning with Physical Feedback (RLPF)** to fine-tune equivariant
 499 diffusion models for 3D molecular generation. By formulating the denoising process as a Markov
 500 decision process and optimizing force-field-based rewards, RLPF enhances the quality of generated
 501 molecules. Furthermore, RLPF is compatible with various generative backbones, demonstrating
 502 strong extensibility across different molecular diffusion architectures.

486 REFERENCES
487

488 Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
489 networks. *Advances in neural information processing systems*, 32, 2019.

490 Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
491 for property prediction and molecular generation. *Scientific Data*, 9(1):185, 2022.

492

493 Christoph Bannwarth, Sebastian Ehlert, and Stefan Grimme. Gfn2-xtb—an accurate and broadly
494 parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics
495 and density-dependent dispersion contributions. *Journal of chemical theory and computation*, 15
496 (3):1652–1671, 2019.

497

498 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
499 with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023.

500

501 Michal Brylinski and Jeffrey Skolnick. Q-dock: Low-resolution flexible ligand docking with pocket-
502 specific threading restraints. *Journal of computational chemistry*, 29(10):1574–1588, 2008.

503

504 François Cornet, Grigory Bartosh, Mikkel N Schmidt, and Christian A Naesseth. Equivariant neural
505 diffusion for molecule generation. In *38th Conference on Neural Information Processing Systems*,
2024.

506

507 Ameya Daigavane, Song Kim, Mario Geiger, and Tess Smidt. Symphony: Symmetry-equivariant
508 point-centered spherical harmonics for molecule generation. *arXiv preprint arXiv:2311.16199*,
2023.

509

510 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
511 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
512 tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*, 36,
2024.

513

514 Shikun Feng, Yuyan Ni, Yan Lu, Zhi-Ming Ma, Wei-Ying Ma, and Yanyan Lan. Unigem: A unified
515 approach to generation and property prediction for molecules. *arXiv preprint arXiv:2410.10516*,
2024.

516

517 Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E (n)
518 equivariant normalizing flows. *Advances in Neural Information Processing Systems*, 34:4181–4192,
2021.

519

520 Niklas Gebauer, Michael Gastegger, and Kristof Schütt. Symmetry-adapted generation of 3d point
521 sets for the targeted discovery of molecules. *Advances in neural information processing systems*,
32, 2019.

522

523 Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
524 Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
525 Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
526 representation of molecules. *ACS central science*, 4(2):268–276, 2018.

527

528 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
529 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the
530 ACM*, 63(11):139–144, 2020.

531

532 Isabella A Guedes, Camila S de Magalhães, and Laurent E Dardenne. Receptor–ligand molecular
533 docking. *Biophysical reviews*, 6(1):75–87, 2014.

534

535 Bjarke Hastrup and François Cornet Tejs Vegge Arghya Bhowmik. A multi-composition reinforce-
536 ment learning framework for isomer discovery in 3d. *Advances in Neural Information Processing
537 Systems*, 2024.

538

539 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
540 neural information processing systems*, 33:6840–6851, 2020.

540 Emiel Hoogeboom, Víctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
 541 for molecule generation in 3D. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
 542 Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference
 543 on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp.
 544 8867–8887. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/hooogeboom22a.html>.

545

546 Ilia Igashov, Hannes Stärk, Clément Vignac, Arne Schneuing, Victor Garcia Satorras, Pascal Frossard,
 547 Max Welling, Michael Bronstein, and Bruno Correia. Equivariant 3d-conditional diffusion model
 548 for molecular linker design. *Nature Machine Intelligence*, pp. 1–11, 2024.

549

550 Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional
 551 diffusion for molecular conformer generation. *Advances in Neural Information Processing Systems*,
 552 35:24240–24253, 2022.

553

554 Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. *Foundations
 555 and Trends® in Machine Learning*, 12(4):307–392, 2019.

556

557 Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
 558 graphs. *arXiv preprint arXiv:2206.11990*, 2022.

559

560 Yijing Liu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Wei Chen. Graph diffusion policy
 561 optimization. *arXiv preprint arXiv:2402.16302*, 2024.

562

563 Martin L Puterman. Markov decision processes. *Handbooks in operations research and management
 564 science*, 2:331–434, 1990.

565

566 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
 567 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014.

568

569 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
 570 In *International conference on machine learning*, pp. 9323–9332. PMLR, 2021.

571

572 Yuxuan Song, Jingjing Gong, Yanru Qu, Hao Zhou, Mingyue Zheng, Jingjing Liu, and Wei-Ying
 573 Ma. Unified generative modeling of 3d molecules via bayesian flow networks. *arXiv preprint
 574 arXiv:2403.15441*, 2024.

575

576 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 577 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances in
 578 Neural Information Processing Systems*, 33:3008–3021, 2020.

579

580 Alexey V Sulimov, Dmitry A Zheltkov, Igor V Oferkin, Danil C Kutov, Ekaterina V Katkova,
 581 Eugene E Tyrtysnikov, and Vladimir B Sulimov. Evaluation of the novel algorithm of flexible
 582 ligand docking with moveable target-protein atoms. *Computational and Structural Biotechnology
 583 Journal*, 15:275–285, 2017.

584

585 Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
 586 Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds.
 587 *arXiv preprint arXiv:1802.08219*, 2018.

588

589 Clément Vignac and Pascal Frossard. Top-n: Equivariant set and graph generation without exchange-
 590 ability. In *ICLR*, 2022. URL https://openreview.net/forum?id=-Gk_IPJWvk.

591

592 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 593 learning. *Machine learning*, 8:229–256, 1992.

594

595 Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
 596 generation with informative prior bridges. *Advances in Neural Information Processing Systems*,
 597 35:36533–36545, 2022.

