
Under review as submission to TMLR

Learning a Decision Tree Algorithm with Transformers

Anonymous authors
Paper under double-blind review

Abstract

Decision trees are renowned for their ability to achieve high predictive performance while
remaining interpretable, especially on tabular data. Traditionally, they are constructed
through recursive algorithms, where they partition the data at every node in a tree. However,
identifying a good partition is challenging, as decision trees optimized for local segments
may not bring global generalization. To address this, we introduce MetaTree, which trains a
Transformer-based model on outputs from classical algorithms to directly produce strong
decision trees in a meta-learning manner. Specifically, we fit both greedy decision trees and
optimized decision trees on a large number of datasets. We then train MetaTree to produce
the trees that achieve strong generalization performance. This training enables MetaTree
to emulate these algorithms and intelligently adapt its strategy according to the context,
thereby achieving superior generalization performance.

1 Introduction

Transformers (Vaswani et al., 2017) have demonstrated the capacity to generate accurate predictions on
tasks previously deemed impossible (OpenAI, 2023; Betker et al., 2023), but can they produce models rather
than predictions? In this work, we study whether Transformers can generate a particular class of models:
decision trees. We select decision trees as they are foundational building blocks of modern machine learning
and hierarchical reasoning. They offer interpretability, which modern deep learning models often sacrifice,
while maintaining state-of-the-art performance across a wide range of practical applications (Grinsztajn et al.,
2022).

Traditionally, decision trees are constructed using algorithms based on greedy heuristics (Breiman et al.,
1984; Quinlan, 1986). To overcome the bias imposed by greedy algorithms, recent work has proposed optimal,
discrete optimization methods for fitting decision trees (Lin et al., 2020; Hu et al., 2019; Bertsimas & Dunn,
2017). While these approaches have been effective in tabular contexts, a significant challenge lies in their
non-differentiability, which raises difficulties when integrating them into deep learning models. Moreover, full
decision tree optimization is NP-hard (Laurent & Rivest, 1976), rendering it practically infeasible to compute
optimal trees with large tree depths.

In this work, we introduce MetaTree, a Transformer model designed to construct a decision tree given a
tabular dataset. MetaTree recursively applies a Transformer to decide the splitting feature and value for each
decision node (Fig. 1a). We train MetaTree to produce high-performing decision trees given a new dataset.
Specifically, we fit both greedy decision trees and optimized decision trees on a large number of datasets. We
then train MetaTree to generate the trees that demonstrated superior generalization performance (Fig. 1c).
This training strategy endows MetaTree with a unique advantage: it learns not just to mimic the construction
process of these algorithms but also to determine when to lean towards each algorithmic approach based
on the specific context of the dataset. This adaptability adds significant flexibility to traditional methods
that are bound to a single algorithmic framework. MetaTree’s architecture leverages an alternating row and
column attention mechanism along with a learnable absolute positional bias for the tabular representations
(Fig. 1b).

MetaTree produces highly predictive trees on a large set of real-world datasets that it did not see during
training, consistently outperforming traditional decision tree algorithms (Table 1 and more in Sec. 5). Further

1



Under review as submission to TMLR

Table 1: Comparing each algorithm’s single-tree performance over the 91 held-out datasets
(91D) and the 13 Tree-of-prompts datasets (ToP), among tree depth 2, 3, and 4, despite MetaTree was
only trained on depth-2 trees. Listed are the average rank with standard deviation over the datasets. We also
report the number of times an algorithm is in the first place (champion). †GOSDT encounters out-of-memory
(OOM) errors for tree depths greater than 2 due to the NP-hard complexity of solving for the optimal tree.
We report the memory usage for GOSDT in Table 2.

Config MetaTree GOSDT CART ID3 C4.5

91D, depth-2 avg. rank 1.34 ± 0.84 2.68 ± 1.20 3.30 ± 0.90 3.30 ± 0.92 4.36 ± 1.15
champion 72 13 2 2 2

ToP, depth-2 avg. rank 1.08 ± 0.27 2.77 ± 1.48 3.00 ± 1.18 2.77 ± 1.25 3.38 ± 1.60
champion 7 3 1 2 0

91D, depth-3 avg. rank 1.25 ± 0.64 OOM† 2.65 ± 0.78 2.57 ± 0.80 3.53 ± 0.84
champion 76 - 5 8 2

ToP, depth-3 avg. rank 1.31 ± 0.82 OOM† 2.54 ± 1.15 2.46 ± 1.08 2.69 ± 0.99
champion 9 - 2 2 0

91D, depth-4 avg. rank 1.25 ± 0.67 OOM† 2.79 ± 0.79 2.51 ± 0.76 3.44 ± 0.92
champion 76 - 6 5 4

ToP, depth-4 avg. rank 1.15 ± 0.36 OOM† 2.46 ± 0.93 2.46 ± 1.01 2.69 ± 1.14
champion 9 - 1 2 1

analysis shows that MetaTree’s performance improvement comes from its ability to dynamically switch
between a greedy or optimization-based approach depending on the context of the split (Sec. 6.1). Finally, a
bias-variance analysis shows that MetaTree successfully achieves lower empirical variance than traditional
decision-tree algorithms (Sec. 6.2).

2 Related work

Decision trees There is a long history of greedy methods for fitting decision trees, e.g., CART (Breiman
et al., 1984), ID3 (Quinlan, 1986), or C4.5 (Quinlan, 2014). Recent work has explored fitting trees overcoming
greedy heuristics via global optimization (Lin et al., 2020; Hu et al., 2019; Bertsimas & Dunn, 2017);
this can improve performance given a fixed tree size but often incurs a prohibitively high computational
cost. Other recent studies have improved trees through regularization (Agarwal et al., 2022), iterative
updates (Carreira-Perpinán & Tavallali, 2018), or increased flexibility (Tan et al., 2022).

Trees maintain state-of-the-art performance across tabular applications (Grinsztajn et al., 2022; Kornblith
et al., 2022), especially when used in ensembles such as Random Forest (Breiman, 2001), gradient-boosted
trees (Freund et al., 1996), and BART (Chipman et al., 2010). Some recent works have studied the intersection
of trees and Transformers, e.g. using trees to guide LLM generations (Morris et al., 2023; Yao et al., 2023) or,
conversely, using LLMs to build stronger decision trees for text classification (Singh et al., 2023).

Learning models/algorithms Some learning-based methods have focused on improving algorithms, largely
based on combining Transformers with deep reinforcement learning, e.g. faster matrix multiplication (Fawzi
et al., 2022) or faster sorting algorithms (Mankowitz et al., 2023). One new work studies using LLMs to
iteratively generate and refine code to discover improved solutions to problems in computer science and
mathematics (Romera-Paredes et al., 2023).

Other works focus on Transformers’ ability to learn in context. Zhou et al. (2023) probe simple tasks for
length generalization and find that Transformers can generalize to a certain class of problems easily. One
very related work studies whether Transformers can successfully learn to generate predictions from linear

2



Under review as submission to TMLR

Leaf
Node

Input

Node Node

Leaf
Node

Leaf
Node

Leaf
Node

(a) Decision Tree Generation Process (b) MetaTree Architecture 

MetaTree

MetaTreeMetaTree

(c) Two-Phase Learning Curriculum 

Input

Root
Node

NodeC
A

R
T

Root
Node

NodeG
O

SD
T

Validation 

MetaTree Learn to Generate

C
A

R
T

G
O

SD
T

C
A

R
T

G
O

SD
T

...

Input Root
Node

NodeG
O

SD
T

MetaTree

G
O

SD
T

G
O

SD
T

G
O

SD
T

...

