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Abstract

We introduce the Llama-Nemotron series: open, heterogeneous reasoning models1

in three sizes—Nano (8B), Super (49B), and Ultra (253B)—that deliver strong2

reasoning, inference efficiency, and a permissive license. Our training pipeline com-3

bines neural architecture search, knowledge distillation, and a reasoning-focused4

post-training stage with supervised fine-tuning and large-scale reinforcement learn-5

ing. Our large-scale RL training leverages exploration-driven curriculum and data6

filtering strategies to systematically challenge the model with increasingly difficult7

reasoning tasks, enabling it to discover and refine complex problem-solving chains8

beyond the capabilities of supervised learning. This approach allows the model to9

autonomously explore new reasoning strategies and surpass teacher performance10

on challenging benchmarks. Ultra achieves significantly higher GPQA accuracy11

and outperforms DeepSeek-R1 and other open models on key reasoning tasks.12

Llama-Nemotron models are also the first open-source models to support a dy-13

namic reasoning toggle. We open-source all data, models, and code to support14

open research.15

1 Introduction16

In recent years the pace of language model development has been increasing, leading to rapid17

improvements in performance across a wide range of natural language processing tasks. Most18

recently, the introduction of reasoning models such as OpenAI o1 OpenAI (2025) and DeepSeek-R119

DeepSeek-AI et al. (2025) has marked a new phase of advancement, resulting in models that can20

think deeply about problems before answering. A defining characteristic of these models is their21

long responses, often containing long exploratory chains of thought, self-verification, reflection, and22

backtracking. Such long responses enable them to achieve state-of-the-art performance across a wide23

variety of tasks, including PhD-level STEM questions and competition-level math problems. Central24

to these advances is the use of exploration during reinforcement Learning training to discover new25

reasoning strategies and improve robustness.26

As reasoning capabilities increasingly depend on scaling at inference time, designing models for27

efficient inference is essential. Inference efficiency is now a core factor for model intelligence and28

agentic pipelines. Equally important is giving users control over reasoning depth: not all queries29

benefit from detailed multi-step reasoning. The reasoning toggle enables users to actively explore30

different reasoning strategies and allocate resources appropriately for each task Anthropic (2025).31

Here, we present the Llama-Nemotron (LN) family: open, heterogeneous reasoning models in32

three sizes—LN-Nano (8B), LN-Super (49B), and LN-Ultra (253B)—optimized for both inference33

efficiency and flexible reasoning. Notably, LN-Ultra outperforms DeepSeek-R1 while fitting on a34

single 8xH100 node and achieving higher inference throughput. These models are derived from35

Llama 3.1 and Llama 3.3 Grattafiori et al. (2024), and are optimized for high-throughput inference36

while delivering strong reasoning performance and a context length of 128K tokens. Each model37

supports a reasoning toggle that lets users dynamically switch between standard chat and reasoning38
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Figure 1: LN-Ultra delivers leading performance among open models across a wide range of reasoning
and non-reasoning benchmarks.

modes at inference time using a lightweight system prompt: "detailed thinking on/off". This39

design enables both cost-effective general-purpose use and detailed multi-step reasoning, without40

requiring separate models or architectures.41

The Llama-Nemotron models are constructed in five stages. The first stage consists of optimizing42

inference efficiency with neural architecture search (NAS) from the Llama 3 series of models and43

applying Feed-Forward Network (FFN) Fusion. The second stage includes recovery training with44

knowledge distillation and continued pretraining. The third stage is supervised fine-tuning (SFT) on45

a mix of standard instruction data and reasoning traces from strong teachers such as DeepSeek-R1,46

which enables the model to perform multi-step reasoning. The fourth stage involves large-scale47

reinforcement learning on complex mathematics and STEM datasets, a crucial step for enabling48

the student model to surpass its teacher’s capabilities. For LN-Ultra, this phase yields a substantial49

performance boost on the GPQA-D benchmark, cementing it as the best open-source model for50

scientific reasoning. To enable such large-scale RL training, we develop a custom training framework51

that contains a number of optimizations, most notably generation in FP8. The final stage is a52

short alignment phase focused on instruction following and human preference. In this report, we53

place particular emphasis on the post-training stages—especially our large-scale reinforcement54

learning runs—where exploration-driven curriculum learning and data filtering strategies are central.55

These approaches systematically challenge the model with progressively more difficult reasoning56

tasks, enabling it to autonomously discover, refine, and generalize complex reasoning behaviors57

that go beyond the limitations of supervised learning and are critical for achieving state-of-the-art58

performance on scientific reasoning benchmarks.59

As part of this work, we also release the Llama-Nemotron-Post-Training-Dataset, a carefully curated60

dataset used during the supervised and reinforcement learning stages of training for LN-Nano,61

LN-Super, and LN-Ultra. It is designed to target key capabilities such as mathematical reasoning,62

coding, science, and instruction following, and consists of synthetic responses generated by a range63

of open-source models. Prompts and responses are filtered for quality, correctness, and complexity to64

provide strong training signals across a diverse set of tasks.65

2 Synthetic Data and Supervised Fine-Tuning66

Modern reasoning models require not only strong reasoning capabilities but also efficient inference67

for practical deployment. To this end, we construct inference-optimized base models using the Puzzle68

neural architecture search (NAS) framework Bercovich et al. (2024), which applies techniques such69

as attention removal, FFN compression, and FFN fusion Bercovich et al. (2025) to compress and70
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accelerate Llama 3 Instruct models. This yields two model classes: LN-Super, a compressed variant71

of Llama 3.3-70B-Instruct that achieves 5× throughput improvement over the original model while72

running efficiently on a single NVIDIA H100 GPU, and LN-Ultra, derived from Llama 3.1-405B-73

Instruct and optimized for 8-GPU H100 nodes, delivering 1.71× latency improvements. Full details74

of the architecture search and optimization process are provided in Appendix A.75

Supervised fine-tuning (SFT) plays a critical role in transferring reasoning capabilities into the76

