

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BIGCODEARENA: UNVEILING MORE RELIABLE HUMAN PREFERENCES IN CODE GENERATION VIA EXECUTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Crowdsourced model evaluation platforms, such as Chatbot Arena, enable real-time evaluation from human perspectives to assess the quality of model responses. In the coding domain, manually examining the quality of LLM-generated content is extremely challenging, as it requires understanding long chunks of raw code and deliberatively simulating code execution. To this end, we introduce BIGCODEARENA, an open human evaluation platform for code generation back-ended with a comprehensive and on-the-fly execution environment. Built on top of Chatbot Arena, BIGCODEARENA features to enable the execution of LLM-generated code and allows humans to interact with the execution process and outcomes. We collected over 14K raw code-centric conversation sessions across 10 widely used LLMs, spanning 10 languages and 8 types of execution environments. Among these conversations, we identify more than 4.7K multi-turn samples with pairwise human preference. Further analysis uncovers the underexplored preferences of LLMs in fine-grained domains characterized by tasks, languages, and frameworks. To systematically examine code understanding and generation capabilities of frontier LLMs, we curate two benchmarks based on the collected data, namely BIGCODEREWAND and AUTOCODEARENA. For BIGCODEREWAND, we postprocess the 4.7K conversations and evaluate the consistency between reward models and human preference. The evaluation shows that most LLMs have superior performance in judging coding preferences when the execution results are given. Inspired by the findings, we propose AUTOCODEARENA, an automatic Elo rating benchmark designed to assess the coding quality of LLMs without humans. We find that proprietary LLMs like GPT-5, Claude-Sonnet-4, and Claude-Opus-4 still lead the performance in code generation among the recent emerging models. To democratize transparent evaluation of code generation in the wild, we aim to establish BIGCODEARENA as a long-term project.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive capabilities across dialogue, reasoning, and code generation tasks (Zhao et al., 2023). As these systems rapidly evolve, robust evaluation has become essential. Human-in-the-loop platforms such as Chatbot Arena (Chiang et al., 2024) address this need by collecting pairwise human preferences on model responses, providing a off-the-shelf platform to assess open-ended outputs. Beyond text, recent efforts also engage humans in evaluating visual content from generative models (Jiang et al., 2024; Li et al., 2025b; Chou et al., 2025), offering new insights into multimodal models through real-world interactions.

Existing crowdsourced evaluators work well for common dialogue and visual content that are intuitive to compare. However, when evaluating long chunks of model-generated code, understanding the code semantics and reasoning about its runtime behaviours and non-functional properties are mentally exhausting and often demand specific expertise (Zhao et al.; Jain et al.; Liu et al., 2024). Additionally, empirical studies confirm that humans often misjudge correctness without running the code (Détienne & Soloway, 1990; Lopez et al., 2008; Hassan et al., 2024). Exemplified by Figure 1, by reading the raw code, it is unclear which code snippet is superior; however, with execution feedback, it becomes visually obvious that model B is producing a higher-quality frontend.

Figure 1: BIGCODEARENA enables users to evaluate code snippets based on execution outcomes.

Here, we argue that the execution feedback is essential for humans to judge code quality reliably. Based on the aforementioned observation, we introduce BIGCODEARENA, a new open evaluation platform to collect human preferences of LLM-generated code, enabling on-the-fly compilation and execution of generated code, interactive debugging through code editing, and direct UI interaction. These features allow users to engage with program behavior rather than static snippets, providing a more robust and reliable evaluation of LLM outputs.

BIGCODEARENA has now been deployed for over five months, which enables us to collect more than 14K crowdsourced conversation sessions on code generation tasks spanning 10 languages (e.g., Python, Golang, JavaScript) and 8 execution environments (e.g., PyGame, React, Mermaid). This benchmark offers a glance at users' interaction and preference when using 10 frontier LLMs, such as o3-mini (OpenAI, 2025), Claude-3.5-Sonnet (Anthropic, 2025), and GPT-4o (Hurst et al., 2024). Analysis of the collected data highlights diverse usage scenarios, including Web Design, Game Development, Diagram Creation, Creative Coding, Scientific Computing, and Problem Solving, and reveals differences in language strengths and framework preferences across models. Together, these findings position BIGCODEARENA as an open, dependable, and execution-featured platform for advancing the evaluation of LLMs.

To facilitate future research on systematic evaluation of code generation, we further release two benchmarks: BIGCODEREWAND and AUTOCODEARENA. Like RewardBench (Lambert et al., 2025), BIGCODEREWAND measures how closely reward models (Ouyang et al., 2022) align with human judgments in code evaluation. On the other hand, AUTOCODEARENA aims to automate crowdsourced evaluation of BIGCODEARENA in the style of Arena-Hard-Auto (Li et al., 2025a). Evaluating more recent LLMs with these benchmarks yields three main findings. *First*, there is no obvious gap between proprietary and open LLMs when judging the code quality. *Second*, most LLM judges of code generation become substantially more reliable when execution results (e.g., UI screenshots) are available, reinforcing our motivation for building BIGCODEARENA. *Third*, we find that GPT-5 currently leads the quality of code generation among the frontier LLMs, while Claude-Sonnet-4 and Claude-Opus-4 are tied in second place.

108
 109
 110
 111
 112
 113
 114
 115
Table 1: BIGCODEARENA is the first crowdsourced evaluation platform on code generation via
 116 execution, publicly releasing crowdsourced preference data. We collect 14K raw conversation
 117 sessions (analyzed in [Appendix F](#)) and a high-quality subset of 4.7K multi-turn conversations with
 118 human preference (discussed in [Section 4](#)). **Real-time:** whether the evaluation requires real-time
 119 interactions; **Multi-turn:** whether the evaluation supports multi-turn conversations; **Verified:** whether
 120 the output of LLMs is verified by human experts and executable environments; **Codebase:** whether
 121 the codebase is publicly available; **Data:** whether the data is fully open. We note that WebDev Arena
 122 only focuses on the Next.js framework for web design.

Domain	Evaluation Platform	Real-time	Multi-turn	Verified	Codebase	Data	# Instances
Vision	3D Arena (Ebert, 2025)	✗	✗	✗	✓	✗	0
Vision	Genai Arena (Jiang et al., 2024)	✓	✗	✗	✓	✗	0
Vision	K-sort Arena (Li et al., 2025b)	✓	✗	✗	✓	✗	0
Vision	Vision Arena (Chou et al., 2025)	✓	✗	✗	✓	✓	919
Speech	S2S-Arena (Jiang et al., 2025)	✗	✗	✗	✗	✗	0
Text	Chatbot Arena (Chiang et al., 2024)	✓	✓	✗	✓	✓	106K
Search	Search Arena (Miroyan et al., 2025)	✓	✓	✗	✓	✓	24K
Code	WebDev Arena* (Ima, 2025b)	✓	✓	✓	✗	✓	10.5K
Code	Copilot Arena (Chi et al.)	✓	✗	✗	✓	✓	114
Code	BIGCODEARENA (Ours)	✓	✓	✓	✓	✓	14K (4.7K)

123 We summarize our contributions as follows:

- 130 • We present BIGCODEARENA, a new platform for human-in-the-loop evaluation of code generation,
 131 featuring real-time execution and interactive UI engagement.
- 132 • We host BIGCODEARENA over five months, yielding 14K crowdsourced conversation sessions on
 133 various code generation tasks and diverse usage of programming languages and frameworks.
- 134 • Among the collected conversations, we identify a subset of 4.7K multi-turn pairwise conversations
 135 and conduct a detailed investigation of user performance when using the models for code generation.
- 136 • On top of the collected conversations, we release two preference-focused benchmarks for code
 137 evaluation: BIGCODEREWARD, for assessing model alignment with human judgments, and AU-
 138 TOCODEARENA, for automating output evaluation via LLM-as-a-Judge. Our extensive experiments
 139 demonstrate both the utility of these benchmarks and the advancements of recent LLMs.

2 BIGCODEARENA

144 As shown in [Table 1](#), most existing crowdsourced evaluation platforms are closed-source (both in
 145 codebase and data), limiting transparency and verifiability. Moreover, few platforms focus specifically
 146 on code generation. To address these limitations, we present BIGCODEARENA, the first fully open-
 147 source human evaluation platform for LLM-generated code via execution. BIGCODEARENA extends
 148 Chatbot Arena by enabling code execution and user-driven testing, with more details in [Appendix E](#).

2.1 MOTIVATION

151 LLM-generated code often appears syntactically correct while failing at runtime or misinterpreting
 152 the intended task. Traditional text-based crowdsourcing platforms such as Chatbot Arena ([Chiang
 153 et al., 2024](#)) present pairwise model responses for human voting, which works well for natural
 154 language tasks but fails to capture the complexities of code evaluation. Correctness frequently
 155 requires execution ([Chen et al., 2021](#)), since even minor changes can cause drastically different
 156 behaviors. Ensuring alignment with the prompt further requires a deep understanding of the task
 157 beyond surface fluency. [Figure 1](#) illustrates this gap between static and interactive evaluation. For
 158 example, when prompted to build a responsive gallery website, both models generate code that looks
 159 reasonable in source form. However, it is difficult for users to determine which is better simply by
 160 reading the snippets. Once executed, though, it becomes clear that Model B produces a functional and
 161 visually appealing high-resolution grid, while Model A falls short. Rigorous evaluation thus requires
 execution feedback, not just static inspection, to capture the true quality and usefulness of code.

162
163

2.2 SYSTEM DESIGN

164
165
166
167
168
169
170

At a high level, BIGCODEARENA adopts a head-to-head evaluation setup. Given a user prompt, the platform presents two anonymized responses from different LLMs together with the execution results of extracted code snippets. These results are rendered either as interactive artifacts (e.g., applications, web pages) or as static outputs (e.g., text, images). Unlike Chatbot Arena, where judgments are made from a single static display, BIGCODEARENA grounds evaluation in observable behavior and functional outcomes. Users can test execution results, explore program behavior, and edit the extracted code to assess correctness and robustness.

171
172
173
174
175
176
177
178

The system itself consists of a lightweight web-based frontend and a secure, modular backend, built on Gradio¹ and E2B². The frontend supports syntax-highlighted code display, editing, dependency configuration, and execution result rendering. The backend manages dependency resolution, installs required packages, executes code in isolated sandboxed environments, and returns execution results. In addition to side-by-side chat comparisons inherited from Chatbot Arena, BIGCODEARENA also supports a one-sided chat mode to enable testing of model-specific features. Together, these components enable evaluation that goes beyond appearance, allowing users to judge which model response not only looks correct but also runs and fulfills the intended task.

179
180
181
182
183
184
185

Similar to Chiang et al. (2024), BIGCODEARENA allows users to ask questions and receive answers from two anonymous LLMs. After reviewing both responses, users vote for their preferred answer, with model identities revealed only after voting. To collect balanced crowdsourced human evaluations across all models, we implement a weighted sampling strategy for model pair selection. Initial participant models receive equal weights, while new entrants are temporarily upweighted to gather sufficient comparative data. Formally, with M models $\{1, \dots, M\}$ and sampling weights w_i , the probability of selecting pair (i, j) is

$$p(i, j) = \frac{w_i \cdot w_j}{\sum_{k < \ell} w_k \cdot w_\ell}. \quad (1)$$

186
187
188
189
190
191
192
193
194

Here, w_i is uniform for established models and higher for new entrants. This approach ensures fair exposure across models and generates more stable preference signals over time. A key challenge in evaluation platforms is avoiding bias from artifacts such as response latency or execution speed. In code generation tasks, users might inadvertently prefer faster responses even when quality is lower. To mitigate this bias, BIGCODEARENA ensures that both model outputs are displayed simultaneously only after both models have completed generation and execution, so that user preferences reflect response quality rather than generation speed.

195
196

3 DEPLOYMENT

197
198
199
200
201
202
203
204
205
206
207
208
209

Setup BIGCODEARENA was advertised in open-source communities. Following prior setups (Chiang et al., 2024; Chi et al.; Chou et al., 2025), participants were not compensated but received free access to state-of-the-art models. Because collecting preference data in the wild is time-consuming, we also recruited 15 volunteer experts from the community (see Appendix A) with diverse programming expertise. To ensure annotation quality, we provided detailed guidelines and asked them to use varied prompts. Volunteers were required to conduct multi-turn pairwise conversations with at least two user-model exchanges. In addition to overall preference votes (four classes: Model A/B Better, Tie, Both Bad) suggested in Chiang et al. (2024), we included optional subcategories such as correctness, efficiency, explainability, maintainability, and UI/UX design. Although some aspects, like efficiency, are hard to quantify, we encouraged annotators to provide rationales for reproducibility. Alongside preference judgments, we logged user inputs, sandbox environments, execution results, and interaction activities, which, though sometimes noisy, give insight into user interests.

210
211
212
213
214

Data Collection We choose 10 frontier LLMs (detailed in Appendix H) at the time of deployment (February, 2025), covering both open and proprietary models specializing at coding: Llama’s Llama-3.3-70B (Grattafiori et al., 2024), Alibaba’s Qwen2.5 (Qwen2.5-72B-Instruct and Qwen2.5-Coder-32B-Instruct) (Yang et al., 2025; Hui et al., 2024), OpenAI’s GPT-4o (Hurst et al., 2024), OpenAI’s o

¹<https://gradio.app/>

²<https://E2B.dev/>

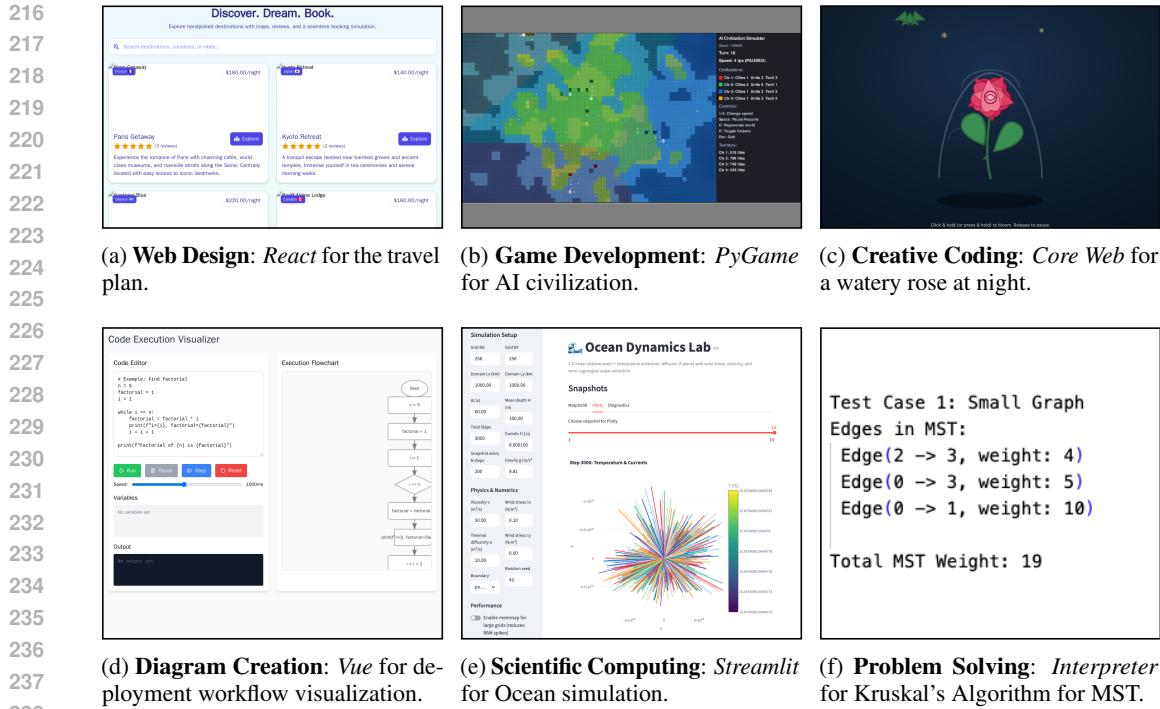


Figure 2: Examples of programming topics, prompts, and execution results in BIGCODEARENA.

series (o1, o1-mini, o3-mini) (Jaech et al., 2024), Anthropic’s Claude-3.5-Sonnet (Anthropic, 2025), and Google’s Gemini-2.0 (Gemini-2.0-Pro and Gemini-2.0-Flash) (Google Research & Google DeepMind, 2024). To ensure the diversity of collected data, we set the temperature to 0.7 and top-p to 0.95 by default, though these settings are adjustable by users. Over the course of 5 months, we collected over 14,123 conversations from more than 500 unique IP addresses.

Languages and Environments BIGCODEARENA currently supports 10 languages (Python, JavaScript, TypeScript, HTML, C, C++, Java, Go, Rust, and Markdown), and 8 execution environments (React, Vue, Core Web, Streamlit, PyGame, Gradio, Mermaid, and Interpreter). These are chosen to balance coverage of the most widely used languages in software development with frameworks that enable interactive and UI-oriented applications, which are particularly relevant for evaluating execution-based code generation. Python and interpreter-based workflows are emphasized given their ubiquity in data science and rapid prototyping, while the inclusion of web and game frameworks ensures diversity in coding tasks and real-world deployment scenarios. The descriptions of supported execution environments can be viewed in Appendix E.

Topic Modeling From the 14K collected conversation sessions, we attempted to automatically cluster user prompts following the pipeline in Chiang et al. (2024), but the results did not yield clear topic boundaries. To provide a more interpretable categorization, four of the authors manually inspected 50% of collected prompts (randomly sampled) and identified six recurring topics (with examples in Figure 2): (1) *Web Design*, focusing on building and styling websites; (2) *Game Development*, involving the creation of interactive games; (3) *Diagram Creation*, generating visual representations of systems or ideas; (4) *Creative Coding*, using code for artistic or experimental purposes; (5) *Scientific Computing*, applying code to numerical and data-driven tasks; and (6) *Problem Solving*, where logical reasoning and algorithms are central.

4 MODEL RANKING

Based on the data analysis of 14K conversations in Appendix F, we now examine the voting outcomes that define model rankings. To ensure data quality, we filter out pairwise conversations with fewer than two turns or without code execution, resulting in 4,731 voting samples, with each evaluated

model receiving at least 700 votes. Aggregating these into Elo ratings yields a leaderboard that reflects relative model strengths while accounting for uncertainty and context. This shifts our analysis from descriptive interaction patterns to quantitative comparisons of model performance. We provide detailed analysis such as programming topics and comparisons to previous evaluations in [Appendix G](#).

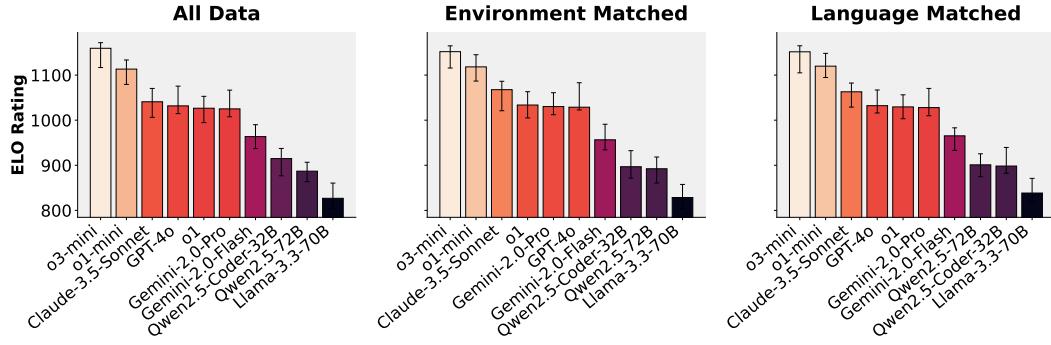


Figure 3: Elo ratings of models under three [pair-sampling constraints](#): All Data (*left*), (Execution) Environment Matched (*middle*), and Language Matched (*right*). These settings progressively control runtime and language factors by using all data, matching environments, and restricting to the same language.

We construct a leaderboard from user preference judgments collected via pairwise comparisons. Let n be the number of sessions and M the number of models. For each session $i \in [n]$, the indicator $X_i \in \{-1, 0, 1\}^M$ encodes model positions ($\{-1, 1\}$ for Model A/B Better, and $\{0\}$ for Tie and Both Bad), while the outcome $Y_i \in \{0, 1, 0.5\}$ records wins, losses, or ties. Following prior work ([Chiang et al., 2024](#); [Chi et al.; Chou et al., 2025](#)), we apply the Bradley-Terry model ([Bradley & Terry, 1952](#)) to estimate relative strengths $\beta \in \mathbb{R}^M$. The Bradley-Terry model assumes that the probability p_{ij} that model i beats model j can be modeled as:

$$p_{ij} = \frac{e^{\beta_i}}{e^{\beta_i} + e^{\beta_j}}. \quad (2)$$

To capture statistical uncertainty, we use 100 bootstrap resamples to construct 95% confidence intervals. Models are ranked by median bootstrap ratings, with intervals indicating significance.

Based on 4.7K multi-turn sessions involving 10 models ([Figure 3](#)), we analyze three evaluation settings: (1) All Data, (2) Environment Matched, and (3) Language Matched. These control runtime and linguistic variability. Rankings are consistent across settings, with o3-mini and o1-mini forming a clear top tier across environments and languages. Claude-3.5-Sonnet follows closely, especially under language matching. GPT-4o, o1, and Gemini-2.0-Pro/Flash form a competitive mid-tier, though GPT-4o weakens slightly under language matching. Qwen2.5 models and Llama-3.3-70B lag behind, highlighting the performance gap between leading proprietary and open models.

4.1 DETAILED ANALYSIS

Languages To better understand how model performance varies across languages, we analyze model *overall* win rates broken down by language-specific prompts (left of [Figure 4](#)). Across the board, top-tier models such as o3-mini and o1-mini achieve dominant win rates in widely used languages like Python, Java, and C++, which are commonly encountered in real-world applications and benchmarks. Other frontier models such as Gemini-2.0-Pro exhibit strong performance in lower-resource languages like Rust, achieving the highest win rate in that category. These results suggest that different models display distinct expertise, with frontier models excelling in different niches. In contrast, bottom-tier models such as the Qwen2.5 variants perform inconsistently, with weaknesses in Rust and Go.

