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Abstract

Visual grounded Violation of expectations (VoE) paradigm is widely used to evalu-
ate the physics learning capability of both humans and machines. It does this by
measuring the prediction error, or surprise, of a physics learning model in a given
scene. Despite intuitive formulation and perfect alignment with developmental
psychology, the design of evaluation protocol based on surprise score is empirical.
We point out the potential risks behind the traditional surprise score design and
provide a probabilistic explanation of VoE paradigm based on likelihood ratio
theory. Guided by the theoretical framework, we propose two novel and extensible
surprise scores that are theoretically sounded. Furthermore, we implement a simple
yet novel baseline based on PredRNN [29] that demonstrates the ability to perform
physical reasoning through direct pixel-level prediction. Our model outperforms a
strong object-level prediction baseline PLATO [20], achieving an overall accuracy
of 90.0% on the Probe dataset, compared to 73.4% for PLATO. Additionally, we
conduct experiments using our newly proposed metric.

1 Introduction

Research in cognitive science has provided extensive evidence of human cognitive ability in perform-
ing physical reasoning of objects from noisy perceptual inputs. Such cognitive ability is commonly
known as intuitive physics [8]. As developed early in human life [11], intuitive physics is considered
as the basic building block of human intelligence. Previous psychological works proposed intuitive
physics as a startup software [9] and a sort of core knowledge [26]), demonstrating the importance of
developing agents that display a basic understanding of the behavior of objects and forces. Research
on intuitive physics is usually divided into two categories: one approach is to directly leverage physics
knowledge (e.g. fully-fledged physics engine) into the agent architecture [12], and another approach
is to learn physics from raw sensor data of the world [5]. The latter case raises a key challenge: how
to evaluate the acquired knowledge during learning.

Recently, a series of work inspired by developmental psychology introduced complementary methods
for probing physics knowledge in artificial systems. The evaluation methods are targeted to recognise
specific physical concepts presented by developmental psychology over the past fifty years, including
solidity (solid objects cannot interpenetrate), continuity (moving objects will follow smooth trajecto-
ries unless perturbed), unchangeableness (size, shape, pattern, color do not change spontaneously),
to name a few. In addition to isolating these basic principles, developmental psychology has also
invented and refined what is by now a widely accepted and replicated experimental technique for
examining their acquisition, referred to as violation of expectations (VoE) paradigm [1]. In this
paradigm, infants are presented with real or virtual animated 3D scenes, some of which violate basic
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physical principles. When an infant stares longer at a physically impossible display with dilated pupils
in comparison with a normal one, we can assume that the subject is surprised by the unusual sight.
This experimental finding can provide clues for the infant’s ability to perform physical reasoning with
respect to the relevant principle.

This paradigm can be adapted to machine learning to evaluate the agent’s acquisition of physical
concepts [19, 20]. On top of that, Piloto et al. [20] has demonstrated that their designed deep learning
system can learn a diverse set of physical concepts with a relatively small amount of visual experience
(about 10 to 100 hours videos as learning material).

For clarity and simplicity, we only focus on visual grounded VoE in the following discussion. Note
that in the aforementioned cognitive experiments, we investigate the ability of physical reasoning by
examining if the infant shows surprise on the physically impossible display. To better evaluate the AI
system under the VoE paradigm, we can quantify the extent of surprise correlated with a given input.
In practice, the surprise score is computed as the model’s prediction errors over the course of a test
video. Let xt denote the t-th frame of the test video, and the model generates prediction of the t-th
frame x̂t based on the previous sequence x1:t−1, the surprise is computed as:1

surprise(x) =
T∑

t=2

surprise(xt) =

T∑
t=2

||x̂t − xt||2 (1)

Here we measure the sum-squared errors of the pixel-level prediction. If the surprise score exceeds
some pre-defined threshold γ (dependent on the dataset and model), the model decides the video
sequence x1:T as a VoE example. The formalization is simple and intuitive: when there is a huge
discrepancy between prediction and perception, the model should be “surprised” just like the infant.