Llama-Nemotron models. While prior stages such as NAS and CPT focus on architectural efficiency77

and broad knowledge transfer, SFT helps distill reasoning behavior from strong teacher models like78

DeepSeek-R1 DeepSeek-AI et al. (2025) by training on task-specific reasoning traces. For SFT, we79

curate both reasoning and non-reasoning samples across math, code, science, and general domains.80

The key mechanism is the use of system instructions ("detailed thinking on" and "detailed81

thinking off") to enable the model to toggle reasoning behavior at inference time. This setup82

allows the model to learn to toggle reasoning behavior at inference time based on the prompt. The83

data is generated using current state-of-the-art reasoning models like DeepSeek-R1, with extensive84

filtering and decontamination processes to ensure quality and prevent benchmark contamination. For85

math reasoning data, we use a pipeline described by Moshkov et al. (2025); for code reasoning,86

we follow the multi-stage process of Ahmad et al. (2025); and for general domain data, we use87

the generation pipeline from NVIDIA (2024c). The complete data curation process is provided in88

Appendix B. Recent studies DeepSeek-AI et al. (2025); OpenThoughts (2025); BespokeLabs (2025);89

Wen et al. (2025) have shown that this reasoning SFT can substantially improve performance on90

complex reasoning tasks. Our results summarized in Table 1 for LN-Super and Table 2 for LN-Ultra91

confirm these findings, highlighting the importance of training on large-scale, high-quality reasoning92

traces during SFT for eliciting robust reasoning abilities in downstream usage.93

General Methodology. All models are trained using a token-level cross-entropy loss over the94

instruction-tuning data. For most settings, training batches mix reasoning and non-reasoning95

data, where prompts are paired with responses conditioned on the respective system instruction—96

"detailed thinking on/off". We observe that models require higher learning rates to effec-97

tively learn from long reasoning traces, especially due to sequence-length-dependent token loss98

averaging. Extended training over multiple epochs improves performance, particularly for smaller99

models, a trend also observed in prior work Wen et al. (2025). We use Adam optimizer for training100

all models. Using a cosine learning rate decay with linear warmup to around 10% of total steps helps101

with stability of training, which was crucial for LN-Ultra. For detailed, model-specific SFT training102

procedures, please refer to Appendix C.103

3 RL for Reasoning104

As discussed in Section 2 and shown in Table 2, models can acquire strong capabilities through super-105

vised fine-tuning by distilling knowledge from powerful teachers. However, distillation inherently106

limits the student’s performance to that of the teacher, especially when the student’s base model is107

more capable than the teacher. For example, with supervised fine-tuning, LN-Ultra can approach108

but not surpass the performance of DeepSeek-R1. To enable the student to exceed its teacher, we109

turn to large-scale reinforcement learning (RL), which empowers the model to explore new strategies110

and engage in self-improvement beyond imitation. This exploration-driven approach is central to111

advancing reasoning capabilities, as it allows the model to autonomously discover and refine complex112

problem-solving chains. Consistent with the findings of DeepSeek-AI et al. (2025), our preliminary113

experiments indicate that RL yields suboptimal results for smaller models compared to distillation.114

Given these observations and resource constraints, we apply reasoning RL exclusively to LN-Ultra,115

enabling it to surpass its teacher and set a new state-of-the-art on GPQA among open models.116

Training Procedure117

For LN-Ultra, we enhance the model’s scientific reasoning capabilities through large-scale rein-118

forcement learning, leveraging the Group Relative Policy Optimization (GRPO) algorithm Shao119

et al. (2024). We use a rollout prompt size of 72 and sample 16 responses per prompt with120

temperature = 1 and top_p = 1. During training, we set global batch size as 576 and con-121

duct 2 gradient updates per rollout. We train our model until it achieves convergence on reasoning122
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tasks. Figure 2 shows the accuracy score on GPQA-Diamond as our training progresses. With our123

optimized training infrastructure (see Section D), the whole training takes about 140k H100 hours.124
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Figure 2: Accuracy on GPQA-Diamond throughout reasoning RL training for LN-Ultra.

In this training phase, we leverage two types of rewards:125

Accuracy rewards: For each training example, a ground truth answer (a number, a sentence, or a126

paragraph) is provided. We serve the Llama-3.3-70B-Instruct model to judge whether the policy’s127

predictions match the ground truth answer.128

Format rewards: Following DeepSeek-AI et al. (2025), we employ a format reward to ensure the129

model puts its thinking process between "<think>" and "</think>" tags when using "detailed130

thinking on" mode. We also check for the non-existence of thinking tags when using "detailed131

thinking off" mode.132

To ensure that the model is adequately challenged and encouraged to explore, we preprocess the data133

by independently generating 8 responses per question using LN-Super, calculating the pass rate, and134

then intentionally discarding prompts with a pass rate of 0.75 or higher. This increases the difficulty135

of the training data and incentivizes exploration of less certain cases. Besides data filtering, we also136

find curriculum training to be helpful, as it allows the model to gradually learn from a progression of137

tasks with increasing difficulty. Specifically, we implement a progressive batching strategy leveraging138

pre-calculated pass rate as a difficulty metric. Given a fixed batch size, the core of our approach139

involves dynamically calculating a target distribution of pass rates for each sequential batch. This140

distribution is modeled using a Gaussian function centered on a difficulty level that progresses from141

high pass rates (easier examples) for initial batches to low pass rates (harder examples) for later142

batches. Samples are allocated to each batch primarily based on this target distribution, considering143

the available count for each pass rate, with any remaining batch capacity filled by prioritizing pass144

rates with the largest remaining sample pools. This ensures a controlled, gradual increase in average145

sample difficulty across batches, while samples inside a batch are randomly shuffled. Figure 3146

demonstrates the effectiveness of our curriculum strategy, which stabilizes the training process and147

achieves higher accuracy.148

4 RL for Preference Optimization149

4.1 Instruction Following150

After training for scientific reasoning, we do a short RL run optimizing instruction following capabili-151

ties for the LN-Super and LN-Ultra. We use a similar verification setup as Zhou et al. (2023), and152

generate synthetic instruction following prompts that contain from one to ten detailed instructions. We153

run RL with the RLOO algorithm Ahmadian et al. (2024) for less than 120 steps using our instruction154

following verifier as a reward, with a batch size of 128 prompts. We find such training boosts155

performance on conventional instruction following benchmarks as well as reasoning benchmarks.156
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Figure 3: Curriculum training stabilizes learning and enables higher peak accuracy on GPQA-D.