Environments To separate model ability from implementation and runtime factors, we analyze win rates by execution environments (right of [Figure 4](#)). o3-mini shows consistently strong performance

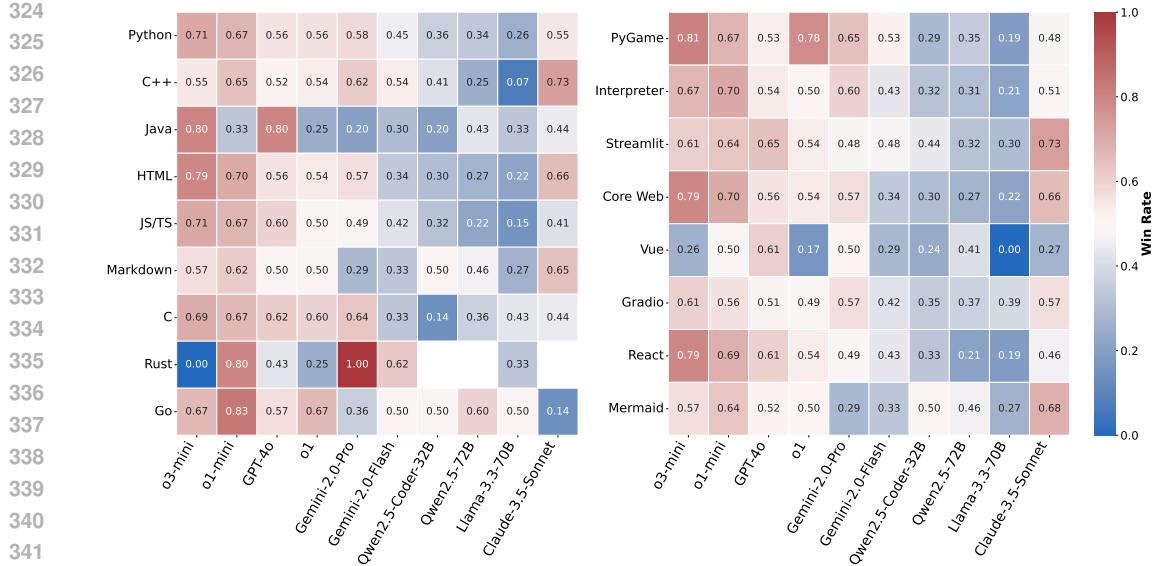


Figure 4: Overall win rate heatmaps (percentage of all pairwise comparisons won) of each model in the sessions across languages (left) and execution environments (right). For each category, we only keep models that appear in at least 3 conversation sessions.

across contexts such as React, Streamlit, Gradio, Core Web, and PyGame, indicating robustness to environmental variability. Claude-3.5-Sonnet and Gemini-2.0-Flash also show stable performance, though with lower win rates in more complex environments like Vue and Mermaid. In contrast, Qwen2.5 models, while competitive in some web frameworks, struggle in interactive and visualization-oriented execution such as PyGame, Vue, and Mermaid, which demand careful handling of control flow, graphics, and dependencies. These results suggest that despite high aggregate Elo scores, certain models remain brittle under realistic runtime constraints.

5 AUTOMATIC LLM EVALUATION WITH BIGCODEARENA

In this section, we introduce two benchmarks, **BIGCODEREWAND** and **AUTOCODEARENA**, for evaluating practical coding automatically. **BIGCODEREWAND** leverages the 4.7K human preference votes from [Section 4](#) to study reward models across diverse coding tasks. For this benchmark, we postprocess the conversations by concatenating all user prompts with the final model response in each session, and use these aggregated instances as the evaluation inputs. **AUTOCODEARENA**, by contrast, provides automated comparisons in the style of **BIGCODEARENA** using 600 representative prompts, reducing reliance on long-term crowdsourced voting. More details of **BIGCODEREWAND** and **AUTOCODEARENA** are provided in [Appendix I](#) and [Appendix J](#), respectively.

5.1 BIGCODEREWAND: EVALUATING REWARD MODELING FOR PRACTICAL CODING

Motivation Reinforcement learning from human feedback (RLHF) sets a remarkable milestone in LLM training, where the models are trained to align with human preference ([Bai et al., 2022](#)). Instead of manually designing objective functions that capture nuanced human feedback, RLHF leverages preference data to train a reward model that serves as a proxy for human evaluation. While there have been a few works targeting the evaluation of reward models ([Lambert et al., 2025; Malik et al., 2025](#)), they mainly consider general domains. Execution-based code generation benchmarks like HumanEval ([Chen et al., 2021](#)) and BigCodeBench ([Zhuo et al.](#)) may be able to serve as a proxy for coding reward but still fail to capture the comprehensiveness of real-world scenarios. Therefore, we propose **BIGCODEREWAND**, the first benchmark for frontier code reward models.

Setup We study how execution feedback affects reward models’ ability to judge code quality, using accuracy as the metric. Unlike RewardBench ([Lambert et al., 2025](#)), models must choose

378
 379 Table 2: Accuracy results (%) for reward models across task categories with/without execution
 380 outputs. “–” denotes without, “+” with execution. While *all* proprietary models benefit, *some*
 381 open LLMs drop in accuracy of multimodal coding scenarios, suggesting instability and insufficient
 382 robustness when incorporating multimodal feedback.. Best results are shown in **bold**.

383 Models	384 Web		384 Game		384 Creative		384 Diagram		384 Scientific		384 Problem		384 Overall	
	385 –	385 +	385 –	385 +	385 –	385 +	385 –	385 +	385 –	385 +	385 –	385 +	385 –	385 +
<i>Proprietary Models</i>														
Claude-Sonnet-4 (Anthropic, 2025)	59.1	62.4	58.1	66.2	64.5	67.4	55.0	71.8	52.7	59.9	52.0	57.9	56.7	62.3
Claude-3.7-Sonnet (Anthropic, 2025)	57.3	63.1	55.5	61.8	65.5	72.4	52.3	71.1	50.7	59.9	45.3	57.8	53.9	62.2
Claude-3.5-Sonnet (Anthropic, 2025)	61.2	63.7	58.5	63.7	69.5	69.7	54.4	63.1	56.6	62.7	57.3	64.2	59.7	64.1
GPT-4.1 (OpenAI, 2025)	57.4	60.3	59.2	65.0	64.7	64.2	55.0	67.8	52.5	58.4	45.2	54.5	54.7	60.0
GPT-4.1-mini (OpenAI, 2025)	55.1	60.3	56.5	63.0	59.7	64.5	45.0	61.7	51.4	60.4	45.9	55.7	52.8	60.1
GPT-4o (Hurst et al., 2024)	57.7	65.0	57.3	65.4	67.1	72.1	55.7	69.8	53.3	63.0	43.8	57.5	54.6	63.8
GPT-4o-mini (Hurst et al., 2024)	59.3	65.1	59.2	63.4	63.7	68.4	53.7	68.5	55.4	63.4	56.5	63.1	58.3	64.5
<i>Open Source Models</i>														
Gemma-3-27B (Team et al., 2025b)	59.0	61.6	59.6	62.7	64.2	62.1	53.0	69.1	54.6	57.8	56.8	60.0	58.2	61.1
Qwen2.5-VL-72B-Instruct (Bai et al., 2025)	61.6	65.8	58.8	68.8	67.1	71.6	56.4	76.5	57.4	63.7	52.2	63.1	58.7	66.2
Qwen2.5-VL-32B-Instruct (Bai et al., 2025)	56.9	60.2	56.9	63.4	61.3	67.6	52.3	64.4	53.0	63.3	54.5	60.4	56.0	61.9
InternVL3-78B (Zhu et al., 2025)	60.0	42.9	60.0	47.0	65.5	45.0	49.7	39.2	54.8	46.6	50.7	54.5	57.3	46.8
InternVL3-38B (Zhu et al., 2025)	56.5	43.3	59.2	46.0	63.4	44.3	52.3	37.8	51.7	50.8	52.9	57.8	55.9	48.0
GLM-4.5V (Hong et al., 2025)	54.5	56.6	55.4	55.7	61.1	58.7	49.3	57.7	51.3	55.1	47.9	50.9	53.0	55.2
MiMo-VL-7B-RL (Team et al., 2025a)	50.7	49.8	51.7	54.2	57.7	58.3	57.4	60.7	47.8	54.9	40.5	42.5	49.0	50.7
Kimi-VL-A3B-Thinking (Team et al., 2025c)	46.1	46.4	44.5	47.6	47.7	54.1	39.5	55.0	45.3	49.2	39.3	38.5	44.2	46.2

396
 397 among three options: Response A/B Better, or Tie (combining Tie and Both Bad in [Section 3](#)).
 398 We evaluate two settings: (1) without execution results and (2) with execution results, which may
 399 include textual logs, screenshots of webpages, interactive applications, or plots. As explained in
 400 [Section 2](#), these multimodal outputs can convey user preferences beyond text. Because multimodal
 401 classifier-based evaluators are limited ([Ng & Jordan, 2001](#)), we focus on a wide range of open and
 402 proprietary generative models (see [Appendix H](#)). All models are evaluated under the LLM-as-a-Judge
 403 setting ([Zhuo, 2024](#); [Li et al., 2025a](#)) with greedy decoding.

404
Result Analysis [Table 2](#) reports results across six programming topics and overall averages, where
 405 we observe execution results generally improve accuracy. Proprietary models reach the highest scores,
 406 though Qwen2.5-VL-72B Instruct remains competitive among open-source options. Gains are largest
 407 in Diagram Creation and Game Development tasks, while smaller in Problem Solving. Some models
 408 show instability, for example InternVL3-78B dropping from 57.3% to 46.8% with execution results.
 409

410 5.2 AUTOCODEARENA: AUTOMATING THE JUDGEMENT OF CODE GENERATION

412
Motivation While [BIGCODEARENA](#) provides a reliable and human-grounded way to evaluate the
 413 coding capabilities of advanced LLMs, the process is extremely resource-consuming, as it requires
 414 large-scale crowdsourced preference votes collected over long periods of time. Given the rapid pace
 415 of LLM development, where new models are released on a weekly rather than yearly basis, there is a
 416 pressing need for a more efficient benchmark that can track progress without incurring prohibitive
 417 human annotation costs. Inspired by [Li et al. \(2025a\)](#), we develop [AUTOCODEARENA](#), an automatic
 418 benchmark that leverages strong LLMs to approximate human preferences by comparing model
 419 outputs against a baseline system. Based on [Li et al. \(2025a\)](#), we use [Bradley & Terry \(1952\)](#) model to
 420 produce model’s the final model scores. We aggregate all pairwise comparisons against the baseline
 421 model and apply bootstrapping to estimate confidence intervals for each model’s win rate relative to
 422 the baseline. Models with higher win rates are generally more preferred by humans.
 423

424
Setup To enable efficient evaluation, we design a prompt-selection pipeline. Prompts are first
 425 categorized into six programming topics (via GPT-4.1-mini, see [Section 3](#)), ranked within each topic,
 426 and sampled proportionally to match the distribution of the 4.7K multi-turn conversations ([Section 4](#)).
 427 In total, 600 representative prompts are chosen, reflecting real-world usage rather than enforcing
 428 artificial balance. Most prompts do not specify programming languages, allowing models to select
 429 their own. Building on [Section 5.1](#), we execute code snippets and provide outputs to judge models
 430 ([Claude-3.7-Sonnet](#)). To overcome rate limits and latency of remote sandboxes, we implement a
 431 local Docker-based execution system supporting multiple languages and frameworks in parallel
 432 ([Appendix J](#)). All models (listed in [Appendix H](#)) are run with greedy decoding, except reasoning
 433 models, which use temperature 1.0 with medium reasoning effort.

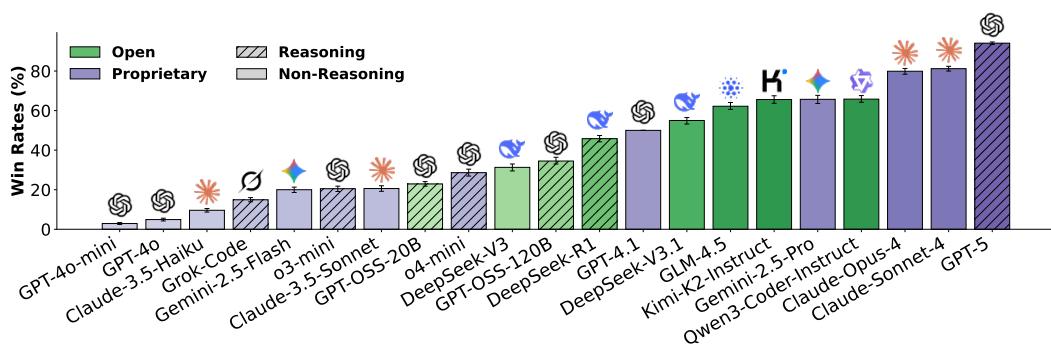


Figure 5: Overall performance of *more recent* LLMs on AUTOCODEARENA. We use GPT-4.1 as the baseline system and Claude-3.7-Sonnet as the judge. To avoid potential judgment bias toward self-generated responses, we exclude Claude-3.7-Sonnet from the rankings. GPT-4.1 is shown only to indicate the 50% win-rate baseline and is not compared against itself during evaluation.

Result Analysis The results in Figure 5 reveal several clear trends across the landscape of open and proprietary LLMs. Proprietary models continue to demonstrate a performance edge, with GPT-5 establishing a new state-of-the-art by a sizable margin. Both Claude-Opus-4 and Claude-Sonnet-4 also perform strongly, underscoring Claude’s strength in reasoning-heavy tasks. Among open models, progress is visible but uneven. Open LLMs like Kimi-K2, GLM-4.5, and Qwen3-Coder form a leading cluster that significantly narrows the gap with mid-tier proprietary models. In contrast, models such as GPT-4.1 and Claude-3.5-Sonnet occupy the middle tier with moderate scores, while smaller models including GPT-4o-mini and Claude-3.5-Haiku lag substantially behind.

6 RELATED WORK

Benchmarking Code Generation Quality Most code generation benchmarks assess natural-language to code generation, where LLMs are prompted with natural language descriptions. Existing studies like HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) evaluate coding capability through algorithm-specific problems that test whether generated code passes test cases. Practical benchmarks like DS-1000 (Lai et al., 2023) and BigCodeBench (Zhuo et al.) highlight library usage importance in code generation. Recent works emphasize multimodal code generation, such as generating webpages (Si et al., 2025; Yun et al., 2024) and plots (Wu et al., 2025). Different from existing benchmarks, we target dynamic evaluation for programming scenarios with execution results.

Judging LLMs via Human Preference Automatic benchmarks have been criticized due to limited scopes and potential contamination issues (Yang et al., 2023). As a result, human judgement is considered a natural and reliable metric to evaluate LLMs (Clark et al., 2021). To address limitations, Chatbot Arena (Chiang et al., 2024) computes model rankings by collecting human preference in pairwise comparisons. While there are code-specific platforms like Copilot Arena (Chi et al.), they fall short in application scope or do not open-source details. In this work, we aim to provide intuitive, transparent and reliable human evaluation of LLM-generated code via execution feedback.

7 CONCLUSION

We present BIGCODEARENA, an open evaluation platform for collecting human preferences on LLM-generated code via execution. Unlike prior platforms, it integrates real-time execution and interactive testing, enabling more reliable judgments of correctness, functionality, and intent alignment. Across 10 frontier LLMs and 4.7K crowdsourced conversations, we show that execution-based evaluation reveals issues overlooked by static comparisons. We further introduce two benchmarks: BIGCODEREWARD, for measuring alignment with human preferences, and AUTOCODEARENA, for automating judgments with LLM-as-a-Judge. Our results highlight the value of execution signals, with GPT-5 leading overall and Claude models performing strongly. By constructing BIGCODEARENA and its benchmarks, we provide an open foundation for advancing robust, aligned code LLMs. We note that more related work and future work can be found in Appendix C and Appendix D, respectively.

486 ETHICS AND REPRODUCIBILITY STATEMENT
487

488 Our work contributes to the societal benefit of responsible and transparent evaluation of code genera-
489 tion systems from a human-centered perspective. By releasing BIGCODEARENA and its associated
490 benchmarks, we aim to equip researchers, practitioners, and policymakers with tools to better under-
491 stand, compare, and improve large language models for software engineering. More reliable
492 evaluations can accelerate the development of LLMs that are safer, more aligned with user intent, and
493 ultimately more beneficial to communities that depend on trustworthy software systems. At the same
494 time, we acknowledge and address the risks associated with this research. To enable evaluation, we
495 collect user inputs and send them to various model API providers; while we make significant efforts
496 to remove personally identifiable information (PII) during dataset preparation, complete elimination
497 of sensitive content cannot be guaranteed. Additionally, although generated code is executed in
498 a controlled, one-time remote sandbox environment (via the E2B cloud service), we cannot fully
499 rule out the possibility of malicious or harmful code generation. We therefore emphasize both the
500 limitations and the protective measures of our platform, highlighting the need for continued vigilance
501 in mitigating cybersecurity and privacy concerns as the community builds on this work. Finally, we
502 reflect on the compute and sustainability impact of our study. Unlike model training efforts that
503 require substantial GPU clusters, BIGCODEARENA does not host LLMs locally, but instead leverages
504 inference endpoints provided by multiple model API services. While this setup makes it difficult to precisely
505 estimate CO₂ emissions, it reduces the direct energy footprint of our infrastructure. To support transparency
506 and reproducibility, we document the specific inference endpoints used in [Appendix H](#) and will release all the artifacts (e.g., codebase, data, benchmarks, and experiment
507 results) produced by this work. We encourage the broader community to continue investigating the
508 trade-offs between large-scale evaluation, environmental sustainability, and accessibility.
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES

541
542 Text-to-image arena. <https://lmarena.ai/leaderboard/text-to-image>, 2025a.

543 Webdev arena. <https://web.lmarena.ai/>, 2025b. LMArena project; Battle and Leaderboard
544 sections.

545
546 Anthropic. Introducing claude 4. Blog post, 2025. URL <https://www.anthropic.com/news/clause-4>.

547
548 Anthropic. Claude 3.5 sonnet model card addendum. Model card addendum, Anthropic, 2025.
549 Accessed: 2025-08-27.

550
551 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
552 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
553 models. [ArXiv preprint](https://arxiv.org/abs/2108.07732), abs/2108.07732, 2021. URL <https://arxiv.org/abs/2108.07732>.

554
555 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
556 Yu Han, Fei Huang, et al. Qwen technical report. [ArXiv preprint](https://arxiv.org/abs/2309.16609), abs/2309.16609, 2023. URL
557 <https://arxiv.org/abs/2309.16609>.

558 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
559 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. [ArXiv preprint](https://arxiv.org/abs/2502.13923), abs/2502.13923, 2025.
560 URL <https://arxiv.org/abs/2502.13923>.

561
562 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
563 Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant
564 with reinforcement learning from human feedback. [ArXiv preprint](https://arxiv.org/abs/2204.05862), abs/2204.05862, 2022. URL
565 <https://arxiv.org/abs/2204.05862>.

566 Emily M. Bender and Batya Friedman. Data statements for natural language processing: To-
567 ward mitigating system bias and enabling better science. *Transactions of the Association
568 for Computational Linguistics*, 6:587–604, 2018. doi: 10.1162/tacl_a_00041. URL <https://aclanthology.org/Q18-1041>.

569
570 Xiao Bi, Deli Chen, Guanting Chen, Shanhua Chen, Damai Dai, Chengqi Deng, Honghui Ding,
571 Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models
572 with longtermism. [ArXiv preprint](https://arxiv.org/abs/2401.02954), abs/2401.02954, 2024. URL <https://arxiv.org/abs/2401.02954>.

573
574 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
575 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

576
577 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
578 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
579 language models trained on code. [ArXiv preprint](https://arxiv.org/abs/2107.03374), abs/2107.03374, 2021. URL <https://arxiv.org/abs/2107.03374>.

580
581 Wayne Chi, Valerie Chen, Anastasios Nikolas Angelopoulos, Wei-Lin Chiang, Aditya Mittal, Naman
582 Jain, Tianjun Zhang, Ion Stoica, Chris Donahue, and Ameet Talwalkar. Copilot arena: A plat-
583 form for code llm evaluation in the wild. In *Forty-second International Conference on Machine
584 Learning*.

585
586 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
587 Li, Banghua Zhu, Hao Zhang, Michael I. Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
588 An open platform for evaluating llms by human preference. In *Forty-first International Conference
589 on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024.
590 URL <https://openreview.net/forum?id=3MW8GKNyzI>.

591 Christopher Chou, Lisa Dunlap, Koki Mashita, Krishna Mandal, Trevor Darrell, Ion Stoica, Joseph E
592 Gonzalez, and Wei-Lin Chiang. Visionarena: 230k real world user-vlm conversations with
593 preference labels. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
pp. 3877–3887, 2025.

594 Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong, Suchin Gururangan, and Noah A.
 595 Smith. All that's 'human' is not gold: Evaluating human evaluation of generated text. In
 596 Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th*
 597 *Annual Meeting of the Association for Computational Linguistics and the 11th International Joint*
 598 *Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 7282–7296, Online,
 599 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.565. URL
 600 <https://aclanthology.org/2021.acl-long.565>.

601 Françoise Détienne and Elliot Soloway. An empirically-derived control structure for the process of
 602 program understanding. *International Journal of Man-Machine Studies*, 33(3):323–342, 1990.

603

604 Dylan Ebert. 3d arena: An open platform for generative 3d evaluation. *ArXiv preprint*,
 605 abs/2506.18787, 2025. URL <https://arxiv.org/abs/2506.18787>.

606

607 Markus Freitag, George Foster, David Grangier, Viresh Ratnakar, Qijun Tan, and Wolfgang Macherey.
 608 Experts, errors, and context: A large-scale study of human evaluation for machine translation.
 609 *Transactions of the Association for Computational Linguistics*, 9:1460–1474, 2021. doi: 10.1162/
 610 tacla_a.00437. URL <https://aclanthology.org/2021.tacl-1.87>.

611 Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
 612 Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and
 613 synthesis. In *The Eleventh International Conference on Learning Representations, ICLR 2023,*
 614 *Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/pdf?id=hQwb-1bM6EL>.

615

616 Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
 617 Hal Daumé III, and Kate Crawford. Datasheets for datasets. *Communications of the ACM*, 64(12):
 618 86–92, 2021.