598

599 Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric
 600 diffusion model for molecular conformation generation. *arXiv preprint arXiv:2203.02923*, 2022.

594 Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
595 diffusion models for 3d molecule generation. In *International Conference on Machine Learning*,
596 pp. 38592–38610. PMLR, 2023.

597 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
598 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv*
599 *preprint arXiv:2303.18223*, 2023.

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A ADDITIONAL STATEMENTS**
649650 LLMs were employed during the writing of this paper to polish the text and correct grammatical
651 errors. The prompt used was: “Please detect and correct any grammatical errors in the following text,
652 and polish it to enhance its academic expression. <text>”.
653654 **B ETHICS STATEMENT**
655656 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimen-
657 tation was involved. All datasets used were sourced in compliance with relevant usage guidelines,
658 ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory out-
659 comes in our research process. No personally identifiable information was used, and no experiments
660 were conducted that could raise privacy or security concerns. We are committed to maintaining
661 transparency and integrity throughout the research process.
662663 **C REPRODUCIBILITY STATEMENT**
664665 We have made every effort to ensure that the results presented in this paper are reproducible. All code
666 and datasets have been made publicly available in an anonymous repository to facilitate replication
667 and verification. The experimental setup, including training steps, model configurations, and hardware
668 details, is described in detail in the paper. Our work is reproducible, and the code is openly available
669 at: <https://anonymous.4open.science/r/RLPF-55FC/>.
670671 **D EXTENDED EXPERIMENTS AND ANALYSIS**
672673 **D.1 CONDITIONAL MOLECULE GENERATION ON QM9**
674675 In this section, we investigate whether the RLPF algorithm improves molecular stability during
676 conditional generation. We evaluated three molecular properties on the QM9 dataset: polarizability
677 (α), HOMO-LUMO gap, and LUMO. For dataset partitioning, we follow the same strategy as EDM,
678 splitting QM9 into two subsets, \mathcal{D}_a and \mathcal{D}_b , each containing 50,000 samples. The EDM model is first
679 trained on \mathcal{D}_b and then fine-tuned using RLPF with the same configuration as described in Section 5.1,
680 where force deviation computed via GFN2-xTB serves as the primary reward signal.
681682 To guide conditional generation, we incorporate an **augmented reward** that balances physical
683 stability with alignment to the target property. Specifically, the reward is defined over molecular
684 coordinates x , atom types h , and target property c as:
685

686
$$r(x, h, c) = -\lambda \cdot \text{RMSD}_{\text{xTB}}(x, h) - \eta \cdot |\omega(x, h) - c|, \quad (14)$$

687

688 where $\omega(x, h)$ is a pretrained property predictor that estimates the property value of the generated
689 molecule. The term $\text{RMSD}_{\text{xTB}}(x, h)$ reflects the deviation from equilibrium as computed using GFN2-
690 xTB, and the term $|\omega(x, h) - c|$ encourages alignment with the target context c . Hyperparameters λ
691 and η control the trade-off between force-based stability and property accuracy.
692693 This composite reward encourages the model to generate molecules that are both physically stable
694 and property-aligned, leading to improved conditional generation performance.
695696 **Results** As shown in Table 4, EDM-RLPF achieves the lowest mean absolute error polarizability (α)
697 gap prediction. Specifically, it improves α to 2.29 Bohr³, outperforming all baselines, including
698 GeoBFN. For the HOMO-LUMO gap ($\Delta\epsilon$) and LUMO energy (ϵ_{LUMO}), EDM-RLPF also yields
699 clear improvements over EDM, reducing the errors from 655 to 622 meV and from 584 to 521 meV,
700 respectively. These results demonstrate that reinforcement learning with physical feedback enhances
701 property controllability on top of EDM.
702703 **Ablation study on reward weighting.** To investigate the impact of balancing force stability and
704 property accuracy, we conduct an ablation study on the weighting factor η in the augmented reward
705

702
 703 Table 4: Mean Absolute Error for molecular property prediction. A lower number indicates a better
 704 controllable generation result. Results are predicted by a pretrained EGNN classifier ω on molecular
 705 samples extracted from individual methods. Our method (EDM-RLPF) is fine-tuned using force
 706 deviation feedback from the GFN2-xTB force field. The results of QM9 and Random can be viewed
 707 as lower and upper bounds of MAE on all properties.

Property Units	α Bohr^3	$\Delta\epsilon$ meV	ϵ_{LUMO} meV
QM9	0.10	64	36
Random	9.01	1470	1457
N_{atoms}	3.86	866	813
EDM (Hoogeboom et al., 2022)	2.76	655	584
GeoLDM (Xu et al., 2023)	2.37	587	522
GeoBNF (Song et al., 2024)	2.34	577	516
EDM-RLPF	2.29 \pm 0.03	622 \pm 0.8	521 \pm 0.35

720 function defined in Eq. (1), keeping $\lambda = 1.0$ fixed. We evaluate conditional generation on the QM9
 721 dataset for the polarizability (α) property using the same setup as in Section D.1.

724 Table 5: Ablation study on reward weighting for conditional generation of polarizability (α). Lower
 725 MAE (Mean Absolute Error) indicates better property alignment. Each result is averaged over 3 runs
 726 using a pretrained EGNN predictor ω .

η	MAE on α (Bohr^3) \downarrow
1.0	2.31 \pm 0.03
0.5	2.29 \pm 0.02
0.1	2.79 \pm 0.04

733 We observe that an intermediate value ($\eta = 0.5$) yields the best performance, suggesting that moderate
 734 emphasis on property alignment helps optimize controllable generation without sacrificing force
 735 stability. Too little weight ($\eta = 0.1$) leads to under-conditioning, while overly strong alignment
 736 ($\eta = 1.0$) may interfere with physical consistency.