4.2 RLHF157

We use RLHF to improve the model on general helpfulness and chat capabilities while carefully158

maintaining its proficiency in other areas. As shown in Table 1, LN-Super, a 49B model, achieves an159

Arena Hard score of 88.3, beating proprietary models such as Claude 3.5 Sonnet and GPT-4o-2024-160

05-13 as well as much larger open models such as Llama-3.1-405b-instruct and Mistral-large-2407.161

To achieve this, we use iterative online RPO NVIDIA (2024c); Sun et al. (2025) to maximize162

the reward predicted by Llama-3.1-Nemotron-70B-Reward NVIDIA (2024b) over prompts from163

HelpSteer2 Wang et al. (2025a). Two iterations of online RPO increase the Arena Hard score from164

69.1 to 88.1. More interestingly, this process also improves the model’s performance on all other165

adopted benchmarks except IFEval. Since neither the dataset nor the reward model is optimized for166

math, coding, science, or function calling, we speculate that RLHF helps the model better utilize167

its existing knowledge and skills. We follow the same process for LN-Ultra, except that GRPO is168

employed. For each prompt, we sample 8 responses. For LN-Nano, we conduct two rounds of offline169

RPO with on-policy data. We use a mixture of reasoning and non-reasoning data with appropriate170

system prompts in the first round of RPO to improve reasoning control, followed by a second round171

with on-policy generations targeting instruction following improvements.172

5 Evaluations on Reasoning and Chat Benchmarks173

We evaluate all Llama-Nemotron models across two benchmark categories: reasoning and non-174

reasoning.175

Reasoning Benchmarks. These include the American Invitational Mathematics Examination for176

years 2024 (AIME24) and 2025(AIME25), GPQA-Diamond Rein et al. (2024), LiveCodeBench Jain177

et al. (2024), and MATH500 Lightman et al. (2023). AIME25 is split into two parts: AIME25-I and178

AIME25-II, each containing 15 problems. For LN-Nano, we use AIME25-I only; for LN-Super179

and LN-Ultra, we evaluate on the full 30-question set. As AIME25 was released recently, it is less180

likely to overlap with training data. Thus, stronger performance on this benchmark is indicative of181

better generalization, especially on math problems outside the training distribution. LiveCodeBench182

contains questions indexed by date, and we report results on two specific ranges—(2408–2502) and183

(2410–2502)—to enable fair comparison with previously reported baselines.184

Non-Reasoning Benchmarks. These include IFEval(Strict-Instruction) Zhou et al. (2023) for185

instruction following, BFCL V2 Live Yan et al. (2024) for tool use via function calling, and Arena-186

Hard Li et al. (2024) for evaluating alignment with human conversational preferences.187

All evaluations are conducted at 32k context length, even though training was performed with a188

maximum context length of 16k for LN-Super and 24k for LN-Ultra. We observed consistent189

improvements when evaluating at expanded context lengths, as shorter limits can truncate long190

reasoning traces and lead to incomplete generations—particularly on benchmarks that require multi-191

step reasoning. We use temperature 0.6 and top-p 0.95 for reasoning-on evaluations, and temperature192
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Task LN-Super-SFT
Reasoning

LN-Super
Reasoning

DeepSeek-R1-
Distilled-Llama-70B QwQ-32B Llama-3.3

70B-Instruct
on | off on | off

GPQA-Diamond 63.8 | 46.6 66.7 | 50.0 65.2 58.8 50.5
AIME24 63.3 | 17.5 67.5 | 16.7 70.0 79.5 25.8
AIME25 50.0 | 6.7 60.0 | 16.7 55.0 65.8 6.7
MATH500 93.2 | 76.8 96.6 | 74.0 94.5 96.2 73.8
BFCL V2 Live 73.3 | 62.5 73.7 | 73.9 65.5 71.6 60.4
LiveCodeBench (2408–2502) 40.9 | 28.7 45.5 | 29.7 57.5 63.4 -
IFEval 81.9 | 83.0 89.2 | 89.0 85.1 86.3 92.1
Arena Hard − | − 88.3 | − 65.4 90.5 72.9

Table 1: LN-Super versus comparably sized models, split by Reasoning mode.

0 (greedy decoding) for reasoning-off. We generate up to 16 completions per prompt and report193

average pass@1 accuracy. Checkpoints are selected based on performance on a subset of reasoning194

benchmarks. As observed in prior works Moshkov et al. (2025), evaluation on reasoning-heavy195

tasks such as AIME can exhibit high variance due to small dataset size and generation randomness.196

Reported numbers may vary across repeated runs or sampling strategies.197

LN-Nano198

Although LN-Nano is the smallest model in the Llama-Nemotron series, it achieves strong per-199

formance across all reasoning benchmarks, including AIME25-I and LiveCodeBench, despite its200

compact size. This demonstrates the effectiveness of our SFT pipeline and curated reasoning datasets201

in transferring structured reasoning to smaller models. Detailed results and analysis for LN-Nano are202

provided in Appendix E.1.203

LN-Super204

Table 1 compares LN-Super to other models in its weight class where it performs competitively across205

both reasoning and non-reasoning tasks. In reasoning-off mode, LN-Super performs on par with206

Llama-3.3-70B, the model it based on. In reasoning-on mode, it outperforms competing models such207

as DeepSeek-R1-Distilled-Llama-70B, providing strong reasoning capabilities without sacrificing208

instruction following. Reasoning-focused SFT reduces IFEval scores, so we apply a dedicated209

RL stage (see Section 4.1) to restore instruction-following ability. Our experimental results reveal210

another trade-off: optimizing for instruction following (as measured by IFEval) can compromise211

conversationality (as measured by Arena-Hard), and conversely, prioritizing conversationality may212

detract from instruction following performance. To address this, we applied model merging to213