619

620 Google Research & Google DeepMind. Introducing Gemini 2.0: Our new ai model for the agentic
 621 era. Blog post, Google Technology, 2024. URL <https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/>.

622

623 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 624 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 625 of models. *ArXiv preprint*, abs/2407.21783, 2024. URL <https://arxiv.org/abs/2407.21783>.

626

627 Mohammed Hassan, Grace Zeng, and Craig Zilles. Evaluating how novices utilize debuggers and
 628 code execution to understand code. In *Proceedings of the 2024 ACM Conference on International*
 629 *Computing Education Research-Volume 1*, pp. 65–83, 2024.

630

631 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
 632 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
 633 with scalable reinforcement learning. *arXiv e-prints*, pp. arXiv–2507, 2025.

634

635 Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
 636 Grundy, and Haoyu Wang. Large language models for software engineering: A systematic literature
 637 review. *ACM Transactions on Software Engineering and Methodology*, 33(8):1–79, 2024.

638

639 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 640 Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *ArXiv preprint*, abs/2409.12186,
 641 2024. URL <https://arxiv.org/abs/2409.12186>.

642

643 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 644 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *ArXiv preprint*,
 645 abs/2410.21276, 2024. URL <https://arxiv.org/abs/2410.21276>.

646

647 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 648 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *ArXiv*
 649 *preprint*, abs/2412.16720, 2024. URL <https://arxiv.org/abs/2412.16720>.

648 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 649 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 650 evaluation of large language models for code. In The Thirteenth International Conference on
 651 Learning Representations.

652 Dongfu Jiang, Max Ku, Tianle Li, Yuansheng Ni, Shizhuo Sun, Rongqi Fan, and Wenhui Chen.
 653 Genai arena: An open evaluation platform for generative models. In Amir Globersons, Lester
 654 Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
 655 Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference
 656 on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
 657 December 10 - 15, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/92249f9233286e437f808fa535d88b26-Abstract-Datasets_and_Benchmarks_Track.html.

658 Feng Jiang, Zhiyu Lin, Fan Bu, Yuhao Du, Benyou Wang, and Haizhou Li. S2s-arena, evaluating
 659 speech2speech protocols on instruction following with paralinguistic information. ArXiv preprint,
 660 abs/2503.05085, 2025. URL <https://arxiv.org/abs/2503.05085>.

661 Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey
 662 Svyatkovskiy. Inferfix: End-to-end program repair with llms. In Proceedings of the 31st ACM
 663 joint european software engineering conference and symposium on the foundations of software
 664 engineering, pp. 1646–1656, 2023.

665 Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau
 666 Yih, Daniel Fried, Sida I. Wang, and Tao Yu. DS-1000: A natural and reliable benchmark for
 667 data science code generation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
 668 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
 669 Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
 670 Machine Learning Research, pp. 18319–18345. PMLR, 2023. URL <https://proceedings.mlr.press/v202/lai23b.html>.

671 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, Lester James Validad Miranda, Bill Yuchen Lin,
 672 Khyathi Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating
 673 reward models for language modeling. In Findings of the Association for Computational
 674 Linguistics: NAACL 2025, pp. 1755–1797, 2025.

675 Raymond Li, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,
 676 Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, et al. Starcoder: may the source be with you! Transactions
 677 on Machine Learning Research.

678 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E. Gonzalez,
 679 and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
 680 pipeline. In Forty-second International Conference on Machine Learning, 2025a. URL <https://openreview.net/forum?id=KfTf9vFvSn>.

681 Zhikai Li, Xuewen Liu, Dongrong Joe Fu, Jianquan Li, Qingyi Gu, Kurt Keutzer, and Zhen Dong. K-
 682 sort arena: Efficient and reliable benchmarking for generative models via k-wise human preferences.
 683 In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 9131–9141,
 684 2025b.

685 Jiawei Liu, Thanh Nguyen, Mingyue Shang, Hantian Ding, Xiaopeng Li, Yu Yu, Varun Kumar, and
 686 Zijian Wang. Learning code preference via synthetic evolution. ArXiv preprint, abs/2410.03837,
 687 2024. URL <https://arxiv.org/abs/2410.03837>.

688 Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. Relationships between reading,
 689 tracing and writing skills in introductory programming. In Proceedings of the fourth international
 690 workshop on computing education research, pp. 101–112, 2008.

691 Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
 692 Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
 693 next generation. ArXiv preprint, abs/2402.19173, 2024. URL <https://arxiv.org/abs/2402.19173>.

702 Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A Smith, Hannaneh Hajishirzi,
 703 and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation. [ArXiv preprint](https://arxiv.org/abs/2506.01937),
 704 abs/2506.01937, 2025. URL <https://arxiv.org/abs/2506.01937>.

705 Mihran Miroyan, Tsung-Han Wu, Logan King, Tianle Li, Jiayi Pan, Xinyan Hu, Wei-Lin Chiang,
 706 Anastasios N Angelopoulos, Trevor Darrell, Narges Norouzi, et al. Search arena: Analyzing
 707 search-augmented llms. [ArXiv preprint](https://arxiv.org/abs/2506.05334), abs/2506.05334, 2025. URL <https://arxiv.org/abs/2506.05334>.

708 710 Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani (eds.), [Advances in Neural Information Processing Systems 14 \[Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada\]](#), pp. 841–848. MIT Press, 2001. URL <https://proceedings.neurips.cc/paper/2001/hash/7b7a53e239400a13bd6be6c91c4f6c4e-Abstract.html>.

711 717 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
 718 and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
 719 synthesis. In [The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023](#). OpenReview.net, 2023. URL https://openreview.net/pdf?id=iaYcJKpY2B_.

720 722 OpenAI. Openai o3-mini system card. System card, OpenAI, 2025. Accessed: 2025-08-27.

723 724 OpenAI. Introducing GPT-4.1 in the api. Blog post, 2025. URL <https://openai.com/index/gpt-4-1/>.

725 726 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 727 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
 728 Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and
 729 Ryan Lowe. Training language models to follow instructions with human feedback. In Sanmi
 730 Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), [Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022](#). URL http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.

731 735 Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language
 736 model connected with massive apis. In Amir Globersons, Lester Mackey, Danielle Bel-
 737 grave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), [Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024](#). URL http://papers.nips.cc/paper_files/paper/2024/hash/e4c61f578ff07830f5c37378dd3ecb0d-Abstract-Conference.html.

738 742 Juan A Rodriguez, Abhay Puri, Shubham Agarwal, Issam H Laradji, Pau Rodriguez, Sai Rajeswar,
 739 David Vazquez, Christopher Pal, and Marco Pedersoli. Starvector: Generating scalable vec-
 740 tor graphics code from images and text. In [Proceedings of the Computer Vision and Pattern
 741 Recognition Conference](#), pp. 16175–16186, 2025.

742 747 Chenglei Si, Yanzhe Zhang, Ryan Li, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code:
 748 Benchmarking multimodal code generation for automated front-end engineering. In [Proceedings of
 749 the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational
 750 Linguistics: Human Language Technologies \(Volume 1: Long Papers\)](#), pp. 3956–3974, 2025.

751 Core Team, Zihao Yue, Zhenru Lin, Yifan Song, Weikun Wang, Shuhuai Ren, Shuhao Gu, Shicheng
 752 Li, Peidian Li, Liang Zhao, Lei Li, Kainan Bao, Hao Tian, Hailin Zhang, Gang Wang, Dawei Zhu,
 753 Cici, Chenhong He, Bowen Ye, Bowen Shen, Zihan Zhang, Zihan Jiang, Zhixian Zheng, Zhichao
 754 Song, Zhenbo Luo, Yue Yu, Yudong Wang, Yuanyuan Tian, Yu Tu, Yihan Yan, Yi Huang, Xu Wang,
 755 Xinzhe Xu, Xingchen Song, Xing Zhang, Xing Yong, Xin Zhang, Xiangwei Deng, Wenyu Yang,
 Wenhan Ma, Weiwei Lv, Weiji Zhuang, Wei Liu, Sirui Deng, Shuo Liu, Shima Chen, Shihua Yu,

756 Shaohui Liu, Shande Wang, Rui Ma, Qiantong Wang, Peng Wang, Nuo Chen, Menghang Zhu,
 757 Kangyang Zhou, Kang Zhou, Kai Fang, Jun Shi, Jinhao Dong, Jiebao Xiao, Jiaming Xu, Huaqiu
 758 Liu, Hongshen Xu, Heng Qu, Haochen Zhao, Hanglong Lv, Guoan Wang, Duo Zhang, Dong
 759 Zhang, Di Zhang, Chong Ma, Chang Liu, Can Cai, and Bingquan Xia. Mimo-vl technical report,
 760 2025a. URL <https://arxiv.org/abs/2506.03569>.

761 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 762 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 763 capable multimodal models. *ArXiv preprint*, abs/2312.11805, 2023. URL <https://arxiv.org/abs/2312.11805>.

764

765 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 766 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 767 report. *ArXiv preprint*, abs/2503.19786, 2025b. URL <https://arxiv.org/abs/2503.19786>.

768

769 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
 770 Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *ArXiv preprint*, abs/2504.07491,
 771 2025c. URL <https://arxiv.org/abs/2504.07491>.

772

773 Chengyue Wu, Zhixuan Liang, Yixiao Ge, Qiushan Guo, Zeyu Lu, Jiahao Wang, Ying Shan, and
 774 Ping Luo. Plot2code: A comprehensive benchmark for evaluating multi-modal large language
 775 models in code generation from scientific plots. In *Findings of the Association for Computational
 776 Linguistics: NAACL 2025*, pp. 3006–3028, 2025.

777

778 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
 779 Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
 780 Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal
 781 agents for open-ended tasks in real computer environments. In Amir Globersons, Lester
 782 Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
 783 Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference
 784 on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
 785 December 10 - 15, 2024*. URL http://papers.nips.cc/paper_files/paper/2024/hash/5d413e48f84dc61244b6be550f1cd8f5-Abstract-Datasets_and_Benchmarks_Track.html.

786

787 An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
 788 Jianhong Tu, Jianwei Zhang, Jingren Zhou, et al. Qwen2. 5-1m technical report. *ArXiv preprint*,
 789 abs/2501.15383, 2025. URL <https://arxiv.org/abs/2501.15383>.

790

791 Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E Gonzalez, and Ion Stoica. Rethinking
 792 benchmark and contamination for language models with rephrased samples. *ArXiv preprint*,
 793 abs/2311.04850, 2023. URL <https://arxiv.org/abs/2311.04850>.

794

795 Sukmin Yun, Haokun Lin, Rusuru Thushara, Mohammad Qazim Bhat, Yongxin Wang, Zutao Jiang,
 796 Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo Li, Haonan Li, Preslav Nakov, Timothy
 797 Baldwin, Zhengzhong Liu, Eric P. Xing, Xiaodan Liang, and Zhiqiang Shen. Web2code: A
 798 large-scale webpage-to-code dataset and evaluation framework for multimodal llms. In Amir
 799 Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
 800 Cheng Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference
 801 on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
 802 December 10 - 15, 2024*. URL http://papers.nips.cc/paper_files/paper/2024/hash/cb66be286795d71f89367d596bf78ea7-Abstract-Datasets_and_Benchmarks_Track.html.

803

804 Chenchen Zhang, Yuhang Li, Can Xu, Jiaheng Liu, Ao Liu, Shihui Hu, Dengpeng Wu, Guanhua
 805 Huang, Kejiao Li, Qi Yi, et al. Artifactsbench: Bridging the visual-interactive gap in llm code
 806 generation evaluation. *ArXiv preprint*, abs/2507.04952, 2025. URL <https://arxiv.org/abs/2507.04952>.

807

808 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 809 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *ArXiv
 preprint*, abs/2303.18223, 2023. URL <https://arxiv.org/abs/2303.18223>.

810 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
811 Zhou, and Le Hou. Instruction-following evaluation for large language models. *ArXiv preprint*,
812 [abs/2311.07911](https://arxiv.org/abs/2311.07911), 2023. URL <https://arxiv.org/abs/2311.07911>.

813
814 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
815 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes
816 for open-source multimodal models. *ArXiv preprint*, [abs/2504.10479](https://arxiv.org/abs/2504.10479), 2025. URL <https://arxiv.org/abs/2504.10479>.

817
818 Terry Yue Zhuo. ICE-score: Instructing large language models to evaluate code. In Yvette Graham
819 and Matthew Purver (eds.), *Findings of the Association for Computational Linguistics: EACL*
820 [2024](https://aclanthology.org/2024.findings-eacl.148), pp. 2232–2242, St. Julian’s, Malta, 2024. Association for Computational Linguistics. URL
821 <https://aclanthology.org/2024.findings-eacl.148>.

822
823 Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widayarsi, Imam
824 Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
825 generation with diverse function calls and complex instructions. In *The Thirteenth International*
826 *Conference on Learning Representations*.

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 865 866 867 868 869 870 871 Appendix

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 CONTENTS

A Datacard	19
B Data Sheet	20
B.1 Motivation	20
B.1.1 For what purpose was the dataset created?	20
B.2 Composition/Collection Process/Preprocessing/Cleaning/Labeling and Use	20
B.3 Distribution	20
B.3.1 Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on behalf of which the dataset was created?	20
B.3.2 How will the dataset be distributed (e.g., tarball on website, API, GitHub)?	20
B.3.3 When will the dataset be distributed?	20
B.3.4 Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable terms of use (ToU)?	21
B.4 Maintenance	21
B.4.1 How can the owner/curator/manager of the dataset be contacted (e.g., email address)?	21
B.4.2 Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?	21
B.4.3 If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so?	21
C Related Work	21
D Future Work	22
E BIGCODEARENA	23
E.1 Screenshot	23
E.2 System Design	23
E.3 Model Sampling Strategy	24
E.4 Supported Execution Environments	25
E.5 System Prompt Design	25
E.6 Sandbox Infrastructure for BIGCODEARENA	28
E.7 Case Studies on UI Interactions	29
F Data Analysis	29
F.1 Conversation Characteristics Analysis	30
F.2 Understanding User Interaction with Execution Outcomes	31
G BIGCODEARENA Ranking Analysis	32

918	G.1	Overall Analysis	32
919	G.2	Analysis of Programming Topics	33
920	G.3	Comparisons to Previous Evaluations	33
921	G.4	Validation of Vote Quality	34
922			
923	H	Artifacts	35
924			
925	I	BIGCODEREWARD	36
926			
927	I.1	Experiment Details	36
928	I.2	Judgement Prompt (with Output)	36
929	I.3	Judgement Prompt (without Output)	37
930	I.4	Metric	38
931	I.5	Experiment Results	38
932	I.6	Case Studies	39
933	I.6.1	Web Design	40
934	I.6.2	Game Development	41
935	I.6.3	Creative Coding	42
936	I.6.4	Diagram Creation	43
937	I.6.5	Scientific Computing	44
938	I.6.6	Problem Solving	45
939			
940	J	AUTOCODEARENA	46
941			
942	J.1	Classification Prompt	46
943	J.2	Generation Prompt	46
944	J.3	Judgement System Prompt	47
945	J.4	Customized Sandbox	48
946	J.5	More Results	49
947	J.5.1	Web Design	49
948	J.5.2	Game Development	49
949	J.5.3	Creative Coding	50
950	J.5.4	Diagram Creation	50
951	J.5.5	Scientific Computing	50
952	J.5.6	Problem Solving	51
953	J.6	Case Studies	52
954			
955			
956			
957			
958			
959			
960			
961			
962			
963			
964			
965			
966			
967			
968			
969			
970			
971			

972 **A DATACARD**
973974 We follow (Bender & Friedman, 2018) to create the datacard for BIGCODEARENA, where we tend to
975 summarize and centralize all information that might be relevant for the benchmark analysis.
976977 **Curation Rationale** This is detailed in [Section 3](#).
978979 **Language Variety** Information about our annotators' nationalities will not be provided, as we do
980 not have much knowledge of the public annotators. However, we confirm that all communications
981 among the 15 volunteers recruited from the REDACTED community are in mainstream English
982 (en-US). We note that the first language of these volunteers is not English, which can introduce some
983 inaccurate expressions to the task prompts in the collected data.
984985 **Curators Demographic** The data annotation in BIGCODEARENA requires the great annotation
986 effort of 15 Curators, who are involved in the process detailed in [Section 3](#). They come from the
987 following population:
988989 • **Experience in Python Programming (Years):**
990991 – 1-3: 7% (1/15)
992 – 3-5: 60% (9/15)
993 – 5+: 20% (3/15)
994996 • **Experience in C Programming (Years):**
997998 – 1-3: 27% (4/15)
999 – 3-5: 27% (4/15)
1000 – 5+: 13% (2/15)
10011003 • **Experience in C++ Programming (Years):**
10041005 – 1-3: 27% (4/15)
1006 – 3-5: 27% (4/15)
1007 – 5+: 13% (2/15)
10081010 • **Experience in Java Programming (Years):**
10111012 – 1-3: 40% (6/15)
1013 – 5+: 20% (3/15)
10141015 • **Experience in Javascript/Typescript Programming (Years):**
10161017 – 1-3: 13% (2/15)
1018 – 3-5: 7% (1/15)
1019 – 5+: 7% (1/15)
10201022 • **Experience in Markdown (Years):**
10231024 – 1-3: 33% (5/15)
1025 – 3-5: 7% (1/15)

- 1026 • **Experience in Rust Programming (Years):**
- 1027 – 1-3: 27% (4/15)
- 1028 • **Experience in Golang Programming (Years):**
- 1029 – 1-3: 20% (3/15)
- 1030 – 3-5: 13% (2/15)
- 1031 • **Experience in HTML Programming (Years):**
- 1032 – 3-5: 20% (3/15)
- 1033 • **Academic Background:**
- 1034 – Bachelor: 20% (3/15)
- 1035 – Master: 33% (5/15)
- 1036 – PhD: 47% (7/15)

1045 **Text Characteristics** This is detailed in [Appendix F](#).

1046 B DATA SHEET

1050 Besides the provided Datacard, we follow the documentation frameworks provided by [\(Gebru et al., 2021\)](#).

1053 B.1 MOTIVATION

1055 B.1.1 FOR WHAT PURPOSE WAS THE DATASET CREATED?

1057 Our dataset aims to provide a thorough understanding of human preference on AI coding. Particularly, we focus on the challenges and practicability of the tasks, and pinpoint two main characteristics that few evaluations highlight: (1) Human understanding of the practical coding matter, and (2) Execution feedback is important to judge the code quality. This dataset will help stakeholders better understand the fundamental abilities and limitations associated with deploying LLMs.

1062 B.2 COMPOSITION/COLLECTION PROCESS/PREPROCESSING/CLEANING/LABELING AND USE

1064 The answers are described in our paper as well as the GitHub repository: [REDACTED](#).

1066 B.3 DISTRIBUTION

1068 B.3.1 WILL THE DATASET BE DISTRIBUTED TO THIRD PARTIES OUTSIDE OF THE ENTITY 1069 (E.G., COMPANY, INSTITUTION, ORGANIZATION) ON BEHALF OF WHICH THE DATASET 1070 WAS CREATED?

1071 No. Our dataset will be managed and maintained by the [REDACTED](#) community ([REDACTED](#)).

1073 B.3.2 HOW WILL THE DATASET BE DISTRIBUTED (E.G., TARBALL ON WEBSITE, API, 1074 GITHUB)?

1076 The evaluation dataset will be released to the public, and hosted on Hugging Face.

1078 B.3.3 WHEN WILL THE DATASET BE DISTRIBUTED?

1079 The dataset will be released after ICLR 2026.

1080 B.3.4 WILL THE DATASET BE DISTRIBUTED UNDER A COPYRIGHT OR OTHER INTELLECTUAL
 1081 PROPERTY (IP) LICENSE, AND/OR UNDER APPLICABLE TERMS OF USE (TOU)?
 1082

1083 Our dataset will be distributed under the Apache-2.0 license.
 1084

1085 B.4 MAINTENANCE
 1086

1087 B.4.1 HOW CAN THE OWNER/CURATOR/MANAGER OF THE DATASET BE CONTACTED (E.G.,
 1088 EMAIL ADDRESS)?

1089 Please contact REDACTED (REDACTED) and the REDACTED Project (REDACTED), who are
 1090 responsible for maintenance.
 1091

1092 B.4.2 WILL THE DATASET BE UPDATED (E.G., TO CORRECT LABELING ERRORS, ADD NEW
 1093 INSTANCES, DELETE INSTANCES)?
 1094

1095 Yes. If we include more tasks or find any errors, we will correct the dataset hosted on Hugging Face.
 1096

1097 B.4.3 IF OTHERS WANT TO EXTEND/AUGMENT/BUILD ON/CONTRIBUTE TO THE DATASET, IS
 1098 THERE A MECHANISM FOR THEM TO DO SO?