Despite intuitive formulation and perfect alignment with developmental psychology, the mathematical
interpretation of current evaluation method using VoE paradigm receives little attention. The design
of the surprise score is empirical, and a question is naturally raised: “Is it really true that VoE
videos have higher surprise scores than non-VoE videos?" Actually, Piloto et al. [20] has proposed a
counterexample: the imbalanced weight of multi-scale objects in pixel space, i.e. the prediction errors
of small objects can be dominated by large objects. and the authors proposed a dataset of “probe
scenario" that contains both VoE and non-VoE videos in the same scene (collect matched test videos
that are tend to have comparable surprise score) to address the issue. This counterexample shows that
empirical methods often have potential risks. Are there any other non-trivial counterexamples? To
answer this question, we need a systematic theoretical examination of VoE paradigm.

In this paper, we carefully examine the VoE paradigm from a probabilistic perspective and provide
discussions on previous works under our theoretical framework in Sec. 3. Additionally, we present
two streams of novel surprise score designs under principled guidance derived from theoretical
justification in Sec. 4. Furthermore, we implement a baseline model that learns intuitive physics from
visual data and present the experimental results of our newly designed surpriseKNN in comparison
with traditional pixel-error surprise in Sec. 5. Our contributions are as follows:

• We present a probabilistic explanation of VoE paradigm, which to the best of our knowledge
is new to this field. This theoretical framework can provide insights on how to better assess
the knowledge of physics learning from a novel perspective.

• We propose two novel surprise scorers based on theoretical derivation from likelihood ratio
theory for evaluation under VoE paradigm: surprisenaive and surpriseKNN. These two scorers
have theoretical soundness and can be extended to various forms using different density
estimation approaches.

• We implement a simple yet novel baseline based on PredRNN [29] to learn the physics
concept. We explore the possibility of learning without explicit object modeling and discover
that direct pixel-level prediction can equip model with physical reasoning capability. While
previous models require hard pre-training to learn object features, our model is more data-
efficient and more adaptive to real world settings.

1Here we make a simplification. The definition of surprise score is usually model-dependent, e.g. Piloto et al.
[20] uses a ComponentVAE to decode predicted and input object codes and then computes the pixel error, but in
essence, they basically take the form of Eq. (1).
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2 Related Work

Intuitive physics modeling in machine learning In recent years, researchers have made attempts
to endow artificial intelligence systems with human-level capability of physical reasoning. A straight-
forward approach is to incorporate a fully-fledged physics engine in the framework, which supports
Bayesian inference via simulation [4, 28]. Galileo [30] further incorporated a physics engine with
representation learning to infer physical properties directly. Another line of works acquire physical
concepts implicitly from training data without actual engines. Specifically, sensory inputs are fed into
deep-learning models to generate predictions for various reasoning tasks, including physical property
inference, dynamic prediction [10], puzzle-solving [3, 12] and visual question answering [31].

VoE paradigm In developmental psychology, researchers often assess the possession of a physical
concept under the VoE paradigm, where the surprise of human viewers is measured via gaze duration.
A pioneering work [19] first applied this technique to artificial learning systems and computed
KL-divergence between prior expectations and posterior beliefs given perceptual inputs to estimate
the "surprise". Follow-up works further explored this idea by proposing more evaluation benchmarks,
which consist of matched videos of physically possible versus impossible events [22, 20].

Temporal modeling in computer vision Inspired by remarkable success of language models
in natural language processing, the community of computer vision has borrowed similar model
architectures to process video sequences. For example, temporal visual features can be extracted
via LSTM [29] and transformers [2, 14]. In addition to pixel-level prediction, previous works often
resort to intermediate representations to boost the performance. In complex visual reasoning, a series
of works focus on object-centric representation to characterize the video frame, such as RPIN [21],
Aloe [6] and ADEPT [25].

Likelihood ratio theory In statistics, the likelihood-ratio test assesses the goodness of fit of two
competing statistical models based on the ratio of their likelihoods. When both models have no
unknown parameters, use of the likelihood-ratio test can be justified by the Neyman–Pearson lemma.
In our theoretical analysis, we compute the likelihood ratio in binary hypothesis test to decide whether
a video clip violates expectation or vice versa.

3 A Theoretical Understanding of VoE

As mentioned in Sec. 1, our work falls into the second type of strategy, focusing on learning physics
from raw sensor data of the world. Our final goal is to build a machine that is capable of physical
reasoning, and the first step towards the goal is to design proper evaluation protocols. Here we focus
on the evaluation methods based on visual grounded VoE paradigm. Then we can formalize the
relevant component of this problem as follows.