LN-Super, selecting a checkpoint from the Pareto frontier that balances these objectives. Due to214

mixed outcomes, we did not adopt this approach for other models. The only area where LN-Super215

underperforms is on LiveCodeBench, which is attributable to its SFT phase being conducted on an216

earlier version of the dataset, unlike LN-Nano and LN-Ultra. We plan to address this and improve217

coding-related reasoning performance in a future model refresh.218

LN-Ultra219

Table 2 and Figure 1 show that LN-Ultra matches or outperforms all existing open-weight models220

across reasoning and non-reasoning benchmarks. It achieves state-of-the-art performance on GPQA221

among open models, demonstrating the efficacy of our large-scale reinforcement learning training.222

Unlike prior state-of-the-art models such as DeepSeek-R1, which require 8×H200, LN-Ultra is223

optimized to run efficiently on a single 8×H100 node, offering improved inference throughput and224

deployment efficiency.225

From Table 2, we observe that the LN-Ultra-SFT model approaches the performance of DeepSeek-R1226

on several reasoning benchmarks, including GPQA and AIME. However, the RL stage is critical for227

surpassing DeepSeek-R1, particularly on GPQA. This highlights the complementary strengths of SFT228

and RL: SFT builds a strong foundation by distilling reasoning behavior from teacher models, while229

RL is essential for surpassing teacher performance and further enhancing reasoning capabilities.230
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We also find that there is a trade-off between the extent of SFT training and the success likelihood231

of subsequent RL. Although we had access to SFT checkpoints with higher benchmark scores, we232

initialized RL from an earlier checkpoint to improve final RL outcomes.233

Task LN-Ultra-SFT
Reasoning

LN-Ultra
Reasoning

DeepSeek
R1

Llama-4
Behemoth

Llama-4
Maverick

Llama-3.1
405B-Instruct

on | off on | off

GPQA-Diamond 66.4 | 46.0 76.0 | 56.6 71.5 73.7 69.8 43.4
AIME24 74.6 | 46.7 80.8 | 20.0 79.8 – – 20.0
AIME25 60.4 | 16.7 72.5 | 16.7 70.0 – – 0.0
MATH500 96.6 | 84.4 97.0 | 80.4 97.3 95.0 – 66.2
BFCL V2 Live 74.6 | 74.9 74.1 | 73.6 – – – 58.7
LiveCodeBench (2408–2502) 60.6 | 30.1 66.3 | 29.0 65.9 – – –
LiveCodeBench (2410–2502) 61.8 | − 68.1 | − – 49.4 43.4 –
IFEval 83.2 | 79.4 88.9 | 89.5 88.8 – – 89.2
Arena Hard − | − 87.0 | − 92.0 – – 66.2

Table 2: LN-Ultra versus the strongest open-weight models, split by reasoning mode.

6 Evaluations on Judging Capability234

In addition to reasoning and chat capabilities where the models are trained for, we evaluate our models235

on an out-of-distribution task, LLM-as-a-Judge, to further assess their performance. Specifically, we236

test them on JudgeBench Tan et al. (2025), where the task is to differentiate between high-quality237

and low-quality responses. As shown in Table 3, our models outperform top proprietary and open-238

source models. Notably, LN-Ultra emerges as the best open-source model, significantly surpassing239

DeepSeek-R1 and trailing only behind o3-mini(high). Furthermore, LN-Super also outperforms240

o1-mini, demonstrating that our models exhibit strong generalization capabilities across diverse tasks.241

Model Knowledge Reasoning Math Coding Overall
o1-preview 66.23 79.59 85.71 85.71 75.43
o1-mini 58.44 62.24 82.14 78.57 65.71
o3-mini(low) 62.99 69.39 83.93 83.33 70.57
o3-mini(medium) 62.34 86.73 85.71 92.86 76.57
o3-mini(high) 67.53 89.80 87.50 100.0 80.86
DeepSeek-R1 59.09 82.65 80.36 92.86 73.14

LN-Super 64.94 67.35 76.79 83.33 69.71
LN-Ultra 70.13 81.63 89.29 92.86 79.14

Table 3: Llama-Nemotron models demonstrate strong performance on JudgeBench.

7 Conclusions242

We present the Llama-Nemotron series of models which perform competitively with state-of-the-art243

reasoning models with efficient inference capabilities. We find that in the presence of a strong244

reasoning teacher, SFT on high-quality synthetic data generated by such teacher is very effective in245

adding reasoning capabilities to smaller models. However, to push reasoning capabilities beyond what246

is possible from a teacher reasoning model alone, it is necessary to run large-scale, curriculum-driven247

reinforcement learning from verifiable rewards training. This stage is particularly important for248

enabling the model to autonomously explore new reasoning strategies and problem-solving chains,249

moving beyond imitation to genuine innovation.250

Our results highlight that exploration, both in the form of data curation and through reinforcement251

learning, plays a key role in advancing model reasoning abilities. We also show that to produce a252

great all-around model, e.g. a model which performs well on a wide variety of benchmarks, it is253

necessary to have several stages in the post-training pipeline.254
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Appendix481

A Creating Inference-Optimized Models482

The LN-Super and LN-Ultra models are optimized for efficient inference using the Puzzle frame-483

work Bercovich et al. (2024). Puzzle is a neural architecture search (NAS) framework that transforms484

large language models into hardware-efficient variants under real-world deployment constraints, as485

illustrated in Figure 4. Starting from a Llama 3 Instruct model (Llama 3.3-70B-Instruct for LN-Super486

and Llama 3.1-405B-Instruct for LN-Ultra), Puzzle applies block-wise local distillation to build487

a library of alternative transformer blocks. Each block is trained independently and in parallel to488

approximate the function of its parent block while improving computational properties such as latency,489

memory usage, or throughput. This process allows each alternative block to approximate the original490

behavior with a certain accuracy-efficiency tradeoff profile; that is, some blocks in the library are491

more efficient but may incur some quality degradation—introducing an explicit tradeoff between492

computational cost and model accuracy. The block variants include:493

• Attention removal: Some blocks omit the attention mechanism entirely, reducing both494

compute and KV-cache memory consumption.495

• Variable FFN dimensions: The feed-forward network’s intermediate size is varied, enabling496

compression at different granularity levels (e.g., 87%, 75%, 50%, down to 10% of the497

original hidden size).498

While Puzzle supports additional operations—including grouped-query attention (GQA) Ainslie499

et al. (2023) with different numbers of key-value heads, linear alternatives to attention, and no-op500

substitutions—empirical evaluation showed that attention removal and FFN compression were the501

most effective for optimizing the LN-Super and LN-Ultra models in terms of overall throughput and502

memory savings.503

Once the block library is built, Puzzle assembles a complete model by selecting one block per layer.504