1099 For dataset contributions and evaluation modifications, the most efficient way to reach us is via
 1100 GitHub pull requests. For more questions, contact REDACTED (REDACTED) and the REDACTED
 1101 Project (REDACTED), who are responsible for maintenance.
 1102

1103 C RELATED WORK
 1104

1105 **Training LLMs on Code** LLMs have significantly advanced the landscape of software engineering,
 1106 including code completion (Chen et al., 2021) and program repair (Jin et al., 2023). Such models
 1107 have been trained on a large-scale corpus of source code and able to capture of the code semantics. A
 1108 series of code-specific LLMs like CodeGen (Nijkamp et al., 2023), StarCoder (Li et al.; Lozhkov
 1109 et al., 2024), and InCoder (Fried et al., 2023), have been proposed to automate code generation in
 1110 software development. However, these models have limited capabilities in understanding natural
 1111 language and hence fail to follow complex instructions from humans (Zhou et al., 2023). Later,
 1112 GPT-3.5 (Ouyang et al., 2022) was developed to specialize at both text and code generation, achieving
 1113 superior capabilities in aligning human preference. Inspired by GPT-3.5, many LLMs have begun to
 1114 merge code and text during training, such as Claude (Anthropic, 2025), Gemini (Team et al., 2023),
 1115 Qwen (Bai et al., 2023), and DeepSeek (Bi et al., 2024). With the new training paradigm, LLMs
 1116 demonstrate stronger cross-domain reasoning, improved instruction-following, and enhanced ability
 1117 to ground code generation in natural language descriptions. This unified training has narrowed the
 1118 gap between general-purpose LLMs and code-specialized models, enabling more reliable support for
 1119 real-world programming tasks (Hou et al., 2024).
 1120

1121 **Benchmarking Code Generation Quality** Most of the code generation benchmarks assess the
 1122 quality of natural-language to code generation, where LLMs are prompted with a natural language
 1123 description or docstring. Existing studies like HumanEval (Chen et al., 2021) and MBPP (Austin
 1124 et al., 2021) consider algorithm-specific code generation problems a good way to evaluate the
 1125 coding capability, where the benchmarks test whether the generated code can pass a series of test
 1126 cases. To make the evaluation more practical, researchers have proposed DS-1000 (Lai et al., 2023),
 1127 APIBench (Patil et al., 2024), BigCodeBench (Zhuo et al.), which highlight the importance of
 1128 library usage in code generation. To build beyond textual code, more recent works emphasize on the
 1129 multimodal code generation, such as generating webpages (Si et al., 2025; Yun et al., 2024; Zhang
 1130 et al., 2025), plots (Wu et al., 2025) and SVG (Rodriguez et al., 2025). Different from existing
 1131 benchmarks, we target a more dynamic and interactive evaluation for any programming scenarios
 1132 that can be presented with execution results.
 1133

Judging LLMs via Human Preference Automatic benchmarks have been criticized due to the
 1133 limited scopes and potential contamination issues (Yang et al., 2023). As a result, human judgement is

1134 considered a more natural and reliable metrics to evaluate LLMs (Clark et al., 2021). Traditionally, hu-
 1135 mans may be asked to score the generation quality of LLMs based on some predefined rubrics (Freitag
 1136 et al., 2021). However, conducting this kind of human studies is unscalable. Furthermore, the results
 1137 can be varied when the evaluation criteria changes. To address the limitations, Chatbot Arena (Chiang
 1138 et al., 2024) was created to compute the model rankings by collecting human preference in pairwise
 1139 comparisons. It has attracted the community attention and turns into a long-term evaluation platform
 1140 to keep evaluating new LLMs. Meanwhile, there are many other evaluation platforms like Vision
 1141 Arena (Chou et al., 2025) for visual input understanding, Text-to-Image Arena (lma, 2025a) for
 1142 image generation, and Search Arena (Miroyan et al., 2025) for LLM-based search. While Chatbot
 1143 Arena has code-specific evaluation platforms like Copilot Arena (Chi et al.) and WebDev Arena (lma,
 1144 2025b), they fall short in the application scopes or do not open-source any details. In this work, we
 1145 aim to provide a more intuitive, transparent and reliable human evaluation of LLM-generated code
 1146 via execution feedback.

D FUTURE WORK

1147 BIGCODEARENA opens several promising directions for future research. First, although our platform
 1148 is open-source and designed to be scalable across diverse execution environments, it currently supports
 1149 only a limited set of languages and frameworks. We hope the community will contribute to expanding
 1150 this diversity. Second, developing live versions of BIGCODEREWAD and AUTOCODEARENA would
 1151 allow evaluation prompts to be continuously refreshed, drawing from both user inputs and LLM-
 1152 generated tasks. Third, improving the reliability of evaluation is crucial: our current benchmarks
 1153 rely on LLM-as-a-Judge using only initial screenshots, whereas future work could leverage LLM
 1154 agents that actively interact with web applications for deeper assessment. Fourth, recording and
 1155 utilizing user interaction trajectories in BIGCODEARENA may enable training LLMs to autonomously
 1156 test and evaluate web applications in human-like ways. Fifth, advancing reward models for code
 1157 generation remains an open challenge, as current systems still fall short of human-level perception
 1158 and reasoning; better reward models will, in turn, support the development of more capable and
 1159 aligned code LLMs. Finally, we envision BIGCODEARENA evolving into a comprehensive ecosystem
 1160 that not only evaluates existing models but also serves as a training ground for next-generation code
 1161 LLMs through continuous human-AI collaboration and real-world task discovery.

1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 E BIGCODEARENA

1189

1190 E.1 SCREENSHOT

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

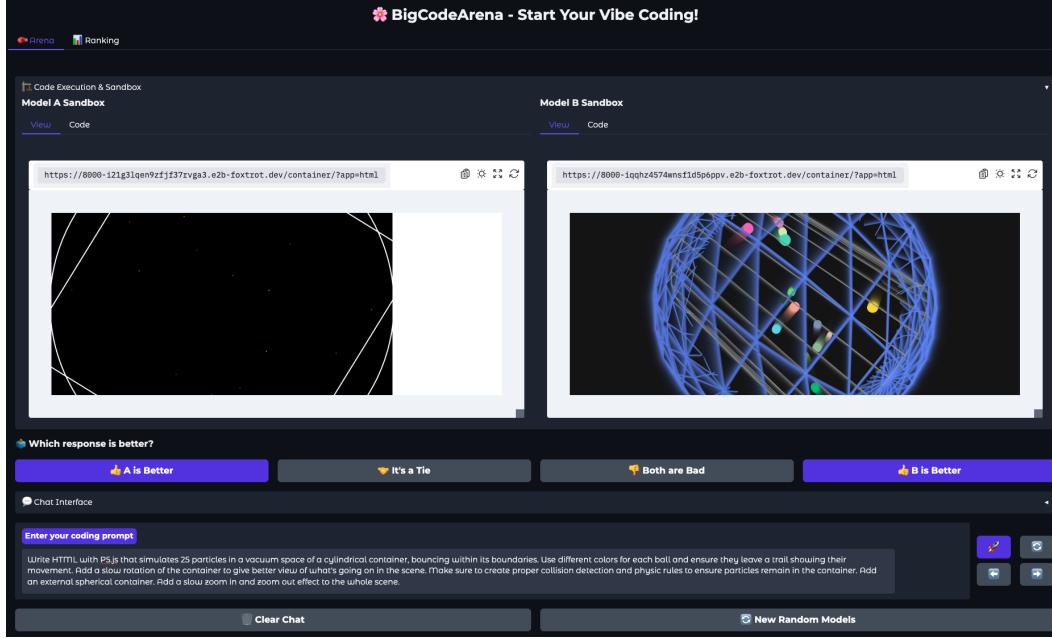


Figure 6: User interface of BIGCODEARENA. The left and right panes display outputs from two different models (A and B) in a code execution sandbox, while the bottom section allows users to view the prompt, inspect code, and cast comparative judgments on which model performed better. The example prompt is “Write HTML with P5.js that simulates 25 particles in a vacuum space of a cylindrical container, bouncing within its boundaries. Use different colors for each ball and ensure they leave a trail showing their movement. Add a slow rotation of the container to give better view of what’s going on in the scene. Make sure to create proper collision detection and physic rules to ensure particles remain in the container. Add an external spherical container. Add a slow zoom in and zoom out effect to the whole scene.”

E.2 SYSTEM DESIGN

User Interface BIGCODEARENA provides an interface for direct pairwise comparison of anonymized model outputs in code generation tasks. By rendering responses in identical formats, the interface ensures that judgments are based on quality rather than model identity. The interface consists of three components: a unified input panel for coding prompts, dual response panels displaying outputs, and an integrated execution environment. Each response panel supports syntax highlighting, collapsible code blocks, and execution controls, allowing users to run code directly in the browser. This design shifts evaluation from subjective inspection to functionality-driven assessment. After reviewing and optionally executing outputs, users can vote for their preferred response, record a tie, or abstain if neither response meets quality standards. To further align with developer workflows, the interface supports in-place code editing for testing modifications and provides a conversation history for multi-turn interactions. These features capture real-world coding assistance scenarios where requirements evolve iteratively.

Pipeline Modules As displayed in Figure 7, the *code extraction* module analyzes each snippet to determine the runtime environment based on language identifiers in markdown code blocks. BIGCODEARENA currently supports 10 languages (Python, JavaScript, TypeScript, HTML, Markdown, C, C++, Java, Golang, and Rust) and 8 frameworks (Core Web, React, Vue, Gradio, Streamlit, PyGame, Mermaid, and Interpreter); detailed descriptions are provided in Section E.4. The *sandbox execution* module parses imported packages, installs third-party dependencies, and executes code

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

in containerized sandboxes. The system can create and terminate multiple isolated environments in parallel without affecting the platform. Execution is subject to time and memory limits to prevent infinite loops or resource exhaustion, reflecting real-world workflows where dependency management is critical. Finally, the *result display* module presents structured outputs, including logs, error traces, and runtime results, side by side for users. This design encourages testing of edge cases and verification of functionality before casting a vote. By embedding execution directly into the evaluation loop, BIGCODEARENA enables judgments based not only on presentation but also on correctness and practical utility.

1270

1271

E.3 MODEL SAMPLING STRATEGY

1272

1273

A challenge in evaluation platforms is ensuring that user preferences are not biased by system-level artifacts such as streaming latency or execution time. In code generation settings, users may naturally prefer the model whose response appears faster or whose program executes earlier, even if this does not reflect true quality. To eliminate this confounder, BIGCODEARENA enforces strict synchronization: model responses are only displayed once both models have completed code generation and their outputs have finished execution in the sandbox environment. This guarantees that preferences are based solely on the quality and behavior of the generated programs.

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

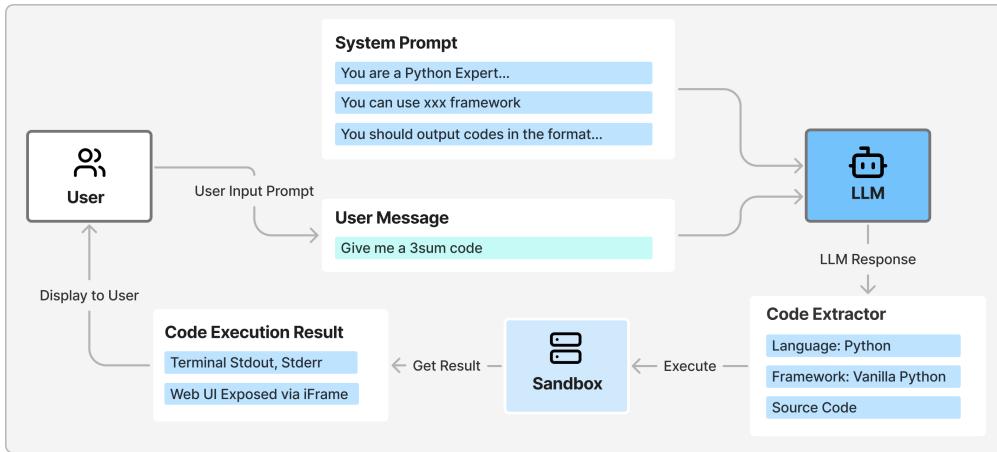


Figure 7: Overview of BIGCODEARENA Pipeline.

1296
1297

E.4 SUPPORTED EXECUTION ENVIRONMENTS

1298

Core Web The Core Web environment supports direct HTML execution with embedded CSS and JavaScript. Code is processed to replace placeholder URLs with SVG data URLs for self-contained rendering. The sandbox creates an HTML application directory, writes the provided code as an index.html file, and serves it through the E2B infrastructure’s nginx proxy. This environment enables rapid prototyping of web interfaces without build processes or framework dependencies.

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

React The React environment provides a complete React development stack with TypeScript support and Vite build system. The template includes React 18.3.1, React DOM 18.3.18, and TypeScript 5.6.2. User code replaces the default App.tsx component in a pre-configured React project template with Tailwind CSS 3.4.17 and PostCSS 8.5.1. The pipeline uses npm for dependency management with specific flags including `--prefer-offline`, `--no-audit`, `--no-fund`, and `--legacy-peer-deps` for robust installation. The build process executes `npm run build` with TypeScript compilation and serves the compiled application through the sandbox’s web proxy.

Vue The Vue environment mirrors the React setup but targets Vue.js 3.5.13 Single File Components with Vue Router 4.5.0. The template includes TypeScript 5.6.3, Vite 6.0.5, and Tailwind CSS 3.4.17. User code replaces the App.vue file in a pre-configured Vue project with Vite tooling. The system handles Vue-specific build processes and dependency management through npm, ensuring proper compilation of templates, scripts, and styles.

Mermaid The Mermaid environment converts diagram syntax into interactive HTML visualizations. User-provided Mermaid code is embedded within a minimal HTML document that includes the Mermaid JavaScript library version 10.6.1 from CDN. The system supports configurable themes and security levels, with diagrams rendered client-side through the Mermaid initialization system.

Gradio The Gradio environment enables rapid creation of machine learning interfaces and interactive demos. The template pre-installs Gradio through `uv pip install --system --upgrade gradio`. User code defines Gradio applications which are automatically configured to run on allocated ports with proper server settings. The pipeline uses uv for Python dependency management, installing packages with `--system` flag for global availability.

Streamlit The Streamlit environment supports data science applications and interactive dashboards. The template pre-installs Streamlit through `uv pip install --system --upgrade streamlit`. User code is written as a Streamlit application script, with the pipeline using uv for dependency installation. Applications run in headless mode on port 8501 with `--server.headless true` and `--server.runOnSave false` flags.

Interpreter The Interpreter environment executes code across multiple programming languages through the E2B code interpreter sandbox. The template includes build tools for C/C++ (`build-essential`), Java (`default-jdk`), Go (`golang`), and Rust (`rustc`). Python dependencies are managed through uv with `--system` installation, while npm handles JavaScript dependencies. The template pre-installs 101 top PyPI packages including pandas, matplotlib, scipy, numpy 1.26, and scientific computing libraries. Python code benefits from enhanced visual output capture through instrumentation of matplotlib and other visualization libraries, while compiled languages follow standard compilation workflows with `gcc`, `g++`, `javac`, `rustc`, and `go run` commands.

E.5 SYSTEM PROMPT DESIGN

You are an expert Software Engineer, UI/UX designer, and product manager. Your task is to generate self-contained, executable code for a single file or block that can run directly in a sandbox environment. Feel free to ask questions or explain your reasoning. If you do a great job based on the instructions, you will be rewarded with a high salary and a promotion.

```

1350 Your code must be written using one of these supported development ←
1351 frameworks and environments:
1352 - React (JavaScript/TypeScript)
1353 - Vue (JavaScript/TypeScript)
1354 - HTML (Vanilla HTML)
1355 - Gradio (Python)
1356 - Streamlit (Python)
1357 - PyGame (Python)
1358 - Mermaid (Markdown)
1359 - Python Runner
1360 - JavaScript Runner
1361 - Command Line Code Runner (C/C++/Go/Java/Rust)

1362 All web framework code (React, Vue, HTML) must be directly rendered in ←
1363 a browser and immediately executable without additional setup. DO ←
1364 NOT create separate CSS files
1365 Python-based frameworks should be directly executable in a browser ←
1366 environment.
1367 The code to be executed in Runners must be plain Python or JavaScript ←
1368 programs that do not require web UI frameworks or standard user ←
1369 input.

1370 The code must be in the markdown format:
1371 ``<language>
1372 <code>
1373 ```

1374 Before you begin writing any code, you must follow these fundamental ←
1375 rules:
1376 - You are NOT allowed to start directly with a code block. Before ←
1377 writing code, ALWAYS think carefully step-by-step
1378 - Your response must contain a clear explanation of the solution you ←
1379 are providing
1380 - ALWAYS generate complete, self-contained code in a single file
1381 - You CAN NOT split your program into multiple files or multiple code ←
1382 blocks
1383 - If you use any external libraries, make sure to specify them for the ←
1384 installation command in either 'pip install' or 'npm install'
1385 - You prefer JavaScript over HTML
1386 - Each code block must be completely independent. If modifications are ←
1387 needed, the entire code block must be rewritten
1388 - When fetching data, you MUST use external libraries and packages, ←
1389 and avoid using placeholder URLs or URLs that require API keys
1390 - Make sure the program is functional by creating a state when needed ←
1391 and having no required props
1392 - Make sure to include all necessary code in one file
1393 - There are no additional files in the local file system, unless you ←
1394 create them inside the same program
1395 - Do not touch project dependencies files like package.json, package-←
1396 lock.json, requirements.txt, etc

1397 When developing with React or Vue components, follow these specific ←
1398 requirements:
1399 - Use TypeScript or JavaScript as the language
1400 - DO NOT use gray text color on a white background
1401 - Make sure it can run by itself by using a default export at the end ←
1402 of the file
1403 - DO NOT CALL 'ReactDOM.render()' AT THE END OF THE FILE
1404 - Use Tailwind classes for styling. DO NOT USE ARBITRARY VALUES (e.g. ←
1405 'h-[600px]'). Make sure to use a consistent color palette
1406 - If you use any imports from React like 'useState' or 'useEffect', ←
1407 make sure to import them directly
1408 - Use Tailwind margin and padding classes to style the components and ←
1409 ensure proper spacing

```

```

1404 - Various npm packages are available to be imported, e.g. 'import { ←
1405   LineChart, XAxis, ... } from "recharts"' & '<LineChart ...><XAxis ←
1406   dataKey="name"> ...' ←
1407 - Images from the web are not allowed, but you can use placeholder ←
1408   images by specifying the width and height like so '' ←

1410 For Python development, you must follow these constraints:
1411 - For any programs that require user inputs, you MUST USE 'gradio' or ←
1412   'streamlit' ←
1413 - Choose suitable PyPI packages to be imported, e.g., 'import pandas' ←
1414 - Avoid using libraries that require desktop GUI interfaces, with the ←
1415   exceptions of 'pygame', 'gradio', and 'streamlit' which are ←
1416   explicitly supported ←
1417 - For PyGame applications, you have to write the main function as an ←
1418   async function like: ←
1419   ```python
1420     import asyncio
1421     import pygame
1422
1423     async def main():
1424         global game_state
1425         while game_state:
1426             game_state(pygame.event.get())
1427             pygame.display.update()
1428             await asyncio.sleep(0) # it must be called on every frame
1429
1430     if __name__ == "__main__":
1431         asyncio.run(main())
1432     ```
1433
1434 For HTML development, ensure that:
1435 - All HTML code must be self-contained in a single file ←
1436 - Include any necessary CSS and JavaScript within the HTML file ←
1437 - Ensure the code is directly executable in a browser environment ←
1438 - Images from the web are not allowed, but you can use placeholder ←
1439   images by specifying the width and height like so '' ←
1441
1442 For Mermaid development:
1443 - Write Mermaid diagrams directly using ```mermaid code blocks, e.g.:
1444   ```mermaid
1445   graph TD;
1446     A-->B;
1447   ```
1448
1449 For Command Line Code Runner (C/C++/Go/Java/Rust), ensure that:
1450 - ALWAYS generate complete, self-contained code in a single file. ←
1451   Avoid non-standard libraries. ←
1452 - Your code should be able to be compiled and run directly. ←
1453 - Your code must complete the task without any user inputs. It should ←
1454   not be long running. ←
1455 - You should provide example test cases in the code and output the ←
1456   result to stdout or stderr. ←
1457
1458 The code must be in the markdown format:
1459   ```<language>
1460   <code>
1461   ```
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
2999

```

1458 E.6 SANDBOX INFRASTRUCTURE FOR BIGCODEARENA
1459

1460 The sandbox infrastructure in BIGCODEARENA is built upon the E2B platform, which provides a
1461 managed execution environment for code evaluation. The system operates through a centralized
1462 sandbox manager that handles the creation, lifecycle management, and resource allocation for various
1463 programming environments. Each sandbox instance is created with a specific template configuration
1464 that includes pre-installed language runtimes, build tools, and development dependencies. The
1465 core execution pipeline follows a unified approach where user code is injected into pre-configured
1466 project templates. For web frameworks like React and Vue, the system maintains dedicated project
1467 structures with TypeScript configurations, build tools, and styling frameworks. The sandbox manager
1468 ensures that each execution environment has the necessary dependencies installed and that the build
1469 processes complete successfully before serving the applications. Dependency management is handled
1470 through multiple package managers: uv for Python packages with `--system` installation flags,
1471 and npm for JavaScript dependencies with conflict-tolerant flags like `--legacy-peer-deps`
1472 and `--prefer-offline`. The infrastructure pre-installs a comprehensive set of 101 top PyPI
1473 packages including scientific computing libraries, web frameworks, and development tools to mini-
1474 mize cold-start latency. For interactive applications, the sandbox infrastructure provides background
1475 process management with timeout handling and error monitoring. Web servers are launched with
1476 specific port allocations and headless configurations, while the system monitors for startup errors and
1477 provides access through the E2B nginx proxy. The infrastructure also supports multiple programming
1478 languages through the E2B code interpreter sandbox, which handles compilation and execution for C,
1479 C++, Java, Go, and Rust code. The sandbox infrastructure emphasizes reproducibility and isolation
1480 by using fresh instances for each execution and maintaining consistent environment configurations
1481 across runs. This design ensures that code evaluation results are deterministic and that different
1482 submissions can be compared fairly within the benchmarking framework.

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

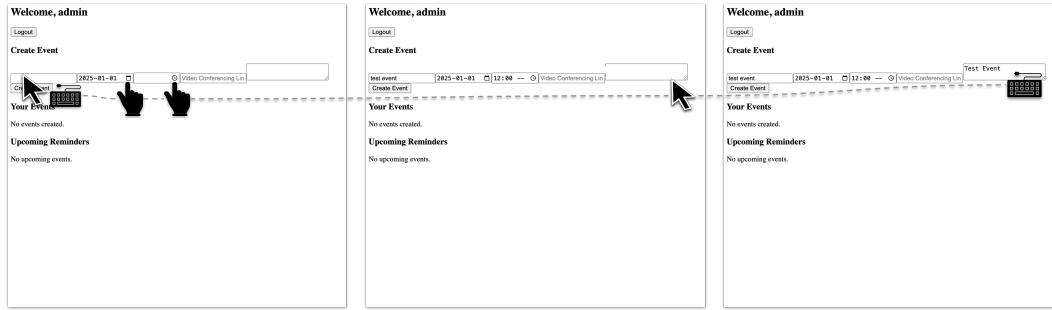
1508

1509

1510

1511

1512 E.7 CASE STUDIES ON UI INTERACTIONS
1513


1514

1515 **Turn 1: Please build my new App Idea: A Virtual Event Planner and RSVP System**

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

Turn 2: The UI is very boring looking, can you please add a lot more emojis and fun graphics to engage the user. Please also include fun and exciting colors to make the user feel connected.