Phase 1: Learning to Generate GOSDT Trees

Phase 2: Learning to Generate Strong Generalizable Trees

G
O

SD
T

Learn to Generate
Input Representation

  Tabular Attention

  Sigmoid Activation

Figure 1: MetaTree Methodology. The creation of a decision tree, depicted in (a), entails recursive
MetaTree calls. MetaTree only assesses the current state for its decision-making. (b) shows MetaTree’s
architecture, in which the tabular input (n data points of m features) is embedded in a representation space,
processed with row and column attention at each layer, and the output is a one-hot mask indicating the
splitting feature j and threshold Xi,j . (c) illustrates MetaTree’s two-phase learning curriculum: in the first
phase, the focus is exclusively on learning from the optimized GOSDT trees, to closely emulate the behavior of
GOSDT algorithm. Then in the second phase, the training process incorporates data from both the GOSDT
and CART trees, generating the ones that have better generalization capabilities.

functions, and even decision trees and small MLPs in context (Garg et al., 2022). Despite these successes,
recent works also find limitations in Transformers’ ability to generalize in certain contexts, e.g. to distribution
shifts (Yadlowsky et al., 2023) or to arithmetic changes (Dziri et al., 2023).

Meta-learning Often referred to as “learning-to-learn", meta-learning has gained increasing attention over
the years (Nichol et al., 2018; Hospedales et al., 2021). Meta-learning algorithms are designed to learn a
model that works well on an unseen dataset/task given many instances of datasets/tasks (Vilalta & Drissi,
2002). Particularly related to MetaTree are works that apply meta-learning with Transformers to tabular
data (Hollmann et al., 2022; Feuer et al., 2023; Onishi et al., 2023; Hegselmann et al., 2023; Gorishniy et al.,
2023; Manikandan et al., 2023; Zhu et al., 2023). While echoing the essence of meta-learning, our objective
is to introduce a learning-based model capable of directly outputting a model informed by the insights of
established algorithms.

3 Methods: MetaTree

Problem definition When generating a decision tree, we are given a dataset D = (xi, yi)n
i=1 where xi ∈ Rm

represents the input features and yi ∈ {1, . . . , K} corresponds to the label for each instance. At each node,
a decision tree identifies a split consisting of a feature j ∈ {1, . . . , m} and a threshold value v ∈ R, such
that D can be partitioned into two subsets by thresholding the value of the jth feature. The dataset is
partitioned recursively until meeting a pre-specified stopping criterion, here a maximum tree depth. To
generate a prediction from the tree, a point is passed through the tree until reaching a leaf node, where the
predicted label is the majority label of training points falling into that leaf node.

3.1 Generating a decision tree model: representation and model design

Decision trees are typically fit using a top-down greedy algorithm such as CART (Breiman et al., 1984).
These algorithms greedily select the split at each node based on a criterion such as the Gini impurity. This

3



Under review as submission to TMLR

class of methods, while efficient, often results in sub-optimal solutions. More recent work has studied the
generation of “optimal” decision trees seeking a solution that maximizes predictive performance subject to
minimizing the total number of splits in a tree. This can be formulated as a tree search, in which recursive
revisions on the tree happen when all children of a search node are proven to be non-optimal (Lin et al.,
2020). However, finding optimal trees is intractable for even modest tree depths, and can also quickly overfit
to noisy data.

Model design: divide and concur with learned speculative planning We aim to bridge these
approaches with MetaTree to yield highly predictive decision trees as illustrated in Fig. 1(a). To generate a
single tree, a recursive call is made to MetaTree at each tree node. Initially, the entire dataset is presented to
the model, which makes a partition to form the root node. Then, the dataset is filtered into two subsets by
the root node; each subset (i.e. the left child subset and the right child subset) is passed through the model
individually, with the opposite subset being masked out. This process is repeated until a maximum depth
for the tree is reached. Even though MetaTree only outputs a single split at a time, the fact that it can see
the entire dataset when making the root node split and use multiple Transformer layers allows it to make
adaptive, non-greedy splits.

Representing numerical inputs: learnable projection and positional bias MetaTree takes matrices
of real-valued numbers as input. We use a multiplicative embedding to project all the numerical features into
embedding space and add the class embedding onto it. The aggregated embedding is then transformed via a
two-layer MLP. Specifically, given a n-row m-column input X ∈ Rn,m and its k-class label Y ∈ {1, . . . , k}n,
with Yoh denotes Y in one-hot format, the embedding is computed as follows:

Embx(X) = X ⊗ Wx ∈ Rn,m,d, Wx ∈ Rd (1)
Emby(Y ) = Yoh · Wy ∈ Rn,d, Wy ∈ Rk,d (2)
Emb = MLP(Embx(X) + Emby(Y ) + B)
B(i,j,k) = b1(j,k) + b2(i,k)

Emb ∈ Rn,m,d, B ∈ Rn,m,d, b1 ∈ Rm,d, b2 ∈ Rn,d (3)

For each number in the matrix X, it is transformed into Rd space via multiplication with Wx, then added to
the class embedding of Y . The final embedding is obtained by putting the aggregated embedding plus the
positional bias terms b1, b2 through an MLP.

We normalize each feature dimension per batch to have mean of 0 and variance of 1. Prior to inference, we
also add a truncated Gaussian noise to categorical features; this improves performance on discrete features
since the model is mostly trained on continuous data.

Tabular self-attention: row and column-wise information processing Since our tabular input shares
information across rows and columns, we apply attention to both the row dimension and column dimension
in each Transformer layer. For lth layer, given input in hidden space X

(l)
h ∈ Rn,m,d, the output of the tabular

attention Y
(l)

h ∈ Rn,m,d is computed as:

ColAttn(X(l)
h ) = Softmax

(
Q

(l)⊤
col K

(l)
col

)
V

(l)
col (4)

RowAttn(X(l)
h ) = Softmax

(
Q(l)⊤

row K(l)
row

)
V (l)

row (5)

Y
(l)

h = ColAttn(X(l)
h ) + RowAttn(X(l)

h ) + X
(l)
h (6)

where X
(0)
h = Emb(X, Y) for the first layer, X

(l)
h = MLP(Y (l−1)

h ) for the rest the layers; for the column/row
query Q, key K, value V projections, X

(l)
h ∈ Rn,m,d is first reshaped to X

(l)
h,col ∈ Rn,m,d and X

(l)
h,row ∈ Rm,n,d

where the Softmax is conducted on the corresponding column/row dimension, i.e. second last dimension.
The Q, K, V are constructed in the following manner, we will explain this for column attention only where
the row attention follows the same design: Q

(l)
col = W

(l)
Q,colX

(l)
h,col, K

(l)
col = W

(l)
K,colX

(l)
h,col, V

(l)
col = W

(l)
V,colX

(l)
h,col,

4



Under review as submission to TMLR

where the linear projections W
(l)
Q,col, K

(l)
col, V

(l)
col ∈ Rd,d are all learnable parameters. The dimension orders will

be shuffled back after column/row attention such that ColAttn(X(l)
h ), RowAttn(X(l)

h ) ∈ Rn,m,d.

Attention is being applied in the row and column dimensions individually, it will first gather information
over n rows and then over m columns with a O(n2 + m2) complexity. This alleviates the computing cost
compared to reshaping the table as a long sequence, which would require a O

(
n2m2)

complexity, while
effectively gathering and propagating information for the entire table.

3.2 Training objective: cross entropy with Gaussian smoothing

The main task of our model is to select a feature and value to split the input data. This process involves
selecting a specific element from the input matrix X ∈ Rn,m. Suppose the choice is made for Xi,j , it is
equivalent to a decision that splits the data along the jth feature with value Xi,j . Our design for the model’s
output and the corresponding loss function is based on this fundamental principle of split selection. The
model’s output is passed through a linear projection to scale down from Rn,m,d to Rn,m,1, and the final
output is obtained after a Sigmoid activation.

We train our model with supervised learning. In the ground truth tree, each node contains the feature index
and the splitting value. This is equivalent to a one-hot mask over the input table where the optimal choice
of feature and value is marked as one and the rest marked as zero. However, directly taking this mask as
the training signal raises issues: some data points might have similar or exactly the same values along the
same feature as the optimal split, and masking out these data points would deeply confuse the model. Hence
we use a Gaussian smoothing over this mask as our loss target based on the value distance over the chosen
feature. We denote the ground truth splitting feature and value as j∗ and v∗, the training target M :

M =
{

exp − (X[:, j]−v∗)2

2σ2 , if j = j∗

0, if j ̸= j∗ (7)

where σ is a hyperparameter, controlling the smoothing radius. We use Binary Cross Entropy (BCE) to
calculate the loss between our model output and the training target M .