D.2 FAIRNESS AGAINST CONTINUED TRAINING

741 To evaluate whether the performance gains achieved by **RLPF** stem from reinforcement learning
 742 rather than from continued training or increased data exposure, we conducted a control experiment
 743 on the **QM9 dataset under molecular generation**.

744 Specifically, we generated **51,200** molecules from the pretrained EDM model and retained only
 745 those that passed chemical validity checks (e.g., valency and structural correctness). This number
 746 matches the total number of samples generated during the RLPF fine-tuning phase (100 epochs \times 512
 747 trajectories per epoch). The accepted molecules were then used as additional training data for further
 748 supervised fine-tuning of the EDM model. By keeping the data volume consistent, this control setup
 749 allows for a fair comparison, isolating the effect of reinforcement learning from that of simple data
 750 augmentation.

751 **Results:** This experiment demonstrates that while continued training with additional valid data
 752 improves diversity-related metrics (such as uniqueness and novelty), it does not yield comparable
 753 improvements in structural or force-based stability. The RLPF approach, in contrast, directly optimizes
 754 for physically meaningful rewards and produces molecules with significantly better equilibrium
 755 stability. These findings underscore the value of reward-guided fine-tuning in RLPF over traditional
 data-driven augmentation in the QM9 setting.

756
 757 Table 6: Comparison of EDM-RLPF with supervised fine-tuning using rejection-sampled molecules
 758 on QM9. Evaluation metrics include atom stability (A), molecule stability (M), validity (V), unique-
 759 ness (U), and novelty (N). Bold indicates best performance.

Model	A [%] \uparrow	M [%] \uparrow	V [%] \uparrow	U [%] \uparrow	N [%] \uparrow
EDM (Hoogeboom et al., 2022)	98.70	82.00	91.90	90.70	65.70
EDM-Continue	98.99 ± 0.03	89.47 ± 0.21	93.20 ± 0.52	99.36 ± 0.05	81.45 ± 0.46
EDM-RLPF	99.08 ± 0.05	93.37 ± 0.25	98.22 ± 0.15	92.87 ± 0.07	58.57 ± 0.24

766
 767
 768 Table 7: Effect of denoising steps on molecule generation performance (QM9). Evaluation metrics
 769 include molecule stability (M), atom stability (A), validity (V), validity \times uniqueness (V \times U), and
 770 novelty (N). For EDM, results at 100/250/500 steps use official checkpoints. Best and second-best
 771 results per step are marked in **bold** and underlined, respectively.

Model	Steps	M [%] \uparrow	A [%] \uparrow	V [%] \uparrow	V \times U [%] \uparrow	N [%] \uparrow
EDM	100	78.01 ± 0.27	98.00 ± 0.04	90.15 ± 0.17	98.76 ± 0.12	68.03 ± 0.26
EDM	250	80.07 ± 0.10	98.23 ± 0.07	90.76 ± 0.10	98.83 ± 0.06	66.47 ± 0.43
EDM	500	80.78 ± 0.17	98.26 ± 0.02	91.84 ± 0.07	98.73 ± 0.11	66.67 ± 0.17
EDM (Hoogeboom et al., 2022)	1000	82.00	98.70	91.90	90.70	65.70
END (Cornet et al., 2024)	100	87.40	98.80	94.10	92.30	–
END (Cornet et al., 2024)	250	88.80	98.90	94.70	92.60	–
END (Cornet et al., 2024)	500	88.80	98.90	94.80	92.80	–
END (Cornet et al., 2024)	1000	89.10	98.90	94.80	92.60	–
EDM-RLPF (ours)	100	91.14 ± 0.07	98.91 ± 0.07	97.81 ± 0.25	92.84 ± 0.34	60.92 ± 0.60
EDM-RLPF (ours)	250	92.86 ± 0.24	99.05 ± 0.08	98.20 ± 0.34	92.62 ± 0.39	58.75 ± 0.49
EDM-RLPF (ours)	500	<u>93.06 ± 0.26</u>	<u>99.01 ± 0.02</u>	<u>98.30 ± 0.15</u>	<u>92.41 ± 0.09</u>	<u>58.83 ± 0.15</u>
EDM-RLPF (ours)	1000	93.37 ± 0.25	99.08 ± 0.05	98.22 ± 0.15	<u>92.87 ± 0.07</u>	<u>58.57 ± 0.24</u>

785 D.3 IMPACT OF SAMPLING STEPS ON GENERATION QUALITY

787 To investigate how the number of denoising steps influences molecular generation quality, we con-
 788 ducted an ablation study on the **QM9 dataset under the molecule generation setting**. We compare
 789 our fine-tuned **EDM-RLPF** model against two baselines: the original **EDM** and **END** (Cornet et al.,
 790 2024).

792 For EDM, we evaluated the model at 100, 250, and 500 denoising steps using the official pretrained
 793 checkpoints released by the authors. The 1000-step EDM result, as well as all reported END
 794 results across different step counts, are extracted directly from their original publications to ensure
 795 consistency. For EDM-RLPF, we perform fine-tuning and evaluation using our implementation under
 796 the same denoising configurations.

797 All models are evaluated using five key metrics: molecule stability, atom stability, chemical validity
 798 (as computed by RDKit), uniqueness (percentage of unique valid molecules), and novelty (percentage
 799 of valid molecules not seen during training). Results are reported as averages over three independent
 800 runs where applicable.

801 Table 7 summarizes the performance comparison. We observe that increasing the number of sampling
 802 steps generally leads to improved molecular stability and validity across all models. Notably,
 803 **EDM-RLPF consistently achieves the highest molecule and atom stability at every step size**,
 804 while maintaining competitive uniqueness and novelty, demonstrating its effectiveness in improving
 805 physical plausibility under varying sampling regimes.