3.1 Formalization of Physics Learning Model

We let Θ denote the physics learning model (typically a RNN-like generative model), which takes
a video clip x1:t as input, and outputs the prediction of the next frame x̂t+1. In essence, we aim to
learn a joint probability distribution which can be factorized as follows:

P(x1:T ) = P(x1) ·P(x2|x1) ·P(x3|x1:2) · · ·P(xT |x1:T−1)

Here Θ can be viewed as a conditional generative model x̂t = Θ(x1:t−1) = argmaxx̂t
q(x̂t|x1:t−1).

Recall that we use surprise to measure the physical improbability of a given video and it takes the form
of square errors. Now we examine the probabilistic context of surprise from the view of regression
analysis. Suppose we utilize a regression model that satisfies xt = Θ(x1:t−1) + ϵ, where xt is the
response variable, x1:t−1 is the co-variate, and ϵ is a random error with zero mean. If we introduce an
extra ass suppose that ϵ ∼ N (0, σ2

0I), then the square error surprise can be related to the probability
density of ϵ:

P(ϵ|x1:t−1) = P(x̂t − xt|x1:t−1) =
1√

(2πσ0)n
e
− 1

2σ0
2n ||x̂t−xt||2 ∝ −||x̂t − xt||2

3
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In test time (the model Θ is fixed), we can omit x̂t since it’s deterministic given the input x1:t−1 (i.e.
x̂t = Θ(x1:t−1)), and the last term is exactly the opposite number of surprise(xt). Thus surprise
measures the negative log likelihood of xt, i.e. q(xt|x1:t−1). So using surprise(xt) to decide whether
the model should be surprised is to decide whether the current perception has a small probability
density.

3.2 Formalization of VoE

Note that we still have not formalized the problem of VoE paradigm yet. In our task, the model is
asked to make a binary decision whether xt|x1:t−1 is surprising or not. It can be interprted from
two probabilistic perspectives. From the perspective of frequentist, the binary decision is basically a
binary hypothesis test:

H0 : x ∼ PVoE v.s. H1 : x ∼ Pnon-VoE (2)

Here the null hypothesis H0 denotes that x is drawn from some VoE distribution PVoE while the
alternative hypothesis H1 denotes x is drawn from some non-VoE distribution Pnon-VoE. Since our
training data are obviously non-VoE, our model actually models the probability distribution Pnon-VoE
(i.e. P(·) mentioned in Sec. 3.1 relates to the non-VoE distribution). Suppose we haveR as the reject
region of Eq. (2), then the Type I error β1 and Type II error β2 are defined as:

β1(R) =
∫
R
PVoE(x)dx

β2(R) = 1−
∫
R
Pnon-VoE(x)dx,

Likelihood ratio is a principled way to decide VoE. In a hypothesis test, our ultimate goal is to find
a uniformly most powerful (UMP) test (a test function φ(x) or reject regionR), i.e. minimizing β2

with β1 kept under a certain level α. Following the standard protocols in statistics, we first define
the likelihood ratio LR(x) := PVoE(x)/Pnon-VoE(x). With the Neyman-Pearson lemma [16], a simple
theorem can be derived to show the principled role of likelihood ratio in VoE paradigm:

Theorem 1. A binary test with test function φ(x) = 1x∈R(x) and rejection region R defined as
follows is a unique UMP test for Eq. (2).

R := {x : LR(x) < λ0}

Here 1x∈R(·) is an indicator function and λ0 is a threshold that can be chosen to obtain a specified
significance level.

Proof. The proof is presented in Appendix A.

In sharp contrast, from a Bayesian perspective, to decide a given x is VoE is to learn a binary classifier
P(VoE|x) = 1−P(non-VoE|x). We introduce an auxiliary variable C ∼ B(p), where B(p) denotes
a Bernoulli distribution with parameter p ∈ [0, 1]. And let x ∼ PVoE if C = 1 and x ∼ Pnon-VoE if
C = 0. Given an input x,

P(VoE|x) = P(C = 1|x)

=
P(x|C = 1) ·P(C = 1)

P(x|C = 1) ·P(C = 1) +P(x|C = 0) ·P(C = 0)

=
p

p+ (1− p)LR(x)−1

The second equation is simply the Bayes’ theorem. The A similar result still holds: likelihood ratio is
a principled way to decide VoE under the Bayesian perspective. When LR(x) is small, P (VoE|x) is
small, thus the model considers x as a non-VoE scene.

