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Abstract

Whenever inspected by humans, reconstructed signals should not be distinguished
from real ones. Typically, such a high perceptual quality comes at the price of
high reconstruction error. We study this distortion-perception (DP) tradeoff over
finite-alphabet channels, for the Wasserstein-1 distance as the perception index,
and an arbitrary distortion matrix. We show that computing the DP function and the
optimal reconstructions is equivalent to solving a set of linear programming prob-
lems. We prove that the DP curve is a piecewise linear function of the perception
index, and derive a closed-form expression for the case of binary sources.

1 Introduction
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Figure 1: The DP function. D(P ) is a
piecewise linear function. Breakpoints P ∗

i
and slopes 2ui are given explicitly by The-
orem 4.2 for binary sources.

The reconstruction of a signal from degraded data is
required in numerous settings across science and en-
gineering. In systems whose outputs are inspected by
human users, reconstructions should not be easily dis-
tinguished from signals typical to the source domain.
Such a high perceptual quality is achieved when the dis-
tribution of restored signals is close to the real signal’s
distribution [11, 4]. However, low distance between
these distributions generally comes at the price of poor
reconstruction distortion and vice versa. This leads to
a tradeoff between distortion and perception, first stud-
ied in [4] (for a detailed introduction to the distortion-
perception tradeoff, see Appendix A.1). The central
problem is thus to quantify the distortion-perception
(DP) function, which is the minimal distortion possi-
ble for a certain level of perceptual quality. The DP
problem was studied by various authors. Specifically,
[7] studied the DP function in real spaces, for the MSE
distortion and the Wasserstein-2 perception index. In
discrete spaces, [12, Thm.7] characterized the special
case of a binary source, for the Hamming distortion and the Total-Variation (TV) perception index.

In this paper, we focus on discrete spaces, and investigate the DP tradeoff for general finite-alphabet
channels and general distortion matrices. As the perception index, we consider the Wasserstein-1
distance induced by a general metric, which generalizes the TV distance [2, 16, 13]. We show that
finding the DP function and the optimal reconstruction for this setting is equivalent to solving a
set of linear problems, and the result is always a piecewise linear function of the perception index,
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regardless of the channel size, the underlying distributions or distortion measure. This stems from
the properties of the dual feasible set. We further revisit the binary setting of [12], and derive a
closed-form expression for the DP function, now considering a general distortion measure. We
provide a self-contained proof for this case based on our novel analysis of the general setting.

2 Problem formulation

Let X,Y be discrete variables defined on finite alphabets X = {x1, . . . , xnx
},Y = {y1, . . . , yny

},
where X is the variable of interest, and Y is a measurement of X over a noisy channel. Their joint
probability pX,Y ∈ P(X × Y) is represented by the matrix PX,Y = {p(x, y)}x,y∈X×Y ∈ R|X |×|Y|,
and the marginal distributions pX and pY are given by the vectors PX ∈ R|X |,PY ∈ R|Y|. We
assume that for each letter in the channel’s output, pY (yi) > 0 (i.e., we ignore unused symbols). A
randomized estimator X̂ ∈ X of X from Y is defined by a stochastic transition matrix Q = QX̂|Y ∈
R|X |×|Y| whose entries are the probabilities q(x̂|y) to reconstruct the symbol x̂ ∈ X given that the
channel output is Y = y ∈ Y . We assume the Markov relation where X, X̂ are independent given Y .
The arbitrary distortion matrix is given by D = {d(x, x̂)}x,x̂∈X 2 ∈ R|X |×|X|, where the expected

distortion EQ

[
d(X, X̂)

]
= Tr

{
P⊤

X,Y DQ
}

should be minimized w.r.t. q(x̂|y), x̂, y ∈ X × Y . The

marginal distribution pX̂ of X̂ is given by the vector PX̂ = QPY . We are interested in analyzing the

distortion-perception (DP) function [4] D(P ) ≜ minQX̂|Y

{
EQ

[
d(X, X̂)

]
: dp(pX , pX̂) ≤ P

}
,

where dp(·, ·) denotes a distance between probability measures.

For simplicity, let us first consider the TV distance as the perceptual index dp,

dTV (PX ,PX̂) ≜
1

2

∑
x∈X
|PX(x)−PX̂(x)| = sup

A⊆X
|pX(A)− pX̂(A)|. (1)

Note that dTV (PX ,PX̂) ∈ [0, 1], and dTV (PX ,PX̂) = 0 iff PX = PX̂ . Then,

D(P ) = min
Q

{
(D⊤PX,Y ) •Q : Q ∈ R|X |×|Y|, 1|X | ·Q = 1|Y|

dTV (PX ,QPY ) ≤ P
,Q ≥ 0

}
, (2)

where the Frobenius inner product A •B = Tr
{
A⊤B

}
, 1d is the 1× d dimensional all-ones vector,

and Q ≥ 0 is applied elementwise. We start by presenting some elementary properties of (2).
Proposition 2.1. Let P ∈ [0, 1]. The optimization problem (2) is feasible (namely, the constraints
are satisfiable), and its optimal value is bounded from below.