806 D.4 REJECTION SAMPLING EFFICIENCY WITH RLPF FINE-TUNING

807 To assess the efficiency gains brought by RLPF, we conducted a rejection sampling experiment under
 808 the **QM9 molecule generation setting**. Specifically, we compare the original EDM model with the

810 EDM model fine-tuned using RLPF. Both models use rejection sampling at inference time, allowing
 811 us to isolate the impact of RLPF fine-tuning on sample efficiency.
 812

813 **Experiment setup:**

814

- 815 • **Goal:** Generate 10,000 stable molecules from either the original EDM or the RLPF-finetuned
 816 EDM model.
- 817 • **Stability Criterion:** A molecule is considered stable if the RMSD of its atomic forces
 818 (computed via GFN2-xTB) is less than 0.2 eV/Å.
- 819 • **Sampling Method:** Rejection sampling is applied to filter out unstable molecules. We
 820 measure how many total molecules need to be generated—and how long it takes—to collect
 821 10,000 stable ones.

822

823

824 Table 8: Rejection sampling efficiency under molecule generation on QM9. RLPF significantly
 825 reduces the number of samples and inference time needed to collect 10,000 stable molecules. Results
 826 are averaged over three runs with different random seeds.

827

828 Model	829 Time (s) ↓	830 Molecules Sampled ↓
830 EDM (w/o RLPF)	831 1418.45 ± 24.41	$36,400 \pm 346.41$
831 EDM-RLPF (fine-tuned)	791.91 ± 8.22	$19,400 \pm 163.30$

832

833 **Results** Despite using the same rejection sampling strategy during inference, the RLPF-finetuned
 834 model yields a much higher proportion of stable molecules. This leads to a 44% reduction in sampling
 835 time and nearly half the number of samples required, demonstrating the effectiveness of RLPF in
 836 enhancing generation efficiency.

837

838 **D.5 ABLATION STUDY ON REWARD FUNCTIONS**

839 To better understand how the choice of reward function influences the performance of RLPF, we
 840 conducted an ablation study across three reward designs:

841

- 842 • **Stability Reward:** Based on atom valency correctness. See detailed definition below.
- 843 • **Force Deviation (xTB):** Calculated using GFN2-xTB.
- 844 • **Force Deviation (DFT):** Calculated using B3LYP/6-31G(2df,p) DFT.

845

846 **Definition of stability reward.** Following the metric proposed by [Garcia Satorras et al.](#), we first
 847 predict the bond type between each pair of atoms (i, j) based on their Euclidean distance and atomic
 848 types. These predicted bonds are used to compute the valency of each atom. A molecule is considered
 849 *stable* if every atom satisfies its standard valency constraint.

850

851 Let v_i be the predicted valency of atom i , and v_i^{target} be its expected valency based on the atom
 852 type (e.g., $v_C^{\text{target}} = 4$ for carbon). A molecule is considered stable if *every atom* in it satisfies the
 853 corresponding valency constraint. Formally, we define the molecule-level binary reward as:

854

$$855 \quad r_{\text{stable}} = \begin{cases} 1 & \text{if } \forall i \in \{1, \dots, N\}, v_i = v_i^{\text{target}}, \\ 856 & \\ 857 0 & \text{otherwise,} \end{cases} \quad (15)$$

858 where N is the number of atoms in the molecule.

859

860 This binary reward is applied at the final time step of the denoising process and encourages generation
 861 of chemically plausible molecules.

862

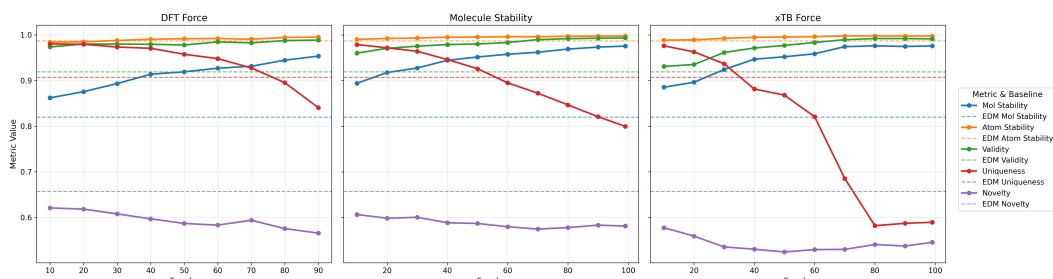
863 We evaluated the fine-tuned models using four metrics: molecule stability, validity, and the product
 864 of validity and uniqueness ($V \times U$). Results are reported in Table 9.

864
 865 Table 9: Impact of reward functions on 3D molecular generation quality on QM9. Metrics include
 866 molecule stability (M), atom stability (A), validity (V), validity \times uniqueness (V \times U), and novelty
 867 (N). Bold indicates best performance; underline indicates second-best.

Reward Type	M [%] \uparrow	A [%] \uparrow	V (%) \uparrow	V \times U (%) \uparrow	N (%) \uparrow
Stability	96.45 \pm 0.03	99.60 \pm 0.04	98.97 \pm 0.07	87.74 \pm 0.10	57.70 \pm 0.29
Force (xTB)	96.45 \pm 0.02	<u>99.37</u> \pm 0.01	97.02 \pm 0.08	<u>88.59</u> \pm 0.04	53.63 \pm 0.30
Force (DFT)	93.37 \pm 0.25	99.08 \pm 0.05	98.22 \pm 0.15	92.87 \pm 0.07	58.57 \pm 0.24

874
 875 **Results** The valency-based stability reward produces high chemical validity and diversity but is
 876 less effective at promoting physically meaningful structures. In contrast, rewards based on force
 877 deviation—especially those computed via DFT—better align the model with physically plausible
 878 configurations while maintaining strong chemical validity. Notably, xTB-based rewards offer similar
 879 benefits at significantly lower computational cost, serving as a practical surrogate for DFT. These
 880 findings highlight a trade-off in reward design between chemical correctness and physical grounding,
 881 and underscore the flexibility of RLPF in supporting diverse objectives.

