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Abstract

We introduce the Llama-Nemotron series: open, heterogeneous reasoning models
in three sizes—Nano (8B), Super (49B), and Ultra (253B)—that deliver strong
reasoning, inference efficiency, and a permissive license. Our training pipeline com-
bines neural architecture search, knowledge distillation, and a reasoning-focused
post-training stage with supervised fine-tuning and large-scale reinforcement learn-
ing. Our large-scale RL training leverages exploration-driven curriculum and data
filtering strategies to systematically challenge the model with increasingly difficult
reasoning tasks, enabling it to discover and refine complex problem-solving chains
beyond the capabilities of supervised learning. This approach allows the model to
autonomously explore new reasoning strategies and surpass teacher performance
on challenging benchmarks. Ultra achieves significantly higher GPQA accuracy
and outperforms DeepSeek-R1 and other open models on key reasoning tasks.
Llama-Nemotron models are also the first open-source models to support a dy-
namic reasoning toggle. We open-source all data, models, and code to support
open research.

1 Introduction

In recent years the pace of language model development has been increasing, leading to rapid
improvements in performance across a wide range of natural language processing tasks. Most
recently, the introduction of reasoning models such as OpenAI o1 OpenAI (2025) and DeepSeek-R1
DeepSeek-AI et al. (2025) has marked a new phase of advancement, resulting in models that can
think deeply about problems before answering. A defining characteristic of these models is their
long responses, often containing long exploratory chains of thought, self-verification, reflection, and
backtracking. Such long responses enable them to achieve state-of-the-art performance across a wide
variety of tasks, including PhD-level STEM questions and competition-level math problems. Central
to these advances is the use of exploration during reinforcement Learning training to discover new
reasoning strategies and improve robustness.

As reasoning capabilities increasingly depend on scaling at inference time, designing models for
efficient inference is essential. Inference efficiency is now a core factor for model intelligence and
agentic pipelines. Equally important is giving users control over reasoning depth: not all queries
benefit from detailed multi-step reasoning. The reasoning toggle enables users to actively explore
different reasoning strategies and allocate resources appropriately for each task Anthropic (2025).

Here, we present the Llama-Nemotron (LN) family: open, heterogeneous reasoning models in
three sizes—LN-Nano (8B), LN-Super (49B), and LN-Ultra (253B)—optimized for both inference
efficiency and flexible reasoning. Notably, LN-Ultra outperforms DeepSeek-R1 while fitting on a
single 8xH100 node and achieving higher inference throughput. These models are derived from
Llama 3.1 and Llama 3.3 Grattafiori et al. (2024), and are optimized for high-throughput inference
while delivering strong reasoning performance and a context length of 128K tokens. Each model
supports a reasoning toggle that lets users dynamically switch between standard chat and reasoning
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Figure 1: LN-Ultra delivers leading performance among open models across a wide range of reasoning
and non-reasoning benchmarks.

modes at inference time using a lightweight system prompt: "detailed thinking on/off". This
design enables both cost-effective general-purpose use and detailed multi-step reasoning, without
requiring separate models or architectures.

The Llama-Nemotron models are constructed in five stages. The first stage consists of optimizing
inference efficiency with neural architecture search (NAS) from the Llama 3 series of models and
applying Feed-Forward Network (FFN) Fusion. The second stage includes recovery training with
knowledge distillation and continued pretraining. The third stage is supervised fine-tuning (SFT) on
a mix of standard instruction data and reasoning traces from strong teachers such as DeepSeek-R1,
which enables the model to perform multi-step reasoning. The fourth stage involves large-scale
reinforcement learning on complex mathematics and STEM datasets, a crucial step for enabling
the student model to surpass its teacher’s capabilities. For LN-Ultra, this phase yields a substantial
performance boost on the GPQA-D benchmark, cementing it as the best open-source model for
scientific reasoning. To enable such large-scale RL training, we develop a custom training framework
that contains a number of optimizations, most notably generation in FP8. The final stage is a
short alignment phase focused on instruction following and human preference. In this report, we
place particular emphasis on the post-training stages—especially our large-scale reinforcement
learning runs—where exploration-driven curriculum learning and data filtering strategies are central.
These approaches systematically challenge the model with progressively more difficult reasoning
tasks, enabling it to autonomously discover, refine, and generalize complex reasoning behaviors
that go beyond the limitations of supervised learning and are critical for achieving state-of-the-art
performance on scientific reasoning benchmarks.

As part of this work, we also release the Llama-Nemotron-Post-Training-Dataset, a carefully curated
dataset used during the supervised and reinforcement learning stages of training for LN-Nano,
LN-Super, and LN-Ultra. It is designed to target key capabilities such as mathematical reasoning,
coding, science, and instruction following, and consists of synthetic responses generated by a range
of open-source models. Prompts and responses are filtered for quality, correctness, and complexity to
provide strong training signals across a diverse set of tasks.

2 Synthetic Data and Supervised Fine-Tuning

Modern reasoning models require not only strong reasoning capabilities but also efficient inference
for practical deployment. To this end, we construct inference-optimized base models using the Puzzle
neural architecture search (NAS) framework Bercovich et al. (2024), which applies techniques such
as attention removal, FFN compression, and FFN fusion Bercovich et al. (2025) to compress and
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accelerate Llama 3 Instruct models. This yields two model classes: LN-Super, a compressed variant
of Llama 3.3-70B-Instruct that achieves 5× throughput improvement over the original model while
running efficiently on a single NVIDIA H100 GPU, and LN-Ultra, derived from Llama 3.1-405B-
Instruct and optimized for 8-GPU H100 nodes, delivering 1.71× latency improvements. Full details
of the architecture search and optimization process are provided in Appendix A.

