Published as a conference paper at ICLR 2026

LLATENT VERACITY INFERENCE FOR IDENTIFYING
ERRORS IN STEPWISE REASONING

Minsu Kim»2* Jean-Pierre Falet'>** Oliver E. Richardson’>® Xiaoyin Chen' 3
Moksh Jain>3 Sungjin Ahn> Sungsoo Ahn?> Yoshua Bengio®> 4

'Mila — Québec Al Institute 2KAIST 3Université de Montréal *LawZero
{minsu.kim, jean—pierre.falet}@mila.quebec

ABSTRACT

Chain-of-Thought (CoT) reasoning has advanced the capabilities and transparency
of language models (LMs); however, reasoning chains can contain inaccurate
statements that reduce performance and trustworthiness. To address this, we
propose to augment each reasoning step in a CoT with a latent veracity (or correct-
ness) variable. To efficiently explore this expanded space, we introduce Veracity
Search (VS), a discrete search algorithm over veracity assignments. It performs
otherwise intractable inference in the posterior distribution over latent veracity
values by leveraging the LM’s joint likelihood over veracity and the final answer
as a proxy reward. This efficient inference-time verification method facilitates
supervised fine-tuning of an Amortized Veracity Inference (AVI) machine by pro-
viding pseudo-labels for veracity. AVI generalizes VS, enabling accurate zero-shot
veracity inference in novel contexts. Empirical results demonstrate that VS re-
liably identifies errors in logical (PRONTOQA), mathematical (GSM8K), and
commonsense (COMMONSENSEQA) reasoning benchmarks, with AVI achieving
comparable zero-shot accuracy. Finally, we demonstrate the utility of latent veracity
inference for providing feedback during self-correction and self-improvement.

1 INTRODUCTION

The inference-time compute paradigm—the practice of allowing language models (LMs) to generate
a chain-of-thought (CoT) before producing an answer—has lead to a improvements in reasoning
performance across a variety of domains (Nye et al., 2021; Kojima et al., 2022; Wei et al., 2022).
The CoTs themselves also promise a degree of interpretability, giving operators a tool to detect
problematic behavior (Perez et al., 2023). This promise, however, is undermined by the fact that LMs
often generate flawed reasoning steps (Ji et al., 2023; Zhang et al., 2024b; Bang et al., 2023). Flawed
reasoning impairs interpretability and may propagate to the model’s final output (Cobbe et al., 2021;
Zelikman et al., 2022; Wang et al., 2023; Yao et al., 2023; Turpin et al., 2023; Lightman et al., 2024),
making error detection (and correction) an important challenge for improving LM trustworthiness.

Several methods have been proposed to improve the correctness, or veracity, of a CoT. Training on
labeled reasoning steps is one solution (Camburu et al., 2018; Rajani et al., 2019; Lightman et al.,
2024), but it is impeded by the paucity of comprehensive annotated datasets due to high labeling cost.
Fact verification through evidence retrieval from external corpora represents a compromise in terms
of labeling requirements (Chern et al., 2023; Min et al., 2023; Jacovi et al., 2024), but faces other
obstacles including retrieval complexity and evidence coverage gaps.

We propose a new method to automatically identify stepwise errors in a CoT without requiring
supervision for each reasoning step. Our key idea is to formulate the problem of identifying errors as
the problem of doing posterior inference in a latent-variable model (LVM) where each reasoning step
is augmented with a latent veracity variable indicating its correctness. This label can be binary (True
or False) for many applications, but our framework is also compatible with categorical variables that
can take on more than two values. The CoT itself, along with the final output of the reasoning process
(the answer to a query), are treated as observations that serve as the main signal for inferring accurate
latent-veracity assignments. In more detail, our contributions are as follows:

*Equal contribution.

Published as a conference paper at ICLR 2026

Section 2.1: We cast stepwise error identification as a latent-variable modeling problem.

Section 2.2: We introduce a discrete search algorithm, Veracity Search (VS), which leverages the
LM’s joint likelihood over stepwise veracity and the final answer as a proxy reward for approxi-
mately sampling from the the target distribution over latent veracity assignments, highlighting
differences with standard methods that use in-context learning to turn LMs into verifiers.

Section 2.3: We propose Amortized Veracity Inference (AVI) to train an LM to predict a distribution
over veracity assignments that does not depend on the true answer, using supervised fine-tuning
on pseudo-labels obtained from VS. As a result, AVI enables zero-shot latent-veracity inference
in downstream reasoning tasks where the final answer is unknown.

Section 4: We validate our approach on the logical reasoning benchmark PRONTOQA (Saparov &
He, 2022), the mathematical reasoning task GSM8K (Cobbe et al., 2021), and commonsense
reasoning COMMONSENSEQA (Talmor et al., 2018) using several open-source LMs (Qwen (Bai
et al., 2023; Yang et al., 2024a;b), Llama (Touvron et al., 2023a;b; Grattafiori et al., 2024)). Our
method yields consistent improvements in verification accuracy over in-context learning baselines,
and scales to longer and more complex reasoning chains. We demonstrate the utility of error-
identification in downstream tasks by using veracity assignments as feedback for self-correction
and self-improvement (Pan et al., 2024).

2 METHOD

Let P\ denote an LM’s probability distribution over the set of possible sequences of tokens. Modern
“thinking” LMs process an input prompt x by first generating a CoT z and subsequently producing
the final answer y. Marginalizing out the CoT, the model’s distribution of outputs given the input
xisP(y | x) = X, Pm(yz | X) = Boop(z)x) [Pom(y | x2)] . (Note that we use a different symbol,
P, to distinguish this probabilistic model from the result P y(y | x) of directly querying the LM.)
Some approaches (e.g., Zelikman et al. (2022); Hu et al. (2024)) replace P y(z | x) with a learned
distribution Q(z | x) that puts more weight on “correct” reasoning chains by training Q to approximate
the distribution P(z | x, y*), where y* is the true answer to the query. Underpinning these approaches
is the assumption that P(y* | x) is increased as a result of marginalizing with respect to such
a Q. Typical strategies for training Q include (i) supervised fine-tuning on labeled examples of
(x,z,y) (Gulcehre et al., 2023), and (ii) reinforcement learning (e.g., REINFORCE (Zelikman
et al., 2022)), amortized inference (e.g., GFlowNets (Hu et al., 2024)), or test-time inference (e.g.,
Sequential Monte Carlo (Zhao et al., 2024)) using Py (z ¥* | x) as a reward, to approximately sample
from the intractable posterior P(z | x, y*). An analogue of this distribution Q lies at the heart of our
proposal, but to explain it, we must first formally introduce an additional dimension: veracity.

2.1 A LATENT-VARIABLE MODEL (P) AUGMENTED WITH VERACITY (V)

One should not expect every reasoning step in a CoT to be correct. Yet, by viewing z as a logical
statement and conditioning on it, standard practice implicitly identifies z with the proposition that “z
is correct”. From this starting point, it is clear why so much work has gone into correcting reasoning
chains: so doing would validate the unstated assumption. Our approach is different: we take the
identity of the CoT z as given and introduce a new binary variable V, intended to capture the veracity
of z. Since the standard assumption that V, is always 1 does not always hold in practice, we claim
that identifying incorrect explanations z is crucial.

As commonly done in stepwise CoT evaluation (Golovneva et al., 2023; Lightman et al., 2024;
Manakul et al., 2023), we parse the CoT z into a sequence of primitive statements z = (21,22, .- -,2N);
as a result, boolean veracity V, is a binary random vector taking values in {0, 1}”. We imagine that
the distribution over V, and Y given x and z is governed by the behavior of an auto-regressive LM,
which gives us a (conditioned) LVM P over the variables V, and Y:

P(V;=v,Y=y | x,2) := Pu(vylx2) = Pou(v |x2) Pu(y [x2V). (D

The veracity variables V,, however, are not observed, so calculating P(V, | x, z, y) requires summing
over the 2V possible values of V, to calculate the denominator P(Y | x, z):

P(V,=v,Y=y | x2) _ Pv(v | x2)Pu(y | xzv)
PY=ylx2) Zv/e{O,I}N P (v [x2)Pin(y | x2v')’

P(V,=v | Y=y,x,2) = 2

Published as a conference paper at ICLR 2026

Context: :Rompuses are steljpuses. Evgry fhumpus is small. [...] Max is a grimpus." x
Query: True or false: Max is aggressive.
y'
. /
Z* (Correct Proof) Z lll/ i Uz
Max is a grimpus. Max is a grimpus. v ‘geer:rcclg/ Max is a grimpus.
Every grimpus is an impus. Corrupt Every grimpus is an impus. \ . Correct | Every grimpus is an impus.
Max is an impus. = [Max is not an impus. ——> = | Maxis an impus.
Impuses are not aggressive. Impuses are not aggressive. A\,/T;c;g(’;iid Impuses are not aggressive.
Max is not aggressive. Max is aggressive. Inference Max is not aggressive.

Predict Predict
(baseline)

Figure 1: Overview of our latent veracity inference method applied to PRONTOQA. Given an
input x, the Veracity Search (VS) takes an erroneous CoT Z and searches for a veracity vector v,
with high joint likelihood P,y (v, y* | x z), where y* is the correct answer. Veracity vectors can then
be used as pseudo-labels to fine tune an LM via Amortized Veracity Inference (AVI) for zero-shot
veracity inference, eliminating the dependencies on y* and on the test-time search algorithm (dotted
lines). A LM can use veracity assignments for correcting flawed reasoning steps.

From another angle, one might view the problem as about the fixed-order auto-regressive nature of the
LM, which makes joint probabilities under P, sensitive to the order of the sequence. If we assume
the joint factorization in Eq. 2, corresponding to the order one would expect to sample veracity in
if it is to be useful for predicting Y, then the problem of doing inference in a conditional LVM P in
which Y is observed but V, is not amounts to infilling V, in the sequence X — Z — (V,) — Y. For
this reason, P(V,=v | Y=y, x, z) is likely to differ from P,\;(v | x z y); the latter corresponds to an
alternative generative model X — Z — Y — V7, and may not be a good approximation the posterior
P(V, | x,z,y) of interest in our LVM. Nevertheless, P y(V,=v | x zy) corresponds to an obvious
in-context learning baseline where the LM is prompted to predict the veracity of a reasoning chain z.
We evaluate against such baselines in Section 4.