882 **Training curves under different reward functions** To further analyze the effect of each reward
 883 design on model behavior, we visualize the training dynamics of RLPF with DFT-based force
 884 deviation, valency-based stability, and xTB-based force deviation rewards. The plot in Figure 2
 885 shows the evolution of five key metrics—molecule stability, atom stability, validity, uniqueness,
 886 and novelty—across training epochs for each reward type.



887 Figure 2: Training curves of generation metrics under three reward types: DFT-based force (left),
 888 valency-based stability (middle), and xTB-based force (right). Dashed lines indicate baseline EDM
 889 scores for reference.

900 **Observation** All reward functions lead to increasing molecule and atom stability over time, con-
 901 firming that RLPF can effectively optimize for structural correctness. Among them, the DFT-based
 902 reward achieves strong stability improvements while inducing a relatively smaller drop in uniqueness
 903 and novelty. This indicates that DFT feedback better preserves generative diversity while enforcing
 904 physical plausibility.

906 D.6 EFFECT OF CLIPPING THRESHOLD IN RLPF FINE-TUNING

908 To understand how the PPO clipping threshold ϵ affects the fine-tuning process in RLPF, we conducted
 909 an ablation study under the molecule generation setting on the QM9 dataset. We compared three
 910 different values of ϵ : 0.05, 0.2, and 100 (no clipping). All experiments followed the same training
 911 setup as described in Appendix E.1.1.

912 Observations:

- 914 When ϵ is very large (e.g., 100), the reward increases rapidly at first but becomes unstable
 915 and collapses in the later stages, as the policy diverges from the pretrained model (shown by
 916 the spike in KL divergence).
- 917 Smaller ϵ values (0.05 and 0.2) result in smoother and more stable training, with consistent
 918 gains in molecule stability.

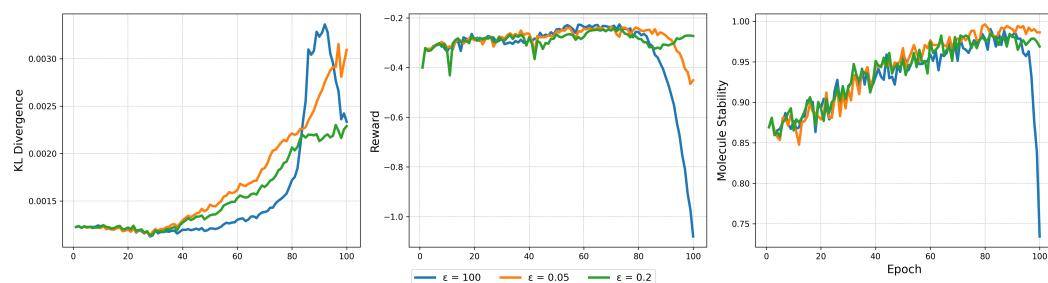


Figure 3: Effect of PPO clipping threshold ϵ during RLPF training on QM9. Left: KL divergence to pretrained model; Middle: training reward; Right: molecule stability.

- $\epsilon = 0.2$ strikes a better balance between reward improvement and policy stability, making it the default value in our main experiments.

This ablation highlights the importance of policy regularization via clipping in ensuring stable and effective RLPF training.

D.7 RESIDUAL FORCE ANALYSIS

To further examine the physical plausibility of generated molecules, we evaluated the **residual atomic forces** of sampled conformations. We generated **10,000 molecules** from each model. For the baseline EDM, we used the official pretrained checkpoint; for EDM-RLPF, we evaluated intermediate checkpoints during reinforcement learning fine-tuning (as in Table 1), where the reward was based on DFT force deviations.

Residual forces for each molecule were computed using **DFT** with the **B3LYP functional** and the **6-31G(2df,p) basis set**. We report the **root-mean-square deviation (RMSD)** of atomic forces in **eV/Å**, where lower values indicate geometries closer to equilibrium.

Table 10: Residual atomic forces (RMSD in eV/Å) of generated molecules. EDM-RLPF significantly reduces residual forces compared to the EDM baseline.

Model	Force RMSD (eV/Å) ↓
EDM	0.8932
EDM-RLPF	0.5845

Discussion. Since our task is *3D molecular generation* rather than explicit conformation optimization, the generated geometries are not guaranteed to be fully relaxed under a quantum force field, and residual forces are not minimized to zero as in geometry optimization. Nevertheless, residual forces serve as a meaningful proxy for physical plausibility. The results above show that EDM-RLPF generates molecules with **significantly lower residual forces** than the EDM baseline, confirming that reinforcement learning with physically grounded rewards encourages the model to produce geometries closer to equilibrium.

D.8 GEOMETRY OPTIMIZATION ANALYSIS

To further evaluate whether RLPF improves the physical plausibility of generated structures, we compared conformations sampled from the original EDM and our fine-tuned EDM-RLPF (trained with DFT force rewards). For each model, we sampled **1,000 molecules** and optimized them using **DFT with the B3LYP functional and 6-31G(2df,p) basis set**, under a convergence criterion of **fmax = 0.05 eV/Å**. We recorded the following metrics:

- RMSD between pre- and post-optimization structures (lower is better);
- Average number of optimization steps (fewer is better);

972
973
974
975
976 • Optimization success rate, i.e., the proportion of molecules converging under the specified
977 criterion.