4
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Above all, we introduce the probabilistic formalization of VoE. Basically we introduce a concept
of PVoE and Pnon-VoE. Under this framework, we have shown that the likelihood ratio LR(x) is an
optimal choice from both frequentist and Bayesian perspectives. Then we will examine the validity
of using surprise(x) to decide VoE under this framework.

3.3 Problems with surprise

As revelaed by Sec. 3.1 and Sec. 3.2, surprise(x) measures the non-VoE probability density of x.
More precisely, the relationship can be expressed as a Boltzmann distribution:

Pnon-VoE(x) =
1

Z
e−surprise(x)/T ,

where Z > 0 is a normalizing constant and T > 0 is a temperature scaling term. How-
ever, we have pointed out that the principled way to decide VoE is through likelihood ratio
LR(x) := PVoE(x)/Pnon-VoE(x). The use of surprise(x) may suffer from some problems.

Here we give a intuitive counterexample of using surprise(x) to decide VoE. Suppose PVoE =
N (0, 0.001) and Pnon-VoE = N (0, 1), then the surprise score for x = 1 and x = 0 are calculated as
surprise(0) = −T · log( 1√

2π
· Z) < surprise(1) = −T · log( 1√

2π
e−

1
2 · Z). Thus 0 is less surprising

than 1 in this case. However, considering the likelihood test, it is obvious that LR(0) > LR(1) since
density of PVoE is highly concentrated at 0.

The failure of surprise here is not a paradox but a expected result. Some may think that if we draw
our training dataset from N (0, 1), most samples will look more like 0 instead of 1, but why should
we surprise at 0 rather than at 1? This intuitive idea in fact makes two hypothesises:

• PVoE is a uniform distribution.
• the supporting set of x lies in a low dimensional space.

For the first hypothesis, we usually tend to model PVoE as a uniform distribution since we have no
training data, thus it remains the same as prior distribution (suppose we hold a Bayesian learning
view). But in real life the forming of PVoE may be complex: our cognitive ideas towards VoE scenes
may be shaped by many factors such as evolution, gene, experiences etc. We should be cautious to
make the assumption that VoE scenes are uniformly distributed.

For the second hypothesis, it is basically a confusion between lack of samples and low probability
density. Considering high dimensional data, which is a practical representation of visual scene
features, a sample with higher probability density doesn’t mean that it’s more likely to appear in
sampling procedure. For example, we have Gaussian Annulus Theorem, which states that nearly all
the probability of a spherical Gaussian with unit variance is concentrated in a thin annulus of width
O(1) at radius

√
d:

Theorem 2 (Gaussian Annulus Theorem). For a d-dimensional spherical Gaussian with unit variance
in each direction, for any β ≤

√
d, all but at most 3e−cβ2

of the probability mass lies within the
annulus

√
d− β ≤ |x| ≤

√
d+ β, where c is a fixed positive constant.

Proof. The proof is presented in this notes.2

Therefore, in spite of the highest density at the origin, the 0 ∈ Rd is very unlikely to appear
when sampling from high dimensional standard Gaussian. This falsehood also demonstrates that
our intuition usually fails on high dimensional space, which reminds us of the importance to find
theoretical principle in research problems rather than purely relying on empirical observations.

4 Methodology

In this section, we will introduce several methods that follows the principled like-likelihood ratio
theory as a refinement to traditional surprise score design.

2Proseminar Theoretical Computer Science notes by Wolfgang Mulzer, see https://www.inf.
fu-berlin.de/lehre/WS17/SemAlg/notes/02_highdim2.pdf.
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4.1 A Naive Scorer

Firstly, we will present a naive scorer surprisenaive(x) based on likelihood ratio. Since we train a
model Θ to model the non-VoE probability Pnon-VoE, to obtain the full estimation of LR(x), we can
still train a generative model Θ̃ to model the VoE probability PVoE. The training procedure is just the
same as Θ: First we need to collect a set of VoE videos {x(i)}Ni=1 as our training dataset, and using
training strategies like next frame prediction or object-based prediction methods as in [20]. Then for a
given test video, we compute the surprise score surpriseΘ̃(x), too. The final score is computed using
likelihood ratio:

surprisenaive(x) ∝ C1 · exp{−(γ · surprise·Θ̃(x)− surpriseΘ(x)) · C2},

where the R.H.S. is derived from the Boltzmann distribution formalization, γ is a hyper-parameter,
and C1 and C2 are constants, thus our naive scorer can be simplified as:

surprisenaive(x) = surpriseΘ(x)− γ · surpriseΘ̃(x)