Tying this back to the related work referenced at the top of §2, we therefore seek a variational
posterior distribution Q(V; | x, z) over veracity values that puts more weight on “correct” veracity
assignments by training it to approximate the intractable posterior P(V, | x, z, y*). The difficulty of
doing so motivates us to design an efficient search-based approach that performs iterative refinement
of V; (VS; §2.2), which will ultimately be the stepping stone to get such a Q using AVI (§2.3). An
overview of our approach in the context of a logical reasoning task is summarized in Fig. 1.

2.2 VERACITY SEARCH (VS)

Assume that the query x, CoT z (possibly with errors), and—for now—the correct answer y* are
given. Define the proxy reward for a bit vector v € {0, 1}V as

R(v) = P(V;=v,Y=y" | x,2) = PLu(vy" | x2) <« P(V,=v | Y=y", x, 2), 3)

where the proportionality relation is obtained via the application of Bayes rule in Eq. 2. VS seeks
high-reward assignments v, € {0, 1}V, which corresponds to sampling from P(V, | x,z,y*), the
latent variable model’s posterior over veracity assignments. In comparison to methods that produce
better reasoning chains using a reward signal coming only from the target answer ¥ (Cobbe et al.,
2021; Zelikman et al., 2022), or that treats the CoT as a latent variable Z that entangles identity and
veracity (Hu et al., 2024; Phan et al., 2023), our proxy reward is taken from a latent variable model
relating both veracity and final answers, and enables fixing the identity of the CoT Z = z and focusing
on the sub-problem of veracity inference. In § 2.3, we will see a way of overcoming the requirement
for the true label y*, which is required for downstream reasoning tasks: by training an amortized
veracity sampler Q(Vz | x, z) o< R(V;) (or a low-temperature variant for approximate maximization).

Working Hypothesis. While LMs often struggle to generate logically sound and consistent CoTs
during sampling, we hypothesize they are nevertheless capable of assigning higher probability to the
joint distribution over the true answer and the veracity of a reasoning chain when the latter is closer
to the ground-truth v;. More formally, this means that we expect a negative correlation between
P(V, =v, | Y = y*,x,z) and the Hamming (L1) distance |v, — v}|.

Published as a conference paper at ICLR 2026

While the global maximizer of the likelihood may not always coincide exactly with v;, moving
towards higher likelihoods should, on average, steer v, toward the true assignment v; and thereby
reveal which statements in z are correct. We empirically validate this hypothesis in Appendix C.5.

Single-Bit Metropolis Updates with Simulated Annealing. At iteration ¢ € {1,2,..., } we take the

current vector v;t) and perform a single-coordinate update:

1. Draw an index j ~ Unif{1,..., N}, and propose the veracity vector obtained by flipping
the j-th bit: v, = v @ ¢; (e.g. if j = 3and v\") = [1,0, 1], then v} = [1,0,0]).

2. Accept the proposal v}, with probability o;; = min{l, [R(v’z)/R(vit))]ﬁ’}, where
inverse temperature (; is set to 1 in the basic Metropolis algorithm. We also experiment

with a schedule for 8;,0 < By < - - - < Bp, in the style of simulated annealing, to balance
the exploration and exploitation tradeoff.
(t+1) _ (1)
P

3. Set vé”l) = v/, if accepted, otherwise let v,

Because the proposal flips exactly one bit and is symmetric, the acceptance ratio simplifies to the
likelihood ratio.

Greedy-Tree Initialization. Before running the stochastic search, we heuristically pick an initial

(0)

vector v, using a depth-first greedy procedure. Fori = 1 to N:

1. Construct partial candidates that agree on positions 1:71—1 and set v, =0 or 1, leaving
i+1:N unassigned.

2. Query the model for the partial score R(vi;;) = Pou(x z1; viy y*), letting the LM
internally marginalize the unspecified bits.

3. Fix vg.)) to the value that yields the larger R.

This greedy sequential “tree” search provides a warm start that is often close to a high-reward basin,
allowing the subsequent single-bit Metropolis updates to converge more quickly.

2.3 AMORTIZED VERACITY INFERENCE (AVI)

In the spirit of variational expectation—maximization (EM), higher-reward samples of the veracity
vector V, obtained via VS (Eq. 3) are used as pseudo-labels to train the generative model P, via
supervised fine-tuning, yielding the amortized sampler Q. Initializing at P,y (V, | x z) and fine-
tuning on VS samples obtained with simulated annealing towards zero temperature results in a an
approximate maximizer of the proxy-reward Q(V; | x, z) o limg_,e R(V)P.

Unlike the test-time search method (VS), Q(V, | x, z) is trained to predict veracity without condi-
tioning on the answer Y. This provides two primary benefits: (1) it enables rapid run-time inference
for verifying a CoT z in a zero-shot manner without test-time search and before seeing the correct
answer, and (2) it has the potential to improve reasoning by serving as feedback to identify erroneous
reasoning steps in need of correction or re-generation. In some tasks (like PRONTOQA), reason-
ing steps predicted to be incorrect by AVI can be negated (by inserting a “not” token), yielding
a corrected explanation z’. The correction is expected to be a more accurate reasoning chain, i.e.
Pou(y* | xz') > Pou(y* | xz), and we empirically validate this hypothesis in § 4.4. For tasks
where negation can’t be used for correction, a more general strategy involves simply appending the
predicted veracity label (“True” or “False”) to the statement, and we showcase this approach in our
COMMONSENSEQA experiments.

3 RELATED WORK

Automated feedback, self-correction, and self-improvement. Several self-correction and self-
improvement methods (Pan et al., 2024) rely on critics to provide feedback to a reasoning model,
with the aim of correcting a CoT or guiding its re-generation. Sources of feedback include supervised
classifiers and reward models (Rajani et al., 2019; Lightman et al., 2024; Cobbe et al., 2021; Yang
et al., 2022), evidence-based fact verifiers (Chern et al., 2023; Li et al., 2023; Manakul et al., 2023),
and zero/few-shot prompted LMs (to provide natural language feedback, or scalar scores) (Madaan

Published as a conference paper at ICLR 2026

et al., 2023; Weng et al., 2023; Xie et al., 2023; Yao et al., 2023; Shinn et al., 2023). At training
time, the final-answer itself can be used to fine-tune a reasoning model to output reasoning chains
that reach the correct conclusion (Zelikman et al., 2022), which may involve variational EM to
learn—and do inference in—an LVM relating reasoning chains and final answers Phan et al. (2023);
Hu et al. (2024). Iterative approaches based on in-context learning to teach LMs to correct rationales
by contrasting them with examples of correct rationals have also been proposed Zhou et al. (2024).
RL for eliciting CoT reasoning, specifically with binary feedback based on the answers produced
by CoTs, has become prominent following models like o1 (OpenAl, 2024) and DeepSeek-R1 (Guo
et al., 2025).

Our work can be viewed as complementary to self-correction and self-improvement methods, propos-
ing a new method for identifying errors that can serve as a useful source of feedback for any
self-correction/self-improvement method; alternatively, it can be useful on its own for monitoring
purposes. In contrast to standard feedback obtained via zero- or few-shot prompting of an LM, which
has been found to be fragile (in part due to prompt sensitivity) and degrade performance in certain
cases (Huang et al., 2023), our proposed method samples directly from the posterior distribution of
interest in an LVM relating stepwise veracity to final answers. It does not require examples of correct
reasoning chains, and the required instruction-prompt is minimal. Decomposing self-correction into
verification and refinement sub-tasks has also been proposed in Zhang et al. (2024c), outside the
context of LVMs.

Process reward models (PRMs). PRMs score the quality of intermediate reasoning steps and
are widely used in LM post-training. They differ from our method in two key ways: (i) typically,
PRMs require step-level ground-truth labels (e.g. provided by humans (Lightman et al., 2024)); (ii)
supervised/reinforcement-learning fine-tuning methods to train PRMSs using only outcome-supervision
(final-answer labels) learn stepwise rewards that represent value/advantage and capture instrumental
utility rather than stepwise correctness, and can reward useful-but-incorrect steps (Uesato et al., 2022;
Zha et al., 2025; Yuan et al., 2025; Cui et al., 2025). In contrast, VS and AVI explicitly target step
veracity without the need for process supervision, by approximating latent-veracity inference in an
LVM.

Search-based inference. Search-based inference complements prompt engineering and fine-tuning to
enhance reasoning in LMs. Simple approaches utilize CoT resampling and majority-voting to achieve
improvements over single-pass generation (Wang et al., 2023; Xue et al., 2023). Best-of-N methods
extend the sampled candidate pool and re-ranks outputs via specialized ranking models (Cobbe et al.,
2021; Snell et al., 2025); however, these methods scale linearly with the number of candidates and do
not revise intermediate reasoning steps. Others frame reasoning as a combinatorial search problem,
exemplified by tree search prompting, which explores and prunes reasoning branches through learned
or heuristic value functions (Yao et al., 2023; Xie et al., 2023), its extensions involving differentiable
relaxations (Xu et al., 2025), amortized inference with GFlowNets (Bengio et al., 2021; Yu et al.,
2024), and Monte-Carlo Tree Search (Luo et al., 2024; Zhang et al., 2024a; Xie et al., 2024). Our VS
method is based on local search (MCMC), which is efficient in the lower-dimensional search space
of veracity, and it borrows several ideas from the related work cited above.

4 EXPERIMENTS

In this section we evaluate VS emperically,' validating our hypothesis that using Py (v, y* | x z) as
a proxy reward improves the correctness of the veracity vector (with respect to the ground-truth v}).