Proof. The posterior sampling solution Q = PX|Y = {pX,Y (x, y)/pY (y)}x,y∈X×Y is feasible for
every P ≥ 0, since PX̂ = QPY = PX , yielding dTV (PX̂ ,PX) = 0. For every stochastic matrix
Q, (D⊤PX,Y ) •Q ∈ [minDx,x̂,maxDx,x̂], hence the optimal value is bounded.

Proposition 2.2. Denote the matrix ρ ≜ D⊤PX,Y , whose entries are given by ρx̂,y =

PY (y)E [d(X, x̂)|Y = y]. For any P ≥ 1, D(P ) =
∑

y minx̂∈X ρx̂,y ≜ D∗. A corresponding
optimal estimator is given by X̂∗(Y ) ∈ argminx̂ ρx̂,Y . Trivially, D(P ) ≥ D∗ for every P ∈ [0, 1].
The proof is straightforward.

3 Linear Programming formulation

We now observe that the perceptual constraint 1
2

∑
x∈X |PX(x)−∑

y∈Y PY (y)Q(x|y)| ≤ P in (2),
is equivalent to the set of linear constraints∑

x∈X
±(PX(x)−

∑
y∈Y

PY (y)Q(x|y)) ≤ 2P. (3)

Taking all possible sign combinations we attain 2|X | linear constraints, where the 2 constraints for
which the signs are either all positive or all negative are redundant since the LHS of (3) vanishes.
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Together with (2), we can reformulate the DP function as the following Linear Program (LP) [3, 17]

D(P ) = min
Q≥0

{
ρ •Q :

1|X | ·Q = 1|Y|, Q ∈ R|X |×|Y|∑
x∈X ±

(
PX(x)−∑

y∈Y PY (y)Qx|y

)
≤ 2P

}
. (4)

In (4), we have |X | × |Y| variables (the entries of Q = {q(x̂|y)}), and |Y|+ 2|X | − 2 constraints.

Total Variation as Optimal Transport Let H = {1− δx,x̂}x,x̂∈X×X be the Hamming distance
matrix, let P(X ) be the set of probability measures on X , and let Π ∈P(X × X ) have marginals
PX and PX̂ (parameterized by a matrix Πx,x̂). It is well known [16] that taking H as a metric on X ,
the TV distance coincides with the Wasserstein-1 distance on P(X ), namely

dTV (PX ,PX̂) = W1,H(PX ,PX̂) ≜ inf
Π

Π [x ̸= x̂] = inf
Π

Π •H, (5)

where the minimum is attained [13, Lemma 3.4.1]. Wasserstein distances are convex metrics on
P(X ) [2]. Using (5), we can rewrite (4) as the linear problem

D(P ) = min
Q,Π,
ε ≥ 0

ρ •Q :

∑
x̂∈X PY (y)Qx̂|y = PY (y),∀y ∈ Y∑

x̂∈X Πx,x̂ = PX(x),∀x ∈ X∑
x∈X Πx,x̂ =

∑
y∈Y PY (y)Qx̂|y,∀x̂ ∈ X

Q ∈ R|X |×|Y|

Π ∈ R|X |×|X|

Π •H+ ε = P

 ,

(6)
where ε is a slack variable. The problem (6) possesses |X |(|Y| + |X |) + 1 variables and only
|Y|+2|X |+1 constraints, from which |Y|+2|X | are independent. Interestingly, the form (6) allows
to discuss a more general family of perceptual divergences −Wasserstein-1 distances induced by
arbitrary metrics H on X , which we will consider to be the case from this point on. We will assume
w.l.o.g. that H takes values in [0, 1], hence the results of Propositions 2.1 and 2.2 hold trivially in this
case.