This selection is governed by a mixed-integer programming (MIP) solver that identifies the most505

efficient configuration under a given set of constraints, such as hardware compatibility, maximum506
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Figure 4: Overview of the Puzzle framework.

allowed latency, total memory budget, or desired inference throughput. Because Puzzle supports507

multiple block variants per layer with different accuracy-efficiency tradeoff profiles, it enables users508

to precisely target any point on the accuracy-efficiency Pareto frontier. For example, Puzzle can509

generate models that meet specific constraints relevant to agentic systems or deployment pipelines –510

such as bounded memory use or tight end-to-end response time.511

Vertical Compression with FFN Fusion. For the LN-Ultra model, we introduce an additional512

compression technique called FFN Fusion Bercovich et al. (2025), designed to reduce sequential513

depth and improve inference latency. This technique leverages a structural property that emerges514

after Puzzle removes some attention layers: the model often contains consecutive FFN blocks.515

FFN Fusion identifies such sequences and replaces them with fewer, wider FFN layers that can be516

executed in parallel. This reduces the number of sequential steps without compromising expressivity,517

and significantly improves compute utilization—especially on multi-GPU setups where inter-layer518

communication overhead is non-negligible.519

Deployment Constraints and Efficiency Targets520

LN-Super is optimized to run efficiently on a single NVIDIA H100 GPU with tensor parallelism 1521

(TP1). Using Puzzle, we produce a model that achieves a 5× throughput speedup over Llama 3.3-522

70B-Instruct at batch size 256 and TP1. With one H100 GPU, even when Llama 3.3-70B-Instruct523

is run at its optimal configuration with TP4, LN-Super at TP1 still delivers a ≥2.17× throughput524

advantage. The model is also optimized under a constraint of approximately 300K cached tokens525

(batch size × sequence length), measured at FP8 precision on a single H100 GPU. For instance, this526

corresponds to processing batch size 16 and sequence length 18,750.527

LN-Ultra is optimized for a full H100 node (8 GPUs). During Puzzle’s architecture search phase,528

the model is constrained to achieve at least a 1.5× latency reduction over Llama 3.1-405B-Instruct.529

After applying FFN Fusion, the final model achieves a 1.71× latency improvement. LN-Ultra is also530

optimized under cached tokens constraints, supporting up to 3M tokens at FP8 precision and 600K531

tokens at BF16 precision on an H100 node.532

Figure 5 illustrates the trade-off between GPQA-Diamond accuracy (%) and processing throughput533

(tokens/s) for two settings. Notably, LN-Ultra consistently outperforms DeepSeek-R1 and Llama-3.1-534

405B in both accuracy and efficiency across these settings, clearly positioning it as a superior choice535

on the accuracy-throughput Pareto curve.536

Post-NAS Training: Knowledge Distillation and Continued Pretraining537

Following the NAS phase, both LN-Super and LN-Ultra undergo additional training to improve538

inter-block compatibility and recover any quality loss introduced during blockwise substitution.539

• LN-Super is trained for 40B tokens using a knowledge distillation objective over the540

Distillation Mix dataset introduced by Bercovich et al. (2024).541
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Figure 5: GPQA-Diamond Accuracy vs. Throughput. We measure on two settings, S1: 500/2000
(ISL/OSL); S2: 5000/500 (ISL/OSL). Both with 250 concurrent users. Models are served with FP8.
Note that we use 8×H100 for LN-Ultra and Llama 3.1 405B, but 8×H200 for Deepseek-R1 because
of its size.

• LN-Ultra is first trained with knowledge distillation for 65B tokens using the same distillation542

dataset, followed by 88B tokens of continued training on the Nemotron-H phase 4 pretraining543

dataset NVIDIA et al. (2025).544

This final pretraining step allows LN-Ultra to not only match but surpass the reference model545

Llama 3.1-405B-Instruct in key benchmarks, demonstrating that aggressive architecture optimization546

can be reconciled with high model performance through short distillation and pretraining (see547

Table ??).548

Task LN-Ultra
CPT

Llama-3.3
70B-Instruct

Llama-3.1
405B-Instruct

MMLU 88.1 81.4 88.6
MATH500 80.4 73.6 69.6
HumanEval 88.4 84.1 86.0
RULER 128K 83.2 52.2 73.7

Table 4: Comparison of LN-Ultra after the continued pretraining phase (before supervised and
reinforcement learning) to Llama 3 models.