Supervised fine-tuning (SFT) plays a critical role in transferring reasoning capabilities into the
Llama-Nemotron models. While prior stages such as NAS and CPT focus on architectural efficiency
and broad knowledge transfer, SFT helps distill reasoning behavior from strong teacher models like
DeepSeek-R1 DeepSeek-AI et al. (2025) by training on task-specific reasoning traces. For SFT, we
curate both reasoning and non-reasoning samples across math, code, science, and general domains.
The key mechanism is the use of system instructions ("detailed thinking on" and "detailed
thinking off") to enable the model to toggle reasoning behavior at inference time. This setup
allows the model to learn to toggle reasoning behavior at inference time based on the prompt. The
data is generated using current state-of-the-art reasoning models like DeepSeek-R1, with extensive
filtering and decontamination processes to ensure quality and prevent benchmark contamination. For
math reasoning data, we use a pipeline described by Moshkov et al. (2025); for code reasoning,
we follow the multi-stage process of Ahmad et al. (2025); and for general domain data, we use
the generation pipeline from NVIDIA (2024c). The complete data curation process is provided in
Appendix B. Recent studies DeepSeek-AI et al. (2025); OpenThoughts (2025); BespokeLabs (2025);
Wen et al. (2025) have shown that this reasoning SFT can substantially improve performance on
complex reasoning tasks. Our results summarized in Table 1 for LN-Super and Table 2 for LN-Ultra
confirm these findings, highlighting the importance of training on large-scale, high-quality reasoning
traces during SFT for eliciting robust reasoning abilities in downstream usage.

General Methodology. All models are trained using a token-level cross-entropy loss over the
instruction-tuning data. For most settings, training batches mix reasoning and non-reasoning
data, where prompts are paired with responses conditioned on the respective system instruction—
"detailed thinking on/off". We observe that models require higher learning rates to effec-
tively learn from long reasoning traces, especially due to sequence-length-dependent token loss
averaging. Extended training over multiple epochs improves performance, particularly for smaller
models, a trend also observed in prior work Wen et al. (2025). We use Adam optimizer for training
all models. Using a cosine learning rate decay with linear warmup to around 10% of total steps helps
with stability of training, which was crucial for LN-Ultra. For detailed, model-specific SFT training
procedures, please refer to Appendix C.

3 RL for Reasoning

As discussed in Section 2 and shown in Table 2, models can acquire strong capabilities through super-
vised fine-tuning by distilling knowledge from powerful teachers. However, distillation inherently
limits the student’s performance to that of the teacher, especially when the student’s base model is
more capable than the teacher. For example, with supervised fine-tuning, LN-Ultra can approach
but not surpass the performance of DeepSeek-R1. To enable the student to exceed its teacher, we
turn to large-scale reinforcement learning (RL), which empowers the model to explore new strategies
and engage in self-improvement beyond imitation. This exploration-driven approach is central to
advancing reasoning capabilities, as it allows the model to autonomously discover and refine complex
problem-solving chains. Consistent with the findings of DeepSeek-AI et al. (2025), our preliminary
experiments indicate that RL yields suboptimal results for smaller models compared to distillation.
Given these observations and resource constraints, we apply reasoning RL exclusively to LN-Ultra,
enabling it to surpass its teacher and set a new state-of-the-art on GPQA among open models.

Training Procedure

For LN-Ultra, we enhance the model’s scientific reasoning capabilities through large-scale rein-
forcement learning, leveraging the Group Relative Policy Optimization (GRPO) algorithm Shao
et al. (2024). We use a rollout prompt size of 72 and sample 16 responses per prompt with
temperature = 1 and top_p = 1. During training, we set global batch size as 576 and con-
duct 2 gradient updates per rollout. We train our model until it achieves convergence on reasoning
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tasks. Figure 2 shows the accuracy score on GPQA-Diamond as our training progresses. With our
optimized training infrastructure (see Section D), the whole training takes about 140k H100 hours.
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Figure 2: Accuracy on GPQA-Diamond throughout reasoning RL training for LN-Ultra.

In this training phase, we leverage two types of rewards:

Accuracy rewards: For each training example, a ground truth answer (a number, a sentence, or a
paragraph) is provided. We serve the Llama-3.3-70B-Instruct model to judge whether the policy’s
predictions match the ground truth answer.

Format rewards: Following DeepSeek-AI et al. (2025), we employ a format reward to ensure the
model puts its thinking process between "<think>" and "</think>" tags when using "detailed
thinking on" mode. We also check for the non-existence of thinking tags when using "detailed
thinking off" mode.

To ensure that the model is adequately challenged and encouraged to explore, we preprocess the data
by independently generating 8 responses per question using LN-Super, calculating the pass rate, and
then intentionally discarding prompts with a pass rate of 0.75 or higher. This increases the difficulty
of the training data and incentivizes exploration of less certain cases. Besides data filtering, we also
find curriculum training to be helpful, as it allows the model to gradually learn from a progression of
tasks with increasing difficulty. Specifically, we implement a progressive batching strategy leveraging
pre-calculated pass rate as a difficulty metric. Given a fixed batch size, the core of our approach
involves dynamically calculating a target distribution of pass rates for each sequential batch. This
distribution is modeled using a Gaussian function centered on a difficulty level that progresses from
high pass rates (easier examples) for initial batches to low pass rates (harder examples) for later
batches. Samples are allocated to each batch primarily based on this target distribution, considering
the available count for each pass rate, with any remaining batch capacity filled by prioritizing pass
rates with the largest remaining sample pools. This ensures a controlled, gradual increase in average
sample difficulty across batches, while samples inside a batch are randomly shuffled. Figure 3
demonstrates the effectiveness of our curriculum strategy, which stabilizes the training process and
achieves higher accuracy.