When we assume that surpriseΘ̃(x) is a constant mapping (i.e. the VoE distribution is uniform),
surprisenaive(x) will degrade to the vanilla surprise(x). This scorer is theoretically excellent, however,
it requires collection of VoE data which is usually unavailable in the real world. Also, the collection of
VoE data may be hard, expensive, and biased. Under this circumstance, we need to find an alternative
way to estimate VoE distribution from only a small part of collected data. A possible way may be
transfer learning and few-shot fune-tuning, but generally it’s hard to analyse pre-trained models under
a theoretical framework, here we only assume that we are only accessible to Θ trained on non-VoE
data as a simulation of human physics learning in the real world.

4.2 Scorer Based on Density Estimation

Note that contrary to Θ as a physics learning agent model, Θ̃ is simply a statistical model that aims
to capture the distribution of VoE scenes. We can consider using traditional estimation methods from
statistics to estimate PVoE.

Density estimation using K-nearest neighbor There are many probability estimation methods
such as IForest [13], OCSVM [23], PCA [24], Mahalanobis distance [15]. Among them the simplest
method is K-nearest Neighbor (KNN) [18], which will be used as an example to illustrate our surprise
scorer design based on density estimation. The KNN estimation method is performed as follows.
Suppose we want to estimate the underlying distribution P of an observation set Z = {zi}ni=1 where
||z||2 = 1 and z ∈ Rm, we calculate the Euclidean distance ||zi − z⋆||2 for a given test sample
z⋆. Then we reorder Z according to the increasing distance ||zi − z⋆||2. The reordered sequence is
denoted as Z ′ = (z(1), z(2), · · · , z(n)), and the density estimation of z⋆ is given by:

p̂(z⋆) ∝ −rk(z⋆) := ||z⋆ − z(k)||2

We have a convergence guarantee for this estimator as the following theorem:

Theorem 3. Suppose we have a KNN estimator with hyper-parameters k and n, where k denotes the
index of element in the reordered sequence Z ′, n denotes the cardinality of the observation set Z , the
convergence holds:

lim
k
n→0

p̂(z⋆; k, n) = p(z⋆)

Specifically,

E[|p̂(z⋆; k, n)− p(z)|] = o(
m−1

√
k

n
+

√
1

k
)

Proof. The proof is presented in Appendix A.

6
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Figure 1: Illustration of our proposed surprise scorer. In this pipeline, the upper part is identical to the standard
protocol, where we compute the naive surprise by summing the square errors between predicted frames and
perceived frames. Our key design lies in the estimation of the probability density of VoE distribution. We split
the test set and generate feature embeddings of some VoE samples as an observation set. For a test video clip, we
additionally compute the distance of its dense representation to the k-nearest neighbor in the observation set. We
subtract the scaled distance from the naive surprise to obtain the final score.

Design of surpriseKNN Based on KNN estimation method, we can design a novel scorer surpriseKNN
as follows:

surpriseKNN(x) = surpriseΘ(x)− γ · rk(z)

Here surpriseΘ(x) is the same as previously defined traditional surprise score that estimate Pnon-VoE
using model Θ, and rk(z) is the distance of z to the k-nearest neighbor. z is a dense representation
vector of x in the high dimensional space, which can be obtained from the hidden states of the Θ
model (e.g. the final states of RNN, average pooling of each frame’s feature). We need some VoE
samples to prepare the observation set Z and the choice of k and n can be guided by Theorem 3. Note
that KNN here is only an example, and we can substitute it with any other density estimation method.
This scorer is also based on likelihood ratio, which indicates its theoretical soundness. The pseudo
code for computing surpriseKNN(x) is presented in Appendix B. To this end, the overall pipeline is
illustrated in Fig. 1.

Requirement of VoE data Notice that we still need VoE data as our observation set to compute
surpriseKNN(x). Here we want to highlight the difference of data requirement between surpriseKNN(x)
and surprisenaive(x). The data we need in surprisenaive(x) is used to train a generative model from
scratch, whose amount is generally huge (e.g. PLATO model uses 4,500,000 3× 64× 64 images in
the training phase), but KNN estimator usually requires small amount of data to converge (e.g. Sun
et al. [27] use 500 dense vectors z ∈ R128 as observation set and set k = 50). We have to emphasize
that the only two ways to decide PVoE are (1) using collected data to estimate. (2) using proxy VoE
distribution Pproxy to substitute PVoE (e.g. uniform distribution). A small amount of VoE data will
benefit our evaluation quality.