1528

1529

1530

1531

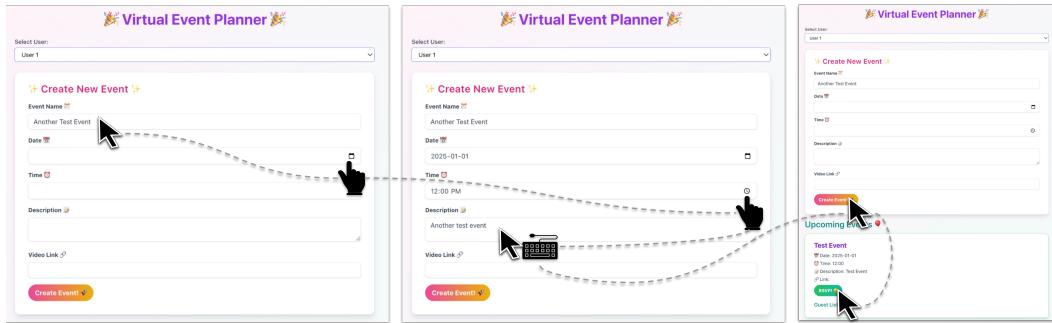
1532

1533

1534

1535

1536


1537

1538

1539

1540

1541

1542

1543

1544

Figure 8 provides a case study on how the user interacts with the rendered webpage generated from the LLM-produced code snippet. The case study illustrates two distinct turns in the interaction trajectory, each of which reveals different testing intentions by the user.

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

In the first turn, the user engages with the minimal event creation form. The sequence of actions shows that the user selects a date from the calendar picker, specifies a time and a video conferencing link, and enters a simple placeholder event name. This trajectory indicates that the user is primarily interested in verifying the core functionality of the system. The focus lies on checking whether the form fields accept inputs correctly, whether the basic flow of creating an event works as expected, and whether the system registers the submitted data as a valid “test event.” At this stage, the concern is functionality rather than aesthetics, and the test represents a validation of the underlying event creation logic.

In the second turn, the user provides explicit feedback that the user interface is “boring” and requests improvements in visual appeal, including emojis, engaging graphics, and colorful styling. The user’s interactions shift toward evaluating the usability and design of the interface. The actions involve inputting richer event details such as a more descriptive event name, a textual description, and other contextual information. The user then triggers the creation of the event and verifies that it appears correctly under the list of upcoming events. This trajectory demonstrates that the user is testing not only whether events can be created and displayed but also how the interface supports user engagement and perceived connectedness. Through this progression, the case study highlights a natural transition from functional validation to user experience evaluation.

F DATA ANALYSIS

1564

1565

In this section, we provide the analysis of the collected 14K conversations from two perspectives: (1) Conversation Characteristics, and (2) User Activities.

1566
1567

F.1 CONVERSATION CHARACTERISTICS ANALYSIS

1568

Conversation Context We first analyze the interaction statistics across roles. On average, user messages have 291.64 characters per turn. Model responses, by contrast, are substantially longer, consistent with their role in elaborating on queries and providing detailed explanations. In terms of language diversity, users employ a limited set of 9 natural languages, whereas the assistant generates outputs across a considerably broader range, covering 10 languages supported in our sandbox environments. This divergence underscores the model’s multilingual capacity relative to the more localized communication behavior of users. The proportion of duplicate content is low for both roles, suggesting that interactions are varied and not dominated by repeated prompts or template-like responses. Overall, these findings indicate an asymmetry in conversation structure: user contributions are short and narrowly distributed across languages, while assistant outputs are longer, more diverse, and linguistically expansive.

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

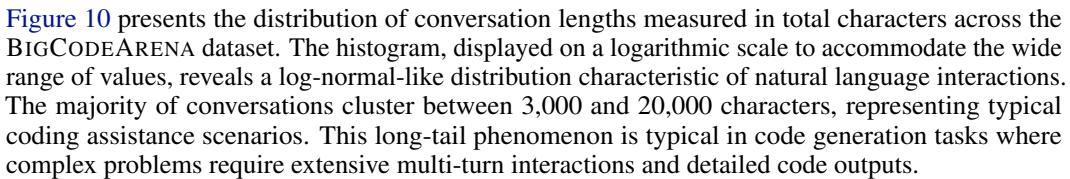


Figure 9: Distribution of conversation turns.

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

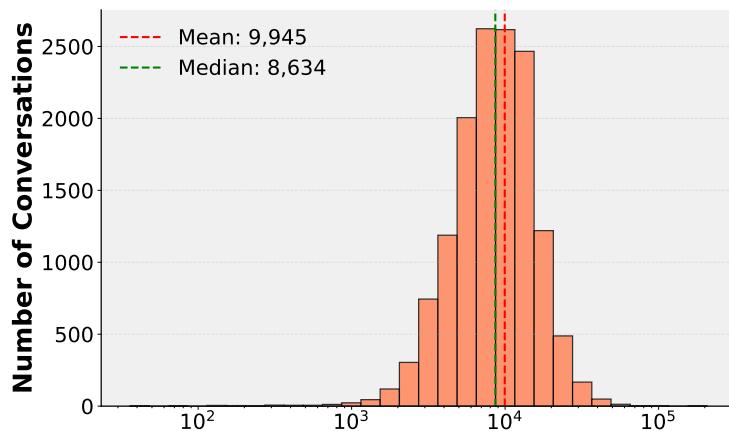


Figure 10: The distribution of character counts for conversations.

Figure 10 presents the distribution of conversation lengths measured in total characters across the BIGCODEARENA dataset. The histogram, displayed on a logarithmic scale to accommodate the wide range of values, reveals a log-normal-like distribution characteristic of natural language interactions. The majority of conversations cluster between 3,000 and 20,000 characters, representing typical coding assistance scenarios. This long-tail phenomenon is typical in code generation tasks where complex problems require extensive multi-turn interactions and detailed code outputs.

We next examine conversation length, summarized in Figure 9. The majority of conversations (76.1%) consist of exactly two turns, corresponding to a single user request followed by one model response. A smaller proportion (10.5%) are single-turn interactions. The mean length of conversations is 4.12 messages (2.06 turns), and 87.2% conclude within two to three turns. These results indicate that the predominant mode of interaction is short and goal-oriented, with users seeking targeted responses rather than engaging in extended dialogues. Longer conversations are comparatively rare, suggesting that while multi-step reasoning and iterative development are supported by the system, they do not represent the primary usage pattern. The distribution further implies that efficiency and directness are valued in typical use cases, with users preferring to resolve tasks in as few turns as possible. Based on the manual inspection, we notice that the majority of users tend to ask the models for more add-on features in the latter conversation turns.

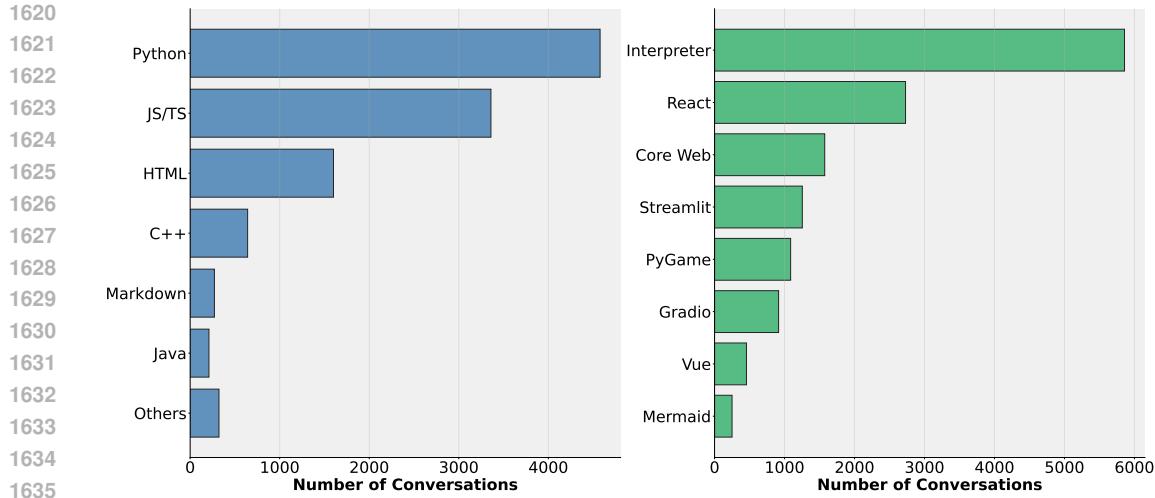


Figure 11: Distributions of languages (left) and frameworks (right) among the collected conversations.

Languages and Frameworks As shown in Figure 11, Python dominates with more than 4,000 conversations, followed by JavaScript/TypeScript (3,359), HTML (1,601), and C++ (642). Smaller but non-negligible shares come from Markdown, Java, and an “Others” category that aggregates Go, Rust, and C. On the framework side, Interpreter sessions are most prevalent with nearly 6,000 conversations, reflecting heavy reliance on direct execution environments (primarily Python interpreters). React appears most frequently among frameworks (2,729), with Core Web (1,574), Streamlit (1,254), PyGame (1,087), and Gradio (915) also widely used, while Vue and Mermaid are less common. Overall, the distributions suggest that BIGCODEARENA usage is dominated by Python-centric and interpreter-based workflows, with a substantial portion targeting interactive or UI-oriented frameworks.

Topic Modeling To better understand the diversity of prompts, we attempt to use the automatic topic modeling pipeline that was introduced in Chiang et al. (2024). However, the results do not show clear boundaries among each topic. To conclude reasonable programming topics, four of the authors manually inspect 50% of randomly sampled user prompts and identify six topics (with examples shown in Figure 2): (1) Web Design, building and styling websites, (2) Game Development, creating interactive games, (3) Diagram Creation, designing visual representations of systems or ideas, (4) Creative Coding, using code for artistic and experimental projects, and (5) Problem Solving, applying logical thinking to find efficient solutions.

F.2 UNDERSTANDING USER INTERACTION WITH EXECUTION OUTCOMES

Observation Space For web-based programming frameworks covered by BIGCODEARENA, the observation space consists of a complete rendering of the interactive UI exposed through an iFrame, reflecting the output and side effects of executed code. This includes all visible changes to the page, user interface elements, and any interactive outcomes resulting from the program’s execution. In alignment with prior research on agent-based interaction with web environments (Xie et al., 2024), BIGCODEARENA supports programmatic introspection via DOM access and event handling, enabling agents to perceive and reason about the structure and state of the interface. These raw observations enable rich interaction with dynamic and stateful web and application environments, but also present challenges in long-horizon reasoning and decision-making from high-resolution visual contexts and deeply nested DOM structures.

Action Space The action space in BIGCODEARENA (Table 3) bypasses traditional browser sandbox constraints by directly recording user interactions with the rendered Web UI. Specifically, we capture screen resize events, mouse clicks, scroll up/down gestures, and keyboard inputs. Since the user can dynamically resize the browser window or viewport, all interactions are recorded using relative coordinates with respect to the displayed screen at each time step. Every user action is timestamped,

1674
1675
1676 Table 3: Examples of the mouse and keyboard actions in BIGCODEARENA.
1677
1678
1679
1680
1681

Function	Description
<code>click(x, y)</code>	Perform a mouse click at screen coordinates (x, y)
<code>keyboard('enter')</code>	Sends an Enter/Return key input
<code>keyboard('x')</code>	Sends a character key input (e.g., typing “x”)
<code>scroll(x)</code>	Scroll up within x units on the interface
<code>resize(x, y)</code>	Adjusts the window size to width x and height y

1682
1683 allowing us to construct a precise and sequential interaction trajectory. This design enables rich
1684 logging of real-world usage patterns in a way that supports high-fidelity replay and learning from
1685 demonstrations, while avoiding limitations found in previous environments that restrict or abstract
1686 away low-level interaction signals. Examples can be seen in [Section E.7](#).

1687
1688 Table 4: User interaction statistics across different sandbox environments in BIGCODEARENA
1689

Environment	# Sessions	# Keyboard	# Click	Duration (s)
React	3,107	12.0	6.2	32.3
Core Web	1,699	18.8	6.3	59.6
PyGame	964	21.4	5.4	32.0
Vue	201	21.0	6.0	29.9
Streamlit	45	8.2	6.0	45.8
Gradio	14	13.7	4.2	26.1

1690
1691
1692
1693
1694
1695
1696
1697 **Distribution Analysis** We analyze the distribution of UI interactions across 5,557 recorded sessions
1698 in BIGCODEARENA. The interaction patterns reveal distinct usage characteristics across different
1699 development environments and time scales. The majority of UI interactions are brief, with 72.0%
1700 (4,003 sessions) lasting 30 seconds or less, suggesting that users frequently engage in quick testing
1701 and validation cycles. Medium-duration interactions (30-120 seconds) account for 22.5% (1,249
1702 sessions), while extended interactions exceeding 120 seconds comprise only 5.5% (305 sessions) of
1703 the dataset. Table 4 presents the interaction statistics across different sandbox environments. React
1704 dominates with 3,107 sessions (55.9%), followed by Core Web (30.6%) and PyGame (17.3%). The
1705 data reveals environment-specific interaction patterns: Core Web sessions exhibit the longest average
1706 interaction time (59.6 seconds) and highest keyboard event density (18.8 events/session), suggesting
1707 more text-heavy development. In contrast, Vue and Gradio sessions show shorter interaction times
1708 (29.9 and 26.1 seconds respectively), indicating more rapid prototyping cycles.

1709
1710

G BIGCODEARENA RANKING ANALYSIS

1711
1712

G.1 OVERALL ANALYSIS

1713 Analyzing our leaderboard across 4.7K multi-turn sessions involving 10 models (see [Figure 3](#)), we
1714 observe a consistent stratification of model performance across three evaluation settings: (1) All
1715 Data, (2) Environment Matched, and (3) Language Matched. These settings reflect progressively
1716 stricter controls to isolate confounding factors in model evaluation. The *All Data* setting includes all
1717 pairwise comparisons collected in our evaluation, regardless of the runtime environment or language
1718 in the response. As we notice that some users may ask a more generic question without specifying
1719 the languages or frameworks, we further introduce language-level and environment-level controls to
1720 disentangle model performance from such implicit variability and better reflect real-world deployment
1721 conditions. The *Environment Matched* setting restricts evaluation to comparisons in which both
1722 models were executed within the same sandbox environment, ensuring fairness with respect to
1723 system-level behavior such as resource allocation, file access, or execution speed. The *Language
1724 Matched* setting further narrows the evaluation scope to only those comparisons in which both models
1725 received prompts in the same natural language, controlling for potential discrepancies in multilingual
1726 handling or translation quality.

1727 Across all three settings, we observe a stable and interpretable ranking structure. A clear top tier
1728 consistently emerges, led by o3-mini and o1-mini, achieving the highest Elo ratings with tight

confidence intervals. These models maintain the best performance regardless of environmental or linguistic constraints, showing robustness and broad applicability across coding scenarios. Just below them, Claude-3.5-Sonnet also performs strongly, narrowing the gap with the leaders in the language-matched setting. The next tier includes models such as GPT-4o, o1, and Gemini-2.0-Pro/Flash, whose rankings remain competitive but exhibit modest sensitivity to evaluation context. For example, GPT-4o shows slightly reduced performance in the language-matched condition, suggesting room for improvement in multilingual consistency. In contrast, Qwen2.5 models and Llama-3.3-70B consistently underperform across nearly all conditions, indicating a gap between frontier models and open alternatives.

G.2 ANALYSIS OF PROGRAMMING TOPICS

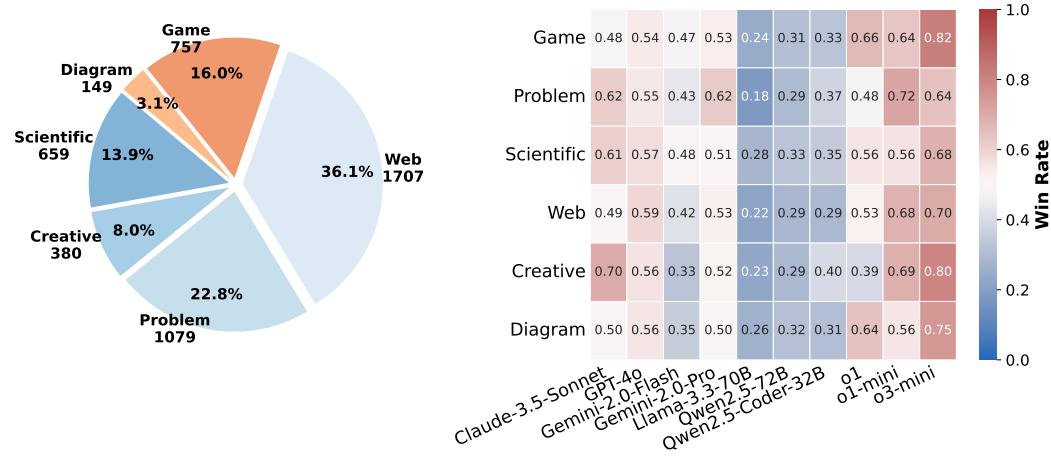


Figure 12: Distribution of programming topics (left) and model win rates across topics (right).

To further dissect model capabilities, we examine performance across distinct programming topics introduced in Section 3. We then use GPT-4.1-mini to classify the initial user prompt of each conversation into one of the six topics. The authors further check the classification results to confirm the quality. The distribution of prompts (Figure 12) reveals that web-related tasks dominate at 36.1%, followed by problem solving (22.8%), game development (16.0%), scientific computing (13.9%), creative coding (8.0%), and diagram generation (3.1%). This distribution reflects a strong emphasis on applied and interactive coding scenarios, consistent with real-world developer workloads. When comparing win rates across models segmented by topic, we observe clear performance stratification. Models such as o3-mini, o1-mini, and o1 consistently outperform others across all categories, achieving particularly high win rates in game development, problem-solving, and web-related tasks. Claude-3.5-Sonnet also demonstrates strong results, especially in creative coding, while maintaining competitive performance in scientific and problem-solving tasks. In contrast, Gemini-2.0-Pro and Gemini-2.0-Flash occupy a middle tier, without clear topic-specific dominance. Larger Qwen2.5 variants and Llama-3.3-70B lag significantly across most categories, with pronounced weaknesses in web and problem-solving prompts. These results underscore that while top models generalize broadly across domains, others show uneven strengths, and aggregate Elo scores can obscure important topic-specific differences.

G.3 COMPARISONS TO PREVIOUS EVALUATIONS

To compare BIGCODEARENA with existing benchmarks, we use Spearman rank correlations to measure alignment across leaderboards. Figure 13 reveals that BIGCODEARENA is most aligned with Chatbot Arena, which is expected given their shared conversational format and reliance on large-scale user voting. Within Chatbot Arena, the coding-specific subset (Chatbot Arena-Coding) shows the strongest alignment with BIGCODEARENA ($\rho = 0.68$), since it isolates coding-related queries from general conversational ones. In contrast, BigCodeBench shows weaker alignment ($\rho = 0.43$), reflecting its restriction to Python-only benchmarks that fail to capture the broader diversity of coding

		$\rho=1.00$	$\rho=0.43$	$\rho=0.63$	$\rho=0.68$	$\rho=0.50$
1782	o3-mini	1	-	+0	-1	-1
1783	o1-mini	2	-	-7	-1	-1
1784	Claude-3.5-Sonnet	3	+2	-3	-	-
1785	GPT-4o	4	+2	+0	+1	+0
1786	o1	5	-	+4	+4	+4
1787	Gemini-2.0-Pro	6	-	+3	-	-
1788	Gemini-2.0-Flash	7	-	+0	-	-
1789	Qwen2.5-Coder-32B	8	+5	+3	+1	+1
1790	Qwen2.5-72B	9	-	-1	+3	+4
1791	Llama-3.3-70B	10	-	+2	+5	+4
1792						
1793						
1794						
1795						
1796						
1797						
1798						
1799						
1800						
1801						
1802						
1803	Figure 13: Spearman correlations and ranking shifts between BIGCODEARENA and other benchmarks, including Copilot Arena (Chi et al.), BigCodeBench (Zhuo et al.), Chatbot Arena (Chiang et al., 2024), Chatbot Arena (Coding), and WebDev Arena (Ima, 2025b).					
1804						
1805						
1806						
1807	tasks. WebDev Arena also exhibits only moderate correlation with BIGCODEARENA ($\rho = 0.50$), likely due to its narrow emphasis on Next.js development, which biases the evaluation toward a limited slice of web technologies. However, when we compare rankings between the Core Web category of BIGCODEARENA with WebDev Arena, they are more aligned ($\rho = 0.68$), suggesting that BIGCODEARENA can cover more holistic code generation evaluation beyond the categories like web design.					
1808						
1809						
1810						
1811						
1812						
1813						
1814	<h4>G.4 VALIDATION OF VOTE QUALITY</h4>					
1815						
1816	To assess the quality of crowdsourced votes, we randomly selected 470 sessions from the 4.7K multi-turn pairwise conversations and asked two human experts having more than 5 years of programming experience in covered languages and frameworks to relabel the label their preference per comparison. Similar to Chiang et al. (2024), the experts are only given the conversations blindly, and asked to execute all the generated code snippets and carefully interact with the execution results. The experts are required to vote the preference within 10 minutes. After analyzing the relabelling results, we notice high agreement rates between the original BIGCODEARENA annotators and two human experts. Specially, we find that the experts have the agreements of 80.4% and 86.0% with the original preference. We further measure the Kappa coefficient based on these relabelling statistics and obtain 0.61 and 0.72, indicating substantial agreement between the original annotators and the expert relabelling. We also measure the inter-annotator agreement between the two experts, finding an agreement rate of 83.2% and a corresponding Kappa coefficient of 0.67, suggesting strong consistency between the expert judgements. The remaining disagreements mainly due to the interactive nature of the evaluation. In many cases, both candidate solutions may run successfully but differ in how they handle inputs, error messages, or user interaction flows. Depending on how an expert interprets or engages with this execution feedback, different preferences can naturally emerge.					
1817						
1818						
1819						
1820						
1821						
1822						
1823						
1824						
1825						
1826						
1827						
1828						
1829						
1830						
1831						
1832						
1833						
1834						
1835						