4 RL for Preference Optimization

4.1 Instruction Following

After training for scientific reasoning, we do a short RL run optimizing instruction following capabili-
ties for the LN-Super and LN-Ultra. We use a similar verification setup as Zhou et al. (2023), and
generate synthetic instruction following prompts that contain from one to ten detailed instructions. We
run RL with the RLOO algorithm Ahmadian et al. (2024) for less than 120 steps using our instruction
following verifier as a reward, with a batch size of 128 prompts. We find such training boosts
performance on conventional instruction following benchmarks as well as reasoning benchmarks.
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Figure 3: Curriculum training stabilizes learning and enables higher peak accuracy on GPQA-D.

4.2 RLHF

We use RLHF to improve the model on general helpfulness and chat capabilities while carefully
maintaining its proficiency in other areas. As shown in Table 1, LN-Super, a 49B model, achieves an
Arena Hard score of 88.3, beating proprietary models such as Claude 3.5 Sonnet and GPT-4o-2024-
05-13 as well as much larger open models such as Llama-3.1-405b-instruct and Mistral-large-2407.

To achieve this, we use iterative online RPO NVIDIA (2024c); Sun et al. (2025) to maximize
the reward predicted by Llama-3.1-Nemotron-70B-Reward NVIDIA (2024b) over prompts from
HelpSteer2 Wang et al. (2025a). Two iterations of online RPO increase the Arena Hard score from
69.1 to 88.1. More interestingly, this process also improves the model’s performance on all other
adopted benchmarks except IFEval. Since neither the dataset nor the reward model is optimized for
math, coding, science, or function calling, we speculate that RLHF helps the model better utilize
its existing knowledge and skills. We follow the same process for LN-Ultra, except that GRPO is
employed. For each prompt, we sample 8 responses. For LN-Nano, we conduct two rounds of offline
RPO with on-policy data. We use a mixture of reasoning and non-reasoning data with appropriate
system prompts in the first round of RPO to improve reasoning control, followed by a second round
with on-policy generations targeting instruction following improvements.

5 Evaluations on Reasoning and Chat Benchmarks

We evaluate all Llama-Nemotron models across two benchmark categories: reasoning and non-
reasoning.

Reasoning Benchmarks. These include the American Invitational Mathematics Examination for
years 2024 (AIME24) and 2025(AIME25), GPQA-Diamond Rein et al. (2024), LiveCodeBench Jain
et al. (2024), and MATH500 Lightman et al. (2023). AIME25 is split into two parts: AIME25-I and
AIME25-II, each containing 15 problems. For LN-Nano, we use AIME25-I only; for LN-Super
and LN-Ultra, we evaluate on the full 30-question set. As AIME25 was released recently, it is less
likely to overlap with training data. Thus, stronger performance on this benchmark is indicative of
better generalization, especially on math problems outside the training distribution. LiveCodeBench
contains questions indexed by date, and we report results on two specific ranges—(2408–2502) and
(2410–2502)—to enable fair comparison with previously reported baselines.

Non-Reasoning Benchmarks. These include IFEval(Strict-Instruction) Zhou et al. (2023) for
instruction following, BFCL V2 Live Yan et al. (2024) for tool use via function calling, and Arena-
Hard Li et al. (2024) for evaluating alignment with human conversational preferences.

All evaluations are conducted at 32k context length, even though training was performed with a
maximum context length of 16k for LN-Super and 24k for LN-Ultra. We observed consistent
improvements when evaluating at expanded context lengths, as shorter limits can truncate long
reasoning traces and lead to incomplete generations—particularly on benchmarks that require multi-
step reasoning. We use temperature 0.6 and top-p 0.95 for reasoning-on evaluations, and temperature
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Task LN-Super-SFT
Reasoning

LN-Super
Reasoning

DeepSeek-R1-
Distilled-Llama-70B QwQ-32B Llama-3.3

70B-Instruct
on | off on | off

GPQA-Diamond 63.8 | 46.6 66.7 | 50.0 65.2 58.8 50.5
AIME24 63.3 | 17.5 67.5 | 16.7 70.0 79.5 25.8
AIME25 50.0 | 6.7 60.0 | 16.7 55.0 65.8 6.7
MATH500 93.2 | 76.8 96.6 | 74.0 94.5 96.2 73.8
BFCL V2 Live 73.3 | 62.5 73.7 | 73.9 65.5 71.6 60.4
LiveCodeBench (2408–2502) 40.9 | 28.7 45.5 | 29.7 57.5 63.4 -
IFEval 81.9 | 83.0 89.2 | 89.0 85.1 86.3 92.1
Arena Hard − | − 88.3 | − 65.4 90.5 72.9

Table 1: LN-Super versus comparably sized models, split by Reasoning mode.

0 (greedy decoding) for reasoning-off. We generate up to 16 completions per prompt and report
average pass@1 accuracy. Checkpoints are selected based on performance on a subset of reasoning
benchmarks. As observed in prior works Moshkov et al. (2025), evaluation on reasoning-heavy
tasks such as AIME can exhibit high variance due to small dataset size and generation randomness.
Reported numbers may vary across repeated runs or sampling strategies.

LN-Nano

Although LN-Nano is the smallest model in the Llama-Nemotron series, it achieves strong per-
formance across all reasoning benchmarks, including AIME25-I and LiveCodeBench, despite its
compact size. This demonstrates the effectiveness of our SFT pipeline and curated reasoning datasets
in transferring structured reasoning to smaller models. Detailed results and analysis for LN-Nano are
provided in Appendix E.1.