Learning curriculum Our training approach is tailored to accommodate the mixed learning signals
derived from the two distinct algorithms, each with its unique objectives and behaviors. The task is difficult.
Mimicking the optimization-based decision tree algorithm is already challenging (i.e. approximating solutions
for an NP-hard problem), but MetaTree must also learn to generate the split that has the better generalization
potential out of the two (CART v.s. GOSDT).

To effectively train our model, we use a learning curriculum in our experiments (as illustrated in Fig. 1c. In
the first phase, the focus is exclusively on learning from the optimization-based GOSDT trees. The goal during
this stage is to closely emulate the behavior of GOSDT algorithm. Then in the second phase, the training
process incorporates data from both the GOSDT and CART trees (see details in Sec. 4.1) to train MetaTree.
This two-stage approach enables our model to assimilate the characteristics of both algorithms, facilitating
better generalization capabilities. (See Appendix A.6 for ablation studies on the training curriculum.)

We selected CART and GOSDT as they are representative and effective algorithms in the classes of greedy
and optimized decision tree algorithms. As shown in our experiments (Fig. 2), they are consistently first
and second amongst classical algorithms. Training with the best tree out of an algorithm ensemble could
potentially further improve performance, but for the simplicity of our analyses we leave that for future
explorations.

MetaTree in Inference Note that MetaTree is equivalent to an algorithm, the inference process is
slightly different from typical deep learning models. When deploying MetaTree on an unseen dataset
(Xtrain, Ytrain, Xtest, Ytest), we will first generate decision trees from the train set (Xtrain, Ytrain), then use the

5



Under review as submission to TMLR

generated trees to make predictions Ypred on Xtest:

DecisionTreeModel = MetaTree(Xtrain, Ytrain)
Ypred = DecisionTreeModel(Xtest)

where DecisionTreeModel is constructed by recursively calling MetaTree, as shown in Fig. 1(a).

4 Experimental setup

4.1 Datasets

We use 632 classification datasets from OpenML (Vanschoren et al., 2013), Penn Machine Learning Bench-
marks (Romano et al., 2021), along with a synthetic XOR dataset. We require each dataset to have at least
1000 data points, at most 256 features, at most 10 classes, and less than 100 categorical features, with no
missing data. We randomly select 91 datasets as the left-out test set for evaluating our model’s generalization
capability while making sure they and their variants do not appear in the training set.

We generate our decision-tree training dataset in the following manner: for each dataset, we first divide it
into train and test sets with a 70:30 split; then we sample 256 data points with 10 randomly selected feature
dimensions from the training set and fit a GOSDT tree (Lin et al., 2020) and a CART tree (Breiman et al.,
1984) of depth 2 both; we later record the accuracy of the two trees on the test set; We repeat this process
and generate 10k trees for each dataset. In total, we have 10,820,000 trees generated for training.

We have both GOSDT and CART trees generated for all these datasets; for clarity, we refer to the GOSDT
trees as the GOSDT dataset, the CART trees as the CART dataset, and the trees that have the best evaluation
accuracy on their respective test set between CART and GOSDT as the GOSDT+CART dataset.

We generate a synthetic XOR dataset with the following algorithm: we first randomly sample 256 data points
in the 2-dimensional bounding box {x|x ∈ [−1, 1]2}; then randomly generate the ground truth XOR splits
inside the bounding box depending on the pre-specified level (for example, level 1 XOR has 3 splits, level 2
XOR has 15 splits, and the root node split can take place randomly ∈ [−1, 1] while the rest of the split is
sampled randomly inside the dissected bounding boxes, see examples in Fig. A1) and assign the class labels
according to the splits; at the final step, we add in label flipping noise and additional noisy feature dimensions
consisted of uniform noise within [−1, 1].

We additionally test MetaTree on the 13 Tree-of-prompt datasets from Morris et al. (2023). They are tabular
datasets constructed from text classification tasks; the input X is the LLM’s response to a set of prompts
accompanying the text (yes or no), and the output Y is the class label. Successfully building trees on these
datasets shows the potential for MetaTree to help in steering large language models. Moreover, since MetaTree
is differentiable, it could be integrated into the training process of some LLMs.

4.2 Baselines

We use GOSDT (Lin et al., 2020), CART (Breiman et al., 1984), ID3 (Quinlan, 1986) and C4.5 (Quinlan,
2014) as our baselines, as representative optimal and greedy decision tree algorithms. For GOSDT, we
utilize the official implementation, using gradient-boosted decision trees for the initial label warm-up with
the number of estimators equal to 128, a regularization factor of 1e-3. For CART and ID3, we use the
implementation from sklearn (Pedregosa et al., 2011), with the splitting criterion set as Gini impurity and
entropy respectively. For C4.5, we use the implementation from imodels (Singh et al., 2021) with the default
setting.

4.3 Model configurations

We use the LLaMA (Touvron et al., 2023) architecture as the base Transformer. For MetaTree, we set the
number of layers as 12, the number of heads as 12, the embedding dimension as 768, MLP dimension as
3072. We can use a maximum of 256 data points and 10 features for producing a single tree, as Transformers’

6



Under review as submission to TMLR

10 20 30 40 50 60 70 80 90 100
Number of Trees

60.0

62.5

65.0

67.5

70.0

72.5
G

en
er

al
iz

at
io

n 
A

cc
ur

ac
y

MetaTree
GOSDT
CART
ID3
C4.5

10 20 30 40 50 60 70 80 90 100
Number of Trees

64

66

68

70

72

74

G
en

er
al

iz
at

io
n 

A
cc

ur
ac

y

MetaTree
CART
ID3
C4.5

10 20 30 40 50 60 70 80 90 100
Number of Trees

64

66

68

70

72

74

76

G
en

er
al

iz
at

io
n 

A
cc

ur
ac

y

MetaTree
CART
ID3
C4.5

(A) 91 Datasets, Depth-2 trees (B) 91 Datasets, Depth-3 trees (C) 91 Datasets, Depth-4 trees

10 20 30 40 50 60 70 80 90 100
Number of Trees

70

72

74

76

G
en

er
al

iz
at

io
n 

A
cc

ur
ac

y

MetaTree
GOSDT
CART
ID3
C4.5

10 20 30 40 50 60 70 80 90 100
Number of Trees

74

75

76

77

78

79

G
en

er
al

iz
at

io
n 

A
cc

ur
ac

y

MetaTree
CART
ID3
C4.5

10 20 30 40 50 60 70 80 90 100
Number of Trees

76

77

78

79

80

G
en

er
al

iz
at

io
n 

A
cc

ur
ac

y

MetaTree
CART
ID3
C4.5

(D) Tree-of-prompt Datasets, Depth-2 trees (E) Tree-of-prompt Datasets, Depth-3 trees (F) Tree-of-prompt Datasets, Depth-4 trees

Figure 2: MetaTree demonstrates strong generalization on real-world datasets. MetaTree generalizes
well to 91 held-out datasets for (A) depth-2 trees (B) depth-3 trees and (C) depth-4 trees, despite only being
trained to produce depth-2 trees. MetaTree also generalizes well to the 13 Tree-of-prompts datasets for (D)
depth-2 trees (E) depth-3 trees (F) depth-4 trees, which requires constructing a tree to steer a large language
model (Morris et al., 2023). Each plot shows the average test accuracy for tree ensembles of size {1, 5, 10, 20,
30, 40, 50, 60, 70, 80, 90, 100}, with error bars indicating the standard deviation.

memory usage and runtime would grow quadratically with the sequence length, see our discussion on this
in Sec. 7.

We pretrain our model from scratch on the GOSDT dataset, and after training converges, we finetune it
on the GOSDT+CART dataset. This curriculum improves performance compared to direct training on the
GOSDT+CART dataset (as shown in Appendix A.6). We also show an ablation with RL training objective
in Appendix A.8. Detailed hyperparameters are shown in Appendix A.5.