The Dual Problem Let the general linear programming problem be [3]

(LP) min
q

z⊤q, s.t.Aq = b and q ≥ 0, q, z ∈ Rn, b ∈ Rnc ,A ∈ Rnc×n, (7)

and the inequality is elementwise. Its dual problem (DLP) is given by

(DLP) max
w

w⊤b, s.t. w⊤A ≤ z⊤. (8)

Strong duality holds for feasible and bounded LP problems [3], namely, the problem (8) is feasible
and minq z

⊤q = maxw w⊤b. We next derive the dual form of (6). For convenience, we split the
variables in (8) into four groups: |Y| variables {wy}y∈Y related to the stochasticity constraint on Q
for each symbol in Y , the two groups of |X | variables {rx} and {νx̂} related to the constraints on the
marginals of Π, and the variable l related to the perception constraint Π •H+ ε = P . We denote

ρ′x̂,y ≜
ρx̂,y

PY (y)
= E [d(X, x̂)|Y = y] , (9)

and explicitly write the dual problem of (6) as (see derivation in the Appendix),

max
w,r,ν,l

∑
y∈Y

pywy +
∑
x∈X

pxrx − lP

 s.t.

{
l ≥ 0,

wy ≤ ρ′x̂,y − νx̂, ∀x̂, y ∈ X × Y
rx ≤ Hx,x̂l + νx̂, ∀x, x̂ ∈ X × X . (10)

Given a value P , D(P ) can be calculated by numerically solving (6) (equivalently, (10)). However,
finding a closed-form solution remains an open problem. In Section 4.2 we find such an expression
for small problems. We further observe that the objective of (10) is linear in the perception index,
hence the maximal value for a given P is attained by some non-increasing linear function of the form
p0 − p1P . We further develop this insight below.

4 Main results

4.1 Piecewise linearity of DP functions

While the problem of finding an exact formula for D(P ) is still open, here we exploit the properties
of the dual problem (10) in order to show the general property that D(P ) is piecewise linear in
the perception index P . Moreover, as we show in Appendix B, the breakpoints and slopes of this
function are determined by the vertices of a convex set in R2.
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Theorem 4.1. For P ∈ [0,∞), the DP function (6) is a non-increasing, piecewise linear function of
P , with a non-decreasing slope. Also, there exists P ∗ ∈ [0, 1] such that D(P ) = D∗ for all P ≥ P ∗.

The proof is based on analyzing the dual formulation (10). Due to strong duality this matches the
primal problem. The feasible set of (10) has a finite number of vertices, and this set is independent of
the perceptual index P . The solution to (10) must occur at one of these vertices. Thus, the interval
[0, 1] may be partitioned into sub-intervals, so that in each sub-interval the solution to (10) is at the
same vertex. For a fixed choice of variables w, r, ν and l in (10), the D(P ) function is linear with
slope −l. Hence, the DP function is piecewise linear. Since DP functions are non-increasing and
convex (see Thm. A.1 in the Appendix), the slope cannot decrease. A full proof can be found in the
Appendix for the case of the TV perceptual index. We note, however, that the form (10) implies that
the same arguments hold where the perceptual distance is replaced by the Wasserstein-1 distance (5)
induced by any metric H on X (taking values in [0, 1]).

4.2 Full characterization of channels with binary sources

We next focus on the case of binary sources, where X = {x1, x2} with probabilities px1 , px2 ,
respectively, and Y is of arbitrary size ny . It suffices to analyze the TV distance (1) as the perceptual
index, since every metric defining the Wasserstein-1 distance is proportional to the Hamming distance
in the binary case. The distortion matrix is arbitrary, yielding the matrix ρ′ defined in (9). Denote
uy = 1

2 (ρ
′
x̂1y
− ρ′x̂2y

) which is half the cost of reconstructing y as x1 over reconstructing as x2, and
assume w.l.o.g. that uy1 ≤ uy2 ≤ . . . ≤ uyn . We define P−

Y (u) = Pr{uY ≤ u} = ∑
y:uy≤u PY (y),

which is right-continuous with left limit P−
Y (u−) = Pr{uY < u} = ∑

y:uy<u PY (y). We further
denote the symbols y∗i whose uy is non-zero, namely

u−M− = uy∗
−M−

≤ . . . ≤ u−1 = uy∗
−1

< 0 = u0 < u1 = uy∗
1
≤ . . . ≤ uM+ = uy∗

M+
. (11)

Theorem 4.2. Assume that px1
≥ P−

Y (0), and let I = max{i : px1
≥ P−

Y (ui)}. Then, the DP
function D(P ) is piecewise linear with breakpoints {P ∗

i }Ii=0 given by

P ∗
i = px1

− P−
Y (ui) (12)

where, specifically, P ∗
0 = px1 − P−

Y (0) = P ∗. The DP function is then given by

D(P ) =


D∗, P ≥ P ∗

0

D(P ∗
i−1) + 2ui

(
P ∗
i−1 − P

)
, P ∗

i ≤ P ≤ P ∗
i−1

D(P ∗
I ) + 2uI+1 (P

∗
I − P ) , 0 ≤ P ≤ P ∗

I

. (13)

If P−
Y (0−) ≥ px1

, then similarly P ∗
0 = P−

Y (0−) − px1
, and P ∗

i = P−
Y (u−i−1) − px1

, while it is
non-negative, and D(P ) is determined analogously. In the case P−

Y (0) ≥ px1
≥ P−

Y (0−), P ∗ = 0
and D(P ) ≡ D∗ for all P ≥ 0.
Remark 4.3. If ui = ui−1 then P ∗

i = P ∗
i−1 and this yields a ‘degenerate’ interval. If ui > ui−1, then

(12) can alternatively be written more simply as P ∗
i = P ∗

i−1 −PY (y
∗
i ).