Benchmarks. First, we use the PRONTOQA benchmark (Saparov & He, 2022), because it gives
us the ability to synthesize correct reasoning chains (z*) synthetically, facilitating the introduction
of controlled errors by corrupting specific steps, resulting in an incorrect proof Z. Key advantages
of PRONTOQA include binary veracity labels for each logical deduction steps, and the ability to
generate proofs from a fictional ontology to isolate the LM’s logical reasoning capability from it’s
ability to retrieve memorized facts/trends acquired during training. Moreover, PRONTOQA allows
for adjusting the reasoning chain length to test our method’s scalability to more complex scenarios.
Finally, we use PRONTOQA to assess AVI and its impact on answer prediction (y*).

'Source code: https://github.com/alstnl2088/veracity_inference

https://github.com/alstn12088/veracity_inference

Published as a conference paper at ICLR 2026

Table 1: Mean Hamming Similarity (+ std) on PRONTOQA, GSM8K, and COMMONSENSEQA
(1,000 examples each).

Dataset Method Qwen-4B Qwen-8B Llama-3B Llama-8B
Recursive 0.691 £0.167 0.667 +0.139 0.538 +0.117 0.471 + 0.057
Many2Many 0.590 = 0.155 0.683 +0.142 0.506 £ 0.161 0.530 +£0.157
PRONTOQA Voting 0.603 £0.152 0.692 +£0.138 0.514+0.156 0.536 +0.153
CoT 0.591 £0.201 0.384 +£0.201 0.459 +£0.041 0.515+0.162
VS (ours) 0910 £ 0.118 0.945+0.096 0.948 +0.072 0.964 + 0.072
Recursive 0.540 £ 0.167 0.617 £0.136 0.568 £0.096 0.568 +0.096
Many2Many 0.620 +£0.126 0.650 £ 0.139 0.566 + 0.096 0.567 £+ 0.096
GSM8K Voting 0.623 +0.127 0.654 £0.138 0.566 £0.096 0.553 +0.128
CoT 0.614 £0.166 0.695 +£0.204 0.496+0.164 0.496 +0.165
VS (ours) 0.711 £0.155 0.751£0.193 0.614 +0.143 0.646 + 0.157
Recursive 0.607 +£0.217 0.509 +£0.220 0.505 +£0.219 0.506 + 0.219
Many2Many 0.517 £0.227 0.534+0.212 0.504 +0.220 0.503 +0.219
COMMONSENSEQA Voting 0.521 £0.226 0.533 £0.208 0.504 £0.220 0.505 +0.219
CoT 0.695 +0.230 0.590 +£0.220 0.507 £0.219 0.535 +0.227
VS (ours) 0.935+0.123 0.931+£0.119 0.836+0.176 0.903 +0.137

We additionally evaluate our method across other reasoning domains, namely mathematical reason-
ing (Cobbe et al., 2021, GSM8K) and commonsense reasoning (Talmor et al., 2018, COMMON-
SENSEQA). In contrast to PRONTOQA, these datasets do not provide us with the ability to generate
corrupted reasoning chains in a controlled manner, limiting our ability to measure the accuracy
of veracity assignments. We overcome this by generating structured reasoning chains via a more
powerful oracle model (GPT—-4 . 1) using OpenAlI’s API for generating structured outputs (a sequence
of strings, each of which corresponds to a reasoning steps), conditioned on the correct answer y*. We
treat the generated reasoning chains as ground truth, assuming v; = 1, and then corrupt them with
controlled perturbations.

Base LMs. We evaluate our approach using several representative LMs: Qwen 3 (4B), Qwen 3 (8B),
Llama 3.2 (3B), and Llama 3 (8B).

Baselines. Our primary goal is to demonstrate the effectiveness of using the joint probability
Pov(v; y* | xz) as a proxy reward. We introduce autoregressive baselines that generate V, in a
tractable manner by modifying the decoding trajectory from the original intractable form (X — Z —
V., — Y) to the tractable form (X — Y — Z — V). These baseline methods directly query the LM
to generate V; given x, y, and z, using few-shot examples.

These baseline inference methods are further categorized as follows: (1) Many2Many Inference
(Many2Many): Generates a complete veracity vector v in one-shot for a given sequence of reasoning
steps z; (2) Many2Many Inference with the addition of CoT-prompting (CoT): Given x, y, and z,
we prompt the model to generate a CoT before outputting the value of V,, to explain its reasoning;
(3) One-Shot Majority Voting (Voting): Uses majority voting across M = 50 samples generated at
a higher temperature (7' = 0.5) to predict the veracity assignment, whereas other methods employ
a greedy-like temperature (7' = 0.01) to enhance consistency; (4) Recursive Inference (Recursive):
Predicts each stepwise veracity label v,, recursively, where i corresponds to the index of the statement
i in the reasoning chain, conditioned on previously inferred labels v, , , and corresponding statement
identities z1.;—1. The generative trajectory is thus structuredas X - Y — Z; - V; — -+ —
Zny — V. We provide the same five few-shot demonstrations for all baselines, including our
proposed method.

Details pertaining to implementation, CoT corruption, and prompting, are provided in Appendix A.

4.1 EVALUATING THE ACCURACY OF VERACITY INFERENCE

To quantify the performance of VS, we compute the Hamming similarity between the predicted
correctness vector v, and the ground-truth vector v}: Sim(v,,v}) = 1 — |[v; —v}|l1/L, where ||-||;

Published as a conference paper at ICLR 2026

Qwen3-4B Qwen3-8B Llama-3.2-3B Meta-Llama-3-8B
1.0 Py o—o 1.0}.—-—.—-.‘._. 1.0-./._.__.__. 1.0'./.__.-—.——.

0o5{ =~ = 0.5 0.5-./"\~_,’ o o5 T T

o
o

0.0+~ " T T — 0.0 T T " — 0.0
1.0 1.0 1.04

0.5.—.\\/. 0.5—._‘\./0/. 0.5—‘/—-.\'/.

Y
0.0 .\f_‘\--__ﬂ/- 0.0L ’v‘\'gn—'\ 0.0 = = =l g P

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Hop Hop Hop Hop

?

Exact Match Acc. Hamming Sim.
-
o

—— Recursive Many2Many —@— Veracity Search (ours)

Figure 2: Veracity inference evaluation for different number of hops in PRONTOQA. Top row: Mean
Hamming Similarity; Bottom row: Mean Exact Match Accuracy. Mean is estimated using 100 test
samples.

denotes the element-wise £;-norm and L = |v.| = |v}] is the length of the vector. A similarity of 1
indicates perfect agreement, whereas 0 signifies complete disagreement.

The results for PRONTOQA, GSM8K, and COMMONSENSEQA are presented in Table 1. In both
tasks, VS (run for 200 iterations on the proxy-reward Eq. 3), consistently outperforms the other
baselines. In particular, VS attains near-perfect identification accuracy on PRONTOQA.

In the GSM 8K mathematical reasoning task, VS consistently outperformed baseline methods across
all tested LMs. The remaining gap with ground-truth veracity labels is likely due to the distribution
of errors induced by our approach of corrupting CoTs with noise. In cases where a reasoning step
can be viewed as a Boolean assertion (PRONTOQA and COMMONSENSEQA), flagging errors is no
different from correcting them. In the setting of GSM8K, however, beyond flagging arithmetic errors,
one also needs to re-do the flawed calculations in order to correct the answer or identify additional
errors, impacting both the baselines and VS.

The importance of the CoT corruption scheme also highlights the need to evaluate VS under other
distributions of erroneous reasoning chains. We conduct such an evaluation on PRONTOQA and
COMMONSENSEQA in Appendix C.1, and find that VS outperforms baselines in a wider variety of
settings. Finally, we evaluate VS in cases where veracity is a categorical variable with more than two
classes in Appendix C.4, and assess the sensitivity of VS accuracy to model size in Appendix C.7.

4.2 SCALING TO LONGER REASONING CHAINS

PRONTOQA structures each reasoning trace into discrete hops: one hop corresponds to the application
of a deduction rule (modus ponens), which itself is broken down in more than one statement. For
example, a 5-hop can involve up to 13 reasoning steps. The number of hops allows us to control the
length of the reasoning chain and therefore the complexity of inference.

We evaluated four LMs (Qwen3-4B, Qwen3-8B, Llama-3.2-3B, Llama-3-8B) on logical reasoning
problems ranging from 1 to 5 hops, uniformly flipping half of the ground-truth statements in the
ground-truth CoT z* to produce corrupted versions Z. Fig. 2 shows how well each method recovers
the ground-truth veracity vector. In addition to Hamming Similarity, we also measured Exact Match
Accuracy, which is equal to 1 if the predicted v, matches the ground truth v, and 0 otherwise.

All methods maintained nearly constant Hamming similarity throughout the range of hops, with VS
consistently above 0.85, outperforming baselines by 20-25 points. Exact-match accuracy inevitably
decayed with increased hops, as the probability of correctly predicting all errors shrinks exponentially
in |z|. Nevertheless, VS maintained relatively stable Exact-match accuracy even in 5-hop scenarios
where the baselines already demonstrate a significant performance gap, failing to identify any error.

Published as a conference paper at ICLR 2026

10 1.0] 10

z z 2

5 5 3

o8] Eo % 0.8

%] %]

o o =

c s c " c

= == Const T=0.1 = == = SA (Cosine) =

E 06| 47 —— Const T=1.0 E 0.6 = = SA (Cosine) + Greedy init E 06 BON (T=0.3) === BoN (T=1.0)

2 —— SA (Linear)] == SA (Linear) £ BON (T=0.5) === Random Search

= = SA (Cosine) === SA (Linear) + Greedy init m== BON (T=0.7) === SA + Greedy init
045 50 160 150 200 045 50 100 130 260 045 50 100 150 260
Num Samples Num Samples Num Samples

(a) Simulated Annealing (SA) (b) Greedy-tree init. (c) SA vs other search algorithms

Figure 3: Ablation study for search hyperparameters. SA: Simulated Annealing; Const: Constant
Temperature; BoN(T'): Best-of-N baseline using LM proposals sampled at temperature 7. Mean
value is estimated over 100 test samples from PRONTOQA.