Table 11: Comparison of DFT geometry optimization efficiency. EDM-RLPF produces molecules
977 that are closer to equilibrium, requiring fewer optimization steps and converging more reliably.

Model	RMSD (Å) ↓	Optimization Steps ↓	Success Rate (%) ↑
EDM	0.0981	29.14	83.6
EDM-RLPF	0.0482	18.58	94.4

982
983 Optimization failures are primarily due to charge imbalance or chemically invalid species (e.g.,
984 molecules with inconsistent valence or lacking charge neutrality), which prevent stable SCF conver-
985 gence. Interestingly, the observed failure rate closely matches the **molecule stability** metric in our
986 main evaluation, confirming that stability is predictive of downstream simulation reliability.

987 In summary, RLPF not only improves molecular stability but also **reduces reliance on expensive**
988 **geometry optimization**, leading to more efficient downstream simulations.

989 D.9 ADDITIONAL DOCKING EXPERIMENT

991 To further examine whether the improved stability from our method translates to downstream tasks,
992 we conducted an additional molecular docking experiment. In standard docking workflows, ligands
993 are usually pre-optimized to their lowest-energy conformations before docking (Guedes et al., 2014;
994 Sulimov et al., 2017; Brylinski & Skolnick, 2008). Here, we instead evaluate molecules generated
995 directly by the models, without conformer optimization.

997 Setup.

998
999 • **Protein target:** TYK2 (PDB ID: 8S9A).
1000 • **Ligands:** 1,000 molecules generated by (i) the baseline EDM model and (ii) our EDM
1001 fine-tuned with RLPF. Both models were trained on QM9.
1002 • **Docking protocol:** Protein prepared with standard preprocessing; ligands docked directly
1003 without additional geometry optimization.
1004 • **Metrics:** Average docking score (more negative is better) and docking success rate.

1006
1007 Table 12: Docking performance on TYK2 (PDB: 8S9A). RLPF improves both docking score and
1008 success rate.

Model	Avg. Docking Score ↓	Success Rate (%) ↑
EDM	-4.8363	95.4
EDM-RLPF	-4.9438	97.7

1013
1014 **Discussion.** These results show that molecules generated by EDM-RLPF yield both a better average
1015 docking score and a higher docking success rate compared to EDM. We believe this improvement
1016 arises because RLPF encourages generation of molecules that are closer to low-energy, physically
1017 stable conformations. Such stability reduces docking errors, accelerates post-processing, and improves
1018 the reliability of downstream predictions.

1019 E IMPLEMENTATION AND EXPERIMENTAL DETAILS

1020 E.1 PRETRAINING CONFIGURATIONS

1021 E.1.1 THE EDM PRETRAINED ON THE QM9

1022 The EDM model consists of 9 layers, with each hidden layer having a dimension of 256. The SiLU
1023 activation function is used, and the Adam optimizer is employed for the optimization process. We set

1026 the batch size to 64 and configured the learning rate to 1×10^{-4} . For the final model, we selected the
 1027 version obtained at the 2161st epoch, as this is when the loss reached its lowest value, signaling the
 1028 end of the pretraining phase.
 1029

1030 E.1.2 THE EDM PRETRAINED ON THE GEOM-DRUG

1031
 1032 In this experiment, we directly used the GEOM-drug model parameters provided by EDM.
 1033 On the GEOM dataset, EDM is trained using EGNNS with 256 hidden features and a 4-
 1034 layer architecture. The models were trained for 13 epochs, which corresponds to approxi-
 1035 mately 1.2 million iterations with a batch size of 64. The pretrained weights are available at:
 1036 https://github.com/ehoogeboom/e3_diffusion_for_molecules/tree/main/outputs/edm_geom_drugs.
 1037

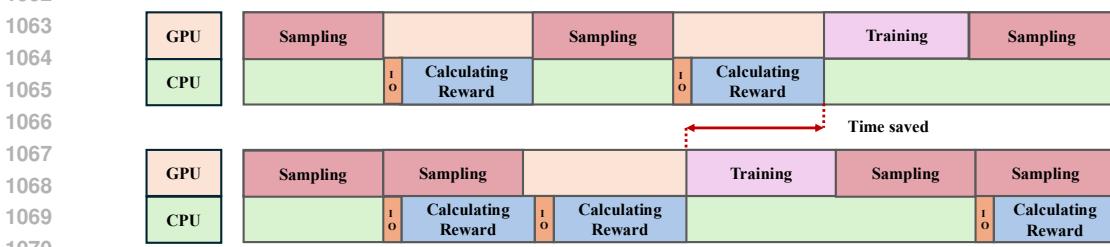
1038 E.2 FINE-TUNING WITH RLPF

1039 We fine-tuned the pretrained EDM models on both the QM9 and GEOM-drug datasets using our
 1040 proposed RLPF framework. All experiments were conducted under the molecule generation setting.
 1041 The reward signals were derived from either force deviations (computed using DFT or xTB) or
 1042 valency-based stability checks.
 1043

1044 **Training setup** For QM9, the fine-tuning was performed over 100 epochs, sampling 512 molecules
 1045 per epoch, yielding a total of 51,200 molecules. The model was optimized using the AdamW
 1046 optimizer with a learning rate of 1×10^{-5} . The hyperparameters were set to $\beta_1 = 0.9$, $\beta_2 = 0.999$,
 1047 $\epsilon = 1 \times 10^{-8}$, and a weight decay of 1×10^{-4} . To ensure stable policy updates during reinforce-
 1048 ment learning, we used PPO with a clipping threshold of $\epsilon = 0.2$ (see Eq. equation 11) and applied
 1049 advantage normalization with a clipping range of 1.0.
 1050