The results of Theorem 4.2 are illustrated in Fig. 1. These results reassure the intuition that channel
outputs in Y should be mapped to symbols in {x1, x2} in a greedy fashion; At the point P = 1, each
y is reconstructed with a minimal penalty, without any perceptual constraints (as in Proposition 2.2).
This can be done by setting, e.g., q(x̂1|y) = δuy≤0 . At the point P = P ∗, y’s are still reconstructed
optimally, but now under a perception constraint. This can be obtained by rearranging the mapping
of symbols whose uy = 0, which yields no extra cost in distortion. Now, suppose that x1 is not ‘fully
allocated’, that is, px1 ≥ P−

Y (0). As the perception constraint becomes more restrictive (lower P ),
the estimator will seek for the minimal cost symbols y ∈ Y that are mapped to x1 with probability
less than 1, and increase this probability. For a small change of ∆P , the cost in distortion is 2uy∆P .
This is done until P = 0 is met, namely px̂1

= px1
.

Corollary 4.4. At the breakpoints where P ∗
i ̸= 0, an optimal estimator is given by a deterministic rule

QP∗
i

(for px1
≥ P−

Y (0), given by QP∗
i
=

{
q(x1|y) = δuy≤ui

}
). Interestingly, at P ∈

[
P ∗
i , P

∗
i−1

]
,

the estimator is given by the convex combination of estimators at the interval edges, QP = αQP∗
i−1

+

(1− α)QP∗
i

, with α =
P−P∗

i

P∗
i−1−P∗

i
. This result implies that in order to construct an estimator for any

point along the tradeoff at test time, without any additional calculations, it is sufficient to calculate
O(|Y|) estimators beforehand, one at each breakpoint (and at P = 0).
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A Preliminaries

A.1 The distortion-perception tradeoff

In this section we provide an overview on the distortion-perception (DP) tradeoff. The problem of
reconstructing a signal from a corrupted measurement arises in many settings, such as decoding of
transmitted communication signals and signal enhancement. Until recently, reconstruction algorithms’
performance has been measured by its mean distortion, such as mean squared error (MSE). For that
reason, many methods aimed to minnimize distortion measures such as MSE and peak signal-to-noise
ratio (PSNR). However, in systems where outputs are inspected by human users, reconstructions
should not be easily distinguished from signals typical to the source domain. Therefore, many current
works target perceptual quality rather than distortion (e.g. in image restoration, see [1, 19, 10, 9]).

Mathematically, the probability of success in a hypothesis test is known to be proportional to the
Total-Variation (TV) distance between distributions [11]. Hence, we may consider high perceptual
quality to be achieved when the distribution of restored signals is close to the real signals distribution
[4]. Good perceptual quality generally comes at the price of high reconstruction error and vice versa.
This perception-distortion tradeoff was first studied in [4]. In the study of the distortion-perception
(DP) tradeoff, a central problem is to quantify the the minimal distortion possible for a certain level
of perceptual quality.

While in this paper we focus our efforts on discrete spaces, here we formulate the setting of general
metric spaces for the sake of completeness.

Let X,Y be random variables taking values in some complete separable metric spaces X ,Y , respec-
tively. We assume the existence of the joint probability pX,Y on X × Y , and a Borel lower-bounded
distortion function d : X ×X → R+ ∪{0}. An estimator X̂ ∈ X is a random variable on X , defined
by its distribution conditioned on the measurement Y , pX̂|Y , with marginal distribution pX̂ .

An optimal estimator for the DP tradeoff, is an estimator that minimizes the expected distortion
E[d(X, X̂)] under the perception constraint dp(pX , pX̂) ≤ P . Here, dp is a divergence between
probability measures. Blau and Michaeli [4] introduced the distortion-perception function

D(P ) ≜ min
pX̂|Y

{
E[d(X, X̂)] : dp(pX , pX̂) ≤ P

}
. (14)

The expectation is taken w.r.t the probability measure induced by pXY and pX̂|Y where we assume

that X, X̂ are independent given Y . We have the following result of Blau and Michaeli [4, Thm.2].