Table 2: Hamming similarity between predicted veracity from the AVI and ground truth labels v}.
Mean similarity is computed over 100 test samples from 3,4, and 5-hop PRONTOQA.

Qwen 4B Qwen 8B
3-hop 4-hop 5-hop | 3-hop 4-hop 5-hop

Many2Many 0.710+£0.197 0.779+0.131 0.684+0.131 | 0.663+0.146 0.643+0.223 0.665+0.176
AVI (ours) 0.886+0.143 0.921+0.010 0.913+0.108 | 0.956+0.008 0.967+0.069 0.955+0.081

Base LLM

4.3 ABLATION STUDY FOR SEARCH HYPERPARAMETERS

We conduct three ablations to analyze key design choices in VS, averaging results over identical
PRONTOQA splits (see Figure 3): (1) Simulated annealing (Figure 3a): Linear and cosine annealing
(Ty = 1/By=2,Ty = 1/Bp = 0.1) yield similar results and slightly outperform constant temperature
(T = 1), demonstrating the advantage of gradually increasing the inverse temperature to escape local
optima for improved approximate global maximization of the proxy-reward. A constant inverse
temperature (T = 0.1) results in getting stuck in local optima; (2) Greedy-tree initialization
(Figure 3b): The greedy initialization method using simple tree search (§ 2.2) significantly boosts
sample efficiency by starting from a high-quality initial solution; (3) Comparison with other search
algorithms (Figure 3c): Our Metropolis algorithm with Simulated Annealing clearly outperforms
uniform random bit-flips (random search) and Best-of-N (BoN) LM-generated proposals. Random
search wastes resources, while BoN lacks local exploration, underscoring the necessity of structure-
aware local moves.

Collectively, these ablations confirm that simulated annealing, principled initialization, and structured
local moves significantly enhance the performance of VS. In Appendix C.3, we extend our method
to block Metropolis, allowing for multi-bit flips in settings where more complex joint dependencies
exist between veracity variables.

4.4 EVALUATION OF AVI

Qwen3-4B and Qwen3-8B models were fine-tuned using pseudo-labels generated by VS, for 5,000
contexts ((x, y*, z) tuples) in a 4-hop PRONTOQA training dataset, as described in Appendix A.

Veracity inference. Table 2 reports the Hamming similarity between v, selected by the AVI and the
ground-truth veracity vector v} in a test set of 100 PRONTOQA examples. Despite being fine-tuned
only on 4-hop proofs, the model generalizes to unseen chain lengths. Across both Qwen backbones,
Hamming similarity increases by ~15-25 points relative to the strongest one-shot baseline, closing
most of the gap to the optimal similarity of 1.0.

Effect on downstream reasoning. In PRONTOQA, we first generate correct proofs z*, then inject
errors by randomly negating a subset of statements to create a corrupted reasoning chain 7. When
an LM conditions directly on this flawed Z, its ability to predict the correct answer y* drops sharply.
A simple self-correction method leveraging AVI works as follows: first, incorrect statements are
identified by the AVI, then these statements are negated to form a corrected chain z” (e.g. replacing
“every impus is temperate” with “not every impus is temperate”). This process is illustrated in Fig. 1.

Published as a conference paper at ICLR 2026

Table 3: Reasoning accuracy for inferring y* from PRONTOQA problems given synthetic noisy
chains. Average accuracy and standard deviation computed over 100 problems.

Qwen 4B Qwen 8B
3-hop 4-hop 5-hop | 3-hop 4-hop 5-hop

No Correction ~ 0.60+0.05 0.52+0.05 0.59+0.05 | 0.54+0.05 0.65+0.05 0.52+0.05
Self Correction 0.54+0.05 0.60+0.05 0.48+0.05 | 0.54+0.05 0.58+0.05 0.46+0.05

Method

AVI (ours) 0.68+£0.05 0.72+0.04 0.77+0.04 | 0.87+0.03 0.85+0.04 0.81+0.04
0.90 * 0.90 *
Z0.85 2085
.‘—é’ 0.80 A= AVI (ours) g 0.80 = AVI (ours)
= VS (ours) = VS (ours)
30 75 -@ Many2Many (voting) ‘g‘o 75 -@ Many2Many (voting)
£ @ cCot £ 9 Cot
g 0.701 Ao -A- Recursive g 0.701 A -A- Recursive
L£0.65 £0.65
________________________ ° -
0.60{ ®7==-- L s 0.60 @ ®-
*
0 25 50 75 100 125 150 175 200 0 10 20 30 40
Number of Samples Wall-Time per Problem (sec)

Figure 4: Test-time inference efficiency of Qwen3-4B on 100 problems (x, z, y*) from 5-hop PRON-
TOQA for inferring v,. Inference wall time is shown as the number of samples per problem scales.

Table 3 compares three scenarios: (a) using the uncorrected Z, (b) self-correction using the
Many2Many baseline, and (c¢) employing AVI for self-correction. Conditioning the LM on z’
boosts the conditional probability of the true answer by up to 25% on Qwen-8B and by 10-12 points
on Qwen-4B. The improvement is consistent across 3-, 4-, and 5-hop proofs, suggesting that simply
correcting mistakes in a CoT can result in improved reasoning accuracy. We extend this evaluation to
LM-generated reasoning chains z (with no synthetic corruption) in Appendix C.2.

Inference-time self-improvement methods are related to self-correction, and aim to improve reason-
ing through resampling and editing, occasionally utilising a distinct feedback module for guiding
correction. Our approach is complementary to these self-improvement methods, as it focuses on
identifying statements that need correction, and would therefore fit naturally as a feedback module.
In Appendix C.2, we illustrate how AVI can be used as the feedback module in the self-improvment
method Self-Refine (Madaan et al., 2023), replacing the few-shot prompted LM (corresponding to
our baseline Many2Many) that is typically used for this purpose. We find that AVI continues to
outperform baselines for this type of application, but note that the magnitude of improvement in
reasoning performance is smaller than the gain observed in terms of veracity inference accuracy
in the preceding experiments. This suggests that verification alone is not the only bottleneck in
self-correction/improvement frameworks (Zhang et al., 2024c), and more work is needed to better
understand how to make the best use of a stronger verification signal to guide CoT-(re)generation.

4.5 SAMPLE EFFICIENCY AND WALL-TIME

Finally, we evaluate the sample-efficiency and inference-time requirements of our proposed method
compared to the same baselines from previous experiments. We use 100 examples from the 5-hop
PRONTOQA dataset and run all experiments on the same NVIDIA RTX 6000 ADA (48GB) GPU.

As depicted in Figure 4 (left), VS outperforms all baseline methods in terms of sample efficiency,
even when limited to a single sample using greedy tree-based initialization. Performance scales
favorably, reaching optimal results at around 100 samples. The zero-shot (1-sample) AVI provides
Pareto-optimal performance, comparable to the 100-sample iteration of VS. As shown in Figure 4
(right), VS also uses less inference time per sample compared to other baselines. This efficiency stems
from the parallelized reward computations using LM likelihoods evaluated on sampled sequences,
eliminating the need for sequential token-level decoding that other baselines require. We include a
complementary analysis of the inference-time cost of our approach in Appendix C.6.

Published as a conference paper at ICLR 2026

5 CONCLUSION

We introduced a framework for stepwise error-identification that extends the latent variable represen-
tation of a CoT by disentangling its identity z from its veracity V,. We proposed a discrete search
algorithm, Veracity Search (VS), to efficiently search over boolean veracity vectors, and proposed
a method (Amortized Veracity Inference; AVI) for fine-tuning an LM with pseudo-labels from VS,
allowing us to apply VS in contexts where the final answer is unknown. Empirically, we found that
VS outperforms in-context learning baselines in logical, mathematical, and commonsense reasoning
tasks when assessing the accuracy of the predicted veracity of individual reasoning steps, and that
AVI can complement downstream tasks that utilize veracity labels as feedback for correction or
for guiding the re-generation of erroneous reasoning chains towards ones that increase reasoning
performance.

There are important limitations to our work. The performance of VS can be sensitive to the distribution
of errors, and most of our analysis pertains to artificially corrupted CoTs. Preliminary results suggest
that these techniques also work for naturally occurring errors (§C.1), but these claims should be tested
in a broader range of dedicated experiments. Ultimately, important applications of error-identification
(such as self-correction) often require more than flagging mistakes: inferring veracity v, of a CoT
does not render the identity z of the reasoning steps unimportant. In the appendix (§C.2) we prototype
a way of integrating AVI with self-improvement methods to resample erroneous statements in z, but
designing more powerful reasoning systems that combine veracity inference with iterative test-time
correction schemes remains an important avenue for future work. Our method could also provide a
new training signal for reasoning models, for example by using EM to jointly update the generative
model with veracity samples obtained with AVI, or by providing a veracity-specific process-level
training signal for PRMs in label-scarcity scenarios.

10

Published as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

We thank researchers at Mila (Joumana Ghosn, Pierre-Luc St-Charles, Marc-Antoine Rondeau,
Mohsin Hasan, Siddarth Venkatraman, Yaroslav Kivva) and KAIST (Junyeop Baek, Doojin Baek) for
insightful discussions and assistance with this project. This research is supported by the Canadian Al
Safety Institute Research Program at CIFAR through a Catalyst award. The research was enabled in
part by computational resources provided by the Digital Research Alliance of Canada (https://
alliancecan.ca),Mila(https://mila.quebec), and NVIDIA. The authors acknowledge
funding from CIFAR, NSERC and the Future of Life Institute. Minsu Kim acknowledges funding
from KAIST Jang Young Sil Fellow Program. Jean-Pierre Falet is supported by a Doctoral Vanier
Canada Graduate Scholarship (FRN: CGV-192746). Moksh Jain acknowledges funding from a
FRQNT Doctoral Fellowship (https://doi.org/10.69777/366694). Minsu Kim, Sungsoo
Ahn, and Sungjin Ahn were supported by GRDC Cooperative Hub Program (RS-2024-00436165)
through the National Research Foundation of Korea (NRF).