5 Results: On the Generalization Ability of MetaTree

In this section, we present MetaTree’s performance on real-world datasets previously unseen by the model (in
Table 1 and Fig. 2). We compare it with established algorithms, GOSDT, CART, ID3, C4.5, and find that it
performs favorably when used as a single tree and as an ensemble. We focus on three questions: (1) Can
MetaTree effectively generalize to real-world data it has not encountered before? (2) Is MetaTree capable of
generating decision trees deeper than those it was trained on?, and (3) Can MetaTree be used in an LLM
setting to accurately steer model outputs?

Generalizing to new datasets: Fig. 2A To address the first question, we rigorously evaluate MetaTree
across 91 datasets that were excluded from its training. For each dataset, we adopt the standard 70/30
split to create the train and test sets, then repeatedly sample from the train set and run the decision tree
algorithms (MetaTree, GOSDT, CART, ID3, or C4.5) to form tree ensembles with specified number of trees
from {1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The majority prediction across trees is taken as the
ensemble prediction and accuracy is averaged across all datasets. The entire evaluation process is replicated
across 5 independent runs and the standard deviation is shown as error bars in the plot.

7



Under review as submission to TMLR

The result shows that MetaTree demonstrates a consistent and significant performance advantage over the
baseline algorithms. GOSDT outperforms CART and the other greedy algorithms when the number of trees
is small; this corresponds well to GOSDT’s tendency to overfit on training data as it is designed to optimally
solve for the train set. It also brings a higher variance in GOSDT’s generalization performance. CART and
ID3 exhibit similar performance due to their algorithmic similarities. In contrast, C4.5 underperforms, likely
due to excessive node pruning which hampers performance when model complexity is not high enough.

In addition to the above results, we provide the average single-tree fitting accuracy of the algorithms
in Appendix A.4 for a more comprehensive view of their performance.

Generalizing to deeper trees: Fig. 2B,C Going beyond MetaTree’s capability to generalize to new data,
we now study whether MetaTree can generate deeper trees. To answer this question, we ask MetaTree to
generate trees with depth 3 and 4, and compare its generalization performance with the baseline algorithms,
similar to the aforementioned evaluation process. 1

The result is shown in Fig. 2B,C. It can be observed that MetaTree still consistently outperforms the baseline
algorithms at depth 3. At depth 4, MetaTree outperforms the baselines in the single-tree scenario or when the
number of trees is small, and the greedy algorithms (CART, ID3) catch up with the growing ensemble size.

One reason MetaTree can generalize to deeper trees is that it is designed to generate splitting decisions at
each node, hence the generated tree is not dependent on the tree depth. Besides, the model has trained on
depth 2 trees, i.e. the root node split and two children split, we believe MetaTree might have learned to
behave as an induction algorithm, thereby generating deeper trees with high quality.

Tree of prompts dataset: Fig. 2D,E,F We evaluate MetaTree on the 13 Tree-of-prompt datasets, that
consist of purely categorical features, with the input being LLM’s answer to a set of prompts (yes or no) and
output being the classification label of the text. Fig. 2D,E,F again compares MetaTree to GOSDT, CART,
ID3, and C4.5. MetaTree maintains a higher level of generalization accuracy across almost all tree counts
when compared to GOSDT, CART, ID3 and C4.5.

GOSDT, CART, and ID3 show lower generalization accuracies, with GOSDT performing slightly better than
CART and ID3. Notably, C4.5’s performance jumps at depth-4 and surpasses CART and ID3, potentially
due to its node pruning being effective at deeper tree depth.

This evaluation demonstrates MetaTree’s great performance on Tree-of-prompt datasets, highlighting its
capability to process categorical features and produce differentiable trees for LLM-generated inputs and
user-queried outputs.

6 Analysis

After benchmarking the performance of MetaTree, we conduct an in-depth analysis of its behavior and splitting
strategy. Our analysis of MetaTree begins by examining MetaTree’s tendency between choosing a greedy
split and an optimized split (Sec. 6.1). We measure the similarity of the generated splits between MetaTree
and CART/GOSDT and evaluate all the splits’ generalization performance. Turns out MetaTree would opt
in for the better algorithm at the right circumstance. We then take a closer look at MetaTree’s empirical
bias-variance (Sec. 6.2). MetaTree illustrates a possibility to reduce empirical variance while not trading
off empirical bias. We have included further analysis of evaluating MetaTree on synthetic XOR problems,
considering the effects of noise and feature interactions (Appendix A.1). And a look into MetaTree’s internal
decision-making process (Appendix A.2) reveals MetaTree sometimes gets the right split early on, within the
first 9 Transformer layers.

8



Under review as submission to TMLR

0.0 0.5 1.0
Output Correlation with CART

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n

Low

Medium

High

32.05%

14.42%

53.53%

0.0 0.5 1.0
Output Correlation with GOSDT

Low

Medium

High

40.38%

15.71%

43.91%

MetaTree's behavior when CART generalizes better

(a)

0.0 0.5 1.0
Output Correlation with CART

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n

Low
Medium

High

32.93% 27.44%
39.63%

0.0 0.5 1.0
Output Correlation with GOSDT

Low

Medium

High

24.80%
16.06%

59.15%

MetaTree's behavior when GOSDT generalizes better

(b)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
CART Correlation - GOSDT Correlation

0.2

0.1

0.0

0.1

0.2

0.3

C
A

RT
 A

cc
 - 

G
O

SD
T 

A
cc

r=0.64, p=3e-05

(c)

Figure 3: We show that MetaTree learns to adapt its splitting strategy for better generalization.
(a), (b) The figures demonstrate MetaTree’s tendency to select the more effective generalization strategy:
opting for the greedy algorithm CART when CART performs better and the optimal algorithm GOSDT when
GOSDT is the better choice. (c) We also conduct regression analysis showing that MetaTree’s algorithmic
preference positively correlates with the better generalizing algorithm’s performance.

6.1 Can MetaTree be less greedy when needed?

Our model is trained on mixed learning signals from GOSDT and CART, selected using generalization
performance as the criterion. Our objective is to decipher whether MetaTree can strategically adapt its
splitting approach between GOSDT and CART. To answer this question, we randomly take 100 samples
(each of 256 data points) per dataset from the 91 left-out datasets and instruct MetaTree, GOSDT, and
CART to generate splits for each sample. This approach ensures that all three algorithms are provided with
the same data when making the splitting decision, allowing for a meaningful comparison.

We assess the similarity between the splits generated by MetaTree and those produced by GOSDT and
CART. To measure it, we calculate the correlation coefficient between the label assignments following the
splits. Additionally, we evaluate the generalization performance by examining the accuracy of the splits on
its respective test set. We exclude samples where GOSDT and CART yield highly similar splits (correlation
coefficient > 0.7).

We plot the output correlation between MetaTree and CART/GOSDT in Fig. 3a, for when CART is the
better generalizing algorithm among the two. Similarly, we plot the output correlation between MetaTree
and CART/GOSDT in Fig. 3b for when GOSDT is better generalizing. We divide the output correlation
values into three categories (low, medium, and high correlation), and it can be observed that MetaTree tends
to favor the algorithm that exhibits better generalization performance.

Furthermore, we visualize the relationship between the correlation difference (CART correlation minus
GOSDT correlation) and the generalization performance difference (CART’s test accuracy minus GOSDT’s
test accuracy) in Fig. 3c, noting that we exclude samples with marginal performance differences (generalization
accuracy difference ≤ 0.08). A medium correlation (Pearson correlation = 0.64, p-value = 0.00003) is observed,
suggesting a tendency in MetaTree’s splitting strategy to align with generalization performance.

To better explain why MetaTree can learn to be non-greedy, at a high level, the model makes one decision at
each node: shall I make the greedy split now? or is it better to plan for a split one step later? Due to our
training strategy, MetaTree is optimized towards making these choices.

6.2 Breaking through the bias-variance frontier

Finally, we conduct a comprehensive bias-variance analysis to evaluate MetaTree, along with GOSDT and
CART, on the 91 left-out datasets. This analysis shows how each algorithm navigates the trade-off between
bias (the error due to insufficient learning power of the algorithm or incorrect model assumptions) and
variance (the error due to sensitivity to small fluctuations in the training set). We use the empirical bias and

1Note that GOSDT can not stably generate trees with a depth greater than 2 without incurring Out-of-Memory or Out-of-Time
errors on machines with up to 125G memory (see Sec. 6.3 for memory usage analysis). Hence GOSDT is excluded from this
study.