LN-Super

Table 1 compares LN-Super to other models in its weight class where it performs competitively across
both reasoning and non-reasoning tasks. In reasoning-off mode, LN-Super performs on par with
Llama-3.3-70B, the model it based on. In reasoning-on mode, it outperforms competing models such
as DeepSeek-R1-Distilled-Llama-70B, providing strong reasoning capabilities without sacrificing
instruction following. Reasoning-focused SFT reduces IFEval scores, so we apply a dedicated
RL stage (see Section 4.1) to restore instruction-following ability. Our experimental results reveal
another trade-off: optimizing for instruction following (as measured by IFEval) can compromise
conversationality (as measured by Arena-Hard), and conversely, prioritizing conversationality may
detract from instruction following performance. To address this, we applied model merging to
LN-Super, selecting a checkpoint from the Pareto frontier that balances these objectives. Due to
mixed outcomes, we did not adopt this approach for other models. The only area where LN-Super
underperforms is on LiveCodeBench, which is attributable to its SFT phase being conducted on an
earlier version of the dataset, unlike LN-Nano and LN-Ultra. We plan to address this and improve
coding-related reasoning performance in a future model refresh.

LN-Ultra

Table 2 and Figure 1 show that LN-Ultra matches or outperforms all existing open-weight models
across reasoning and non-reasoning benchmarks. It achieves state-of-the-art performance on GPQA
among open models, demonstrating the efficacy of our large-scale reinforcement learning training.
Unlike prior state-of-the-art models such as DeepSeek-R1, which require 8×H200, LN-Ultra is
optimized to run efficiently on a single 8×H100 node, offering improved inference throughput and
deployment efficiency.

From Table 2, we observe that the LN-Ultra-SFT model approaches the performance of DeepSeek-R1
on several reasoning benchmarks, including GPQA and AIME. However, the RL stage is critical for
surpassing DeepSeek-R1, particularly on GPQA. This highlights the complementary strengths of SFT
and RL: SFT builds a strong foundation by distilling reasoning behavior from teacher models, while
RL is essential for surpassing teacher performance and further enhancing reasoning capabilities.
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We also find that there is a trade-off between the extent of SFT training and the success likelihood
of subsequent RL. Although we had access to SFT checkpoints with higher benchmark scores, we
initialized RL from an earlier checkpoint to improve final RL outcomes.

Task LN-Ultra-SFT
Reasoning

LN-Ultra
Reasoning

DeepSeek
R1

Llama-4
Behemoth

Llama-4
Maverick

Llama-3.1
405B-Instruct

on | off on | off

GPQA-Diamond 66.4 | 46.0 76.0 | 56.6 71.5 73.7 69.8 43.4
AIME24 74.6 | 46.7 80.8 | 20.0 79.8 – – 20.0
AIME25 60.4 | 16.7 72.5 | 16.7 70.0 – – 0.0
MATH500 96.6 | 84.4 97.0 | 80.4 97.3 95.0 – 66.2
BFCL V2 Live 74.6 | 74.9 74.1 | 73.6 – – – 58.7
LiveCodeBench (2408–2502) 60.6 | 30.1 66.3 | 29.0 65.9 – – –
LiveCodeBench (2410–2502) 61.8 | − 68.1 | − – 49.4 43.4 –
IFEval 83.2 | 79.4 88.9 | 89.5 88.8 – – 89.2
Arena Hard − | − 87.0 | − 92.0 – – 66.2

Table 2: LN-Ultra versus the strongest open-weight models, split by reasoning mode.

6 Evaluations on Judging Capability

In addition to reasoning and chat capabilities where the models are trained for, we evaluate our models
on an out-of-distribution task, LLM-as-a-Judge, to further assess their performance. Specifically, we
test them on JudgeBench Tan et al. (2025), where the task is to differentiate between high-quality
and low-quality responses. As shown in Table 3, our models outperform top proprietary and open-
source models. Notably, LN-Ultra emerges as the best open-source model, significantly surpassing
DeepSeek-R1 and trailing only behind o3-mini(high). Furthermore, LN-Super also outperforms
o1-mini, demonstrating that our models exhibit strong generalization capabilities across diverse tasks.

Model Knowledge Reasoning Math Coding Overall
o1-preview 66.23 79.59 85.71 85.71 75.43
o1-mini 58.44 62.24 82.14 78.57 65.71
o3-mini(low) 62.99 69.39 83.93 83.33 70.57
o3-mini(medium) 62.34 86.73 85.71 92.86 76.57
o3-mini(high) 67.53 89.80 87.50 100.0 80.86
DeepSeek-R1 59.09 82.65 80.36 92.86 73.14

LN-Super 64.94 67.35 76.79 83.33 69.71
LN-Ultra 70.13 81.63 89.29 92.86 79.14

Table 3: Llama-Nemotron models demonstrate strong performance on JudgeBench.

7 Conclusions

We present the Llama-Nemotron series of models which perform competitively with state-of-the-art
reasoning models with efficient inference capabilities. We find that in the presence of a strong
reasoning teacher, SFT on high-quality synthetic data generated by such teacher is very effective in
adding reasoning capabilities to smaller models. However, to push reasoning capabilities beyond what
is possible from a teacher reasoning model alone, it is necessary to run large-scale, curriculum-driven
reinforcement learning from verifiable rewards training. This stage is particularly important for
enabling the model to autonomously explore new reasoning strategies and problem-solving chains,
moving beyond imitation to genuine innovation.