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, et al. A multitask, multilingual, multimodal evaluation of
chatgpt on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023, 2023.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Neural Information
Processing Systems (NeurIPS), 2021.

Oana-Maria Camburu, Tim Rocktidschel, Thomas Lukasiewicz, and Phil Blunsom. e-snli: Natural
language inference with natural language explanations. Neural Information Processing Systems
(NeurlIPS), 2018.

I Chern, Steffi Chern, Shigi Chen, Weizhe Yuan, Kehua Feng, Chunting Zhou, Junxian He, Graham
Neubig, Pengfei Liu, et al. Factool: Factuality detection in generative ai—a tool augmented
framework for multi-task and multi-domain scenarios. arXiv preprint arXiv:2307.13528, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Yuchen Zhang, Jiacheng Chen, Wendi Li,
Bingxiang He, Yuchen Fan, Tianyu Yu, et al. Process reinforcement through implicit rewards.
arXiv preprint arXiv:2502.01456, 2025.

Olga Golovneva, Moya Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. Roscoe: A suite of metrics for scoring step-by-step reasoning.
International Conference on Learning Representations (ICLR), 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Edward J. Hu, Moksh Jain, Eric EImoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. International
Conference on Learning Representations (ICLR), 2024.

11

https://alliancecan.ca
https://alliancecan.ca
https://mila.quebec
https://doi.org/10.69777/366694

Published as a conference paper at ICLR 2026

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2023.

Alon Jacovi, Yonatan Bitton, Bernd Bohnet, Jonathan Herzig, Or Honovich, Michael Tseng, Michael
Collins, Roee Aharoni, and Mor Geva. A chain-of-thought is as strong as its weakest link: A
benchmark for verifiers of reasoning chains. Annual Meeting of the Association for Computational
Linguistics (ACL), 2024.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
computing surveys, 55(12):1-38, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Neural Information Processing Systems (NeurIPS), 2022.

Miaoran Li, Baolin Peng, Michel Galley, Jianfeng Gao, and Zhu Zhang. Self-checker: Plug-and-
play modules for fact-checking with large language models. Findings of the Association for
Computational Linguistics: NAACL 2024, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. International
Conference on Learning Representations (ICLR), 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. International Conference
on Learning Representations (ICLR), 2019.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei
Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Neural Information Processing Systems (NeurlPS), 2023.

Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box
hallucination detection for generative large language models. Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2023.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual
precision in long form text generation. arXiv preprint arXiv:2305.14251, 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

OpenAl OpenAl ol system card. arXiv preprint arXiv:2412.16720, 2024.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse automated
correction strategies. Transactions of the Association for Computational Linguistics, 12:484-506,
2024. doi: 10.1162/tacl_a_00660. URL https://aclanthology.org/2024.tacl-1.
27/.

Ethan Perez, Sam Ringer, Kamile Lukosiute, Karina Nguyen, Edwin Chen, Scott Heiner, Craig Pettit,
Catherine Olsson, Sandipan Kundu, Saurav Kadavath, et al. Discovering language model behaviors
with model-written evaluations. Findings of the Association for Computational Linguistics: ACL
2023, 2023.

Du Phan, Matthew Douglas Hoffman, David Dohan, Sholto Douglas, Tuan Anh Le, Aaron Parisi,
Pavel Sountsov, Charles Sutton, Sharad Vikram, and Rif A Saurous. Training chain-of-thought via
latent-variable inference. Neural Information Processing Systems (NeurIPS), 2023.

12

https://aclanthology.org/2024.tacl-1.27/
https://aclanthology.org/2024.tacl-1.27/

Published as a conference paper at ICLR 2026

Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. Explain yourself!
leveraging language models for commonsense reasoning. In Anna Korhonen, David Traum, and
Lluis Marquez (eds.), Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 4932-4942, Florence, Italy, July 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1487. URL https://aclanthology.org/P19-1487/.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. International Conference on Learning Representations (ICLR), 2022.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Neural Information Processing Systems
(NeurlIPS), 2023.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. International Conference on Learning
Representations (ICLR), 2025.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting. Neural Information
Processing Systems (NeurlPS), 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. International Conference on Learning Representations (ICLR), 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Neural
Information Processing Systems (NeurlPS), 2022.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and
Jun Zhao. Large language models are better reasoners with self-verification. Findings of the
Association for Computational Linguistics: EMNLP 2023, 2023.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
Xie. Self-evaluation guided beam search for reasoning. Neural Information Processing Systems
(NeurlPS), 2023.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. Neural
Information Processing Systems (NeurlIPS), 2024.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot: Soft chain-of-thought for efficient
reasoning with llms. arXiv preprint arXiv:2502.12134, 2025.

Mingfeng Xue, Dayiheng Liu, Wengiang Lei, Xingzhang Ren, Baosong Yang, Jun Xie, Yidan Zhang,

Dezhong Peng, and Jiancheng Lv. Dynamic voting for efficient reasoning in large language models.
In Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 3085-3104, 2023.

13

https://aclanthology.org/P19-1487/

Published as a conference paper at ICLR 2026

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024a.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yugiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024b.

Kaiyu Yang, Jia Deng, and Danqi Chen. Generating natural language proofs with verifier-guided
search. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Neural Information
Processing Systems (NeurIPS), 2023.

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning: Training
llms for divergent problem solving with minimal examples. arXiv preprint arXiv:2406.05673,
2024.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan
Liu, and Hao Peng. Free process rewards without process labels. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
8ThnPFhGmS.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Neural Information Processing Systems (NeurlPS), 2022.

Kaiwen Zha, Zhengqi Gao, Maohao Shen, Zhang-Wei Hong, Duane S Boning, and Dina Katabi.
RI tango: Reinforcing generator and verifier together for language reasoning. arXiv preprint
arXiv:2505.15034, 2025.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv preprint
arXiv:2406.07394, 2024a.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu, and Noah A Smith. How language model
hallucinations can snowball. International Conference on Machine Learning (ICML), 2024b.

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Logeswaran, Jackyeom Kim, Moontae Lee,
Honglak Lee, and Lu Wang. Small language models need strong verifiers to self-correct rea-
soning. In Annual Meeting of the Association for Computational Linguistics, 2024c. URL
https://api.semanticscholar.org/CorpusID:269430362.

Stephen Zhao, Rob Brekelmans, Alireza Makhzani, and Roger Baker Grosse. Probabilistic inference
in language models via twisted sequential Monte Carlo. International Conference on Machine
Learning (ICML), 2024.

Zhanke Zhou, Rong Tao, Jianing Zhu, Yiwen Luo, Zengmao Wang, and Bo Han. Can language
models perform robust reasoning in chain-of-thought prompting with noisy rationales? Neural
Information Processing Systems (NeurlPS), 2024.

14

https://openreview.net/forum?id=8ThnPFhGm8
https://openreview.net/forum?id=8ThnPFhGm8
https://api.semanticscholar.org/CorpusID:269430362

Published as a conference paper at ICLR 2026

A DETAILED IMPLEMENTATIONS AND EXPERIMENTS ON BASELINES

A.1 DATASETS

PRONTOQA. We generate (x, y, z) triples with the official PRONTOQA synthesiser, which samples
first-order—logic templates with a fictional ontology. For every instance we uniformly draw a
reasoning depth d € {1, ...,5} (“hops”). Each ground-truth veracity vector v} € {0, 1}12lis corrupted
into v, by independently negating every entry with probability 0.5.

GSMS8K. We retain the original question—answer pairs (x, y,z) and obtain reference chains of
thought z* by querying GPT-4 .1 with 7' = 0.1 under a deterministic JSON schema. Corruption is
applied by perturbing numerical constants in z*: each integer is randomly shifted by +1, doubled, or
halved so that exactly 50% of all statements become incorrect.

COMMONSENSEQA. Reasoning chains z* are generated similarly to GSM8K, by prompting
GPT-4.1 to produce structured explanations conditioned on the correct answer y*. Corruption is
applied as in PRONTOQA, where each statement in z* is independently negated with probability 0.5,
yielding corrupted chains z with associated veracity labels v,.

A.2 BASELINE INFERENCE METHODS

All baselines bypass the intractable problem of in-filling V, in the sequence X —Z — (V,) - Y by
querying for the probability of v, after observing (x, y, z). Unless stated otherwise, the sampling
temperature is 7 =0.01.

* Many2Many: one-shot prediction of the full vector v .
* Many2Many+CoT: generates an intermediate rationale Ry, before emitting v,.
* Majority Voting: draws M =50 samples at 7'=0.5 and returns the element-wise majority.

* Recursive: predicts labels sequentially, conditioning on past (z;, v,) pairs.

We provide the prompt templates below:

Logical reasoning and commonsense reasoning.

(... few shot demos with intruction)
Context
{X}

Query
{logical_question which is last sentense of X}

Answer
{Y}

Explanation Steps
Step 1: {Z_1}

Step N: {Z_N}

Give your judgement in JSON:
{"Label": [true, false, ...]}

15

Published as a conference paper at ICLR 2026

Mathematical reasoning.

(... few shot demos with intruction)
Problem
{X}

Answer
{Y}

Solution Steps
Step 1: {Z_1}

Step N: {Z_N}

Give your Jjudgement in JSON:
{"Label": [true/false, ...]}

Prompt Example (Logic, PRONTOQA).

This is a prompt example for Many2Many inference:

(... few shot demos with intruction)

Context

Jompuses are overcast. Jompuses are yumpuses. Every yumpus is an impus.

Yumpuses are wooden. Lempuses are jompuses. Each impus is a gorpus.