Theorem A.1. (The perception-distortion tradeoff). If dp(p, q) is convex in its second argument
(which is the case for the TV and Wasserstein distances discussed in this paper), then the distortion-
perception function (14) is monotonically non-increasing and convex.

Apart from the general properties above, the precise nature of DP functions depends on the exact
setup. [7] fully characterises this function in real spaces, considering the MSE and Wasserstein-2
indices. Recently, [8] investigated the cost of perfect perceptual consistency in online estimation
problems.

The DP tradeoff was extended to lossy compression by presenting the rate-distortion-perception
(RDP) function [5, 14, 20, 12], which is the minimal rate of a code whose decoding allows a desired
tradeoff between reconstruction and perceptual quality. A coding theorem was introduced for this
setting [15, 18], where the properties of optimal codes are investigated [6].

A.2 The linear optimization problem and strong duality

Let the general Linear Programming (LP) problem [3]


ρ •Q → minQ
s.t. ai •Q = bi, i ∈M1 .

si •Q ≤ bi, i ∈M2

Q ≥ 0

(15)
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Q, ρ, ai are real |X | × |Y| matrices, b = {bi}i∈M ∈ Rnc . The Dual Linear Programming problem
(DLP) is given by 

w⊤b → maxw
s.t. wi ≤ 0, i ∈M2

wi ∈ R, i ∈M1∑
i∈M1

wi{ai}x,y +
∑

i∈M2
wi{si}x,y ≤ ρx,y,

∀x, y ∈ X × Y

. (16)

Recall that by slight abuse of notation, here, similarly to the main text, we use x = xα and y = yβ to
denote their indices α and β, respectively.

Dual problems are useful for establishing lower bounds on the optimal value, due to the property of
weak duality, which assures that every feasible value for the Primal problem is greater than or equal
to every feasible value of its Dual, yielding (in case where both problems are feasible)

min
Q

ρ •Q ≥ max
w

w⊤b. (17)

For feasible, bounded LP problems we further possess a strong duality, namely the problem (16) is
feasible and

min
Q

ρ •Q = max
w

w⊤b. (18)

A.2.1 A dual form for the TV distance setting

For our future analysis, here it is convenient to use the dual of the form (4) to D(P ). In this
formulation, we have ρ = D⊤PX,Y , and we can write (15)

b⊤ = b(P )⊤ =
[
py1

, . . . , pyn
, 2P − S⊤

1 PX , . . . , 2P − S⊤
2|X|−2PX

]
, (19)

where P is the perception index. Also,

aj = PY (yj)1
|X |⊤ej , j = 1, . . . , |Y| , (20)

si = SiP
⊤
Y , i = 1, . . . , 2|X | − 2 , (21)

Si are the vectors of the set {−1, 1}|X | \ {± [1, ..., 1]}, and ej is the j-th unit vector in the standard
basis.

For convenience, let us split the decision variables in (16) into two groups; |Y| variables {wy}y∈Y
related to the stochasticity constraint for each symbol in Y , and the 2|X | − 2 variables {νi} related to
the perception constraints (3). Now, (16) becomes

[w⊤, ν⊤]b → maxw,ν

s.t. νi ≤ 0, i = 1, . . . , 2|X | − 2

wy ∈ R, y ∈ Y∑
j wj{aj}x,y −

∑
i νi{si}x,y ≤ ρx,y, ∀x, y ∈ X × Y,

, (22)

where {aj} is a matrix containing PY (yj) along its j-th column, and 0 elsewhere. Hence, for every
y ∈ Y , only the corresponding {aj} (where yj = y) contributes to the sum, namely

∑
j wj{aj}x,y =

PY (y)wy regardless of x. In addition, si is a matrix where the j-th column is given by PY (yj)Si,
thus {si}x,y = PY (y){Si}x. Recall that we denote

ρ′x̂,y =
ρx̂,y
pY (y)

, (23)

and directly write (22) as
∑

y PY (y)wy +2P (
∑

i νi)−
(∑

i νiS
⊤
i

)
PX → maxw,ν

s.t. νi ≤ 0, i = 1, . . . , 2|X | − 2

wy ≤ ρ′x,y +
∑

i νi{Si}x, ∀x, y ∈ X × Y
. (24)
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Note again that {Si}x is the sign of PX(x) −∑
y Q(x|y)PY (y) in the i-th constraint of (3), and

that
∑

i νiS
⊤
i Px =

∑
x PX(x)