1051 **Handling invalid structures.** When using DFT-based force deviation as the reward, certain invalid
 1052 structures occasionally caused failures in the force calculation (e.g., due to unbalanced charge or
 1053 highly distorted geometry). In such cases, we assigned a fixed penalty reward of -5 to reduce their
 1054 impact on training.
 1055

1056 **Parallel sampling and reward computation.** As shown in Figure 4, reward evaluation does not
 1057 require GPU acceleration. To maximize throughput, we employed pipeline parallelism between sam-
 1058 pling and reward computation. Molecule batches were generated on GPU and immediately dispatched
 1059 to CPU-based workers for reward calculation, allowing both stages to proceed concurrently.
 1060



1073 Figure 4: Schematic diagram of pipeline parallelism between sampling and reward evaluation.
 1074

1075 **GEOM-drug fine-tuning.** For the larger GEOM-drug dataset, we fine-tuned EDM using rewards
 1076 computed from GFN2-xTB. Due to the high computational cost of DFT on large molecules, DFT-
 1077 based rewards were not used in this setting. Each round of fine-tuning involved sampling 1024
 1078 molecules, repeated over 2 rounds. The use of xTB strikes a balance between computational
 1079 efficiency and physical accuracy, making it suitable for more complex molecules.

1080
 1081 **Diversity and stability trade-off.** To evaluate diversity, we report novelty following EDM’s
 1082 standard protocol. On QM9, RLPF slightly reduces novelty compared to the pretrained EDM (58.6%
 1083 vs. 65.7%), suggesting that the model becomes more concentrated around the training manifold,
 1084 thereby improving stability (see Table 1) at the cost of reduced exploration.
 1085

1086 Notably, as observed by [Vignac & Frossard \(2022\)](#), the QM9 dataset constitutes a near-complete enum-
 1087 eration of stable molecules under certain constraints. In this context, excessively high novelty may
 1088 reflect divergence from the true data distribution, increasing the likelihood of generating chemically
 1089 implausible structures. Therefore, a moderate drop in novelty may actually indicate better alignment
 1090 with valid chemical space, rather than a loss of model quality.
 1091

1092 Table 13: Diversity evaluation on QM9. We report novelty among valid and unique molecules.
 1093 Results are averaged over three runs.
 1094

Model	Novelty (%) \uparrow
EDM (Hoogeboom et al., 2022)	65.7
GeoLDM (Xu et al., 2023)	57.0
GeoBNF (Song et al., 2024)	66.4
EDM-RLPF (ours)	58.57 ± 0.25

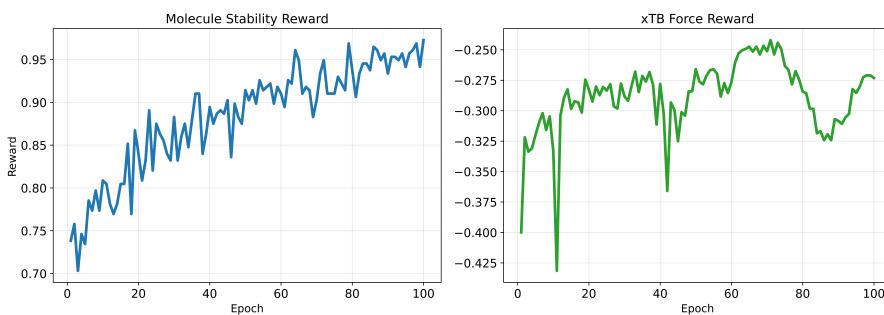
1100 **Training convergence criterion** We define convergence in RLPF fine-tuning based on either:
 1101

- Reaching a maximum of 100 epochs, or
- The average reward entering a stable, high-performance range.

1102 These convergence thresholds vary depending on the reward type:
 1103

- For valency-based stability rewards, training is considered converged when the reward exceeds **0.95**.
- For force-based rewards (e.g., xTB RMSD), convergence is reached when the reward exceeds **-0.25**.

1104 Figure 5 shows representative reward curves under both reward types. These thresholds were
 1105 determined empirically by observing when the reward plateaus or when continued training yields
 1106 diminishing returns.
 1107



1108 Figure 5: Comparison of training reward curves under valency-based stability (left) and xTB-based
 1109 force (right) reward functions.
 1110

1111 E.3 COMPUTATION COST ANALYSIS

1112 We report the computational resources required for the fine-tuning of RLPF in different settings.
 1113

1114 **QM9 (RLPF with DFT and xTB).** When fine-tuning the EDM model in the QM9 dataset using
 1115 RLPF with DFT-based force deviation rewards, we utilized 13 NVIDIA H100 GPUs for model
 1116

1134 training and 500 CPU cores in parallel for reward computation with the B3LYP/6-31G(2df,p) method.
 1135 In contrast, when using GFN2-xTB for force evaluation, the reward computation required only 15
 1136 CPU cores in parallel, significantly reducing the computational burden while still providing effective
 1137 training signals.

1138 **GEOM-drug (RLPF with xTB).** For the larger and more complex GEOM-drug dataset, we fine-
 1139 tuned the EDM model using RLPF with GFN2-xTB-based rewards. The training process required 10
 1140 NVIDIA H100 GPUs, while the reward computation was performed efficiently using 15 CPU cores.
 1141 DFT-based rewards were not used in this setting due to their prohibitively high computational cost on
 1142 large molecules.

1143 These results highlight the scalability of RLPF: while high-fidelity rewards (e.g., DFT) are computa-
 1144 tionally expensive, approximate methods like xTB offer a practical trade-off between accuracy and
 1145 efficiency, particularly in large-scale settings.