Gorpuses are not transparent. Grimpuses are not sweet. Each impus is not nervous.
Jompuses are tumpuses. Zumpuses are brimpuses. Dumpuses are not dull.

Every lempus is a dumpus. Every numpus is not overcast. Each zumpus is orange.
Each impus is a shumpus. Every lempus is slow. Every tumpus is discordant.
Yumpuses are grimpuses. Polly is a jompus. Polly is a zumpus.

Query
True or false: Polly is overcast.

Answer
True

Explanation Steps

Step 1: Polly is a jompus.
Step 2: Jompuses are overcast.
Step 3: Polly is overcast.

Give your judgement in JSON:
{"Label": [false, true, false]}

This is a prompt example for the recursive inference:

(... few shot demos with intruction)

Context

Jompuses are overcast. Jompuses are yumpuses. Every yumpus is an impus.

Yumpuses are wooden. Lempuses are jompuses. Each impus is a gorpus.

Gorpuses are not transparent. Grimpuses are not sweet. Each impus is not nervous.
Jompuses are tumpuses. Zumpuses are brimpuses. Dumpuses are not dull.

Every lempus is a dumpus. Every numpus is not overcast. Each zumpus is orange.
Each impus is a shumpus. Every lempus is slow. Every tumpus is discordant.
Yumpuses are grimpuses. Polly is a jompus. Polly is a zumpus.

Query
True or false: Polly is overcast.

Answer

True

Explanation Steps (with labels so far)
Step 1: Polly is a jompus. Label: true (self verified)

Step k-1: Jompuses are overcast. Label: false (self verified)
Step k: Polly is overcast. Label:

Predict the label for last only.
Return JSON: {"Label": truel|false}

These prompts are recursively queried for k = 1,..., N.

16

Published as a conference paper at ICLR 2026

Prompt Example (Commonsense, COMMONSENSEQA).

This is a prompt example for Many2Many inference:

(... few shot demos with instruction)
Question
Where do you find wild cats?

Query
A) trouble, B) dog’s mouth, C) nature, D) floor, E) warm place.

Answer
C

Explanation Steps
Step 1: The question asks where wild cats are found.

Step 2: Option C is ’nature’.

Step 3: Wild cats are animals that live in natural environments.

Step 4: Nature refers to the outdoors and natural habitats.

Step 5: Therefore, Option C (nature) correctly answers where wild cats are found.

Give your judgement in JSON:
{"Label": [true, false, true, true, false]l}

This is a prompt example for Recursive inference:

(... few shot demos with instruction)
Question
Where do you find wild cats?

#4## Query
A) trouble, B) dog’s mouth, C) nature, D) floor, E) warm place.

Answer
C

Explanation Steps (with labels so far)

Step 1: The question asks where wild cats are found. Label: true

Step 2: Option C is ’'nature’. Label: false

Step 3: Wild cats are animals that live in natural environments. Label: false
Step 4: Nature refers to the outdoors and natural habitats. Label: true

Step 5

Predict the label for last only.
Return JSON: {"Label": true|false}

Therefore, Option C (nature) correctly answers where wild cats are found.

Label:

These prompts are recursively queried for k = 1,..., N.

17

Published as a conference paper at ICLR 2026

Prompt Example (Math, GSMS8K).

This is a prompt example for Many2Many inference:

(... few shot demos with intruction)

Problem

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder
at the farmers’ market daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?

Answer
18

Solution Steps

Step 1: Determine the total number of eggs laid by Janet’s ducks each day.
Intermediate output: 16

Step 2: Subtract the number of eggs Janet eats for breakfast from the total eggs.
Intermediate output: 13

Step 3: Subtract the number of eggs used for baking muffins from the remaining eggs.
Intermediate output: 9

Step 4: Identify the number of eggs Janet has left to sell at the farmers’ market.
Intermediate output: 9

Step 5: Determine the price per egg Janet sells at the market.
Intermediate output:

Step 6: Multiply the number of eggs Janet sells by the price per egg to find her earnings.
Intermediate output: 18

Step 7: Verify that 9 eggs multiplied by $2 per egg equals $18.
Intermediate output: 18

Give your judgement in JSON:
{"Label": [false, false, false, true, false, true, true]}

This is a prompt example for Recursive inference:

(... few shot demos with intruction)

Problem

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder
at the farmers’ market daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?

Answer
18

Solution Steps (with labels so far)
Step 1: Determine the total number of eggs laid by Janet’s ducks each day.
Intermediate output: 16. Label: true

Step k: Identify the number of eggs Janet has left to sell at the farmers’ market.
Intermediate output: 9. Label: true

Step k+1: Determine the price per egg Janet sells at the market.
Intermediate output: 2. Label:

Predict the label for last only.
Return JSON: {"Label": truel|false}

18

Published as a conference paper at ICLR 2026

A.3 VERACITY SEARCH (VS)

VS keeps the original trajectory X — Z — V, —7Y and optimises V, with a Metropolis algorithm that
leverages the latent variable model-based posterior R(V,) = P.y(Y,V, | X, Z) as a reward. In this
section, we describe the detailed setting and prompt of our method.

Iterations 200

Temperature linear annealing from 7 =2.0 to T59p=1.0

Proposal single-bit flip (Hamming-1)

Reward Prompt (Logic and Commonsense).

(... few shot demos with instruction)
Label #*Truexx if the step follows from Context, xxFalsexx otherwise.

Context
{X}

##4# Query
{logical_question (last sentense of X)}

Explanation Steps
{z_1 ... Z_N}

Label Vector (V_z)
{0/1 sequence}

Answer
{y}

Reward Prompt (Math).

(... few shot demos with instruction)
Think step by step. Mark each step as »xCorrectxx or *xIncorrectxx.

Question
{X}

Solution Steps
{z_1 ... Z_N}

Answer
{Y}

19

Published as a conference paper at ICLR 2026

A.4 AMORTIZED VERACITY INFERENCE (AVI)

Training. We amortize VS into a lightweight veracity inference machine by fine-tuning Qwen3-
4B/8B on 5,000 labeled contexts produced by the VS.

¢ LoRA rank 8, =32

e Batch/Accum. 32/8

+ Optimizer / LR AdamW (Loshchilov & Hutter, 2019), 1x10™#
* Hardware single NVIDIA A100L (80GB)

* Runtime 16 min (4B) / 24 min (8B) per epoch

Validation accuracy saturates after a single epoch (Fig. 5).

=
=}

o
0

= Qwen 3-8B
= Qwen 3-4B

Validation Ham. Sim
[=} o
> o

©
N

0 1 2 3 4
Epoch

Figure 5: Validation curve.

Inference for V,. We do Many2Many inference without accessing true answer Y. The prompt
template is as follows:

(... few shot demos with intruction)
Context
{X}

##4# Query
{logical_question which is last sentense of X}

Answer
Unknown

Explanation Steps
Step 1: {Z_1}

Step N: {Z_N}

Give your Jjudgement in JSON:
{"Label": [true, false, ...]}

Inference for Y. Using corrected Z with V, by negating for False statement, we can infer Y. The
prompt template is as follows:

(... few shot demos with intruction)
Context
{X}

Query
{logical_guestion which is last sentense of X}

Explanation Steps
Step 1: {Z_1}

Step N: {Z_N}

Your answer:

20

Published as a conference paper at ICLR 2026

B NATURAL LANGUAGE EXAMPLES

We provide 3 examples (first 3 examples in a batch) for logical and math reasoning correction using
VS.

Logic example 1: Max is not wooden.

Context (X)
Numpuses are not wooden. Vumpuses are lempuses. Rompuses are not dull.

Max is a vumpus. Max is a lorpus.

Query (X)

True or false: Max is not wooden.

Answer (Y)
True

##4# Corrupted chain (Z)

Max is not a vumpus.

Each vumpus is not a brimpus.
Max is a brimpus.

not Brimpuses are grimpuses.
Max is not a grimpus.
Grimpuses are shumpuses.

Max is a shumpus.

Shumpuses are numpuses.

. Max is a numpus.

0. Numpuses are wooden.

1. Max is wooden.

P OO0 Jould wh -

##+ V_z pred
[, ¥, T, ¥, F, T, T, T, T, T, T]

V_z ground truth
[F, ¥, T, ¥, ¥, T, T, T, T, F, F]

21

Published as a conference paper at ICLR 2026

Logic example 2: Fae is not discordant.

Context (X)
Every rompus 1s not sweet. ... Fae is a sterpus. Fae is a brimpus.

Query (X)
True or false: Fae is not discordant.

Answer (Y)
False

Corrupted chain (2)

Fae is a brimpus.

Brimpuses are rompuses.

Fae is not a rompus.

Rompuses are lempuses.

Fae is not a lempus.

Each lempus is not a grimpus.
Fae is not a grimpus.

Each grimpus is a lorpus.

. Fae is a lorpus.

0. Each lorpus is not discordant.
1. Fae is not discordant.

P WOWooJould wh k-

V_z pred
(t, r, ¥, 7, ¥, ¥, ¥, T, T, F, F]

V_z ground truth
([, 1, ¥, T, ¥, ¥, ¥, T, T, F, F]

Logic example 3: Stella is liquid.

Context (X)
Every sterpus is not melodic. ... Stella is a rompus. Stella is a dumpus.

Query (X)
True or false: Stella is liquid.

Answer (Y)
True

Corrupted chain (Z)

1. Stella is a dumpus.

2. Each dumpus is a shumpus.

3. Stella is not a shumpus.

4. not Shumpuses are sterpuses.
5. Stella is a sterpus.

6. not Sterpuses are gorpuses.
7. Stella is not a gorpus.

8. Each gorpus is a jompus.

9. Stella is a jompus.
10. not Jompuses are liquid.
11. Stella is not liquid.

V_pred
(t, , ¥, ¥, ¥, ¥, T, T, T, F, F]

V_z ground truth
(t, 7, ¥, ¥, T, ¥, ¥, T, T, ¥, F]

22

Published as a conference paper at ICLR 2026

Commonsense example 1: Salad.