B Synthetic Data549

We curate both reasoning and non-reasoning data for supervised fine-tuning. For reasoning samples,550

we include the system instruction "detailed thinking on", and for non-reasoning samples, we551

use "detailed thinking off". This setup allows the model to learn to toggle reasoning behavior552

at inference time based on the prompt. Below, we describe our focused data curation process for each553

mode.554

B.1 Reasoning on555

B.1.1 Math556

To construct the math reasoning portion of our data we used a pipeline described by Moshkov et al.557

(2025). A high-level overview of this pipeline is provided below, with full details available in the558

original publication.559

We collect a large set of mathematical problems from Art of Problem Solving (AoPS) community560

forums. We include all forum discussions except “Middle School Math” which was found to be561
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too easy and unhelpful for training in our early experiments. After retrieving forum discussions we562

perform the following steps to extract problems and synthesize new solutions. We use Qwen2.5-32B-563

Instruct Qwen (2024) for all steps in the pipeline unless noted otherwise.564

Problem Extraction: We prompt an LLM to identify and extract all problems from the initial565

forum posts. While most posts contain a single problem, some include multiple problems or none at566

all.567

Problem Classification: Each extracted problem is classified into the following categories:568

• Proof problem or not569

• Multiple choice question or not570

• Binary question (yes-or-no answer) or not571

• Valid problem or not. For example, problems that are lacking context or referring to other572

problems are considered invalid.573

We remove all proof problems, multiple-choice questions, binary questions, and invalid problems574

from the final dataset.575

Answer Extraction: We extract the final answer from forum discussions, without attempting to576

extract full solutions. Only the final answer expression is extracted to enable automatic correctness577

checking.578

Benchmark Decontamination: Following Yang et al. (2023) we use an LLM-based comparison to579

remove questions that closely resemble those in popular math benchmarks.580

Solution generation: We prompt DeepSeek-R1 DeepSeek-AI et al. (2025) and Qwen2.5-Math-7B-581

Instruct Qwen (2024) to solve each problem multiple times producing “reasoning” and “non-reasoning”582

solutions respectively. We use 16 generations per problem for DeepSeek-R1 and 64 generations per583

problem for Qwen2.5-Math-7B-Instruct.584

Solution Filtering: As the final filtering step, we remove any solutions that do not reach the585

expected answer. Predicted and expected answers are compared by prompting Qwen2.5-32B-586

Instruct Qwen (2024) to judge their equivalence in the context of the problem. For problems587

where the final answer cannot be extracted, we treat the most common answer across all available588

solution candidates as the ground truth.589

All prompts and scripts necessary to run the above pipeline are available in NeMo-Skills.590

B.1.2 Code591

The code reasoning dataset is constructed via a multi-stage process involving question collection,592

solution generation, and post-processing steps, as described by Ahmad et al. (2025).593

Question Collection and Verification: We aggregate 28,904 unique competitive programming594

questions from diverse sources including TACO Li et al. (2023), APPS Hendrycks et al. (2021a),595

CodeContests Li et al. (2022), and CodeForces Penedo et al. (2025a), after performing exact-match596

deduplication. To ensure evaluation integrity against benchmarks like Jain et al. (2025); Li et al.597

(2022); Chen et al. (2021); Austin et al. (2021), we rigorously check for contamination using the598

method from Yang et al. (2023). This involves cosine similarity checks and semantic evaluation599

by LLM judges (Llama-3.3-70B Grattafiori et al. (2024), Qwen2.5-32B Qwen (2024)). Manual600

verification confirms negligible overlap (< 0.3%), validating the question set.601

Solution Generation: We employ DeepSeek-R1 DeepSeek-AI et al. (2025) to generate multiple602

solutions per question, primarily in Python, with C++ solutions also generated for specific benchmark603

testing Penedo et al. (2025b). Solutions are generated using Nucleus Sampling Holtzman et al. (2020)604

(temperature 0.6, top-p 0.95) via SGLang Zheng et al. (2024), explicitly prompting for reasoning605

steps enclosed in <think> tags.606
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Post-Processing and Refinement: We refine generated responses by verifying the presence of607

reasoning traces, extracting solution code segments (demarcated by python...), removing samples608

with code inside reasoning tags, and validating syntax using Tree Sitter TreeSitter (2013). This609

process yields approximately 488K Python samples.610

Data Scaling Insights: While some studies suggest small datasets suffice for inducing reasoning611

HuggingFace (2025); Muennighoff et al. (2025); BespokeLabs (2025); OpenThoughts (2025), es-612

pecially in mathematics, our experiments indicate large-scale data is crucial for high performance613

on coding benchmarks. An ablation study scaling the dataset from 25k to 736k samples showed614

continuous improvement. Initial scaling (25k-100k) provides gains, but focusing generation on harder615

problems from CodeContests before expanding to the full question set yields the most significant616

performance boosts. The scaling curve does not plateau, emphasizing the importance of large, diverse,617

and challenging problem sets for advancing code generation capabilities, suggesting a need for618

methods to create or source more difficult problems at scale.619

B.1.3 Science620

We curate a diverse set of open-ended and multiple-choice questions (MCQs) from both in-house and621

external sources. These include question-answer pairs extracted from StackOverflow Stack Exchange622

Data (2024) and synthetically generated MCQ questions.623

Synthetic Question Generation: To create synthetic questions, we define a broad set of aca-624

demic topics (e.g., physics, biology, chemistry) and their subtopics using Nemotron-4-340B-625

Instruct NVIDIA (2024c). We specify multiple difficulty levels to ensure a diverse and scalable626

dataset. We prompt Qwen2.5 models Qwen (2024) to generate MCQs conditioned on the topic,627

subtopic, and difficulty level. Each question is verified for format compliance. Following the628

OpenMathInstruct-2 Toshniwal et al. (2025) pipeline, we augment the dataset by prompting Qwen2.5629

to generate variations of the original questions.630

Benchmark Decontamination: To ensure fair evaluation, we perform decontamination on the631

entire set of questions—both real and synthetic—against the test sets of major science benchmarks632

such as GPQA Rein et al. (2023), MMLU Hendrycks et al. (2021b), and MMLU-Pro Wang et al.633

(2024), following the approach outlined in Yang et al. (2023).634

Solution Generation: For all questions in the dataset, we use DeepSeek-R1 DeepSeek-AI et al.635

(2025) to generate multiple reasoning traces. For questions without ground-truth answers, we apply636

majority voting across generated solutions to infer the most likely correct answer.637

B.1.4 General638

For general domain data, we follow the generation pipeline established in NVIDIA (2024c). We639

generate synthetic prompts covering various tasks such as open QA, closed QA, extraction, and brain-640

storming. We also source real-world user prompts from publicly available datasets with permissive641

licenses. For responses, we prompt DeepSeek-R1 DeepSeek-AI et al. (2025) for multiple generations642

and perform rejection sampling using the Llama-3.1-Nemotron-70B reward model NVIDIA (2024b).643