9



Under review as submission to TMLR

0.000 0.025 0.050 0.075 0.100
Empirical Bias

0.00

0.02

0.04

0.06

0.08

0.10

Em
pi

ric
al

 V
ar

ia
nc

e

MetaTree
GOSDT
CART

(a) Empirical bias-variance analysis.

Datasets

0.2

0.1

0.0

0.1

G
en

er
al

iz
at

io
n 

A
cc

ur
ac

y 
D

el
ta

MetaTree
GOSDT
CART

(b) Dataset level comparisons for single trees.

Figure 4: Empirical bias-variance decomposition for MetaTree, GOSDT, and CART on 91 left-out
datasets with 100 repetitions is shown in (a). MetaTree has significantly lower variance and slightly smaller
bias as compared to GOSDT and CART. (b) We compare accuracy delta (y-axis) for each dataset (x-axis)
when fitting a single tree. The delta is the change compared to the mean accuracy of CART and GOSDT.

variance as the measures in our evaluation; we perform 100 repetitions (N=100) for each dataset, therefore
we have 100 decision tree models per algorithm per dataset. The empirical bias of an algorithm is calculated
as the ℓ2 difference between its produced models’ average output and the ground truth labels, whereas the
empirical variance is calculated as the mean ℓ2 difference between its produced models’ average output and
each model’s output.

The result is presented in Fig. 4a. Each point in the plot corresponds to the bias-variance coordinates derived
from the performance of one algorithm on a single dataset. The x-axis represents empirical bias, indicating the
algorithm’s average error from the true function, while the y-axis corresponds to empirical variance, reflecting
the sensitivity of the algorithm to different training sets. It can be observed that MetaTree demonstrates
lower empirical variance, suggesting its robustness in diverse data distribution scenarios.

We accompany the bias-variance analysis with a dataset-level performance comparison for single trees of
depth 2 in Fig. 4b. Each vertical axis represents a dataset. We first take the average generalization accuracy
of CART and GOSDT as the base accuracy, then calculate the delta difference between each algorithm’s
accuracy and the base accuracy. Fig. 4b further illustrates MetaTree’s advantage when comparing against
GOSDT and CART.

6.3 Memory Usage and Runtime Analysis

We conduct an analysis to show the memory usage and runtime difference among CART — an efficient
algorithm with greedy heuristics and GOSDT — a mathematically guaranteed optimized algorithm and
MetaTree— an transformer-based algorithm that learns from both worlds.

MetaTree enjoys the benefit of a non-recursive greedy algorithm — constant memory usage and fast inference
speed, while having the superior performance among them all.

10



Under review as submission to TMLR

Table 2: We show the memory usage of CART, GOSDT and MetaTree when fitting decision trees with depth
2 & 3, using the memory profiler tool (Pedregosa & Gervais, 2021). GOSDT takes a significant amount of
memory since it is solving for the full decision tree solution on the data. *We report successfully terminated
runs’ stats, the experiments are conducted on a workstation with 125G memories and 128 cores.

CART GOSDT MetaTree (GPU)

Depth=2
Mean Memory 0.82 MB 146.82 MB* 2420.48 MB
Max Memory 1.41 MB 228.98 MB* 2464.87 MB
Fail Rate 0% 1.1% 0%

Depth=3
Mean Memory 0.79 MB 15,615.69 MB* 2423.96 MB
Max Memory 1.34 MB 87,721.02 MB* 2466.87 MB
Fail Rate 0% 86.81% 0%

Table 3: We show the inference wall time for CART, GOSDT and MetaTree when fitting decision trees with
depth 2. GOSDT takes a significant amount of time since it is solving for the full decision tree solution on
the data. *We report successfully terminated runs’ stats only.

CART GOSDT MetaTree (GPU)

Depth=2 Mean Time 0.047s 26.44s* 0.090s
Max Time 0.15s 74.42s* 0.102s

Table 4: We conducted ablation studies on various important design choices, including training curriculum
(two-phase versus single-phase, Appendix A.6), learning signals (noisy real-world labels versus relabelled
perfect synthetic labels, Appendix A.7), training methodology (supervised training versus reinforcement
learning, Appendix A.8), positional bias (with positional bias versus without, Appendix A.9) and our choice
of Gaussian smoothing hyper-parameter. We summarize the mean and std of the test accuracy changes for
evaluation on the 91 left-out datasets with 100 trees.

Ablation Setting Performance Change

Curriculum: two-phase → single-phase test acc ↓ −0.79 ± 0.14

Labels: noisy real-world → perfect synthetic test acc ↓ −2.78 ± 0.23

Training: supervised → RL training destabilized

Positional bias: with → without test acc ↓ −0.8736 ± 0.04

Larger Gaussian radius: σ = 0.05 → σ = 0.1 test acc ↓ −0.19 ± 0.06

Smaller Gaussian radius: σ = 0.05 → σ = 0.01 test acc ↓ −0.33 ± 0.10

6.4 Ablation studies

We conduct ablation studies on our learning curriculum (two-phase v.s. single-phase, Appendix A.6), learning
signals (noisy real-world labels v.s. relabelled perfect synthetic labels, Appendix A.7), training methodology
(supervised training v.s. reinforcement learning, Appendix A.8), positional bias (with positional bias v.s.
without, Appendix A.9) and our choice of Gaussian smoothing hyper-parameter in Appendix A.10. The
summary of our ablation studies is put into Table 4 and the details for each ablation experiment can be
found in the corresponding section.

11



Under review as submission to TMLR

7 Discussion

Limitations and future directions MetaTree is constrained by the inherent architectural limitations
of Transformers. Specifically, the maximum number of data points and features that MetaTree can process
is bounded by the Transformer model’s max sequence length (refer to Table A2 for detailed specifications).
However, these constraints can be alleviated by training a larger model. Transformers’ capacity for handling
long sequences is constantly improving, with state-of-the-art LLMs (Reid et al., 2024) now able to take in
sequences with up to 10M tokens. While MetaTree remains limited to small datasets, this work shows an
important first step in learning to adaptively produce machine-learning models, and we leave training a
large-scale LLM for future work.

Conclusion We introduce MetaTree, a novel Transformer-based decision tree algorithm. It diverges from
traditional heuristic-based or optimization-based decision tree algorithms, leveraging the learning capabilities
of Transformers to generate strong decision tree models. MetaTree is trained using data from classical decision
tree algorithms and exhibits a unique ability to adapt its strategy to the dataset context, thus achieving
superior generalization performance. The model demonstrates its efficacy on unseen real-world datasets
and can generalize to generate deeper trees. We conducted a thorough analysis of MetaTree’s behavior and
its bias-variance characteristics. We have included more exploratory analysis and ablation studies in the
appendix.

This work showcases the potential of deep learning models in algorithm generation, broadening their scope
beyond predicting labels and into the realm of automated model creation. Its ability to learn from and
improve upon established algorithms opens new avenues for research and application in the field of machine
learning.

References
Abhineet Agarwal, Yan Shuo Tan, Omer Ronen, Chandan Singh, and Bin Yu. Hierarchical shrinkage: improving the accuracy

and interpretability of tree-based methods. arXiv:2202.00858 [cs, stat], 2 2022. URL http://arxiv.org/abs/2202.00858.
arXiv: 2202.00858.

Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning, 106(7):1039–1082, 2017.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei
Guo, et al. Improving image generation with better captions. Computer Science. https://cdn. openai. com/papers/dall-e-3.
pdf, 2:3, 2023.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth and Brooks, Monterey,
CA, 1984. URL https://www.routledge.com/Classification-and-Regression-Trees/Breiman-Friedman-Stone-Olshen/p/
book/9780412048418.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 10 2001. ISSN 1573-0565. doi: 10.1023/A:1010933404324.