Question (X)
What meal usually has carrots and mostly leafy vegetables?

Choices (Y)
A) cellar, B) salad, C) store, D) refrigerator, E) soup.

Answer (T_Y)
B

Corrupted chain (2)

1. The question asks for a meal that usually has not carrots and mostly
leafy vegetables.

2. Option B is not ’‘salad’.

3. A salad is not a meal that typically consists of mostly leafy
vegetables.

4. Carrots are not commonly included as an ingredient in salads.

5. Therefore, Option B (salad) fits the description given in the question

V_z pred
[T, ¥, ¥, F, TI]

V_z ground truth
[F, F, F, F, TI]

Commonsense example 2: Temperate climate.

Question (X)
What is the easiest place for a human or another animal to live?

Choices (Y)
A) workplace, B) gravesite, C) shelter, D) interesting place, E)
temperate climate.

Answer (T_Y)
E

Corrupted chain (Z)

1. Not true: The question asks for the easiest place for a human or
another animal to live.

2. Option E is ’temperate climate’.

3. False: A temperate climate provides moderate temperatures and
conditions suitable for most humans and animals.

4. Other options such as workplace, gravesite, shelter, or interesting
place do not inherently provide suitable living conditions for both
humans and animals.

5. Therefore, Option E (temperate climate) is not the correct answer.

V_z pred
[F, T, F, T, F]

V_z ground truth
[f, T, F, T, FI]

23

Published as a conference paper at ICLR 2026

Commonsense example 3: Virginia.

Question (X)
Which state is the Blue Ridge Mountains Roanoke City in?

Choices (Y)
A) appalachians, B) north carolina, C) virginia, D) pennsylvania, E)
montana.

Answer (T_Y)
C

Corrupted chain (Z)

1. The question asks which state the Blue Ridge Mountains Roanoke City is
not in.

Option C is not ’virginia’.

Roanoke City is not located in the state of Virginia.

Not true: The Blue Ridge Mountains extend through Virginia.

Incorrect: Therefore, Option C (virginia) correctly answers the

question.

g w N

V_z pred
[F, F, F, F, F]

V_z ground truth
[F, F, F, F, F]

24

Published as a conference paper at ICLR 2026

Math example 1: Janet’s duck-egg earnings.

Problem (X)
Janet’s ducks lay 16 eggs per day. She eats three ... How much in dollars
does she make every day at the farmers’ market?

Answer (Y)
18

Corrupted chain (Z)

1. Determine total eggs laid. Out: 17
2. Subtract breakfast eggs. Out: 12
3. Subtract muffin eggs. Out: 10
4. Eggs left to sell. Out: 9

5. Price per egg. Out: 1

6. Multiply eggs x price. Out: 18
7. Verify 9 x $2 = $18. Out: 18

V_z pred
[F, F, F, F, F, F, TI

V_z ground truth
[f, ¥, ¥, T, F, T, T]

Math example 2: Robe fabric bolts.

Problem
A robe takes 2 bolts of blue fiber and half that much white fiber.
How many bolts in total does it take?

Answer
3

Corrupted chain (Z)

1. Identify blue bolts: 2 Out: 1
2. White bolts = half. (no out)
3. Half of 2 is 1 bolt. Out: 1
4. Add 2 + 1. Out: 3
5. Verify total = 3. Out: 4

V_z pred
(T, T, T, I, F]

V_z ground truth
[F, T, T, T, F]

25

Published as a conference paper at ICLR 2026

Math example 3: House-flipping profit.

#4## Problem
Josh buys a house for $80,000 and spends $50,000 on repairs,
which increase the value by 150%. How much profit did he make?

Answer
70000

Corrupted chain (Z)

1. Purchase price. Out: 80001

2. Repair cost. Out: 50000

3. Total investment. Out: 130000
4. Repailrs increase value by 150%. (no out)

5. 150% of 80k. Out: 119999
6. New value after repairs. Out: 200000
7. (Erroneous) value double—-count. Out: 400000
8. Profit = 200k - 130k. Out: 70000

9. Verification step. Out: 140000
V_pred

[Tl TI TI T! Fl TI F’ T’ F]

V_z ground truth
(¢, 7, 7, T, ¥, T, F, T, F]

26

Published as a conference paper at ICLR 2026

C ADDITIONAL RESULTS

C.1 ANALYSIS OF ROBUSTNESS TO DIFFERENT ERROR DISTRIBUTIONS

Reasoning errors exhibit complex dependencies across reasoning steps, and won’t necessarily be
distributed uniformly. We therefore evaluate our method under different error distributions using both
synthetic CoT corruption methods (§C.1.1) and naturally-occuring errors (§C.1.2).

C.1.1 DIFFERENT PATTERNS OF SYNTHETIC COT CORRUPTION

Mistakes can concentrate near the beginning of a CoT (e.g. when premises are misapplied), or
toward the end (e.g. when incorrect conclusions are inferred from preceding assertions). To examine
robustness under such conditions, we evaluate three perturbation patterns in PRONTOQA: front-side
(errors injected in the first half of reasoning steps through negating correct statements), uniform, and
back-side (second half of statements are negated). Results obtained with Qwen3-8B are shown in
Table 4.

Table 4: Average Hamming Similarity and Exact-Match Accuracy across 100 samples of 5-hop
PRONTOQA using Qwen3-8B under different error patterns.

Hamming Similarity Exact Match
Method Front-side Uniform Back-side Front-side Uniform Back-side
Recursive 0.768 0.679 0.707 0.260 0.030 0.030
Many2Many 0.857 0.678 0.684 0.000 0.010 0.000
VS 0.983 0.963 0.947 0.810 0.720 0.750

Across all perturbation patterns, VS consistently surpasses both Recursive and Many2Many baselines.
In particular, it achieves near-perfect Hamming similarity (0.947-0.983) and markedly higher exact-
match accuracy (0.720-0.810), whereas baseline accuracies remain close to zero. These findings
indicate that VS is robust to different distributions of errors within the reasoning chain, underscoring
its applicability to realistic settings where error patterns are diverse and not easily predictable.

C.1.2 NATURALLY OCCURRING (LM-GENERATED) ERRORS

The main results presented in this paper are derived from controlled experiments using synthetically
corrupted reasoning chains, facilitating the evaluation of the accuracy of the inferred veracity assign-
ments v,. However, a practical scenario involves an LM generating a CoT z on its own, with errors
arising naturally as a result of the limitations of the model’s reasoning capabilities. Here, we examine
whether our method generalizes to this more realistic setting.

Reasoning chains z were generated using structured-decoding with a Qwen3-4B model for questions
x sampled from PRONTOQA and COMMONSENSEQA datasets (5, 000 samples each). The resulting
(x, z) pairs and corresponding answer labels y* were then subjected to VS to obtain predicted
veracities ¥, € {True, False}l?l.

Table 5: Veracity accuracy in naturally generated CoTs (1,000 test samples for each task).

Hamming Similarity Exact Match Accuracy
Method ProntoQA CommonsenseQA ProntoQA CommonsenseQA
Many2Many 0.74 0.59 0.00 0.00
VS 0.92 0.86 0.50 0.59

We evaluated VS on 1,000 test samples (for each dataset) in terms of veracity inference accuracy
(Hamming similarity and exact match accuracy), by comparing predicted 7, to pseudo-ground-truth
labels v} obtained using a GPT-4.1 oracle. The results shown in Table 5 suggest that VS maintains
a strong advantage over the in-context learning baseline (Many2Many) under this natural error
distribution.

27

Published as a conference paper at ICLR 2026

Table 6: Answer accuracy on 1000 PRONTOQA problems. Standard deviation is reported on five
intendant runs.

Correction Strategy Accuracy T

No Correction (Raw CoT) 0.712 + 0.002
Correction using Many2Many 0.697 + 0.008
Correction using AVI 0.730 + 0.002

Table 7: Reasoning accuracy on COMMONSENSEQA with one iteration of Self-Refine. Accuracy is
averaged over 5 random seeds (+ standard deviation).

Method Accuracy T

Original Reasoning 0.741 + 0.001
Self-Refine (Many2Many) 0.749 + 0.005
Self-Refine (AVI) 0.756 = 0.002

C.2 SELF-CORRECTION/IMPROVEMENT OF LM-GENERATED REASONING CHAINS

Following from the experiment detailed in §C.1.2, where VS was applied to naturally-occurring
errors, we then sought to evaluate whether AVI can be used as a feedback signal as part of a self-
correction/improvement framework for improving reasoning performance. Concretely, we fine-tuned
a Qwen3-4B model using AVI on predicted veracities sampled using VS for 10, 000 (x, z, y*) triples,
to learn a distribution Q(v, | x, z) that does not depend on y*. The training setup is otherwise
identical to the one described in §2.3. Then, we used AVI to predict erroneous steps in z by inferring
stepwise veracities ¥, ~ Q (v, | x, z).

In the case of PRONTOQA, we corrected steps predicted to be False by negating them, and queried
a Qwen3-4B model to predict the answer y conditioned on the corrected CoT.

Table 6 shows that standard self-correction using in-context learning (Many2Many) to provide
feedback via veracity assignments does not improve performance in PRONTOQA: the accuracy
even drops from 0.712 to 0.697. This highlights that applying correction without reliable veracity
identification may in fact be harmful. In contrast, our AVI-based correction increases accuracy to
0.730, showing that once veracity is accurately identified, correction becomes beneficial rather than
detrimental. Without accurate veracity signals, correction may propagate or even amplify errors.