Our results highlight that exploration, both in the form of data curation and through reinforcement
learning, plays a key role in advancing model reasoning abilities. We also show that to produce a
great all-around model, e.g. a model which performs well on a wide variety of benchmarks, it is
necessary to have several stages in the post-training pipeline.
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Appendix

A Creating Inference-Optimized Models

The LN-Super and LN-Ultra models are optimized for efficient inference using the Puzzle frame-
work Bercovich et al. (2024). Puzzle is a neural architecture search (NAS) framework that transforms
large language models into hardware-efficient variants under real-world deployment constraints, as
illustrated in Figure 4. Starting from a Llama 3 Instruct model (Llama 3.3-70B-Instruct for LN-Super
and Llama 3.1-405B-Instruct for LN-Ultra), Puzzle applies block-wise local distillation to build
a library of alternative transformer blocks. Each block is trained independently and in parallel to
approximate the function of its parent block while improving computational properties such as latency,
memory usage, or throughput. This process allows each alternative block to approximate the original
behavior with a certain accuracy-efficiency tradeoff profile; that is, some blocks in the library are
more efficient but may incur some quality degradation—introducing an explicit tradeoff between
computational cost and model accuracy. The block variants include:

• Attention removal: Some blocks omit the attention mechanism entirely, reducing both
compute and KV-cache memory consumption.

• Variable FFN dimensions: The feed-forward network’s intermediate size is varied, enabling
compression at different granularity levels (e.g., 87%, 75%, 50%, down to 10% of the
original hidden size).

While Puzzle supports additional operations—including grouped-query attention (GQA) Ainslie
et al. (2023) with different numbers of key-value heads, linear alternatives to attention, and no-op
substitutions—empirical evaluation showed that attention removal and FFN compression were the
most effective for optimizing the LN-Super and LN-Ultra models in terms of overall throughput and
memory savings.

Once the block library is built, Puzzle assembles a complete model by selecting one block per layer.
This selection is governed by a mixed-integer programming (MIP) solver that identifies the most
efficient configuration under a given set of constraints, such as hardware compatibility, maximum
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Figure 4: Overview of the Puzzle framework.

allowed latency, total memory budget, or desired inference throughput. Because Puzzle supports
multiple block variants per layer with different accuracy-efficiency tradeoff profiles, it enables users
to precisely target any point on the accuracy-efficiency Pareto frontier. For example, Puzzle can
generate models that meet specific constraints relevant to agentic systems or deployment pipelines –
such as bounded memory use or tight end-to-end response time.

Vertical Compression with FFN Fusion. For the LN-Ultra model, we introduce an additional
compression technique called FFN Fusion Bercovich et al. (2025), designed to reduce sequential
depth and improve inference latency. This technique leverages a structural property that emerges
after Puzzle removes some attention layers: the model often contains consecutive FFN blocks.
FFN Fusion identifies such sequences and replaces them with fewer, wider FFN layers that can be
executed in parallel. This reduces the number of sequential steps without compromising expressivity,
and significantly improves compute utilization—especially on multi-GPU setups where inter-layer
communication overhead is non-negligible.

Deployment Constraints and Efficiency Targets

LN-Super is optimized to run efficiently on a single NVIDIA H100 GPU with tensor parallelism 1
(TP1). Using Puzzle, we produce a model that achieves a 5× throughput speedup over Llama 3.3-
70B-Instruct at batch size 256 and TP1. With one H100 GPU, even when Llama 3.3-70B-Instruct
is run at its optimal configuration with TP4, LN-Super at TP1 still delivers a ≥2.17× throughput
advantage. The model is also optimized under a constraint of approximately 300K cached tokens
(batch size × sequence length), measured at FP8 precision on a single H100 GPU. For instance, this
corresponds to processing batch size 16 and sequence length 18,750.

LN-Ultra is optimized for a full H100 node (8 GPUs). During Puzzle’s architecture search phase,
the model is constrained to achieve at least a 1.5× latency reduction over Llama 3.1-405B-Instruct.
After applying FFN Fusion, the final model achieves a 1.71× latency improvement. LN-Ultra is also
optimized under cached tokens constraints, supporting up to 3M tokens at FP8 precision and 600K
tokens at BF16 precision on an H100 node.

Figure 5 illustrates the trade-off between GPQA-Diamond accuracy (%) and processing throughput
(tokens/s) for two settings. Notably, LN-Ultra consistently outperforms DeepSeek-R1 and Llama-3.1-
405B in both accuracy and efficiency across these settings, clearly positioning it as a superior choice
on the accuracy-throughput Pareto curve.

Post-NAS Training: Knowledge Distillation and Continued Pretraining

Following the NAS phase, both LN-Super and LN-Ultra undergo additional training to improve
inter-block compatibility and recover any quality loss introduced during blockwise substitution.

• LN-Super is trained for 40B tokens using a knowledge distillation objective over the
Distillation Mix dataset introduced by Bercovich et al. (2024).
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Figure 5: GPQA-Diamond Accuracy vs. Throughput. We measure on two settings, S1: 500/2000
(ISL/OSL); S2: 5000/500 (ISL/OSL). Both with 250 concurrent users. Models are served with FP8.
Note that we use 8×H100 for LN-Ultra and Llama 3.1 405B, but 8×H200 for Deepseek-R1 because
of its size.

• LN-Ultra is first trained with knowledge distillation for 65B tokens using the same distillation
dataset, followed by 88B tokens of continued training on the Nemotron-H phase 4 pretraining
dataset NVIDIA et al. (2025).

This final pretraining step allows LN-Ultra to not only match but surpass the reference model
Llama 3.1-405B-Instruct in key benchmarks, demonstrating that aggressive architecture optimization
can be reconciled with high model performance through short distillation and pretraining (see
Table ??).

Task LN-Ultra
CPT

Llama-3.3
70B-Instruct

Llama-3.1
405B-Instruct

MMLU 88.1 81.4 88.6
MATH500 80.4 73.6 69.6
HumanEval 88.4 84.1 86.0
RULER 128K 83.2 52.2 73.7

Table 4: Comparison of LN-Ultra after the continued pretraining phase (before supervised and
reinforcement learning) to Llama 3 models.