∑
i νi{Si}x. We can write the dual feasible set as

S =
{
pi = [wi, νi] ∈ R|Y|+R : p⊤i A ≤ c

}
, (25)

where R = 2|X | − 2, ⊗ is the Kronecker product, and

A =

[
1|X | ⊗ diag{PY } 0|Y|×R

−S ⊗P⊤
Y IR

]
∈ R(|Y|+R)×(|X ||Y|+R), (26)

and
c =

[
rowstack{ρ}⊤, 01×R

]
∈ R|X ||Y|+R. (27)

Now, S is a matrix whose j-th row is ST
j . Since the Primal problem possesses a finite optimal

solution for P ∈ [0,∞), its dual must be feasible and bounded (Bertsimas and Tsitsiklis [3, pp.151]).
It is then easy to see that rank(A) = |Y|+R, hence its columns span R|Y|+R and the set S has an
extreme point (see Bertsimas and Tsitsiklis [3, Thm. 2.6]).

We also observe that the objective of (24) is linear in the perception index, hence the maximal value
for a given P is attained by some non-increasing linear function of the form p0 + p1P . We are now
in a position to further develop this insight.

A.2.2 Derivation of Eq. (10)

Recall the notation ρ = D⊤PX,Y . The program (6) can be written as

min
q

c⊤q, s.t.Aq = b, q ≥ 0 (28)

where q = [rowstack {Q} , rowstack {Π} , ε],

A =


11×|X| ⊗ diag {PY } 0 0

0 I|X | ⊗ 11×|X| 0

I|X | ⊗P⊤
Y −11×|X| ⊗ I|X | 0

0 rowstack {H}⊤ 1

 (29)

and

b =
[
P⊤

Y ,P
⊤
X , 0|X |, P

]⊤
, (30)

c =
[
rowstack{ρ}, 01×(|X |2+1)

]
∈ R|X |(|Y|+|X |)+1. (31)

We now can write (8) as
min
w̃

w̃⊤b, s.t. w̃⊤A ≤ c⊤. (32)

We denote w̃ = [w, r, ν, l] where w ∈ R|Y|, r, ν ∈ R|X | and l is a scalar. The first |X | × |Y| columns
of A yield inequalities of the form

pywy + pyνx̂ ≤ ρx̂,y, (33)

while the next |X |2 columns yield
rx − νx̂ +Hx,x̂l ≤ 0. (34)

Finally, the last inequality simply says l ≤ 0.

Now, the above is given in the matrix form

min
w,r,ν,l

[
w⊤PY + r⊤PX + lP

]
s.t.


1|X |×1 ⊗ (PY ⊙ w)⊤ + 11×|Y| ⊗ (P⊤

Y ⊙ ν) ≤ ρ

1|X |×1 ⊗ r⊤ − 11×|X| ⊗ ν +H⊤ · l ≤ 0

l ≤ 0,

(35)

where ⊗ is the Kronecker product and ⊙ is the Hadamard (elementwise) product. Inequalities
between matrices are applied elementwise. To obtain (10), we replace a variable sign (l→ −l) and
use the connection (9), ρ = (1|X | ⊗P⊤

Y )⊙ ρ′.

It is easy to see that in this case rank(A) = |Y|+ 2|X | while one constraint is redundant, namely
we can eliminate a linear constraint from the original program (a row of A) such that the row rank of
the problem is full. Equivalently, we can set one of the variables rx, νx̂ to 0, and the dual feasible set
will not contain a line. This implies the existence of an extreme point in the dual set.
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B Piecewise linearity of DP functions (proof of Theorem 4.1)

Here we exploit the properties of the dual problem (24) in order to show that D(P ) has a general
property - piecewise linearity in the perception index P . Moreover, the breakpoints and slopes of this
function are determined by the vertices of a convex set in R2.

We will utilize the following property of LP problems.
Lemma B.1. (Bertsimas and Tsitsiklis [3, Thm. 2.8]) For a bounded LP problem, if there exists an
extreme point in the feasible set, then the optimal solution is obtained at an extreme point.

This is true of course also for the dual problem. We now use this result to prove the following.
Theorem B.2 (Theorem 4.1 in the main text). For P ∈ [0,∞), the DP function (6) is a non-increasing
piecewise linear function of P with a non-decreasing slope. Furthermore, there exists P ∗ ∈ [0, 1]
such that D(P ) = D∗, P ≥ P ∗.

Proof. Since it is easier to follow, here we consider the TV index, namely D(P ) is given by (2). We
emphasize, however, that the same arguments hold for the more general case (6).