5 Experiment

In this section, we design a set of experiments to find some properties of our theory in real practice.
First, we implement a simple yet novel baseline model based on PredRNN [29] to learn the physics
concept, and we also explore its effectiveness under the traditional framework of VoE paradigm
based evaluation. Second, we examine the PVoE distribution using KNN estimator and compare the
estimated PVoE with uniform proxy distribution. Third, we test our model on Probe dataset [20]
using our newly designed surpriseKNN. The relevant details are as follows.

Dataset. Following Piloto et al. [20], we conducted our experiment on the Physical Concepts dataset.
The freeform training set consists of 300,000 scenes which encompass a wide range of complex
physical interactions. And the validation set contains 5,000 video clips capturing common physical

7
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Average Accuracy(%)

Method Continuity Directional Object Solidity Unchangeableness OverallInertia Persistence

Piloto et al. [20] 89.1 72.7 67.8 71.9 65.6 73.4
Ours 99.9 81.7 94.1 77.6 96.3 90.0

Table 1: Comparison of average accuracy for each physical concept on the probe test set. Without interme-
diate object-centric representation, our PredRNN outperforms Piloto et al. [20] by a large margin.

Figure 2: Distribution plot for rk(z) on test dataset.

events, which can be used to select the best prediction model. To leverage the VoE paradigm, five
physical concepts are targeted for evaluation: continuity, directional inertia, object persistence, solidity
and unchangeableness. For a single physical concept, the probe test set contains 5,000 tuples, each
comprising two physically possible probes and two physically impossible probes. The latter were
constructed by splicing together frames from the possible probes in a way that violates physics. Note
that each video was restricted to 15 frames at 64×64 resolution in RGB channels.

Model architecture. The architrecture of PredRNN [29] is enlightened by the idea that a predictive
learning system should memorize both spatial appearances and temporal variations in a unified
memory pool. The core of this network is a new Spatio-temporal LSTM (ST-LSTM) unit that extracts
and memorizes spatial and temporal representations simultaneously. In our experiment, the PredRNN
model consists of four ST-LSTM layers with 128 hidden states each. The convolution filters inside
ST-LSTMs are set to 3× 3.

Implementation details. We train the PredRNN [29] model to generate pixel-level frame prediction
from scratch for 50000 epochs, where the batch size is set to 64. We use the Adam [7] optimizer
with β1, β2 = 0.9, 0.95, and adjust the learning rate to 3× 10−4. To implement our proposed novel
metric, we further split the probe dataset into observation set (20%) and test set (80%). The former
consists of N = 2000 VoE video clips, which provide useful information for estimating PVoE. Note
that we estimate the probability density of PVoE for each physical concept separately. As mentioned
in Sec. 4.2, the dense latent feature z is obtained from the final hidden states of our PredRNN after
global max-pooling across each channel, with a dimension of d = 128. And we choose k = 50 and
γ = 0.01 for KNN-based density estimation.
Comparison with PLATO. Following Piloto et al. [20], we compute a binary accuracy score associate
with each physical concept, where a probe tuple is correctly classified when the relative surprise is
greater than zero. As illustrated in Tab. 1, our model attains higher average accuracy and greatly
surpasses Piloto et al. [20], demonstrating that direct pixel-level supervision may suffice to endow
the model with strong capability of physical reasoning.

xUniform assumption on PVoE. Note that the main focus of this paper is to propose a novel metric
for evaluation under VoE paradigm. The key insight is that vanilla surprise only uses Pnon-VoE but
we highlight the information provided by PVoE. The difference is that vanilla surprise makes an
assumption of PVoE to be a uniform distribution. In this experiment, we test this assumption using
statistical methods. Specifically, we compute the distance of dense feature z to the k-nearest neighbor
(i.e. rk(z) ∝ −PVoE(z)) for each test video clip. As shown in Fig.2, the {rk(z)} is apparently not a

8
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Metric Continuity Directional Object Solidity Unchangeableness OverallInertia Persistence

Relative Surprise (×10−4) 8.8 8.0 77.5 1.6 21.2 23.4
Average Accuracy (%) 99.9 81.8 94.0 77.4 96.4 89.9

Table 2: Evaluation results on the probe test set with our newly designed surprise scorer.

uniform distribution and the p-value is significantly larger than 0.05. We can draw the conclusion
that the uniform assumption on PVoE is incorrect.