1836 **H ARTIFACTS**
18371838 Table 5: Artifacts for reproducibility.
1839

Name	Public Link or Endpoint
<i>Evaluated Models in BIGCODEARENA</i>	
o3-mini	o3-mini-2025-01-31
o1-mini	o1-mini-2024-09-12
Claude-3.5-Sonnet	claude-3-5-sonnet-20241022
GPT-4o	gpt-4o-2024-11-20
o1	o1-2024-12-17
Gemini-2.0-Pro	gemini-2.0-pro-exp-02-05
Gemini-2.0-Flash	gemini-2.0-flash-exp
Qwen2.5-Coder-32B	https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
Qwen2.5-72B	https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
Llama-3.3-70B	https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
<i>Models for Evaluations in BIGCODEREWAND</i>	
Claude-Sonnet-4	claude-sonnet-4-20250514
Claude-3.7-Sonnet	claude-3-7-sonnet-20250219
Claude-3.5-Sonnet	claude-3-5-sonnet-20241022
GPT-4.1	gpt-4.1-2025-04-14
GPT-4.1-mini	gpt-4o-mini-2024-07-18
GPT-4o	gpt-4o-2024-11-20
GPT-4o-mini	gpt-4o-mini-2024-07-18
Gemma-3-27B	https://huggingface.co/google/gemma-3-27b-it
Qwen2.5-VL-72B-Instruct	https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
Qwen2.5-VL-32B-Instruct	https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
InternVL3-78B	https://huggingface.co/OpenGVLab/InternVL3-78B
InternVL3-38B	https://huggingface.co/OpenGVLab/InternVL3-78B
GLM-4.5V	https://huggingface.co/zai-org/GLM-4.5V
MiMo-VL-7B-RL	https://huggingface.co/XiaomiMiMo/MiMo-VL-7B-RL
Kimi-VL-A3B-Thinking	https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506
<i>Evaluated Models in AUTOCODEARENA</i>	
GPT-5	gpt-5-2025-08-07
Claude-Opus-4	claude-opus-4-20250514
Claude-Sonnet-4	claude-sonnet-4-20250514
Kimi-K2	https://huggingface.co/moonshotai/Kimi-K2-Instruct
Gemini-2.5-Pro	gemini-2.5-pro
Qwen3-Coder	https://huggingface.co/Qwen/Qwen3-Coder-480B-A35B-Instruct
GLM-4.5	https://huggingface.co/zai-org/GLM-4.5
DeepSeek-V3.1	https://huggingface.co/deepseek-ai/DeepSeek-V3.1
GPT-4.1	gpt-4.1-2025-04-14
DeepSeek-R1	https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
GPT-OSS-120B	https://huggingface.co/openai/gpt-oss-120b
DeepSeek-V3	https://huggingface.co/deepseek-ai/DeepSeek-V3-0324
o4-mini	o4-mini-2025-04-16
GPT-OSS-20B	https://huggingface.co/openai/gpt-oss-20b
Claude-3.5-Sonnet	claude-3-5-sonnet-20241022
o3-mini	o3-mini-2025-01-31
Gemini-2.5-Flash	gemini-2.5-flash
Grok-Code	grok-code-fast-1
Claude-3.5-Haiku	claude-3-5-haiku-20241022
GPT-4o	gpt-4o-2024-11-20
GPT-4o-mini	gpt-4o-mini-2024-07-18

1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1890 **I BIGCODEREWARD**1891 **I.1 EXPERIMENT DETAILS**

1894 Since the input length for reward models can be long, the model sometimes fails to produce outputs
 1895 in valid JSON format, which prevents correct parsing. In these cases, we use GPT-4.1-mini with the
 1896 prompt below to reconstruct the model output into valid JSON.

1897 The following is a response from a judge model that should be in JSON ↵
 1898 format, but it's not properly formatted. Please convert it to the ↵
 1899 required JSON format. "reasoning" is a single paragraph explanation ↵
 1900 without line breaks. Any quotation marks within the text should be ↵
 1901 properly escaped for a valid JSON format.

1902 The expected JSON format should be:

```
1903 {{  

1904   "Overall": {{  

1905     "winner": "A" | "B" | "TIE",  

1906     "reasoning": "explanation for the overall judgment"  

1907   }},  

1908 }}  

1909 Original response:  

1910 {original_response}
```

1912 Please output ONLY the JSON format, no additional text or explanation.
 1913 " "
 1914

1915 **I.2 JUDGEMENT PROMPT (WITH OUTPUT)**

1917 You are a code-review judge assigned to compare two candidate ↵
 1918 solutions (A and B) against a user's programming request. Your job ↵
 1919 is to evaluate each submission and choose an overall winner based ↵
 1920 on how well each solution implements the requested features.

1921 Evaluation Criteria:

1922 Your primary focus should be: The solution implements every requested ↵
 1923 feature accurately and correctly without adding or omitting ↵
 1924 functionality. Consider multiple aspects, including code efficiency ↵
 1925 , explanation, readability, maintainability, correctness, and UI/UX ↵
 1926 , but the most critical factor is the complete and accurate ↵
 1927 implementation of all requested features.

1928 Winner Options:

- 1929 - "A": Solution A is clearly better
- 1930 - "B": Solution B is clearly better
- 1931 - "Tie": Both solutions are roughly equivalent in quality

1932 Evaluation Process:

1933 You should evaluate based on the combination of:

- 1934 - The code implementation
- 1935 - Code output or results produced
- 1936 - Visual rendering results
- 1937 - How completely each solution address the original request

1938 Input Format:

```
1939 <|Instruction|>  

1940 {INSTRUCTION}
```

```
1941 <|The Start of Assistant A's Answer|>  

1942 <|The Start of Code|>
```

```
1943 {code_A}  

  <|The End of Code|>
```

```

1944
1945 <|The Start of Execution Results|>
1946 Output: {sandbox_output}
1947 Error: {sandbox_error}
1948 <|The End of Execution Results|>
1949 <|The Start of Assistant A's Artifact Screenshot|>
1950 {SCREENSHOT_A}
1951 <|The End of Assistant A's Artifact Screenshot|>
1952 <|The End of Assistant A's Answer|>
1953
1954 <|The Start of Assistant B's Answer|>
1955 <|The Start of Code|>
1956 {code_B}
1957 <|The End of Code|>
1958 <|The Start of Execution Results|>
1959 Output: {sandbox_output}
1960 Error: {sandbox_error}
1961 <|The End of Execution Results|>
1962 <|The Start of Assistant B's Artifact Screenshot|>
1963 {SCREENSHOT_A}
1964 <|The End of Assistant B's Artifact Screenshot|>
1965 <|The End of Assistant B's Answer|>
1966
1967 Output Format:
1968 Return exactly one JSON object with this schema below. "reasoning" is ↵
1969 a single paragraph explanation without line breaks. Any quotation ↵
1970 marks within the text should be properly escaped for a valid JSON ↵
1971 format.
1972 ````json
1973 {
1974   "Overall": {
1975     "winner": "A"|"B"|"Tie",
1976     "reasoning": "..."
1977   }
1978 ````

1979
1980 I.3 JUDGEMENT PROMPT (WITHOUT OUTPUT)
1981
1982 You are a code-review judge assigned to compare two candidate ↵
1983 solutions (A and B) against a user's programming request. Your job ↵
1984 is to evaluate each submission and choose an overall winner based ↵
1985 on how well each solution implements the requested features.
1986
1987 Important: You will only see the code implementations, not their ↵
1988 execution results or screenshots. Focus your evaluation purely on ↵
1989 code quality, structure, and theoretical correctness.
1990
1991 Evaluation Criteria:
1992 Your primary focus should be: The solution implements every requested ↵
1993 feature accurately and correctly without adding or omitting ↵
1994 functionality. Consider multiple aspects, including code efficiency ↵
1995 , explanation, readability, maintainability, correctness, and UI/UX ↵
1996 , but the most critical factor is the complete and accurate ↵
1997 implementation of all requested features.
1998
1999 Winner Options:
2000 - "A": Solution A is clearly better
2001 - "B": Solution B is clearly better
2002 - "Tie": Both solutions are roughly equivalent in quality
2003
2004 Evaluation Process:

```

```

1998 You should evaluate based on:
1999 - The code implementation
2000 - How completely each solution address the original request
2001
2002 Input Format:
2003 <|Instruction|>
2004 {INSTRUCTION}
2005
2006 <|The Start of Assistant A's Answer|>
2007 <|The Start of Code|>
2008 {code_A}
2009 <|The End of Code|>
2010 <|The End of Assistant A's Answer|>
2011
2012 <|The Start of Assistant B's Answer|>
2013 <|The Start of Code|>
2014 {code_B}
2015 <|The End of Code|>
2016 <|The End of Assistant B's Answer|>
2017
2018 Output Format
2019 Return exactly one JSON object with this schema:
2020 ````json
2021 {
2022     "Overall": {
2023         "winner": "A"|"B"|"Tie",
2024         "reasoning": "...."
2025     }
2026 }
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

```

I.4 METRIC

We evaluate models using accuracy and macro F1. The label space is $\{A, B, \text{Tie}\}$, where the reward judge decides whether model A is preferred, model B is preferred, or the outputs are equally good.

Accuracy. Accuracy is defined as the proportion of predictions that exactly match the ground-truth label:

$$\text{Accuracy} = \frac{\#\{\text{correct predictions}\}}{\#\{\text{all examples}\}}.$$

Macro F1. For each class $c \in \{A, B, \text{Tie}\}$, we compute precision, recall, and F1:

$$\begin{aligned} \text{Precision}_c &= \frac{\text{TP}_c}{\text{TP}_c + \text{FP}_c}, & \text{Recall}_c &= \frac{\text{TP}_c}{\text{TP}_c + \text{FN}_c}, \\ \text{F1}_c &= \frac{2 \cdot \text{Precision}_c \cdot \text{Recall}_c}{\text{Precision}_c + \text{Recall}_c}. \end{aligned}$$

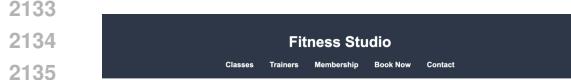
The macro F1 is the average across the three classes:

$$\text{Macro F1} = \frac{1}{3} \sum_{c \in \{A, B, \text{Tie}\}} \text{F1}_c.$$

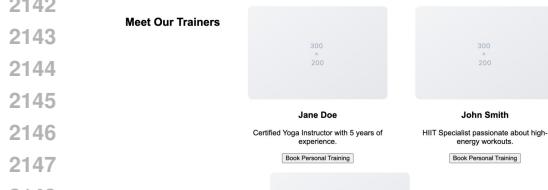
I.5 EXPERIMENT RESULTS

2052 Table 6: Macro F1 scores (%) for reward models across different task categories with and without
 2053 execution outputs. “-” denotes evaluation without execution outputs, “+” denotes evaluation with
 2054 execution outputs. Best results in each category are highlighted in bold.

Models	Web		Game		Creative		Diagram		Scientific		Problem		Overall	
	-	+	-	+	-	+	-	+	-	+	-	+	-	+
<i>Proprietary Models</i>														
Claude-4-Sonnet	46.0	47.7	42.6	48.2	45.2	47.0	42.2	62.7	39.0	46.6	41.5	49.2	43.4	48.9
Claude-3.7-Sonnet	49.9	54.6	43.1	49.1	52.7	56.3	42.3	65.3	41.4	48.6	41.4	51.8	46.1	53.2
Claude-3.5-Sonnet	48.2	47.7	43.0	45.9	50.4	50.5	39.2	48.2	42.5	46.0	48.0	52.8	46.7	48.9
GPT-4.1	47.5	51.0	45.7	52.0	47.2	50.0	42.2	60.9	42.2	48.7	40.0	46.2	45.0	50.1
GPT-4.1-mini	45.9	49.0	42.3	47.7	44.0	49.9	34.8	56.7	39.2	50.3	41.0	48.6	43.4	49.6
GPT-4o	48.5	52.9	45.8	49.5	52.4	52.4	46.3	60.4	43.0	52.9	40.1	49.1	46.2	52.1
GPT-4o-mini	42.4	49.5	42.4	46.4	44.2	49.4	38.8	62.5	42.1	51.1	47.5	52.1	44.0	50.7
<i>Open Models</i>														
Gemma-3-27B	43.6	48.2	43.9	46.8	48.0	48.2	40.8	64.7	40.7	49.9	49.5	52.8	45.6	50.6
Qwen2.5-VL-72B-Instruct	49.8	55.5	44.3	53.9	51.4	55.7	43.3	68.8	45.7	56.9	48.1	57.1	48.9	56.8
Qwen2.5-VL-32B-Instruct	45.7	48.2	40.9	47.4	44.1	55.4	40.1	57.5	42.3	57.9	48.4	54.1	45.5	52.4
InternVL3-78B	47.9	35.3	42.7	35.5	48.8	36.6	38.3	34.3	44.1	40.3	45.4	48.3	46.7	39.6
InternVL3-38B	44.1	34.7	42.0	33.9	45.2	33.4	40.0	34.8	40.0	42.4	46.9	50.3	44.8	39.5
GLM-4.5V	46.9	49.0	42.7	44.6	49.0	48.8	41.2	50.9	43.0	46.4	44.2	46.2	45.6	47.5
MiMo-VL-7B-RL	42.2	43.0	41.6	43.7	43.6	48.0	49.4	53.3	39.6	47.3	38.6	40.4	42.1	44.3
Kimi-VL-A3B-Thinking	39.8	40.7	37.4	40.9	40.0	46.5	33.7	50.0	38.2	43.0	36.5	36.5	38.4	41.2


I.6 CASE STUDIES

2106 I.6.1 WEB DESIGN
2107

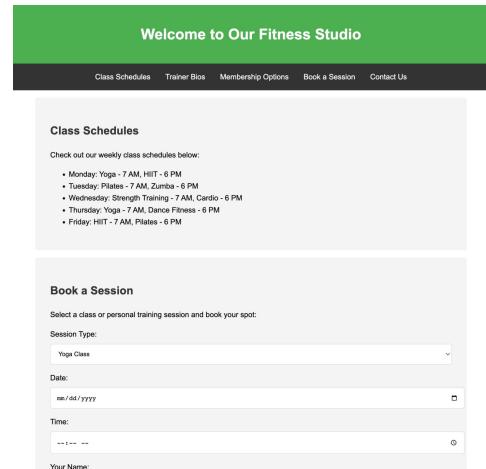

```

1  <!DOCTYPE html>
2  <html lang="en">
3  # <... omitted head/style code ...>
4  <body>
5      <header>
6          <h1>Fitness Studio</h1>
7          <nav>
8              <a href="#classes">Classes</a>
9              # <... omitted table ...>
10     </nav>
11     </header>
12     <section id="classes" class="class-schedule">
13         <h2>Class Schedules</h2>
14         <table>
15             <thead>
16                 <tr>
17                     <th>Class</th>
18                     # <... omitted table ...>
19                 </tr>
20             </thead>
21             <tbody>
22                 <tr>
23                     <td>Yoga</td>
24                     <td>6:00 AM - 7:00 AM</td>
25                     <td>Jane Doe</td>
26                     <td><button <-->
27                         onclick="openBookingModal('Yoga')">Book</button></td>
28                     # <... omitted table ...>
29                 </tr>
30             </tbody>
31         </table>
32     </section>
33     # <... omitted schedule section...>
34     </div>
35     <script>
36         # <... omitted js code logic ...>
37     </script>
38 </body>
39 </html>
40

```


Class Schedules			
Class	Time	Instructor	Action
Yoga	6:00 AM - 7:00 AM	Jane Doe	Book
HIIT	7:00 AM - 8:00 AM	John Smith	Book
Spin	6:00 PM - 7:00 PM	Emily Davis	Book

2149 Model A

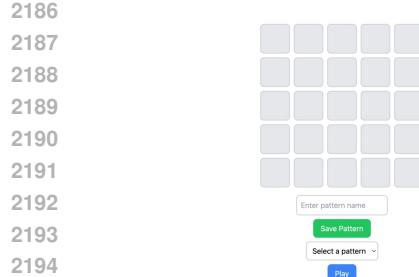

Condition	Human	InternVL3 -38B	InternVL3 -78B	MiMo-VL -7B-RL	Gemma-3 -27B	GLM -4.5V	GPT -4.1	GPT-4.1 -mini	GPT-4.0 -40	Kimi-VL -A3B-Thinking	Qwen2.5-VL -32B-Instruct	Qwen2.5-VL -72B-Instruct	Claude-3.5 -Sonnet	Claude-3.7 -Sonnet	Claude-4 -Sonnet
With Output	A	A	B	A	A	A	A	A	A	A	A	A	A	A	A
Without Output	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A

2153 (a) Reward Model Voting Results. A: Vote for Model A B: Vote for Model B Tie: Vote Tie

```

1  <!DOCTYPE html>
2  <html lang="en">
3  <head>
4  # <... omitted head/style code ...>
5  </head>
6  <body>
7      <header>
8          <h1>Welcome to Our Fitness Studio</h1>
9      </header>
10     <nav>
11         <a href="#schedule">Class Schedules</a>
12         <a href="#trainers">Trainer Bios</a>
13         # <... omitted table ...>
14     </nav>
15     <div class="container">
16         <section id="schedule">
17             <h2>Class Schedules</h2>
18             <p>Check out our weekly class schedules <-->
19             below:</p>
20             <ul>
21                 <li>Monday: Yoga - 7 AM, HIIT - 6 PM</li>
22                 <li>Tuesday: Pilates - 7 AM, Zumba - <-->
23                     6 PM</li>
24             # <... omitted table ...>
25         </section>
26         # <... omitted booking section code ...>
27     </div>
28     <footer>
29         <p>&copy; 2023 Fitness Studio. All Rights <-->
30             Reserved.</p>
31     <script>
32     </script>
33 </body>
34 </html>
35

```



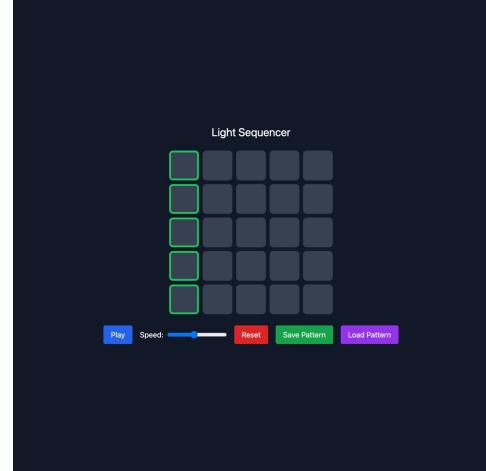
2153 Model B

```

2160 1 import React, { useState, useEffect } from 'react';
2161 2 const LightSequencer = () => {
2162 3   const [lights, setLights] = useState(() => Array(25).fill(false));
2163 4   const [isPlaying, setIsPlaying] = useState(false);
2164 5   const [currentStep, setCurrentStep] = useState(0);
2165 6   const [savedPatterns, setSavedPatterns] = useState([]);
2166 7   const [patternName, setPatternName] = useState('');
2167 8   const toggleLight = (index) => {
2168 9     const newLights = [...lights];
216910     newLights[index] = !newLights[index];
217011     setLights(newLights);
217112   };
217213   const playSequence = () => # <... omitted ...>
217314   useEffect(() => # <... omitted ...>
217415   const savePattern = () => # <... omitted ...>
217516   const loadPattern = (pattern) => # <... omitted ...>
217617   return (
217718     <div className="flex flex-col items-center mt-8">
217819       <div className="grid grid-cols-5 gap-2">
217920         # <... omitted ...>
218021       </div>
218122       <div className="mt-4 flex flex-col items-center">
218223         # <... omitted ...>
218324         <button
218425           className="px-4 py-2 bg-blue-500 text-white rounded-lg" # <... omitted ...>
218526           ...>{isPlaying ? 'Stop' : 'Play'}
218627       </div>
218728     </div>
218829   );
218930 };
219031 export default LightSequencer;
219132

```


Model A


Condition	Human	InternVL3 -38B	InternVL3 -78B	MiMo-VL -7B-RL	Gemma-3 -27B	GLM -4.5V	GPT -4.1	GPT-4.1 -4.0	GPT-4.0 -mini	Kimi-VL -A3B-Thinking	Qwen2.5-VL -32B-Instruct	Qwen2.5-VL -72B-Instruct	Claude-3.5 -Sonnet	Claude-3.7 -Sonnet	Claude-4 -Sonnet
With Output	B	Tie	A	B	B	B	B	B	B	—	B	B	B	B	B
Without Output	B	B	B	—	B	B	B	B	B	A	B	B	B	B	B

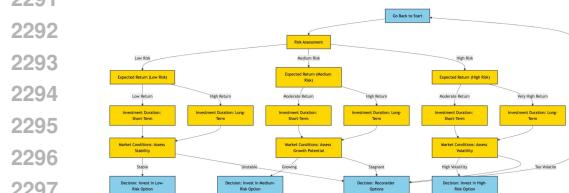
(a) Reward Model Voting Results. A: Vote for Model A B: Vote for Model B Tie: Vote Tie

```

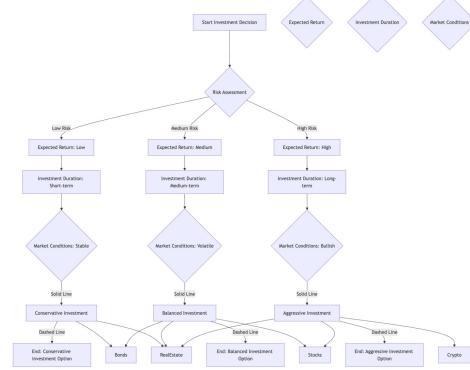
1 import React, { useState, useEffect } from 'react';
2 interface SavedPattern {
3   name: string;
4   grid: boolean[][];
5 }
6 const LightSequencer: React.FC = () => {
7   const [grid, setGrid] = useState<boolean[][]>(
8     Array.from({ length: 5 }, () => Array(5).fill(false))
9   );
10  const [isPlaying, setIsPlaying] = useState(false);
11  const [speed, setSpeed] = useState(500);
12  const [currentStep, setCurrentStep] = useState(0);
13  const [savedPatterns, setSavedPatterns] = useState<SavedPattern>([]);
14  const [patternName, setPatternName] = useState('');
15  const [showSaveModal, setShowSaveModal] = useState(false);
16  const [showLoadModal, setShowLoadModal] = useState(false);
17  // Save patterns to localStorage whenever savedPatterns changes
18  useEffect(() => # <... omitted ...>
19  const toggleLight = (row: number, col: number) => # <... omitted ...>
20  const resetGrid = () => {# <... omitted ...>
21  const savePattern = () => # <... omitted ...>
22  const loadPattern = (pattern: SavedPattern) => {
23    setGrid(pattern.grid);
24    setShowLoadModal(false);
25  };
26  const deletePattern = (patternToDelete: SavedPattern) => # <... omitted ...>
27  return (# <... omitted ...>);
28 };
29  export default LightSequencer;
30