Miguel A Carreira-Perpinán and Pooya Tavallali. Alternating optimization of decision trees, with application to learning sparse
oblique trees. Advances in neural information processing systems, 31, 2018.

Hugh A Chipman, Edward I George, and Robert E McCulloch. Bart: Bayesian additive regression trees. The Annals of Applied
Statistics, 4(1):266–298, 2010.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine learning research, 7:1–30,
2006.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West, Chandra Bhagavatula,
Ronan Le Bras, Jena D Hwang, et al. Faith and fate: Limits of transformers on compositionality. arXiv preprint
arXiv:2305.18654, 2023.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander
Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, et al. Discovering faster matrix multiplication algorithms
with reinforcement learning. Nature, 610(7930):47–53, 2022.

Benjamin Feuer, Chinmay Hegde, and Niv Cohen. Scaling tabpfn: Sketching and feature selection for tabular prior-data fitted
networks. arXiv preprint arXiv:2311.10609, 2023.

Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In icml, volume 96, pp. 148–156. Citeseer,
1996.

12

http://arxiv.org/abs/2202.00858
https://www.routledge.com/Classification-and-Regression-Trees/Breiman-Friedman-Stone-Olshen/p/book/9780412048418
https://www.routledge.com/Classification-and-Regression-Trees/Breiman-Friedman-Stone-Olshen/p/book/9780412048418


Under review as submission to TMLR

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn in-context? a case study of
simple function classes. Advances in Neural Information Processing Systems, 35:30583–30598, 2022.

Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem Babenko. Tabr: Unlocking
the power of retrieval-augmented tabular deep learning. arXiv preprint arXiv:2307.14338, 2023.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep learning on typical
tabular data? Advances in Neural Information Processing Systems, 35:507–520, 2022.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Interpreting mathematical abilities
in a pre-trained language model. arXiv preprint arXiv:2305.00586, 2023.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David Sontag. Tabllm: Few-shot
classification of tabular data with large language models. In International Conference on Artificial Intelligence and Statistics,
pp. 5549–5581. PMLR, 2023.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer that solves small tabular
classification problems in a second. arXiv preprint arXiv:2207.01848, 2022.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural networks: A survey. IEEE
transactions on pattern analysis and machine intelligence, 44(9):5149–5169, 2021.

Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Aaron E Kornblith, Chandan Singh, Gabriel Devlin, Newton Addo, Christian J Streck, James F Holmes, Nathan Kuppermann,
Jacqueline Grupp-Phelan, Jeffrey Fineman, Atul J Butte, and Bin Yu. Predictability and stability testing to assess clinical
decision instrument performance for children after blunt torso trauma. medRxiv, 2022. doi: 10.1101/2022.03.08.22270944.
URL https://www.medrxiv.org/content/early/2022/03/08/2022.03.08.22270944.

Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is np-complete. Information processing letters,
5(1):15–17, 1976.

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized and scalable optimal sparse decision trees.
In International Conference on Machine Learning, pp. 6150–6160. PMLR, 2020.

Hariharan Manikandan, Yiding Jiang, and J Zico Kolter. Language models are weak learners. arXiv preprint arXiv:2306.14101,
2023.

Daniel J Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru, Edouard Leurent, Shariq
Iqbal, Jean-Baptiste Lespiau, Alex Ahern, et al. Faster sorting algorithms discovered using deep reinforcement learning.
Nature, 618(7964):257–263, 2023.

John X Morris, Chandan Singh, Alexander M Rush, Jianfeng Gao, and Yuntian Deng. Tree prompting: efficient task adaptation
without fine-tuning. arXiv preprint arXiv:2310.14034, 2023.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999,
2018.

Soma Onishi, Kenta Oono, and Kohei Hayashi. Tabret: Pre-training transformer-based tabular models for unseen columns.
arXiv preprint arXiv:2303.15747, 2023.

OpenAI. Gpt-4 technical report, 2023.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Fabian Pedregosa and Philippe Gervais. memory-profiler: A module for monitoring memory usage of a python program.
https://pypi.org/project/memory-profiler/, 2021.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste Alayrac, Radu Soricut,
Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5: Unlocking multimodal understanding across millions
of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Joseph D Romano, Trang T Le, William La Cava, John T Gregg, Daniel J Goldberg, Praneel Chakraborty, Natasha L Ray,
Daniel Himmelstein, Weixuan Fu, and Jason H Moore. Pmlb v1.0: an open source dataset collection for benchmarking
machine learning methods. arXiv preprint arXiv:2012.00058v2, 2021.

13

https://www.medrxiv.org/content/early/2022/03/08/2022.03.08.22270944
https://pypi.org/project/memory-profiler/


Under review as submission to TMLR

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M Pawan Kumar, Emilien Dupont,
Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang, Omar Fawzi, et al. Mathematical discoveries from program search
with large language models. Nature, pp. 1–3, 2023.

Chandan Singh, Keyan Nasseri, Yan Shuo Tan, Tiffany Tang, and Bin Yu. imodels: a python package for fitting interpretable
models. Journal of Open Source Software, 6(61):3192, 2021. doi: 10.21105/joss.03192. URL https://doi.org/10.21105/
joss.03192.

Chandan Singh, Armin Askari, Rich Caruana, and Jianfeng Gao. Augmenting interpretable models with large language models
during training. Nature Communications, 14(1):7913, 2023.

Yan Shuo Tan, Chandan Singh, Keyan Nasseri, Abhineet Agarwal, and Bin Yu. Fast interpretable greedy-tree sums (figs).
arXiv:2201.11931 [cs, stat], 1 2022. URL http://arxiv.org/abs/2201.11931. arXiv: 2201.11931.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya
Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in machine learning. SIGKDD
Explorations, 15(2):49–60, 2013. doi: 10.1145/2641190.2641198. URL http://doi.acm.org/10.1145/2641190.264119.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial intelligence review, 18:77–95,
2002.

Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni. Can transformer models generalize via in-context learning beyond
pretraining data? In NeurIPS 2023 Workshop on Distribution Shifts: New Frontiers with Foundation Models, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models, 2023.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio, and Preetum Nakkiran.
What algorithms can transformers learn? a study in length generalization. arXiv preprint arXiv:2310.16028, 2023.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses patience: Fast and robust inference
with early exit. Advances in Neural Information Processing Systems, 33:18330–18341, 2020.

Bingzhao Zhu, Xingjian Shi, Nick Erickson, Mu Li, George Karypis, and Mahsa Shoaran. Xtab: Cross-table pretraining for
tabular transformers. arXiv preprint arXiv:2305.06090, 2023.

14

https://doi.org/10.21105/joss.03192
https://doi.org/10.21105/joss.03192
http://arxiv.org/abs/2201.11931
http://doi.acm.org/10.1145/2641190.264119


Under review as submission to TMLR

A Appendix

A.1 Controlled setting: noisy XOR

We evaluate the MetaTree model in a controlled setting, on XOR datasets with level={1,2}, label flipping
noise={0%, 5%, 10%, 15%, 20%, 25%}, and dataset size 10k for each XOR level/noise ratio configuration. To
assess performance, we employ the relative error metric, defined as the gap between the achieved accuracy
and the maximum possible accuracy achievable (= 100% − label noise rate). Note that we have only trained
our model on 10k trees generated with XOR Level 1 and 15% label noise. This specific training scenario was
chosen to evaluate the model’s robustness towards noise and adaptability to harder problems.

As indicated in Table A1b, MetaTree demonstrates a remarkable capacity for noise resistance and generalization.
Once MetaTree learned to solve the XOR Level 1 problem, it can withstand much stronger data noise (while
MetaTree has only seen 15% noise), and generalize to significantly harder XOR Level 2 problems (while
MetaTree has only trained on XOR Level 1).

We further conduct a qualitative analysis, asking CART and MetaTree to generate decision trees for XOR
Level 1&2 problems. The resulting trees, as depicted in Figure A1, offer insightful comparisons into the
decision-making processes of both models under varying complexity levels.