Next, we moved beyond simple correction via negation by testing the applicability of our approach
in a more realistic setting where negation-based edits aren’t a natural way to correct. In particular,
we consider COMMONSENSEQA, where reasoning chains involve open-ended statements in natural
language, and correction is more easily conducted as part of inference-time self-improvement methods
such as Self-Refine (Madaan et al., 2023), which iteratively alternates between a feedback model
and a refinement model. We adapt this framework by replacing the baseline feedback model (which
is a few-shot prompted LM, similar to our Many2Many baseline) with our AVI machine. Given a
CoT z generated by Qwen3-4B, the AVI model first predicts veracity labels v, that identify incorrect
reasoning steps. The refinement model (a few-shot-prompted Qwen3-4B model) then resamples
downstream reasoning steps, conditioned on these veracity labels. This allows AVI to supply explicit
supervision on what to correct, while the refinement model handles the problem of how to correct.

The results are shown in Table 7 for 1,000 test questions from COMMONSENSEQA. The gain from
integrating AVI into Self-Refine is nearly twice as large as the improvement obtained with a standard
Many2Many feedback model (+0.008), i.e. 0.015/0.008 =~ 1.9%, though in absolute terms may
appear modest (+0.015 over the raw baseline). In general, the trend observed in all our experiments is
that our method improves the accuracy of error-identification (whether using VS or AVI) by a larger
margin over baselines than it improves reasoning accuracy post-correction, hinting at a bottleneck in
reasoning capabilities in the underlying model. This reflects the fact that verification may be easier
than generation, and that more work is needed to find ways to make better use of the more robust
veracity signal provided by VS and AVI in downstream reasoning tasks.

28

Published as a conference paper at ICLR 2026

C.3 BLOCK METROPOLIS

Our default implementation of VS uses single-bit Metropolis updates, where one veracity label
is flipped at a time. While simple and effective, this approach may be less effective if errors are
correlated, requiring simultaneous updates to transition between distinct high-reward modes. To
examine this possibility, we extended our sampler with block Metropolis updates, in which random
contiguous blocks of size 1, 2, or 3 are flipped together.

Table 8: Average Hamming similarity of predicted veracity vectors using single-bit vs. block Metropo-
lis updates on 1,000 samples with Qwen3-4B.

Method PRONTOQA GSMSK COMMONSENSEQA
Single-bit Metropolis 0.910 0.711 0.860
Blocked Metropolis 0.918 0.704 0.867

As shown in Table 8, both variants perform comparably across the three tasks. This suggests that
single-bit updates are already sufficient for short to medium-length reasoning chains in the domains of
reasoning that we tested. Nonetheless, block updates represent a natural extension of our framework,
with potential advantages for longer sequences and settings where LMs produce errors with more
complex inter-dependencies.

Our approach is compatible with other proposal strategies, such as adaptive proposals, or gradient-
informed updates, making them promising directions for future exploration.

C.4 EXTENDING TO CATEGORICAL VARIABLES

In many contexts, binary veracity labels may be too restrictive. For example, when verifying
properties such as the relevance of a reasoning step, or when allowing for ambiguity in correctness, it
can be useful for the latent variable V, to take on more than two values. While this enlarges the label
space, it remains far smaller than the full space of natural language sequences, making inference
tractable.

Our framework naturally generalizes to this setting by replacing the binary vector with a k-class
categorical vector and augmenting the MCMC transition table accordingly. To illustrate, we extended
PRONTOQA with a third label, “Unrelated,” by injecting unrelated—but factually correct—statements
into the reasoning chain from a small predefined pool (e.g., “Humans are animals.” or “The sky is
blue.”).

Table 9: Veracity prediction on PRONTOQA with three classes: True, False, and Unrelated. Average
Hamming similarity across 100 samples is reported.

Method Hamming Similarity T
Many2Many 0.66
VS 0.91

These preliminary results suggest that our approach extends naturally beyond binary veracity, and
can accommodate richer categorical variables for reasoning verification.

C.5 CORRELATION ANALYSIS

Our working hypothesis (see Section 2) is that veracity assignments v, which maximize the joint-
likelihood proxy reward

Pon(vzy | x,2) o« P(V, =v, |Y =y"x,2)

will tend to be closer to the ground-truth veracity v . Intuitively, if the accuracy of a language model’s
final prediction depends on the correctness of its reasoning steps, then higher joint likelihood should
correlate with more accurate veracity labels.

29

Published as a conference paper at ICLR 2026

Table 10: Pearson correlation between Hamming similarity and joint likelihood across all possible
veracity assignments (7 statements per sample). Results are averaged over 100 samples for each
dataset.

Model PRONTOQA COMMONSENSEQA
Qwen3-4B 0.56 0.72
Qwen3-8B 0.74 0.78
LLaMA 3B 0.72 0.67
LLaMA 8B 0.70 0.79

Table 11: Average VS wall-time over 5 independent runs as a function of CoT length.

Number of Reasoning Steps ~ Time (sec)

3 7.33
5 7.83
7 11.14
9 12.19
11 13.09

To validate this hypothesis, we measured the correlation between the joint likelihood and veracity
accuracy. For each problem we enumerated all possible veracity vectors (2VV assignments for N=7
reasoning steps) and computed both their joint likelihood Py (v, y* | x,z) and their Hamming
similarity with the ground-truth vector v. Table 10 reports the average Pearson correlation across
100 randomly selected problems drawn from PRONTOQA and COMMONSENSEQA datasets.

These results suggest that veracity vectors with higher joint likelihood also achieve higher Hamming
similarity with the ground truth. In other words, the proxy reward used in our search procedure is not
only theoretically motivated but also empirically aligned with veracity accuracy. This correlation
provides a clear post-hoc explanation for why our method consistently yielded strong Hamming
similarity throughout the main experiments, thereby grounding the observed performance gains in a
measurable property of language models.

C.6 THE COST OF VERACITY SEARCH ON INFERENCE-TIME

In VS, the CoT z is fixed, and we score a proposed veracity assignment v, via the joint likelihood
Prv(vs, ¥* | x,z), where y* is the correct answer to the question in x. This likelihood is computed
with teacher-forcing: the concatenated sequence (v, y*) is processed in a single forward pass
(prefill stage), and logits for all tokens are produced under causal self-attention. This avoids the
substantially more expensive sequential autoregressive decoding required by in-context learning
baselines (Many2Many). However, because VS typically requires scoring multiple proposals as part of
the search procedure, this advantage diminishes as the number of VS iterations increases. Empirically,
we find that our method provides a favorable trade-off between inference time and veracity accuracy,
as shown in Figure 4, but we provide a complementary analysis of the computational cost incurred
from VS iterations below.

Let Leontext = |(x,2)| and Ly = |(v,y*)|. Naively, across N VS iterations, the cost scales
as O(N (Lcontext + L[ai])z) due to the quadratic cost of self-attention. We can reduce compu-
tational requirements with prefix key-value caching for the fixed context (x,z), so the overall
cost becomes O (L2, ...) + O(N(Lcontext Luail + Ltzaﬂ)). For proposals that differ from a refer-
ence v, at a single position i, we can also cache the extended prefix (x,z,v,[: i]). If i is
uniformly distributed, the expected suffix length is L /2, yielding a constant-factor reduction:
O (L2, ext) + O (N (Leontext Luait /2 + Ltzaﬂ/ 4)). Finally, batching proposals that share the same cached
prefix (or the same divergence index i) lets the GPU process many tails in parallel, improving uti-
lization and reducing wall-clock time. In other words, we can trade memory for faster runtime, if

desired.

We empirically evaluate how wall-clock time varies as a function of CoT length using Qwen3-4B-
based VS in PRONTOQA, for CoTs with lengths ranging from 3 to 11 steps. A single GPU (RTX

30

Published as a conference paper at ICLR 2026

A6000 ADA) was used, and VS involved 100 Metropolis iterations. The measurements displayed in
Table 11 reflect end-to-end VS, including greedy initialization and simulated annealing.

C.7 VERACITY SEARCH ON SMALLER AND LARGER MODELS

The original Veracity Search (VS) experiments were performed on 3B—8B models. To examine
model-size sensitivity, we additionally evaluated a smaller model (Qwen3-1.7B) and a larger model
(Qwen3-14B). The experimental design and search hyperparameters match those used to produce the
results in Table 1.

Table 12: Veracity inference accuracy (Hamming similarity) across three benchmarks (average over
1000 samples each).

GSMS8K ProntoQA CommonsenseQA
1.7B 14B 1.7B 14B 1.7B 14B

Many2Many 0.512 0.675 0.529 0.714 0.488 0.524
VS 0.657 0.833 0.713 0.928 0.832 0.980

Across all three tasks, larger models provide more accurate veracity predictions when using either
VS or the in-context learning baseline (Many2Many). VS maintains a consistent advantage over this
baseline, indicating that the joint-likelihood used to guide VS becomes increasingly informative as
model capacity increases.

LARGE LANGUAGE MODEL USAGE

Large language models (LLM) were used only for minor polishing of the writing quality both in the
main text and in the code. They were also used to assist with debugging. Any modification to the text
that was suggested by an LLM to improve clarity was verified by the authors. LLMs were not used to
generate the ideas, methods, experimental designs, and analyses of results that are presented in this

paper.

31

	Introduction
	Method
	A Latent‐Variable Model (P) Augmented With Veracity (Vz)
	Veracity Search (VS)
	Amortized Veracity Inference (AVI)

	Related Work
	Experiments
	Evaluating the Accuracy of Veracity Inference
	Scaling to Longer Reasoning Chains
	Ablation Study for Search Hyperparameters
	Evaluation of AVI
	Sample efficiency and wall-time

	Conclusion
	Detailed Implementations and Experiments on Baselines
	Datasets
	Baseline Inference Methods
	Veracity Search (VS)
	Amortized Veracity Inference (AVI)

	Natural language examples
	Additional results
	Analysis of Robustness to Different Error Distributions
	Different Patterns of Synthetic CoT Corruption
	Naturally Occurring (LM-Generated) Errors

	Self-Correction/Improvement of LM-Generated Reasoning Chains
	Block Metropolis
	Extending to Categorical Variables
	Correlation Analysis
	The Cost of Veracity Search on Inference-Time
	Veracity Search on Smaller and Larger Models