Recall S is a matrix whose j-th row is ST
j , and R = 2|X | − 2. Let d = [0|Y|, 1R]⊤ and b0 =

[P⊤
Y , −P⊤

XS⊤]⊤, both in R|Y|+R. We can write the objective (24) as

[w, ν]⊤b(P )→ max
w,ν∈S

, (36)

where b(P ) = b0 + 2dP . Let ext (S) = {pi = [wi, νi]} denote the vertices of the set of feasible
solutions to the dual problem (24), S . Note that the set of vertices is non-empty, finite, and independent
of P . Lemma B.1 above implies that the dual optimal value is obtained on this set. We now have
from strong duality

D(P ) = max
i

pi · b(P ) = max
i

[wi, νi]⊤b(P ) = max
i

[
pi0 + pi1P

]
, (37)

where we denote the projections

pi0 = pi · b0, (38)

pi1 = pi · 2d. (39)

As a maximum of finite set of linear functions, (37) is a piecewise linear function. The non-decreasing
slope property can be easily deduced from (37), or from the fact that DP functions are convex [4].

Corollary B.3. The breakpoints of the D(P ) function lie within the set

P =

{
pi0 − pj0
pj1 − pi1

:
pi, pj are vertices of the set of

feasible solutions to the dual problem

}
. (40)

As we show next, not every vertex is a candidate for optimality in (37); opti-
mal solutions must be obtained on a 2-D convex hull. Denote the set S2 ={(

pi0, p
i
1

)
: pi0 = pi · b0, pi1 = pi · 2d, pi ∈ ext (S)

}
⊆ R2 which represents the (finite) set of lin-

ear curves
{
pi0 + pi1P

}
on the 2-dimensional plane.

Theorem B.4. For any P ≥ 0, there exists a vertex of S such that pk ∈ argmaxi p
i · b(P ), and(

pk0 , p
k
1

)
is an extreme point of conv (S2).

Proof. Let
{(

p̃k0 , p̃
k
1

)}M

k=1
⊆ S2 be the set of extremals of conv (S2). The set S2 is finite, hence

its convex hull is bounded. We can write any point in S2 as a convex combination
(
pi0, p

i
1

)
=∑M

k=1 αik

(
p̃k0 , p̃

k
1

)
, thus we have

pi · b(P ) = pi0 + pi1P =

M∑
k=1

αik

(
p̃k0 + p̃k1P

)
≤ max

k

(
p̃k0 + p̃k1P

)
= max

k
pk · b(P ). (41)
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C Full characterization for binary sources (proof of Theorem 4.2)

Recall we discuss the case of binary sources where X = {x1, x2} with probabilities px1
, px2

respectively, and Y is of an arbitrary size ny. As a perceptual index, we consider the TV distance
(1) while the distortion matrix is arbitrary, yielding the matrix ρ′ defined in (9). Denote uy =
1
2

(
ρ′x̂1y

− ρ′x̂2y

)
which is half the cost of reconstructing y as x1 over reconstructing as x2, and we

assume w.l.o.g. that uy1
≤ uy2

≤ . . . ≤ uyn
.We define P−

Y (u) = Pr{uY ≤ u} = ∑
y:uy≤u PY (y).

We further denote the symbols y∗i whose uy is non-zero, namely

u−M− = uy∗
−M−

≤ . . . ≤ u−1 = uy∗
−1

< 0 < u1 = uy∗
1
≤ . . . ≤ uM+ = uy∗

M+
. (42)

Theorem C.1. (Theorem 4.2 in the main text). Assume that px1
≥ P−

Y (0), and let I = max{i : px1
≥

P−
Y (ui)}. Then, the DP function D(P ) is piecewise linear with breakpoints {P ∗

i }Ii=0 given by

P ∗
i = px1 − P−

Y (ui) (43)

where, specifically, P ∗
0 = px1 − P−

Y (0) = P ∗. The DP function is then given by

D(P ) =


D∗, P ≥ P ∗

0

D(P ∗
i−1) + 2ui

(
P ∗
i−1 − P

)
, P ∗

i ≤ P ≤ P ∗
i−1

D(P ∗
I ) + 2uI+1 (P

∗
I − P ) , 0 ≤ P ≤ P ∗

I

. (44)

If P−
Y (0−) ≥ px1

, then similarly P ∗
0 = P−

Y (0−) − px1
, and P ∗

i = P−
Y (u−i−1) − px1

, while it is
non-negative, and D(P ) is determined analogously. In the case P−

Y (0) ≥ px1 ≥ P−
Y (0−), P ∗ = 0

and D(P ) ≡ D∗ for all P ≥ 0.