A.2 Probing MetaTree’s decision-making process

Our study is partially inspired by the logit-lens behavior analysis on GPT-2 (Hanna et al., 2023). Their
findings suggest that GPT-2 often forms an initial guess about the next token in its middle layers, with
subsequent layers refining this guess for the final generation distribution. Building on this concept, we aim
to investigate whether a similar guessing-refining pattern exists in our model and explore the feasibility of
implementing an early exiting strategy as outlined in Zhou et al. (2020).

To this end, we analyze the decision-making process of our model at each Transformer layer. We can scrutinize
how the model’s decisions evolve by feeding the intermediate representation from each layer into the output
module. One qualitative example is shown in Fig. A1c, where we ask MetaTree to generate the root node
split on an XOR Level 1 problem. We can observe that the model gets a reasonable split right after the first
layer. At layer 9, the model reaches the split that is close to its final output, and layer 10’s output is an
alternative revision with a close to ground truth split (the ground truth can be a vertical or horizontal split).

We proceed with a quantitative analysis to investigate the correlation between the model’s final split and the
splits occurring in its intermediate layers. We take samples from the 91 left-out datasets following the same
procedure as detailed in Sec. 6.1, and we ask MetaTree to generate splits on them. The correlation between
splits is determined by calculating the correlation coefficient between the label assignments after applying the
splits. This metric essentially measures how closely aligned the splits are in dissecting the input regions.

The results of our quantitative analysis are presented in Fig. A1d. Notably, the correlation shows a gradual
increase from layer 1 to 8, nearly reaching 1 at layer 9. However, it then drops significantly to approximately
0.2 at layers 10 and 11. This pattern suggests that the model consistently improves its ability to make
accurate predictions in the initial 1 to 9 layers, while layers 10 and 11 may introduce some divergence or
revision in its decision-making process.

This finding provides valuable insights into the internal decision-making process of MetaTree. It raises the
possibility of considering early exit strategies at intermediate layers, particularly around layer 9, to enhance
overall efficiency.

A.3 Statistical Comparisons for Single-trees

We conduct Fredman-Holm test Demšar (2006) to compare the single-tree level performance of MetaTree.
Results are shown in Table A1. The statistical tests confirm MetaTree’s performance advantage when
compared against the baseline algorithms.

15



Under review as submission to TMLR

(a) Greedy Algorithm fails on XOR Level 1 (left), whereas MetaTree solves it (right).

(b) Greedy Algorithm fails on XOR Level 2 (left), while MetaTree generalizes to it (right).

Acc=66.02  Acc=98.04 

Acc=67.19  Acc=89.45 

(a) Greedy algorithms such as CART cannot solve prob-
lems that require planning, such as Level 1&2 XOR.
We show MetaTree can learn to solve Level 1 XOR and
even generalize to solving Level 2 XOR.

Noise 0% 5% 10% 15% 20% 25%

XOR L1 3.59 3.26 2.94 2.64 2.37 2.04
XOR L2 12.78 11.06 9.34 7.32 4.99 2.05

(b) Relative error of MetaTree (trained on XOR Level
1 with 15% noise) on XOR datasets with level={1, 2}
and label flipping noise rate from 0% to 25%.

1 0 1
1

0

1
Hidden Layer 1

1 0 1
1

0

1
Hidden Layer 10

1 0 1
1

0

1
Hidden Layer 9

1 0 1
1

0

1
Hidden Layer 12

(c) Logit-lens probing of MetaTree on an XOR Level 1
problem.

1 2 3 4 5 6 7 8 9 10 11 12
Layer

0.0

0.2

0.4

0.6

0.8

1.0

La
be

l C
or

re
la

tio
n

(d) The output correlation analysis between the final
split and each layer’s splits of MetaTree across 91 left-
out datasets.

Figure A1: Exploratory analysis of MetaTree. (a), (b) We examined MetaTree’s performance in a
controlled XOR setting with various noise levels and problem difficulty. We show an illustration of MetaTree
solving Level 1 XOR and generalizing to Level 2 XOR while greedy algorithms like CART are unable to solve
these. (c), (d) We probe the decision-making process of MetaTree over the Transformer layers, we found out
that MetaTree can very often generate the final split early on.

A.4 Single-tree fitting accuracy

We show the fitting accuracy of the algorithms in Fig. A2 when generating single depth-2 decision trees over
the datasets.

A.5 Model Hyperparameters

We list MetaTree’s hyperparameters in Table A2. We note that in the following ablation studies, the base
and ablation models are trained with fewer steps (2M steps instead of 4M steps) due to the compute resource
limit.

16



Under review as submission to TMLR

Table A1: Single-tree statistical comparison over the datasets with Fredman-Holm test Demšar (2006).
We are showing the p-values of the ranked tests. They are all of the statistical significance (i.e. ≤ 0.05),
demonstrating MetaTree’s advantage over the baseline algorithms.

MetaTree v.s. MetaTree GOSDT CART ID3 C4.5

91D, depth=2 - 2.71e-08 8.88e-16 8.88e-16 0.00

ToP, depth=2 - 0.025 0.017 0.022 0.004

91D, depth=3 - OOM 9.42e-12 4.19e-11 0.00

ToP, depth=3 - OOM 0.014 0.011 0.028

91D, depth=4 - OOM 2.86e-14 3.13e-10 0.00

ToP, depth=4 - OOM 0.006 0.006 0.006

Meta
Tree

GOSDT
CART

ID
3

C4.5

60

65

70

Si
ng

le
 T

re
e 

Fi
tti

ng
 A

cc
ur

ac
y

91 Datasets, Depth=2

(a) Mean fitting accuracy over the 91 left-out datasets.

Meta
Tree

GOSDT
CART

ID
3

C4.5

74

76

78

80

82

Si
ng

le
 T

re
e 

Fi
tti

ng
 A

cc
ur

ac
y

Tree of Prompts Datasets, Depth=2

(b) Mean fitting accuracy over the 13 Tree-of-prompts
datasets.

Figure A2: Average fitting accuracy for algorithms when generating single depth-2 trees.

A.6 Ablation Study: Training Curriculum

We devise a two-phase learning curriculum for MetaTree’s training, as described in Sec. 3.2. Here we conduct
an ablation study comparing our curriculum with a curriculum that only uses the GOSDT+CART dataset
with otherwise same configurations.

The evaluation process is the same as the one used in Sec. 5, we compute their average test accuracy on 91
left-out datasets and for the number of trees from {1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

As shown in Fig. A5, the learning curriculum has a significant impact on the model at the end of training.

A.7 Ablation Study: Training Signal

We explore training with noise-free data, by relabeling the datasets with the generated trees’ prediction.
By relabeling the dataset, we can guarantee optimal decision splits are being fed into the model’s training
procedure.

We evaluate a model trained in such a manner on the 91 left-out datasets, for the number of trees from {1, 5,
10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

17



Under review as submission to TMLR

Table A2: Hyperparameters for MetaTree training.

Hyperparameter Value

Number of Hidden Layers 12
Number of Attention Heads 12
Hidden Size 768
Number of Parameters 149M
Learning Rate 5e-5
Learning Rate Schedule Linear Decay
Optimizer AdamW
β1 0.9
β2 0.999
Training dtype bf16
Number of Features 10
Number of Classes 10
Block Size 256
Tree Depth 2
σ 5e-2
Number of Warmup Steps 1000
Number of Training Steps 4,000,000
Steps in Phase 1 (GOSDT) 1,000,000
Steps in Phase 2 (GOSDT+CART) 3,000,000
Batch Size 128

We show the results in Fig. A3, learning from the original noisy labels brings better generalization capacity
on unseen datasets.

10 20 30 40 50 60 70 80 90 100
Number of Trees

62

64

66

68

70

72

G
en

er
al

iz
at

io
n 

A
cc

ur
ac

y

MetaTree
MetaTree Synthetic Trees

Figure A3: Average generalization accuracy for training with different labels. MetaTree trains directly from
the noisy ground truth label. MetaTree Synthetic Trees is trained from the synthetic labels derived from the
ground truth decision trees.