This ensures that the responses are of high quality.644

B.2 Reasoning off645

To train the model to follow the reasoning toggle instruction, we construct paired data where each646

prompt has both a reasoning response and a non-reasoning response. Specifically, we randomly647

sample prompts from the reasoning dataset in Section B.1 and generate corresponding non-reasoning648

responses using Llama-3.1-Nemotron-70B-Instruct NVIDIA (2024a) for general domain prompts649

and Llama-3.3-70B-Instruct for others. Each response is tagged with the appropriate system in-650

struction—“detailed thinking on” for reasoning and “detailed thinking off” for non-651

reasoning. This pairing enables the model to learn to modulate its reasoning behavior based on the652

system prompt.653

Responses are then filtered according to ground truth answers or reward models. We also leverage654

public permissive datasets on function calling and safety, augmenting them to train the model and655
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improve its capabilities in these areas. To further improve performance on general tasks, we use a656

feedback-edit system, described in Section B.3.657

B.3 General-Domain Open-ended Inference-Time Scaling658

To generate high-quality general-domain open-ended responses, we employ Llama-3.1-Nemotron-659

70B-Instruct NVIDIA (2024a) in conjunction with a novel Feedback-Edit Inference-Time-Scaling660

system, described by Wang et al. (2025b). The process begins with 20k first-turn prompts sourced661

from ShareGPT RyokoAI (2023) and WildChat-1M Zhao et al. (2024). We use Llama-3.1-Nemotron-662

70B-Instruct to generate multiple initial responses for each prompt. These responses are refined663

through a three-stage process: a dedicated Feedback model identifies areas for improvement, a664

dedicated Edit model makes targeted edits based on the feedback, and a dedicated Select model665

chooses the best edited response. The resulting dataset comprises 20k first-turn prompts and their666

corresponding high-quality responses.667

The detailed composition of our synthetic dataset is shown in Table 5.668

B.4 Synthetic Data Composition669

Domain / Split Samples % of total
Math 22,066,397 66.8%

Reasoning on 2,225,427 6.7%
Reasoning off 19,840,970 60.1%

Code 10,108,883 30.6%
Reasoning on 991,706 3.0%
Reasoning off 9,117,177 27.6%

Science 708,920 2.1%
Reasoning on 708,920 2.1%
Reasoning off 0 0.0%

Chat 39,792 0.12%
Reasoning on 8,574 0.03%
Reasoning off 31,218 0.09%

Instruction Following 56,339 0.17%
Safety 31,426 0.10%

Total 33,011,757 100%
Table 5: Synthetic data by domain with reasoning splits.

C Model-Specific SFT Training Details670

LN-Nano differently from other models below, undergoes a three-stage SFT pipeline using a global671

batch size of 256 using sequence packing with effective sequence length of 32k tokens. In the first672

stage, the model is fine-tuned exclusively on reasoning data from code, math, and science domains673

(Section B.1) with a learning rate of 1e−4 for four epochs. This prevents failure modes such as674

repetitive completions. In the second stage, we introduce non-reasoning data (Section B.2) mixed675

with reasoning samples, allowing the model to learn reasoning control. In the final stage, a smaller676

blend focused on chat, instruction-following, and tool-calling is used.677

LN-Super is trained on the full SFT dataset for a single epoch using a fixed learning rate of 5e−6,678

sequence length of 16k and a global batch size of 256. Smaller-scale runs suggested that performance679

improves up to 3–4 epochs with larger learning rates (5e−5), but training was constrained by680

computational and time limits. Recent works Wen et al. (2025) show that rejection fine-tuning can681

further improve performance; however, it does not yield gains in our experiments and is therefore682

omitted.683
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LN-Ultra is trained on the full dataset using sequence packing with effective sequence length of 24k684

and a global batch size of 256 to maximize token throughput—an essential strategy when fine-tuning685

large models with long-context reasoning data. Initial ablation runs indicated that higher learning686

rates such as 5e−5 generally improve outcomes, but consistently high learning rates caused training687

instability, including gradient explosions. To mitigate this, we implement a linear warmup to 1e−5,688

followed by cosine decay to 1e−6 with a warmup ratio of 10%. Despite these measures, training689

encountered gradient explosions and numerical instability after the first epoch. This required training690

resumption with reinitialized optimizer states, after which successful convergence was achieved.691

D Infrastructure692

D.1 Overview693

We primarily use NeMo-Aligner Shen et al. (2024) to perform RL training, where we use a de-694

velopment branch that implements GRPO and heterogeneous model support. We implements the695

generation stage using vLLM Kwon et al. (2023) and the training stage using Megatron-LM Shoeybi696

et al. (2020). The training and inference stages are co-located on the same GPUs.697

The total GPU count used was 72 nodes of 8xH100. The training model parallelism used was: tensor698

parallel=8 with sequence parallel, context parallel=2, pipeline parallel=18, and data parallel=2. The699

generation model parallelism was tensor parallel=8, and data parallel=72. The details of how this700

parallelization strategy is chosen is explained in D.2. Generation was performed in FP8, and training701

in BF16 with FP32 optimizer states.702

Each stage maintains its own set of model weights, which are synced at the start of each step. First, all703

training weights are all-gathered over the training pipeline parallel dimension, converted into vLLM704

format, and written into shared memory. Then all training stage memory is released or offloaded to705

host. Next, vLLM is awoken from sleep mode, loads the newly saved model weights from shared706

memory, and begins generating. After generations have finished, vLLM GPU memory is released707

using sleep mode=2, and all training memory is reloaded.708

D.2 Memory Profiling and Optimizations709

One of the major challenges in enabling the GRPO training of the LN-Ultra is memory management.710

The training jobs are scheduled to a shared cluster environment. In the cluster, each node has 8 H100711

GPUs, dual socket 32-core CPUs, and 2TB CPU DRAM. On the other hand, the model in BF16 type712

takes 253× 2 ≈ 500GB memory. Moreover, as mentioned in Section D.1, in order to improve GPU713

utilization, we determine to stack training and inference stages on the same set of nodes. Without714

careful memory management, it is very easy to encounter out-of-memory errors in both GPU and715