Evaluation with surpriseKNN. Again, we test our model on the Probe test set using the proposed
surpriseKNN(x). The experimental results are presented in Tab. 2. The results are overall consistent
with vanilla surprise, which indicates that the effect of the uniform assumption on PVoE is not huge
on this dataset. Using surprise to evaluate physics learning is reasonable in this case, but it doesn’t
mean that PVoE can be overlooked in other datasets either.

Discussion

To prevent misunderstanding, we make a clarification on our setting (VoE-based evaluation) in this
section. We want to clarify that the VoE paradigm is used to evaluate a physics learning model, but
the vanilla surprise score design is empirical and ignore PVoE (assumes it as a uniform distribution).
This work theoretically justified the principled role of using the likelihood ratio in this evaluation
paradigm, and propose a KNN-based surprise score. This score is derived from the likelihood ratio
theory, which proves its superiority. Remenber that we are doing evaluation, and the ultimate goal
of VoE-based evaluation is to reveal the physics learning ability of a certain learning method (or a
certain model), thus a better score does not necessarily improve the VoE detection accuracy. In our
experiment, the KNN surprise score achieves nearly the same results as the vanilla surprise score on
the Probe dataset. This only means that it’s feasible to use the vanilla surprise score on this dataset.
Given the same model evaluated, higher VoE accuracy doesn’t mean the score is better or "more
correct".

6 Conclusion

In this work, we provide a potential probabilistic explanation of physics learning evaluation methods
based on VoE paradigm. The key insight behind our theoretical framework is the likelihood ratio
between two probability distribution: PVoE and Pnon-VoE. Our theory shows that traditional surprise
overlooks the existence of PVoE and assumes it to be a uniform distribution. We propose two novel
and extensible surprise scores (surprisenaive and surpriseKNN) to correct the traditional surprise.
Experimental results also show that the uniform assumption of PVoE is inaccurate. The second
contribution of this work is the implementation of an pixel-level prediction physics learning model
based on PredRNN. The model outperforms a strong object-level prediction model PLATO [20] with
a large margin, which indicates that using pixel-level prediction is promising for models to learn
physics.

Author Contribution

In this course project, Haowei proposed the theoretical framework and wrote the main body of this
report. Hang conducted the experiments and did the main coding of this project. Three of them
surveyed the related work and reviewed literature.
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A Theoretical Proofs

Proof of Theorem 1 For any test method towards Eq. (2) with rejection setR, and any α ∈ [0, 1],
we say that it satisfies condition Pα if (1) α = Pr(x ∈ R|VoE). (2) ∃η ≥ 0 such that

x ∈ R \ A ⇒ LR(x)−1 > η

x ∈ Rc \ A ⇒ LR(x)−1 < η,

whereA is a set ignorable in bothPVoE andPnon-VoE, i.e. Pr(x ∈ A|VoE) = Pr(x ∈ A|non-VoE) = 0.
For any α ∈ [0, 1], let the set of level α tests be the set of all tests with size (the probability of
falsely rejecting the null hypothesis) at most α. That is, letting its rejection set be R′, we have
Pr(x ∈ R′) ≤ α.

Apparently, we know that the rejection regionR = {x : LR(x) < λ0} satisfies condition Pα, where
α = Pr(x ∈ R|VoE). When x ∈ R \ A, LR(x)−1 > 1

λ0
, and when x ∈ Rc \ A,LR(x)−1 < 1

λ0
.

Here A = {x : LR(x) = λ0} if we assume that PVoE and Pnon-VoE are continuous.

From Neyman-Pearson lemma [16], we know thatR is a uniformly most powerful test in the set of
level α tests (existence), and every UMP testR′ in the set of level α andR will agree with probability
1 whether measured by PVoE or Pnon-VoE (uniqueness).