B Synthetic Data

We curate both reasoning and non-reasoning data for supervised fine-tuning. For reasoning samples,
we include the system instruction "detailed thinking on", and for non-reasoning samples, we
use "detailed thinking off". This setup allows the model to learn to toggle reasoning behavior
at inference time based on the prompt. Below, we describe our focused data curation process for each
mode.

B.1 Reasoning on

B.1.1 Math

To construct the math reasoning portion of our data we used a pipeline described by Moshkov et al.
(2025). A high-level overview of this pipeline is provided below, with full details available in the
original publication.

We collect a large set of mathematical problems from Art of Problem Solving (AoPS) community
forums. We include all forum discussions except “Middle School Math” which was found to be
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too easy and unhelpful for training in our early experiments. After retrieving forum discussions we
perform the following steps to extract problems and synthesize new solutions. We use Qwen2.5-32B-
Instruct Qwen (2024) for all steps in the pipeline unless noted otherwise.

Problem Extraction: We prompt an LLM to identify and extract all problems from the initial
forum posts. While most posts contain a single problem, some include multiple problems or none at
all.

Problem Classification: Each extracted problem is classified into the following categories:

• Proof problem or not

• Multiple choice question or not

• Binary question (yes-or-no answer) or not

• Valid problem or not. For example, problems that are lacking context or referring to other
problems are considered invalid.

We remove all proof problems, multiple-choice questions, binary questions, and invalid problems
from the final dataset.

Answer Extraction: We extract the final answer from forum discussions, without attempting to
extract full solutions. Only the final answer expression is extracted to enable automatic correctness
checking.

Benchmark Decontamination: Following Yang et al. (2023) we use an LLM-based comparison to
remove questions that closely resemble those in popular math benchmarks.

Solution generation: We prompt DeepSeek-R1 DeepSeek-AI et al. (2025) and Qwen2.5-Math-7B-
Instruct Qwen (2024) to solve each problem multiple times producing “reasoning” and “non-reasoning”
solutions respectively. We use 16 generations per problem for DeepSeek-R1 and 64 generations per
problem for Qwen2.5-Math-7B-Instruct.

Solution Filtering: As the final filtering step, we remove any solutions that do not reach the
expected answer. Predicted and expected answers are compared by prompting Qwen2.5-32B-
Instruct Qwen (2024) to judge their equivalence in the context of the problem. For problems
where the final answer cannot be extracted, we treat the most common answer across all available
solution candidates as the ground truth.

All prompts and scripts necessary to run the above pipeline are available in NeMo-Skills.

B.1.2 Code

The code reasoning dataset is constructed via a multi-stage process involving question collection,
solution generation, and post-processing steps, as described by Ahmad et al. (2025).

Question Collection and Verification: We aggregate 28,904 unique competitive programming
questions from diverse sources including TACO Li et al. (2023), APPS Hendrycks et al. (2021a),
CodeContests Li et al. (2022), and CodeForces Penedo et al. (2025a), after performing exact-match
deduplication. To ensure evaluation integrity against benchmarks like Jain et al. (2025); Li et al.
(2022); Chen et al. (2021); Austin et al. (2021), we rigorously check for contamination using the
method from Yang et al. (2023). This involves cosine similarity checks and semantic evaluation
by LLM judges (Llama-3.3-70B Grattafiori et al. (2024), Qwen2.5-32B Qwen (2024)). Manual
verification confirms negligible overlap (< 0.3%), validating the question set.

Solution Generation: We employ DeepSeek-R1 DeepSeek-AI et al. (2025) to generate multiple
solutions per question, primarily in Python, with C++ solutions also generated for specific benchmark
testing Penedo et al. (2025b). Solutions are generated using Nucleus Sampling Holtzman et al. (2020)
(temperature 0.6, top-p 0.95) via SGLang Zheng et al. (2024), explicitly prompting for reasoning
steps enclosed in <think> tags.
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Post-Processing and Refinement: We refine generated responses by verifying the presence of
reasoning traces, extracting solution code segments (demarcated by python...), removing samples
with code inside reasoning tags, and validating syntax using Tree Sitter TreeSitter (2013). This
process yields approximately 488K Python samples.

Data Scaling Insights: While some studies suggest small datasets suffice for inducing reasoning
HuggingFace (2025); Muennighoff et al. (2025); BespokeLabs (2025); OpenThoughts (2025), es-
pecially in mathematics, our experiments indicate large-scale data is crucial for high performance
on coding benchmarks. An ablation study scaling the dataset from 25k to 736k samples showed
continuous improvement. Initial scaling (25k-100k) provides gains, but focusing generation on harder
problems from CodeContests before expanding to the full question set yields the most significant
performance boosts. The scaling curve does not plateau, emphasizing the importance of large, diverse,
and challenging problem sets for advancing code generation capabilities, suggesting a need for
methods to create or source more difficult problems at scale.

B.1.3 Science

We curate a diverse set of open-ended and multiple-choice questions (MCQs) from both in-house and
external sources. These include question-answer pairs extracted from StackOverflow Stack Exchange
Data (2024) and synthetically generated MCQ questions.

Synthetic Question Generation: To create synthetic questions, we define a broad set of aca-
demic topics (e.g., physics, biology, chemistry) and their subtopics using Nemotron-4-340B-
Instruct NVIDIA (2024c). We specify multiple difficulty levels to ensure a diverse and scalable
dataset. We prompt Qwen2.5 models Qwen (2024) to generate MCQs conditioned on the topic,
subtopic, and difficulty level. Each question is verified for format compliance. Following the
OpenMathInstruct-2 Toshniwal et al. (2025) pipeline, we augment the dataset by prompting Qwen2.5
to generate variations of the original questions.