Proof. Let X = {x1, x2},Y = {y1,, . . . , yny
}. The dual problem (24) is now written as

∑
y∈Y pywy +px1

(ν1 − ν2)− px2
(ν1 − ν2)− 2P (ν1 + ν2)→ maxw,ν

s.t. ν1, ν2 ≥ 0

wy ≤ ρ′x̂1y
− (ν1 − ν2) , ρ

′
x̂2y

+ (ν1 − ν2) ,∀y ∈ Y
, (45)

where we changed the sign of variables νi ← −νi for convenience. Now, we denote u = ν1 − ν2.
Note that ν1 + ν2 = |u| + 2min{ν1, ν2}. Since P ≥ 0 and both ν1, ν2 are nonnegative, in an
optimal solution we must choose min{ν1, ν2} to be 0, which implies |u| = ν1+ν2. The optimization
objective in this case boils down to

J(u) =
∑
y∈Y

py min
{
ρ′x̂1y − u, ρ′x̂2y + u

}
+ [2px1

− 1]u− 2P |u|, (46)

where in an optimal solution we must have wy = min
{
ρ′x̂1y

− u, ρ′x̂2y + u
}

since every wy should
be maximal under the constraints.

We can finally write the Dual objective in this case as

JP (u) =
∑
y∈Y

PY (y)min{ρ′x̂1y − u, ρ′x̂2y + u}+ [2px1
− 1]u− 2P |u| (47)

=
∑

y:uy≤u

ρx̂1y +
∑

y:uy>u

ρx̂2y + (1− P−
Y (u))u− P−

Y (u)u+ (2px1 − 1)u− 2P |u| (48)

=
∑

y:uy≤u

ρx̂1y +
∑

y:uy>u

ρx̂2y + 2(px1
− P−

Y (u))u− 2P |u|. (49)

For any P ≥ 0, this is a concave function in the parameter u, whose maximal value is obtained on
one of the points where the coefficient of u might change its sign.

D(P ) = max
u

JP (u) = max{JP (0), JP (uy1
), . . . , JP (uyn

)}. (50)

Note that for each y ∈ Y , JP (uy) is a linear function of P , with slope −2|uy|. This is true for
u = 0 as well. The breakpoints of D(P ) are the points where two (or more) of these functions attain
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optimality, namely where argmaxu JP (u) contains more than one argument. Since JP (u) is concave
w.r.t u, argmaxu JP (u) must also contain any interval between these points.

As we have already seen, for P ≥ 1 the DP function is flat,

D(P ) = D∗ = JP (0) =
∑
y

min
x̂

ρx̂y, P ≥ 1. (51)

It is easy to see from (49) that in fact, JP (0) = D∗ for every P . To the right of this point,

JP (u→ 0+) = D∗ + 2(px1
− P−

Y (0))u− 2Pu, (52)

where to the left,
JP (u→ 0−) = D∗ + 2(px1

− P−
Y (0−))u+ 2Pu. (53)

We comment that P−
Y (0−) =

∑
y:uy<0 PY (y) ≤ P−

Y (0), where P−
Y (0−) = P−

Y (u−1) if the latter is
defined.

Assume now px1
≥ P−

Y (0) ≥ P−
Y (0−), then for every P ≥ 0, JP (u) is non-decreasing as u→ 0−.

Since it is also concave, the maximal value must be attained at u = 0 or on the remaining positive
candidate points, which we notate

0 < u1 = uy∗
1
≤ . . . ≤ uM+ = uy∗

M+
. (54)

At the first breakpoint P ∗
0 = P ∗, where 0, u1 ∈ argmax JP (u), we should have JP∗(0) = JP∗(u1),

or equivalently
2P ∗

0 u = 2(px1 − P−
Y (0))u, 0 ≤ u < u1, (55)

yielding P ∗
0 = px1 − P−

Y (0). Similarly, for every possible breakpoint we should have

2P ∗
i u = 2(px1 − P−

Y (ui))u, ui ≤ u < ui+1, (56)

implying P ∗
i = px1

− P−
Y (ui) for every i such that px1

≥ P−
Y (ui). (for a discussion about the case

where ui might be equal to ui+1 we refer the reader to Remark 4.3 in the main text).

If P−
Y (0) ≥ P−

Y (0−) ≥ px1
, then (49) is non-decreasing as u → 0+. Now, maximum must occur

at u = 0 or the remaining negative candidates, u−i. By arguments similar to the case above,
P ∗
0 = P−

Y (0−)− px1
, and P ∗

i = P−
Y (u−

−i)− px1
= P−

Y (u−i−1)− px1
while it is non-negative.

Finally, in the case P−
Y (0) ≥ px1

≥ P−
Y (0−), (53) is non-decreasing, while (52) is non-increasing

for every P , implying maxuJP (u) = JP (0) = D∗ hence in this case P ∗ = 0, D(P ) ≡ D∗.
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