1147 F FULL WORKFLOW OF RLPF

1150 For completeness, we provide the full workflow of the RLPF algorithm that outlines its procedural
 1151 structure and training loop. While the high-level logic is illustrated in Figure 1 and Algorithm 1 in
 1152 the main text, the following summary describes each step in detail:

- 1153 1. **Sample Trajectories:** The pre-trained model $p_{\theta_{\text{old}}}$ is used to generate K molecular trajec-
 1154 tories by denoising latent variables over T timesteps. This captures both the intermediate
 1155 states z_t and the final molecular structure (x, h) .
- 1156 2. **Calculate Rewards:** The generated molecules (x, h) are evaluated using physically
 1157 grounded reward functions, such as DFT- or xTB-based force deviation, or valency-based
 1158 stability. These values serve as scalar rewards $r(x, h)$.
- 1159 3. **Fine-tune with RL:** For each trajectory k , the reward $r(x^k, h^k)$ is normalized to obtain
 1160 an advantage estimate \hat{A}_t^k . The importance sampling ratio $I_t^k(\theta)$ is computed using log-
 1161 likelihood scores from Section 4.5. A PPO-style clipped policy objective is optimized to
 1162 update θ .

1164 This pipeline is repeated across multiple epochs in an online fashion, alternating between generation
 1165 and policy improvement.

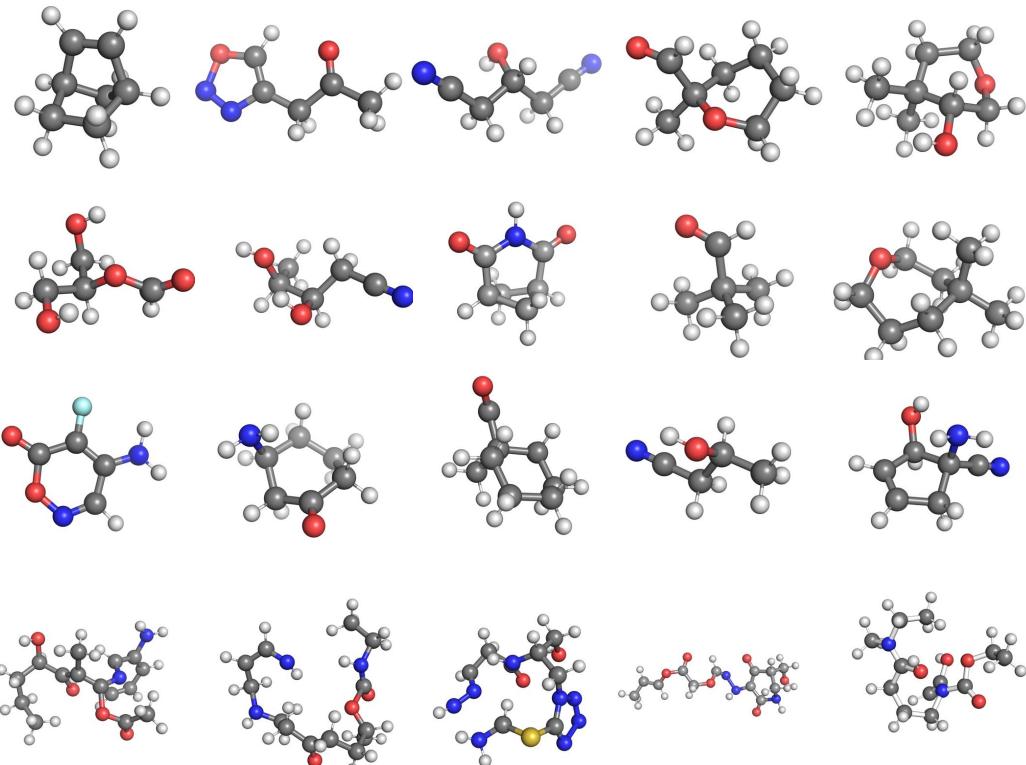
1167 G LIMITATION OF RLPF

1170 While RLPF significantly improves molecular stability through reward-based fine-tuning, its effec-
 1171 tiveness hinges on a crucial assumption: the base generative model must be capable of producing
 1172 a wide range of samples, including both high-quality and low-quality molecules. This diversity is
 1173 essential for the advantage estimation step in reinforcement learning, where advantages are computed
 1174 using normalized returns based on mean and variance.

1175 If the pretrained model fails to generate a sufficient number of poor or unstable samples, the estimated
 1176 advantages across trajectories may become uniformly small. As a result, the gradient updates
 1177 derived from the reinforcement signal will have limited impact, and RLPF may offer only marginal
 1178 improvements. In practice, we observe that RLPF is most effective when applied to a base model that
 1179 exhibits moderate performance—sufficiently stable to ensure chemical validity, yet diverse enough to
 1180 expose room for reward-guided improvement.

1181 This limitation highlights the importance of sampling diversity in reward-based fine-tuning, and
 1182 suggests that future work could explore adaptive weighting or trajectory selection strategies to
 1183 mitigate this sensitivity.

1184
 1185
 1186
 1187

1188 H SAMPLES FROM FINE-TUNED MODELS WITH RLPF
1189
1190
1191
1192

1219 Figure 6: Representative samples generated after RLPF fine-tuning. The top row shows molecules
1220 from EDM pretrained on QM9 and fine-tuned using DFT-based force rewards.
1221 The second row shows results using valency-based stability as rewards.
1222 The third row depicts fine-tuning with GFN2-xTB force-based rewards.
1223 The bottom row shows molecules generated from EDM pretrained on
1224 GEOM-drug and fine-tuned using xTB forces. RLPF consistently improves structural stability and
1225 equilibrium quality across all reward types.
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241