Benchmark Decontamination: To ensure fair evaluation, we perform decontamination on the
entire set of questions—both real and synthetic—against the test sets of major science benchmarks
such as GPQA Rein et al. (2023), MMLU Hendrycks et al. (2021b), and MMLU-Pro Wang et al.
(2024), following the approach outlined in Yang et al. (2023).

Solution Generation: For all questions in the dataset, we use DeepSeek-R1 DeepSeek-AI et al.
(2025) to generate multiple reasoning traces. For questions without ground-truth answers, we apply
majority voting across generated solutions to infer the most likely correct answer.

B.1.4 General

For general domain data, we follow the generation pipeline established in NVIDIA (2024c). We
generate synthetic prompts covering various tasks such as open QA, closed QA, extraction, and brain-
storming. We also source real-world user prompts from publicly available datasets with permissive
licenses. For responses, we prompt DeepSeek-R1 DeepSeek-AI et al. (2025) for multiple generations
and perform rejection sampling using the Llama-3.1-Nemotron-70B reward model NVIDIA (2024b).
This ensures that the responses are of high quality.

B.2 Reasoning off

To train the model to follow the reasoning toggle instruction, we construct paired data where each
prompt has both a reasoning response and a non-reasoning response. Specifically, we randomly
sample prompts from the reasoning dataset in Section B.1 and generate corresponding non-reasoning
responses using Llama-3.1-Nemotron-70B-Instruct NVIDIA (2024a) for general domain prompts
and Llama-3.3-70B-Instruct for others. Each response is tagged with the appropriate system in-
struction—“detailed thinking on” for reasoning and “detailed thinking off” for non-
reasoning. This pairing enables the model to learn to modulate its reasoning behavior based on the
system prompt.

Responses are then filtered according to ground truth answers or reward models. We also leverage
public permissive datasets on function calling and safety, augmenting them to train the model and
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improve its capabilities in these areas. To further improve performance on general tasks, we use a
feedback-edit system, described in Section B.3.

B.3 General-Domain Open-ended Inference-Time Scaling

To generate high-quality general-domain open-ended responses, we employ Llama-3.1-Nemotron-
70B-Instruct NVIDIA (2024a) in conjunction with a novel Feedback-Edit Inference-Time-Scaling
system, described by Wang et al. (2025b). The process begins with 20k first-turn prompts sourced
from ShareGPT RyokoAI (2023) and WildChat-1M Zhao et al. (2024). We use Llama-3.1-Nemotron-
70B-Instruct to generate multiple initial responses for each prompt. These responses are refined
through a three-stage process: a dedicated Feedback model identifies areas for improvement, a
dedicated Edit model makes targeted edits based on the feedback, and a dedicated Select model
chooses the best edited response. The resulting dataset comprises 20k first-turn prompts and their
corresponding high-quality responses.

The detailed composition of our synthetic dataset is shown in Table 5.

B.4 Synthetic Data Composition

Domain / Split Samples % of total
Math 22,066,397 66.8%

Reasoning on 2,225,427 6.7%
Reasoning off 19,840,970 60.1%

Code 10,108,883 30.6%
Reasoning on 991,706 3.0%
Reasoning off 9,117,177 27.6%

Science 708,920 2.1%
Reasoning on 708,920 2.1%
Reasoning off 0 0.0%

Chat 39,792 0.12%
Reasoning on 8,574 0.03%
Reasoning off 31,218 0.09%

Instruction Following 56,339 0.17%
Safety 31,426 0.10%

Total 33,011,757 100%
Table 5: Synthetic data by domain with reasoning splits.

C Model-Specific SFT Training Details

LN-Nano differently from other models below, undergoes a three-stage SFT pipeline using a global
batch size of 256 using sequence packing with effective sequence length of 32k tokens. In the first
stage, the model is fine-tuned exclusively on reasoning data from code, math, and science domains
(Section B.1) with a learning rate of 1e−4 for four epochs. This prevents failure modes such as
repetitive completions. In the second stage, we introduce non-reasoning data (Section B.2) mixed
with reasoning samples, allowing the model to learn reasoning control. In the final stage, a smaller
blend focused on chat, instruction-following, and tool-calling is used.

LN-Super is trained on the full SFT dataset for a single epoch using a fixed learning rate of 5e−6,
sequence length of 16k and a global batch size of 256. Smaller-scale runs suggested that performance
improves up to 3–4 epochs with larger learning rates (5e−5), but training was constrained by
computational and time limits. Recent works Wen et al. (2025) show that rejection fine-tuning can
further improve performance; however, it does not yield gains in our experiments and is therefore
omitted.
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LN-Ultra is trained on the full dataset using sequence packing with effective sequence length of 24k
and a global batch size of 256 to maximize token throughput—an essential strategy when fine-tuning
large models with long-context reasoning data. Initial ablation runs indicated that higher learning
rates such as 5e−5 generally improve outcomes, but consistently high learning rates caused training
instability, including gradient explosions. To mitigate this, we implement a linear warmup to 1e−5,
followed by cosine decay to 1e−6 with a warmup ratio of 10%. Despite these measures, training
encountered gradient explosions and numerical instability after the first epoch. This required training
resumption with reinitialized optimizer states, after which successful convergence was achieved.

D Infrastructure

D.1 Overview

We primarily use NeMo-Aligner Shen et al. (2024) to perform RL training, where we use a de-
velopment branch that implements GRPO and heterogeneous model support. We implements the
generation stage using vLLM Kwon et al. (2023) and the training stage using Megatron-LM Shoeybi
et al. (2020). The training and inference stages are co-located on the same GPUs.