```


Model B


2268 **I.6.4 DIAGRAM CREATION**
 2269

```


2270
2271 graph TD
2272 %% Styling for clarity
2273 classDef decisionPoint
2274 fill:#FFD700,stroke:#333,stroke-width:2,color:#000
2275 classDef outcome
2276 fill:#87CEEB,stroke:#333,stroke-width:2,color:#000
2277
2278 Start["Start: Evaluate Investment ← Options"]:::decisionPoint --> RiskAssessment["Risk ← Assessment"]:::decisionPoint;
2279
2280 # <... omitted ...>
2281 MarketConditionsLow -->|Stable| InvestLow["Decision: Invest in Low-Risk ← Option"]:::outcome;
2282 MarketConditionsLow -->|Unstable| Reconsider["Decision: Reconsider ← Options"]:::outcome;
2283
2284 MarketConditionsMedium -->|Growing| InvestMedium["Decision: Invest in ← Medium-Risk Option"]:::outcome;
2285 MarketConditionsMedium -->|Stagnant| Reconsider;
2286
2287 MarketConditionsHigh -->|High Volatility| InvestHigh["Decision: Invest in ← High-Risk Option"]:::outcome;
2288 MarketConditionsHigh -->|Too Volatile| Reconsider;
2289
2290 Reconsider --> Start["Go Back to ← Start"]:::outcome;
2291
  
```

```

1 graph TD
2 Start[Start Investment Decision]
3 RiskAssessment[Risk Assessment]
4 ExpectedReturn[Expected Return]
5 InvestmentDuration[Investment Duration]
6 MarketConditions[Market Conditions]
7
8 Start --> RiskAssessment
9
10 RiskAssessment -->|Low Risk| ExpectedReturnLow
11 RiskAssessment -->|Medium Risk| ExpectedReturnMedium
12 RiskAssessment -->|High Risk| ExpectedReturnHigh
13 # <... omitted ...>
14 Conservative -->|Dashed Line| EndConservative[End: Conservative Investment Option]
15 Balanced -->|Dashed Line| EndBalanced[End: Balanced Investment Option]
16 Aggressive -->|Dashed Line| EndAggressive[End: Aggressive Investment Option]
17
18 Conservative --> Bonds
19 Conservative --> RealEstate
20
21 Balanced --> Stocks
22 Balanced --> Bonds
23 Balanced --> RealEstate
24
25 Aggressive --> Stocks
26 Aggressive --> Crypto
27 Aggressive --> RealEstate
28
  
```


Model A

Model B

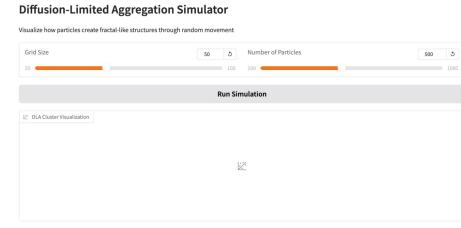
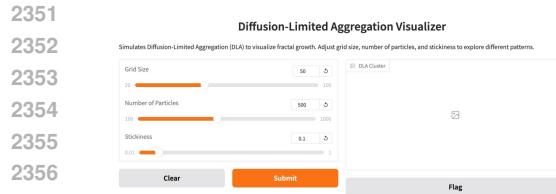
(a) Reward Model Voting Results. A: Vote for Model A B: Vote for Model B

Condition	Human	InternVL3-38B	InternVL3-78B	MiMo-VL-7B-RL	Gemma-3-27B	GLM-4.5V	GPT-4.1-4.1	GPT-4.1-mini	GPT-4.0-4.0	GPT-4.0-mini	Kimi-VL-A3B-Thinking	Qwen2.5-VL-32B-Instruct	Qwen2.5-VL-72B-Instruct	Claude-3.5-Sonnet	Claude-3.7-Sonnet	Claude-4
With Output	A	B	A	A	A	A	A	A	A	A	A	A	A	A	A	A
Without Output	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A

2322 I.6.5 SCIENTIFIC COMPUTING
2323

```

2324
2325 import gradio as gr
2326 import numpy as np, random
2327 from PIL import Image
2328
2329 def diffusion_limited_aggregation(grid_size=50,
2330     num_particles=500, stickiness=0.1):
2331     """Simulates Diffusion-Limited
2332     Aggregation (DLA) on a 2D grid."""
2333     grid = np.zeros((grid_size, grid_size),
2334         dtype=int)
2335     grid[grid_size//2, grid_size//2] = 1 # seed particle
2336
2337     for _ in range(num_particles):
2338         x, y = random.randint(0, grid_size-1),
2339         random.randint(0, grid_size-1)
2340         while True:
2341             dx, dy = random.choice([-1,1,0,0]), random.choice([0,0,-1,1])
2342             x, y = (x+dx) % grid_size, (y+dy) % grid_size
2343             if grid[x,y] == 1:
2344                 break
2345         img = Image.fromarray(np.uint8(grid * 255)).resize((300,300), Image.NEAREST)
2346     return img
2347
2348 iface = gr.Interface(
2349     fn=diffusion_limited_aggregation,
2350     inputs=[gr.Slider(20,100,50,1, "Grid Size"),
2351             gr.Slider(100,1000,500,10, "Particles"),
2352             gr.Slider(0.01,1.0,0.1,0.01, "Stickiness")],
2353     outputs=gr.Image(label="DLA Cluster"),
2354     title="Diffusion-Limited Aggregation ←
2355     Visualizer",
2356     description="Simulates fractal growth ←
2357     with adjustable parameters."
2358 )
2359 iface.launch()



```

```

1 import gradio as gr
2 import numpy as np, random, matplotlib.pyplot as plt
3
4 class DiffusionLimitedAggregation:
5     def __init__(self, grid_size=50, num_particles=500):
6         self.grid_size, self.num_particles = grid_size, num_particles
7         self.grid = np.zeros((grid_size, grid_size, dtype=int))
7         self.grid[grid_size//2, grid_size//2] = 1 # central seed
8
9     def simulate(self):
10        # ... omitted particle spawning, random walk & sticking logic ...
11        return self.grid
12
13 def run_dla_simulation(grid_size, num_particles):
14     # ... omitted input validation & simulation call ...
15     plt.imshow(DiffusionLimitedAggregation(grid_size, num_particles).simulate(), cmap='viridis'); return plt.gcf()
16
17 def create_dla_app():
18     with gr.Blocks() as demo:
19         gr.Markdown("# Diffusion-Limited Aggregation Simulator")
20         grid_size = gr.Slider(20,100,50,1, "Grid Size")
21         num_particles = gr.Slider(100,1000,500,1, "Number of Particles")
22         gr.Button("Run Simulation").click(
23             fn=run_dla_simulation,
24             inputs=[grid_size, num_particles],
25             outputs=gr.Plot(label="DLA Cluster Visualization"))
26     return demo
27
28 if __name__ == "__main__":
29     create_dla_app().launch()

```


About Diffusion-Limited Aggregation

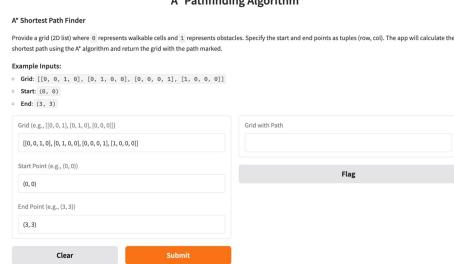
- Particles perform random walks
- Particles stick when touching an existing cluster
- Creates intricate, fractal-like patterns
- Simulates natural phenomena like crystal growth

Model A															
Condition	Human	InternVL3 -38B	InternVL3 -78B	MIIMo-VL -7B-RL	Gemma-3 -27B	GLM -4.5V	GPT -4.1	GPT-4.1 -mini	GPT-4.0 -mini	Kimi-VL -A3B-Thinking	Qwen2.5-VL -32B-Instruct	Qwen2.5-VL -.72B-Instruct	Claude-3.5 -Sonnet	Claude-3.7 -Sonnet	Claude-4 -Sonnet
With Output	B	A	A	B	A	B	A	A	B	B	A	B	A	A	
Without Output	B	A	B	B	A	B	A	B	B	B	B	B	B	B	

2366 (a) Reward Model Voting Results. A: Vote for Model A B: Vote for Model B Tie: Vote Tie
2367

Condition	Human	InternVL3 -38B	InternVL3 -78B	MIIMo-VL -7B-RL	Gemma-3 -27B	GLM -4.5V	GPT -4.1	GPT-4.1 -mini	GPT-4.0 -mini	Kimi-VL -A3B-Thinking	Qwen2.5-VL -32B-Instruct	Qwen2.5-VL -.72B-Instruct	Claude-3.5 -Sonnet	Claude-3.7 -Sonnet	Claude-4 -Sonnet
With Output	B	A	A	B	A	B	A	A	B	B	A	B	A	A	A
Without Output	B	A	B	B	A	B	A	B	B	B	B	B	B	B	B

2371


I.6.6 PROBLEM SOLVING

```
1 import gradio as gr
2 import numpy as np
3 import heapq
4
5 class AStarPathfinder:
6     def __init__(self, grid_size=10):
7         self.grid_size = grid_size
8         self.grid = np.zeros((grid_size, grid_size), dtype=int)
9     def heuristic(self, a, b):
10        # <... omitted ...>
11    def get_neighbors(self, current):
12        # <... omitted ...>
13    def a_star(self, start, goal, preset_obstacles=None):
14        # <... omitted ...>
15    def visualize_path(self, path, grid):
16        # <... omitted ...>
17
18 # Predefined Example Scenarios
19 EXAMPLE_SCENARIOS = [# <... omitted ...>]
20
21 def find_path(scenario_index, start_x=None, start_y=None, goal_x=None, goal_y=None):
22    # <... omitted ...>
23    return visualization
24
25 # Create Gradio interface
26 iface = gr.Interface(
27    # <... omitted ...>
28)
29 # Dynamic input visibility based on scenario selection
30 def update_inputs(scenario):
31    # <... omitted ...>
32    iface.config["dependencies"][0]["targets"] = [0, 1, 2, 3, 4]
33    iface.config["dependencies"][0]["updates"] = update_inputs
34 if __name__ == "__main__":
35    iface.launch()
36
```

```
1 import gradio as gr
2 import heapq
3 import numpy as np
4 def heuristic(a, b):
5     # <... omitted ...>
6 def a_star_search(grid, start, end):
7     """Perform A* search on the grid to find ←
8         the shortest path."""
9     # <... omitted ...>
10 # Gradio app logic
11 def shortest_path(grid_input, start, end):
12     """Find the shortest path using A* ←
13         algorithm and return the grid with the ←
14         path."""
15     # <... omitted ...>
16
17 example_grid = [[0, 0, 1, 0],
18                 [0, 1, 0, 0],
19                 [0, 0, 0, 1],
20                 [1, 0, 0, 0]]
21
22 example_start = (0, 0)
23 example_end = (3, 3)
24
25 # Gradio interface
26 description = """
27 ##### A* Shortest Path Finder
28 Provide a grid (2D list) where '0' represents ←
29         walkable cells and '1' represents obstacles.
30 # <... omitted ...>
31 ###### Example Inputs:
32 - **Grids**: `[[0, 0, 1, 0], [0, 1, 0, 0], [0, ←
33         0, 0, 1], [1, 0, 0, 0]]`'
34 - **Start**: `(0, 0)`
35 - **End**: `(3, 3)`
36 """
37
38 demo = gr.Interface(
39     # <... omitted ...>
40 )
41 if __name__ == "__main__":
42     demo.launch()
```


Pathfinding Visualization

Model B

(a) Reward Model Voting Results. A: Vote for Model A B: Vote for Model B Tie: Vote Tie -: No response

2430 **J AUTOCODEARENA**2431 **J.1 CLASSIFICATION PROMPT**

```

2432 1 You are a classification expert tasked with categorizing programming ↵
2433 2 instructions. Given a user instruction for a code model, classify ↵
2434 3 it into one of the following 6 categories:
2435 4 Categories:
2436 5 1. system programming
2437 6   - Security & encryption
2438 7   - Cloud computing
2439 8   - DevOps
2440 9   - Database
2441 10
2442 11 2. scientific computing
2443 12   - Data processing & cleaning
2444 13   - Data visualization & plotting
2445 14   - Scientific/numeric programming
2446 15   - Statistical analysis & modeling
2447 16   - Machine learning algorithms
2448 17   - Deep learning implementations
2449 18
2450 19 3. algorithmic programming
2451 20   - competitive programming
2452 21   - Data structures (arrays, trees, graphs, etc.)
2453 22   - General programming concepts & syntax
2454 23   - Language-specific problems
2455 24
2456 25 4. web design
2457 26   - web-based application
2458 27   - webpage development
2459 28
2460 29 5. creative coding
2461 30   - SVG art
2462 31   - Visual art
2463 32   - Design-focused coding tasks
2464 33
2465 34 6. game development
2466 35   - Game logic implementation
2467 36   - Game mechanics
2468 37
2469 38 Instructions:
2470 39   - Read the user instruction carefully
2471 40   - Choose the single most appropriate category
2472 41   - If the instruction spans multiple categories, choose the ↵
2473 42     primary/dominant one
2474 43   - Output your result in JSON format
2475 44
2476 45 User Instruction to Classify:
2477 46 [INSERT INSTRUCTION HERE]
2478 47
2479 48 Output Format:
2480 49   ````json
2481 50   {
2482 51     "category_id": [number],
2483 52     "category_name": "[category name]",
2484 53   }

```

2481 **J.2 GENERATION PROMPT**2482 The prompt is the same as the one shown in [Section E.5](#).

2484 **J.3 JUDGEMENT SYSTEM PROMPT**
2485

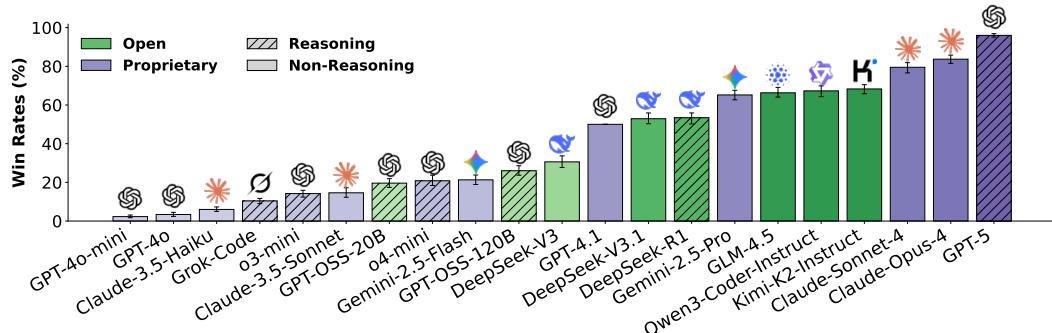
2486 1 Please act as an impartial judge and evaluate the quality of the code ↵
 2487 provided by two AI assistants to the user prompt. You will be ↵
 2488 given assistant A's answer and assistant B's answer, along with ↵
 2489 the execution results of their code. Your job is to evaluate which ↵
 2490 assistant's generated code is better.
 2491 2 When evaluating the assistants' answers, compare both assistants' code ↵
 2492 execution results (e.g., stdout, stderr, and screenshot of the ↵
 2493 rendered code) first. You must identify and correct any mistakes ↵
 2494 or inaccurate information.
 2495 3 Note that the stderr may contain warnings only and you must not take ↵
 2496 it as an error. Due to the limitation of the execution ↵
 2497 environment, the errors may not be due to the code itself but the ↵
 2498 incompatibility issues or the lack of dependencies. These should ↵
 2499 be considered when evaluating the code.
 2500 4 There are several cases for the side-by-side comparison:
 2501 - Case 1: Both assistants' code execution results are successful. If ↵
 2502 screenshots are provided, you should compare the screenshots of ↵
 2503 the rendered code.
 2504 - Case 2: One assistant's code execution results are successful, ↵
 2505 while the other's are not. If the failure of the assistant's code ↵
 2506 execution results is due to the limitation of the execution ↵
 2507 environment, you MUST NOT penalize the assistant's response. You ↵
 2508 MUST carefully check the code generated by the assistant and judge ↵
 2509 the code correctness.
 2510 - Case 3: Both assistants' code execution results are not successful. ↵
 2511 You should compare both assistants' responses only. You MUST ↵
 2512 carefully check the code generated by the assistants and judge the ↵
 2513 code correctness.
 2514 5 There are several scenarios for coding tasks:
 2515 - web design: the web page or application should be able to run in ↵
 2516 the browser and the user should be able to see the result. UI and ↵
 2517 UX are the most important factors.
 2518 - game development: the game should be able to run and the user ↵
 2519 should be able to see the result. UI, UX, and the game logic are ↵
 2520 the most important factors.
 2521 - creative coding: the artifact should produce a creative work. The ↵
 2522 creativity and novelty are the most important factors.
 2523 - problem solving: the code should be able to solve the problem ↵
 2524 described by the user. The correctness and efficiency are the most ↵
 2525 important factors.
 2526 - scientific computing: the code should use the proper scientific ↵
 2527 methods and tools to solve the problem. The correctness, ↵
 2528 efficiency, and visualization are the most important factors.
 2529 - diagram creation: the code should be able to create a diagram for ↵
 2530 logic or data flow. The visual presentation and the clarity are ↵
 2531 the most important factors.
 2532 6 YOU MUST IGNORE THE FAILURES OF THE CODE EXECUTION RESULTS THAT ARE ↵
 2533 DUE TO THE LIMITATION OF THE ENVIRONMENT. YOU MUST NOT JUDGE BASED ↵
 2534 ON THE EXISTENCE OF TEST CASES GENERATED BY THE ASSISTANTS. IF ANY ↵
 2535 SCREENSHOTS OR VISUAL OUTPUTS ARE PROVIDED, YOU MUST INSPECT THEM ↵
 2536 CAREFULLY FIRST. IF YOU CANNOT TELL THE QUALITY OF THE CODE BASED ↵
 2537 ON THE EXECUTION RESULTS, YOU SHOULD INSPECT THE CODE.
 2538 7 YOU MUST NOT TAKE THE COMPLEXITY OF THE SETUP PROCESS INTO ACCOUNT. ↵
 2539 REQUIRING MORE DEPENDENCIES DOES NOT MEAN THAT THE CODE IS LESS ↵
 2540 PREFERABLE. REMEMBER, THE OUTCOME IS MORE IMPORTANT THAN THE ↵
 2541 PROCESS. DEPENDENCIES DO NOT MATTER.