CPU memory allocations.716

In order to better track the memory usage over the course of training, we have developed three simple717

memory profiling tools to monitor the memory usage: GPU memory utilization using PyTorch, CPU718

memory utilization using psutil, and /dev/shm utilization using the df command. The GPU/CPU719

memory profilers help us track the GPU/CPU memory usage at different code pointers. The /dev/shm720

profiler is needed as we use /dev/shm to pass the weights from the trainer to the vLLM server, and the721

host is configured to allocate up to 1TB for the /dev/shm space.722

With the help of these profiling tools, we are able to pinpoint the specific memory allocations that723

cause out-of-memory errors, and then design solutions to overcome the issues. The first challenge724

is weight preparation. When we all-gather training weights across pipeline parallel stages, we have725

encountered extremely big tensors due to the heterogeneous architecture. One of the tensors has726

13B elements, and occupies 26B GPU memory in the BF16 type. We need to release unused GPU727

memory periodically, and move some of the tensor conversion operations to CPU in order to control728

the GPU memory usage in this stage. The second challenge is the vLLM GPU memory utilization.729

With tensor parallel equal to 8, we expect each GPU to keep 500/8 ≈ 62GB from the weights in730

BF16. Considering KV cache, activations, and GPU memory occupied by the trainer, we have a very731

tight budget for the vLLM. We have to disable the cudagraph feature to avoid GPU out-of-memory732

in vLLM. However, when we enable FP8 inference generation as explained in D.3, GPU memory733

budget becomes a lot looser, and we get to enable the cudagraph feature again. The final challenge734

is the GPU and CPU memory usage in the trainer. Tensor parallelism = 8 is a natural choice to735

18



partition the full model into the 8xH100 GPUs available in the same node. As the model architecture736

is heterogeneous, we need to insert identity layers in order to balance the pipeline stages in the737

pipeline parallelism. We want to have enough pipeline parallelism to avoid training OOM in GPU and738

checkpoint saving OOM in CPU. On the other hand, we also want to reduce the number of pipeline739

stages to reduce the communication costs. With all of the trade-offs, we find that the best pipeline740

parallelism setting is 18. The activations also consume a lot of memory, and we need to keep 18741

micro-batches in the case when pipeline parallelism is 18. We end up using context parallel = 2 and742

sequence parallel to reduce the activation memory consumption to prevent GPU OOM in training.743

With all these tuning, we finally choose tensor parallel=8 with sequence parallel, context parallel=2,744

pipeline parallel=18, and data parallel=2 to achieve > 90% utilization of the GPUs while avoiding745

any hosts from encountering GPU or CPU out-of-memory errors.746

D.3 FP8 Inference Generation747

We identify the generation stage as the dominant component of the step time. In order to improve748

performance, we implement a path to support the use of vLLM’s online FP8 generation mode, which749

executes all GEMMs in FP8 using per token activation scaling factors and per tensor weight scaling750

factors. We implement custom vLLM weight loaders capable of loading BF16 weights supplied by751

the training stage, and casting to FP8 weights and scaling factors at runtime. Because vLLM does not752

support directly initializing models in FP8, we also implement meta-weight tensor initialization to753

avoid materializing the full BF16 inference engine, which would cause an out-of-memory error in the754

GPU.755

In all, we observe a peak FP8 generation throughput of 32 tokens/s/GPU/prompt, a 1.8x generation756

speedup against BF16, and to our knowledge the highest decoding throughput observed in reasoning757

training at this scale. We observe a 1.4x speedup from FP8 generation alone, and an additional 0.4x758

from the reduction in memory usage, which allows us to enable vLLM’s cudagraph feature.759

E Additional Results and Analysis760

E.1 LN-Nano Detailed Results761

Table 6 shows that LN-Nano achieves strong performance across all reasoning benchmarks, including762

AIME25-I and LiveCodeBench, despite its small size. This demonstrates the effectiveness of our763

SFT pipeline and curated reasoning datasets in transferring structured reasoning to compact models.764

For LN-Nano, carefully balancing data-distribution across math, coding, and stem areas has been765

important to achieve near state-of-the-art accuracies at the SFT stage. For example, our early766

experiments showed worse accuracies especially in chemistry related questions, one of the major767

areas in GPQA-D. Upsampling chemistry related data samples in the STEM subset of the overall SFT768

blend helped to achieve higher GPQA-D accuracies. The RPO stages at the end of the post-training769

pipeline mainly targeted IFEval accuracy improvement as shown in Table 6.770

Task LN-Nano-SFT
Reasoning

LN-Nano
Reasoning

DeepSeek-R1
Distilled-Llama-8B

Llama-3.1
8B-Instruct

DeepSeek-R1
Distilled

on | off on | off Qwen-7B

GPQA-Diamond 53.5 | 33.3 54.1 | 39.4 49.0 25.3 49.1
AIME24 62.5 | 3.3 61.3 | 3.0 50.4 10.0 55.6
AIME25-I 51.6 | 6.6 47.1 | 0.0 40.0 10.0 41.7
MATH500 94.4 | 38.0 95.4 | 36.6 89.1 50.4 92.8
BFCL V2 Live 62.9 | 62.6 63.9 | 63.6 37.8 44.3 39.2
LiveCodeBench (2408–2502) − | − 46.6 | − 39.6 11.8 37.6
IFEval 69.9 | 69.9 79.29 | 82.1 73.4 81.8 67.6

Table 6: LN-Nano and LN-Nano-SFT versus comparably sized models, split by Reasoning mode.

E.2 Artificial Analysis Comparison771

According to Artificial Analysis (shown in Figure 6), an independent benchmarking and analysis772

company focused on evaluating artificial intelligence models and API providers, LN-Ultra is the773
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most intelligent open-sourced model as of April 2025. This release represents one of the largest774

contributions to the open source community in support of developing reasoning models.775

Figure 6: As of April 2025, our flagship model LN-Ultra is the most “intelligent” open model
according to Artificial Analysis.
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