Proof of Theorem 3 The idea of this proof is based on [27]. We consider the convergence when
estimating VoE distribution PVoE. Note that z is a normalized feature vector in Rm, which means
z locates on the surface of a m-dimensional unit sphere. We denote B(z, r) = {z′ : ||z′ − z||2 ≤
r} ∩ {z′ : ||z′||2 = 1}, which is a set of data points on the unit hyper-shpere and are at most r
Euclidean distance away from the center z. The local dimension of B(z, r) is m− 1. Assuming the
density satisfies Lebesgue’s differentiation theorem, the probability density function can be attained
by:

PVoE(z
⋆) = lim

r→0

Pr(z ∈ B(z⋆, r)|z ∼ PVoE)

|B(z⋆, r)|

We denote our observation set as Zn = {z1, z2, · · · , zn}. We assume each sample zi is i.i.d. drawn
from PV oE , then the empirical point-density for the test data can be estimated by KNN distance as:

P̂VoE(z; k, n) =
Pr(zi ∈ B(z⋆, rk(z

⋆))|zi ∈ Zn)

|B(z⋆, rk(z⋆))|
=

k

cn(rk(z⋆))m−1
,

where c is a constant. Using the ℓα bound results in [32] can prove the convergence and establish the
convergence rate of the estimator.

B Pseudo Code for Computing surpriseKNN

Algorithm 1 Compute surpriseKNN

Input: A VoE video dataset {x(i)}Ni=1, a trained physics learning model Θ, hyper-parameters n, k, γ.
A test video x. traditional surpriseΘ(x)
Return: surpriseKNN(x)

1: Get the hidden representation {z(i)}Ni=1of {x(i)}Ni=1 using Θ
2: Get the hidden representation z of x using Θ
3: z(i) ← z(i)/||z(i)||2 ▷ Normalize each feature vector into unit norm
4: z ← z/||z||2
5: compute distance ||z − z(i)||2
6: Reorder {z(i)}Ni=1 to {z(si)}Ni=1 with increasing distance of ||z − z(i)||2
7: rk(z)← ||z − z(sk)||2 ▷ distance to z’s k-th nearest neighbor
8: surpriseKNN(x)← surpriseΘ(x)− γ · rk(z)
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C Density Estimation Methods

Apart from KNN, we can also estimate PVoE using the following three density estimators in the
experiment. The implementations are based on sklearn [17]. And the code is attached in the
supplemental material.

IForest [13] The Isolation Forest (IForest) ‘isolates’ observations by randomly selecting a feature
and then randomly selecting a split value between the maximum and minimum values of the selected
feature. Since recursive partitioning can be represented by a tree structure, the number of splittings
required to isolate a sample is equivalent to the path length from the root node to the terminating
node. This path length, averaged over a forest of such random trees, is a measure of normality and
our decision function. Random partitioning produces noticeably shorter paths for anomalies. Hence,
when a forest of random trees collectively produce shorter path lengths for particular samples, they
are highly likely to have large distance to the data distribution. We use 100 base estimators in the
ensemble.

OCSVM [23] One-Class SVM (OCSVM) is an unsupervised learning technique to learn the ability
to differentiate the test samples of a particular class from other classes. OCSVM works on the basic
idea of minimizing the hypersphere of the single class of examples in training data and considers
all the other samples outside the hypersphere to be outliers or “out of observation data distribution".
OCSVM estimates the support of a high-dimensional distribution, and we adapt it as a non-parametric
density estimation method.

Mahalanobis distance [15] The Mahalanobis distance is a measure of the distance between a
point P and a distribution D, introduced by P. C. Mahalanobis in 1936. Mahalanobis’s definition
was prompted by the problem of identifying the similarities of skulls based on measurements. It is a
multi-dimensional generalization of the idea of measuring how many standard deviations away P is
from the mean of D. This distance is zero for P at the mean of D and grows as P moves away from
the mean along each principal component axis. If each of these axes is re-scaled to have unit variance,
then the Mahalanobis distance corresponds to standard Euclidean distance in the transformed space.
The Mahalanobis distance is thus unitless, scale-invariant, and takes into account the correlations of
the data set. The equation is as follows:

rmaha(P ) = diag[(P − µD)Σ
−1
D (P − µD)

T ] (3)

Here Σ−1, µD is the empirical precision matrix and empirical mean of observed data drawn from
D. Note that P ∈ Rd, µD ∈ Rd,Σ−1 ∈ Rd×d, and diag(·) denotes the extraction of diagonal of a
matrix.
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