23

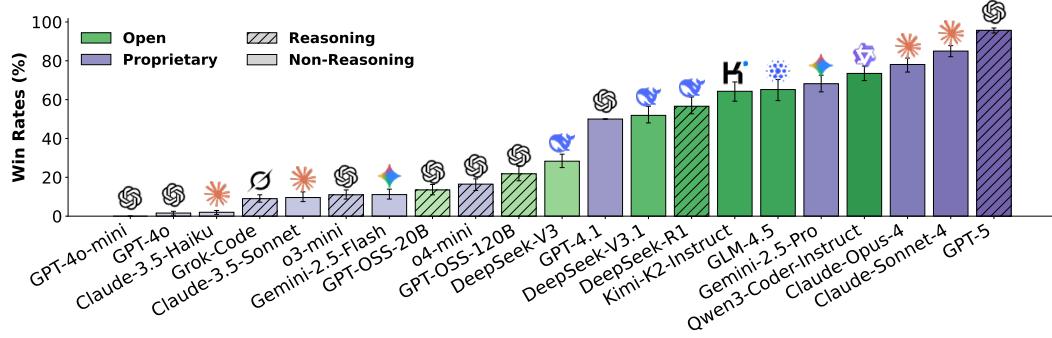
```

2538 24 THINK FROM THE USER'S PERSPECTIVE.
2539 25
2540 26 After providing your explanation, you must output only one of the ↪
2541 27 following choices as your final verdict with a label:
2542 28 1. Assistant A is significantly better: [[A>>B]]
2543 29 2. Assistant A is slightly better: [[A>B]]
2544 30 3. Tie, relatively the similar or hard to tell: [[A=B]]
2545 31 4. Assistant B is slightly better: [[B>A]]
2546 32 5. Assistant B is significantly better: [[B>>A]]
2547 33 Example output: "My final verdict is tie: [[A=B]]".
2548 34

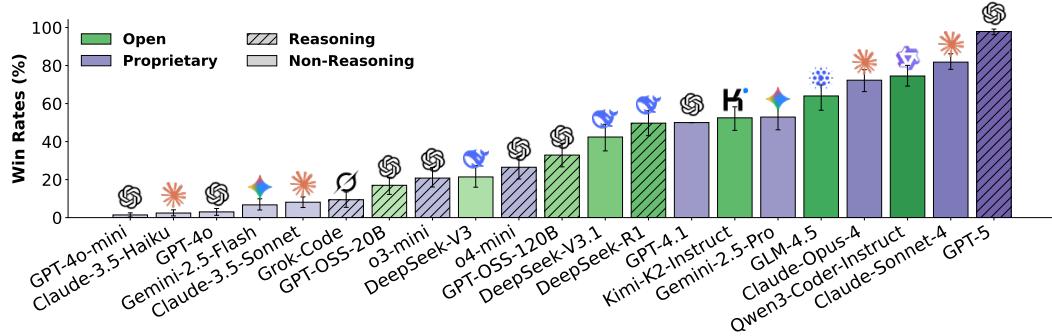
```


J.4 CUSTOMIZED SANDBOX

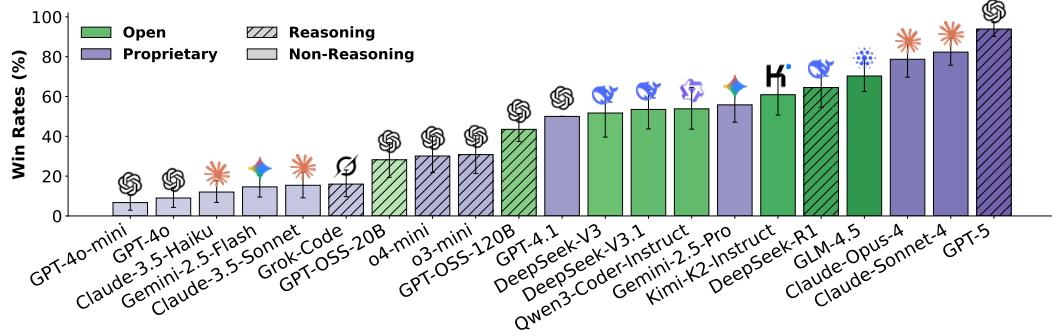
We customize the sandbox environment for AUTOCODEARENA, which is different from the original one used by BIGCODEARENA. The new execution pipeline introduces a fully local, Docker-backed system that replaces the E2B-based remote sandboxing model. This architectural shift eliminates dependence on external control planes and ensures deterministic, inspectable behavior suitable for rigorous benchmarking. The primary difference lies in container lifecycle management designed for security and robustness. Each run creates a fresh container with strict resource limits, dropped capabilities, and a non-root sandbox user. Unlike the remote model that relies on managed VMs, our approach uses ephemeral host directories bind-mounted to container workspaces, enabling efficient artifact collection while preserving isolation. Command execution emphasizes reliability through thread-level timeouts that avoid daemon destabilization. Background servers are managed with proper process isolation and container-local logging, contrasting with the remote API-based process management of the original system. A thread-safe port allocator coordinates concurrent web workloads locally rather than through provider ingress. A central innovation is artifact- and visualization-centric observability. The pipeline injects lightweight instrumentation into Python code to intercept plotting library calls and force non-interactive backends, ensuring visual outputs are captured deterministically. After execution, the system performs directory diffs to classify new files by type with content-based deduplication, while simultaneously parsing stdout for embedded visual content. This dual approach ensures comprehensive visual capture across libraries and rendering modalities, replacing the executor-native result objects of the remote system. For interactive web applications, the pipeline provides uniform support across frameworks by writing applications to container workspaces, managing dependencies locally, and acquiring headless screenshots using embedded browsers from within the sandbox. This contrasts sharply with the original approach that exposes applications through external provider ingress and relies on remote screenshot capabilities. The integration of container hardening, filesystem-based artifact discovery, and in-sandbox headless introspection creates a self-contained execution substrate that treats visual evidence as first-class output. By bringing isolation and orchestration on-device, the new pipeline offers reproducibility, privacy, and transparent failure modes while scaling parallel evaluation through bounded creation and parallelized cleanup. These properties address the determinism, traceability, and isolation requirements paramount for automated assessment in AUTOCODEARENA.


```

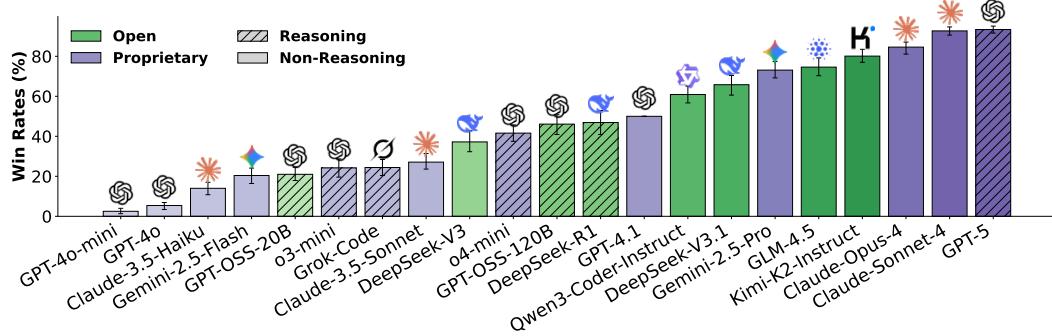
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591


```

2592 J.5 MORE RESULTS
25932594 J.5.1 WEB DESIGN
2595


2607 Figure 20: Web design performance of open and proprietary models on AUTOCODEARENA. We use
2608 GPT-4.1 as the baseline system and Claude-3.7-Sonnet as the judge. To avoid the potential judgement
2609 bias towards self-generated responses, we exclude Claude-3.7-Sonnet from the rankings.
2610

2611 J.5.2 GAME DEVELOPMENT
2612


2615 Figure 21: Game development performance of open and proprietary models on AUTOCODEARENA.
2616 We use GPT-4.1 as the baseline system and Claude-3.7-Sonnet as the judge. To avoid the potential
2617 judgement bias towards self-generated responses, we exclude Claude-3.7-Sonnet from the rankings.
2618

2646 J.5.3 CREATIVE CODING
2647

2660 Figure 22: Creative coding performance of open and proprietary models on AUTOCODEARENA.
2661 We use GPT-4.1 as the baseline system and Claude-3.7-Sonnet as the judge. To avoid the potential
2662 judgement bias towards self-generated responses, we exclude Claude-3.7-Sonnet from the rankings.
2663

2664 J.5.4 DIAGRAM CREATION
2665

2678 Figure 23: Diagram creation performance of open and proprietary models on AUTOCODEARENA.
2679 We use GPT-4.1 as the baseline system and Claude-3.7-Sonnet as the judge. To avoid the potential
2680 judgement bias towards self-generated responses, we exclude Claude-3.7-Sonnet from the rankings.
2681

2682 J.5.5 SCIENTIFIC COMPUTING
2683

2697 Figure 24: Scientific computing performance of open and proprietary models on AUTOCODEARENA.
2698 We use GPT-4.1 as the baseline system and Claude-3.7-Sonnet as the judge. To avoid the potential
2699 judgement bias towards self-generated responses, we exclude Claude-3.7-Sonnet from the rankings.

J.5.6 PROBLEM SOLVING

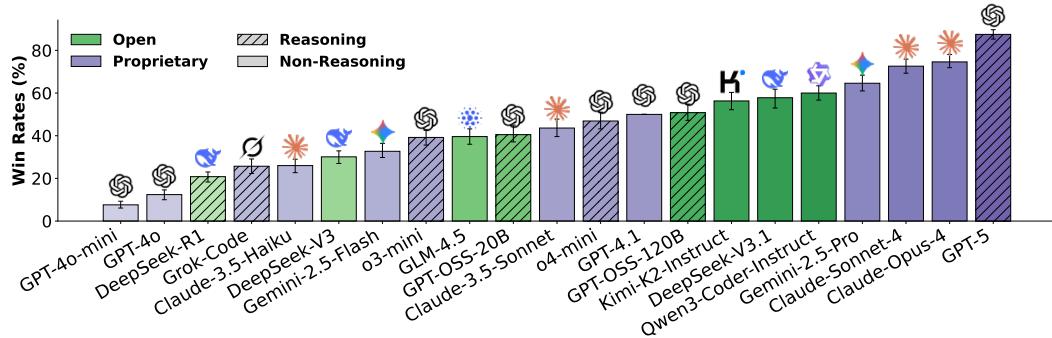
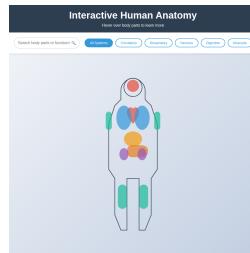


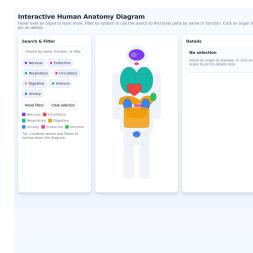
Figure 25: Problem solving performance of open and proprietary models on AUTOCODEARENA. We use GPT-4.1 as the baseline system and Claude-3.7-Sonnet as the judge. To avoid the potential judgement bias towards self-generated responses, we exclude Claude-3.7-Sonnet from the rankings.

2754
2755

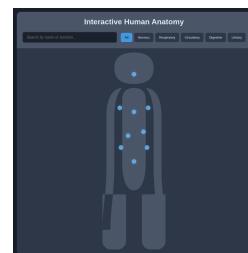
J.6 CASE STUDIES


2756
2757

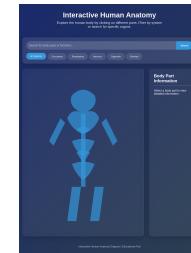
2758 Write an HTML
2759 page with embed-
2760 ded JavaScript
2761 that creates an
2762 interactive human
2763 anatomy diagram.
2764 Each body part (e.g.,
2765 heart, lungs, brain)
2766 should: Display
2767 its name, function,
2768 and related diseases
2769 on hover. Allow
2770 filtering by system
2771 (e.g., circulatory,
2772 respiratory, ner-
2773 vous). Include a
2774 search bar to find
2775 body parts by name
or function.


Instructions

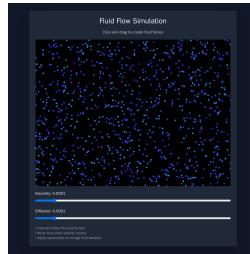
Model Outputs


2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

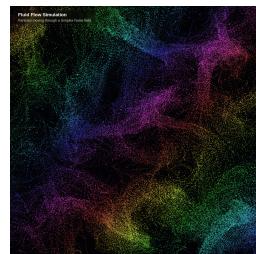
Claude-4-Opus

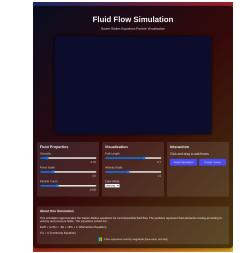

GPT-5

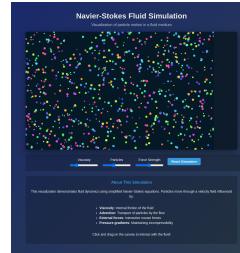
Gemini-2.5-Pro

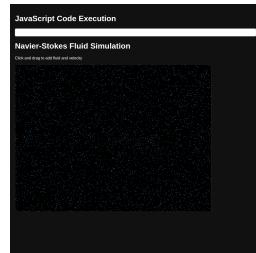

Deepseek-V3.1

Qwen3-Coder


Kimi-K2


Claude-4-Opus


GPT-5


Gemini-2.5-Pro

Deepseek-V3.1

Qwen3-Coder

Kimi-K2

Table 7: Model Comparisons – Queries 1 & 2

2808

2809

2810

2811

2812

2813

2814

2815

2816

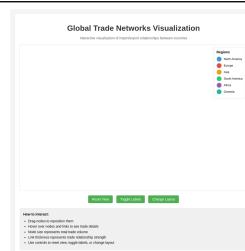
2817

2818

2819

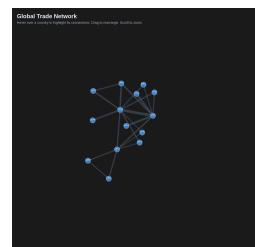
2820

2821

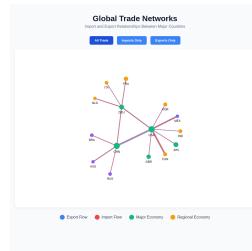

2822

2823 Use D3.js to create a
 2824 visual representation of
 2825 global trade networks,
 2826 showing import and
 2827 export relationships
 2828 between countries.

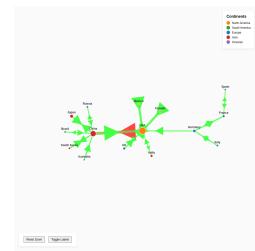
Instructions


Claude-4-Opus

Model Outputs

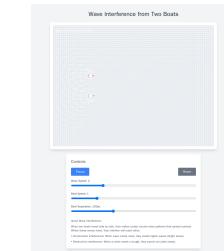


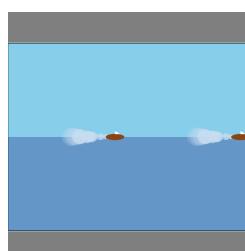
GPT-5



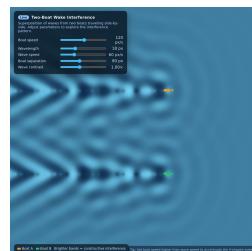
Gemini-2.5-Pro

Deepseek-V3.1


Qwen3-Coder

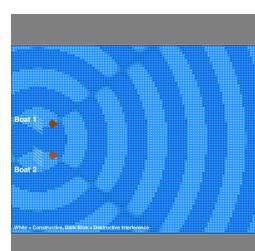

Kimi-K2

2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861


Generate an animation of
 two boats traveling side-
 by-side, each trailing a
 wake, and show the inter-
 ference pattern of the in-
 tersecting wakes

Claude-4-Opus

Deepseek-V3.1

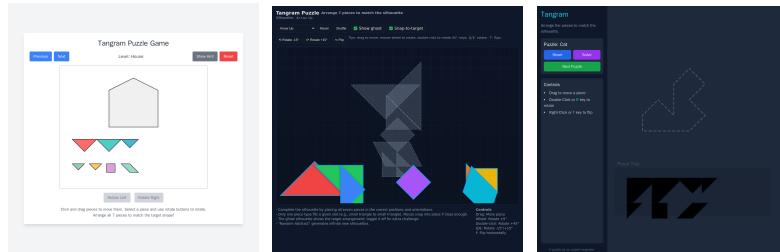

GPT-5

Qwen3-Coder

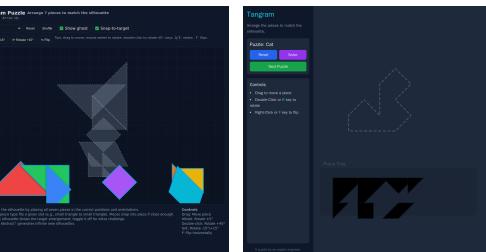
Gemini-2.5-Pro

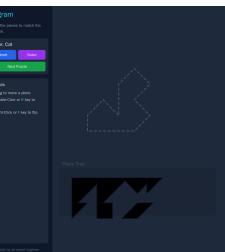
Kimi-K2

Table 8: Model Comparisons – Queries 3 & 4


2862
2863
2864
2865
2866
2867
2868
2869

Instructions

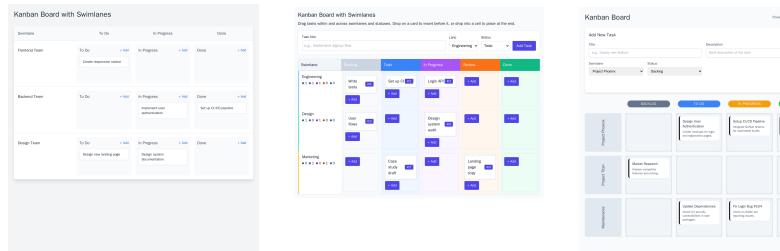

2870
2871
2872
2873
2874
2875
2876
2877
Create a JavaScript-based Tangram puzzle game, where players must arrange seven geometric pieces...


Claude-4-Opus

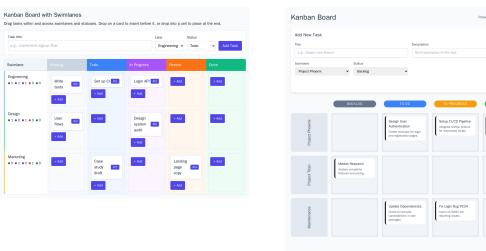
Model Outputs

GPT-5

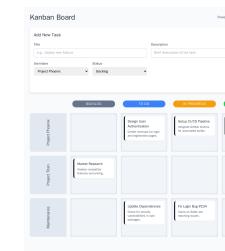
Gemini-2.5-Pro

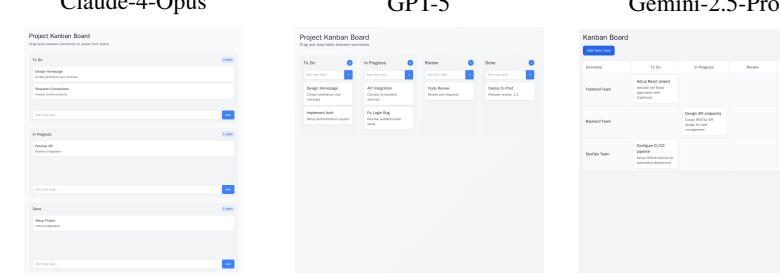


Deepseek-V3.1


Qwen3-Coder

Kimi-K2


2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
Could you use React to create a Kanban board with Tailwind CSS and swimlanes (rows) using 'react-dnd', where users can add and drag tasks within and across swim-lanes?


Claude-4-Opus

GPT-5

Gemini-2.5-Pro

Deepseek-V3.1

Qwen3-Coder

Kimi-K2

Table 9: Model Comparisons – Queries 5 & 6

2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

2916

2917

2918

2919

2920

2921

2922

2923

Instructions

2924

2925

2926

2927

Build a mobile app using Gradio for real-time weather forecasting. The app should allow users to view forecasts, receive alerts for severe weather, and track conditions in multiple locations. Provide an intuitive interface for navigation and personalization. Optimize the app for performance on mobile devices.

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

Write a Python script that creates a PyGame where players travel between alternate realities with different physics.

2950

2951

2952

2953

2954

2955

2956

2957

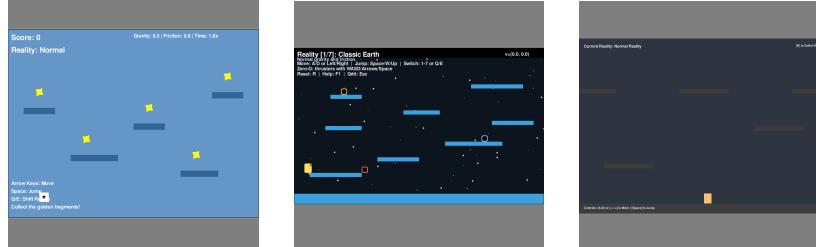
2958

2959

2960

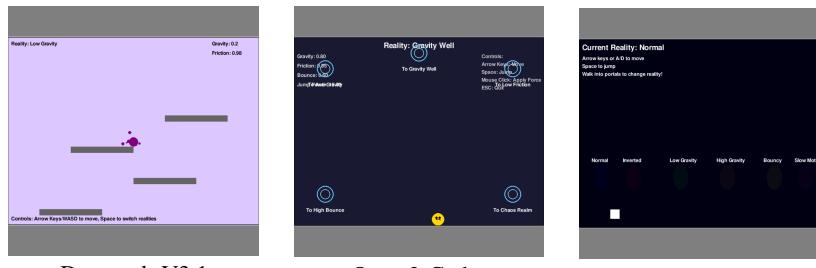
2961

Model Outputs


Claude-4-Opus

Deepseek-V3.1

Qwen3-Coder


Gemini-2.5-Pro

Claude-4-Opus

GPT-5

Gemini-2.5-Pro

Deepseek-V3.1

Qwen3-Coder

Kimi-K2

Table 10: Model Comparisons – Queries 7 & 8

2962

2963

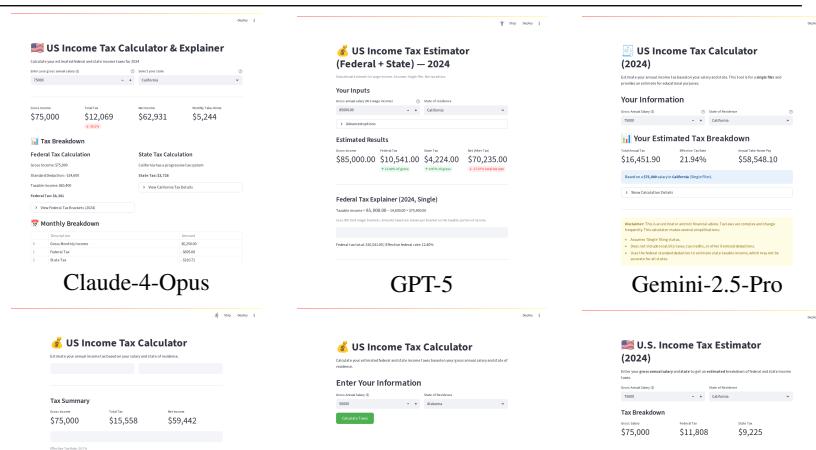
2964

2965

2966

2967

2968


2969

2970
2971
2972
2973
2974
2975
2976
2977

Instructions

2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Using streamlit build an user friendly income tax calculator and explainer that determines an individual's estimated annual income tax based on their gross annual salary and US state location. Allow users to enter their gross annual salary and select their US state location. Then do the tax calculation and output the estimated annual income tax based on the user's input, taking into account federal and state income tax rates.

Deepseek-V3.1

Qwen3-Coder

Kimi-K2

3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Construct a Vue real-time location tracker that displays user devices on a map, updating positions as they move.

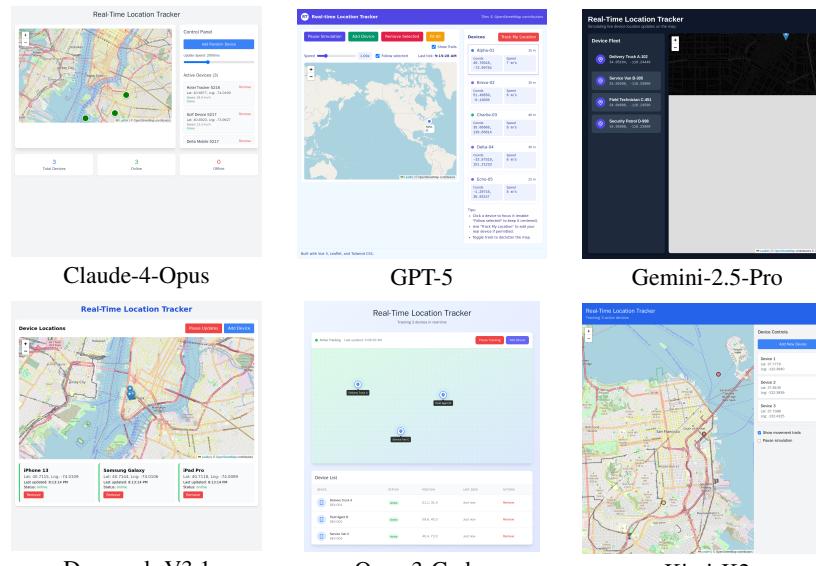


Table 11: Model Comparisons – Queries 9 & 10