A.8 Ablation Study: Reinforcement Learning

In the early phase of our study, We experimented with training a model directly using reinforcement learning
(specifically with proximal policy optimization), where the model can explore the space of making decision
tree splits and get rewards as a function of the final generalization accuracy. This approach is plausible,
however, we found that the training process is unstable with the sparse reward and large search space. We

18



Under review as submission to TMLR

plot 30 runs of such RL training in Fig. A4, where the task is to classify XOR L1 with only 2 dimensions and
without any noise.

0 250 500 750 1000
Step

0.7

0.8

0.9

1.0

Ev
al

 A
cc

ur
ac

y

RL Training on Simple Level 1 XOR

Figure A4: 30 runs of model training using reinforcement learning. It can be observed that the process is
highly unstable.

As can be seen, the training process is highly unstable and rarely reaches above 95% eval accuracy, whereas the
regular approach could quickly get to 97-98 eval acc. Therefore, we leave reinforcement learning for MetaTree
as future research.

10 20 30 40 50 60 70 80 90 100
Number of Trees

66

68

70

72

G
en

er
al

iz
at

io
n 

A
cc

ur
ac

y

MetaTree Curriculum
Single Curriculum

Figure A5: Average generalization accuracy for two different learning curricula. MetaTree’s learning curriculum
involves a first-phase training on GOSDT trees only, and a second-phase training on GOSDT+CART trees.
The other curriculum is trained directly from GOSDT+CART datasets.

A.9 Ablation Study: Positional Bias

As introduced in Sec. 3, MetaTree uses two positional bias b1, b2 at the input layer to anchor the row and
column positions. We apply sequential and dimensional shuffling during training to make the model learn the
positional invariance.

19



Under review as submission to TMLR

10 20 30 40 50 60 70 80 90 100
Number of Trees

66

68

70

72

G
en

er
al

iz
at

io
n 

A
cc

ur
ac

y
MetaTree
Without Positional Bias

Figure A6: Average generalization accuracy for models trained with or without positional bias.

Alternatively, we can have a design that provides zero positional information to the model and becomes
naturally invariant to input permutations. However, this design may have difficulties identifying the split, as
the information will be mixed altogether over the Transformer layers.

We train a model with such a design, keeping all other training configurations the same, and compare its
performance on the 91 left-out datasets using their average test accuracy for the number of trees from {1, 5,
10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

As shown in Fig. A6, having such positional bias is empirically beneficial compared to a design that provides
no positional information to the model.

A.10 Ablation Study: Gaussian Smoothing Loss

We conduct an ablation study on the radius of the Gaussian smoothing loss (σ). It controls how much noise
and signal the model receives during training. When σ is too large, every split may seem like a target split,
but when σ is too small, the model may fail to learn from some equally good splits.

Following the evaluation pipeline as described in Sec. 5, we conduct our ablation study comparing our model
trained using σ=5e-1 with models trained with a larger σ=1e-1 and a smaller σ=1e-2, on 91 left-out datasets
and compute their average test accuracy for number of trees from {1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100}.

As shown in Fig. A7, the smoothing radius does have an impact on the trained model, and choosing an
appropriate radius is essential to training an effective model.

20



Under review as submission to TMLR

10 20 30 40 50 60 70 80 90 100
Number of Trees

66

68

70

72
G

en
er

al
iz

at
io

n 
A

cc
ur

ac
y

Sigma=5e-2
Sigma=1e-1

(a) Training with a larger σ=1e-1.

10 20 30 40 50 60 70 80 90 100
Number of Trees

66

68

70

72

G
en

er
al

iz
at

io
n 

A
cc

ur
ac

y

Sigma=5e-2
Sigma=1e-2

(b) Training with a smaller σ=1e-2.

Figure A7: Average generalization accuracy for models trained with different Gaussian Smoothing radius.

A.11 Datasets

Table A3: List of 91 datasets used in MetaTree’s evaluation.
Dataset Entries Dim. Class

mfeat fourier 2000 76 10
mfeat zernike 2000 47 10
mfeat morphological 2000 6 10
mfeat karhunen 2000 64 10
page blocks 5473 10 5
optdigits 5620 64 10
pendigits 10992 16 10
waveform 5000 5000 40 3
Hyperplane 10 1E 3 1000000 10 2
Hyperplane 10 1E 4 1000000 10 2
pokerhand 829201 5 10
RandomRBF 0 0 1000000 10 5
RandomRBF 10 1E 3 1000000 10 5
RandomRBF 50 1E 3 1000000 10 5
RandomRBF 10 1E 4 1000000 10 5
RandomRBF 50 1E 4 1000000 10 5
SEA 50 1000000 3 2
SEA 50000 1000000 3 2
satimage 6430 36 6
BNG labor 1000000 8 2
BNG breast w 39366 9 2
BNG mfeat karhunen 1000000 64 10
BNG bridges version1 1000000 3 6
BNG mfeat zernike 1000000 47 10
BNG cmc 55296 2 3
BNG colic ORIG 1000000 7 2
BNG colic 1000000 7 2
BNG credit a 1000000 6 2
BNG page blocks 295245 10 5
BNG credit g 1000000 7 2

21



Under review as submission to TMLR

BNG pendigits 1000000 16 10
BNG cylinder bands 1000000 18 2
BNG dermatology 1000000 1 6
BNG sonar 1000000 60 2
BNG glass 137781 9 7
BNG heart c 1000000 6 5
BNG heart statlog 1000000 13 2
BNG vehicle 1000000 18 4
BNG hepatitis 1000000 6 2
BNG waveform 5000 1000000 40 3
BNG zoo 1000000 1 7
vehicle sensIT 98528 100 2
UNIX user data 9100 1 9
fri c3 1000 25 1000 25 2
rmftsa sleepdata 1024 2 4
JapaneseVowels 9961 14 9
fri c4 1000 100 1000 100 2
abalone 4177 7 2
fri c4 1000 25 1000 25 2
bank8FM 8192 8 2
analcatdata supreme 4052 7 2
ailerons 13750 40 2
cpu small 8192 12 2
space ga 3107 6 2
fri c1 1000 5 1000 5 2
puma32H 8192 32 2
fri c3 1000 10 1000 10 2
cpu act 8192 21 2
fri c4 1000 10 1000 10 2
quake 2178 3 2
fri c4 1000 50 1000 50 2
fri c0 1000 5 1000 5 2
delta ailerons 7129 5 2
fri c3 1000 50 1000 50 2
kin8nm 8192 8 2
fri c3 1000 5 1000 5 2
puma8NH 8192 8 2
delta elevators 9517 6 2
houses 20640 8 2
bank32nh 8192 32 2
fri c1 1000 50 1000 50 2
house 8L 22784 8 2
fri c0 1000 10 1000 10 2
elevators 16599 18 2
wind 6574 14 2
fri c0 1000 25 1000 25 2
fri c2 1000 50 1000 50 2
pollen 3848 5 2
mv 40768 7 2
fried 40768 10 2
fri c2 1000 25 1000 25 2
fri c0 1000 50 1000 50 2
fri c1 1000 10 1000 10 2
fri c2 1000 5 1000 5 2
fri c2 1000 10 1000 10 2
fri c1 1000 25 1000 25 2
visualizing soil 8641 3 2

22



Under review as submission to TMLR

socmob 1156 1 2
mozilla4 15545 5 2
pc3 1563 37 2
pc1 1109 21 2

23


	Introduction
	Related work
	Methods: MetaTree
	Generating a decision tree model: representation and model design
	Training objective: cross entropy with Gaussian smoothing

	Experimental setup
	Datasets
	Baselines
	Model configurations

	Results: On the Generalization Ability of MetaTree
	Analysis
	Can MetaTree be less greedy when needed?
	Breaking through the bias-variance frontier
	Memory Usage and Runtime Analysis
	Ablation studies

	Discussion
	Appendix
	Controlled setting: noisy XOR
	Probing MetaTree's decision-making process
	Statistical Comparisons for Single-trees
	Single-tree fitting accuracy
	Model Hyperparameters
	Ablation Study: Training Curriculum
	Ablation Study: Training Signal
	Ablation Study: Reinforcement Learning
	Ablation Study: Positional Bias
	Ablation Study: Gaussian Smoothing Loss
	Datasets