The total GPU count used was 72 nodes of 8xH100. The training model parallelism used was: tensor
parallel=8 with sequence parallel, context parallel=2, pipeline parallel=18, and data parallel=2. The
generation model parallelism was tensor parallel=8, and data parallel=72. The details of how this
parallelization strategy is chosen is explained in D.2. Generation was performed in FP8, and training
in BF16 with FP32 optimizer states.

Each stage maintains its own set of model weights, which are synced at the start of each step. First, all
training weights are all-gathered over the training pipeline parallel dimension, converted into vLLM
format, and written into shared memory. Then all training stage memory is released or offloaded to
host. Next, vLLM is awoken from sleep mode, loads the newly saved model weights from shared
memory, and begins generating. After generations have finished, vLLM GPU memory is released
using sleep mode=2, and all training memory is reloaded.

D.2 Memory Profiling and Optimizations

One of the major challenges in enabling the GRPO training of the LN-Ultra is memory management.
The training jobs are scheduled to a shared cluster environment. In the cluster, each node has 8 H100
GPUs, dual socket 32-core CPUs, and 2TB CPU DRAM. On the other hand, the model in BF16 type
takes 253× 2 ≈ 500GB memory. Moreover, as mentioned in Section D.1, in order to improve GPU
utilization, we determine to stack training and inference stages on the same set of nodes. Without
careful memory management, it is very easy to encounter out-of-memory errors in both GPU and
CPU memory allocations.

In order to better track the memory usage over the course of training, we have developed three simple
memory profiling tools to monitor the memory usage: GPU memory utilization using PyTorch, CPU
memory utilization using psutil, and /dev/shm utilization using the df command. The GPU/CPU
memory profilers help us track the GPU/CPU memory usage at different code pointers. The /dev/shm
profiler is needed as we use /dev/shm to pass the weights from the trainer to the vLLM server, and the
host is configured to allocate up to 1TB for the /dev/shm space.

With the help of these profiling tools, we are able to pinpoint the specific memory allocations that
cause out-of-memory errors, and then design solutions to overcome the issues. The first challenge
is weight preparation. When we all-gather training weights across pipeline parallel stages, we have
encountered extremely big tensors due to the heterogeneous architecture. One of the tensors has
13B elements, and occupies 26B GPU memory in the BF16 type. We need to release unused GPU
memory periodically, and move some of the tensor conversion operations to CPU in order to control
the GPU memory usage in this stage. The second challenge is the vLLM GPU memory utilization.
With tensor parallel equal to 8, we expect each GPU to keep 500/8 ≈ 62GB from the weights in
BF16. Considering KV cache, activations, and GPU memory occupied by the trainer, we have a very
tight budget for the vLLM. We have to disable the cudagraph feature to avoid GPU out-of-memory
in vLLM. However, when we enable FP8 inference generation as explained in D.3, GPU memory
budget becomes a lot looser, and we get to enable the cudagraph feature again. The final challenge
is the GPU and CPU memory usage in the trainer. Tensor parallelism = 8 is a natural choice to
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partition the full model into the 8xH100 GPUs available in the same node. As the model architecture
is heterogeneous, we need to insert identity layers in order to balance the pipeline stages in the
pipeline parallelism. We want to have enough pipeline parallelism to avoid training OOM in GPU and
checkpoint saving OOM in CPU. On the other hand, we also want to reduce the number of pipeline
stages to reduce the communication costs. With all of the trade-offs, we find that the best pipeline
parallelism setting is 18. The activations also consume a lot of memory, and we need to keep 18
micro-batches in the case when pipeline parallelism is 18. We end up using context parallel = 2 and
sequence parallel to reduce the activation memory consumption to prevent GPU OOM in training.
With all these tuning, we finally choose tensor parallel=8 with sequence parallel, context parallel=2,
pipeline parallel=18, and data parallel=2 to achieve > 90% utilization of the GPUs while avoiding
any hosts from encountering GPU or CPU out-of-memory errors.

D.3 FP8 Inference Generation

We identify the generation stage as the dominant component of the step time. In order to improve
performance, we implement a path to support the use of vLLM’s online FP8 generation mode, which
executes all GEMMs in FP8 using per token activation scaling factors and per tensor weight scaling
factors. We implement custom vLLM weight loaders capable of loading BF16 weights supplied by
the training stage, and casting to FP8 weights and scaling factors at runtime. Because vLLM does not
support directly initializing models in FP8, we also implement meta-weight tensor initialization to
avoid materializing the full BF16 inference engine, which would cause an out-of-memory error in the
GPU.

In all, we observe a peak FP8 generation throughput of 32 tokens/s/GPU/prompt, a 1.8x generation
speedup against BF16, and to our knowledge the highest decoding throughput observed in reasoning
training at this scale. We observe a 1.4x speedup from FP8 generation alone, and an additional 0.4x
from the reduction in memory usage, which allows us to enable vLLM’s cudagraph feature.

E Additional Results and Analysis

E.1 LN-Nano Detailed Results

Table 6 shows that LN-Nano achieves strong performance across all reasoning benchmarks, including
AIME25-I and LiveCodeBench, despite its small size. This demonstrates the effectiveness of our
SFT pipeline and curated reasoning datasets in transferring structured reasoning to compact models.
For LN-Nano, carefully balancing data-distribution across math, coding, and stem areas has been
important to achieve near state-of-the-art accuracies at the SFT stage. For example, our early
experiments showed worse accuracies especially in chemistry related questions, one of the major
areas in GPQA-D. Upsampling chemistry related data samples in the STEM subset of the overall SFT
blend helped to achieve higher GPQA-D accuracies. The RPO stages at the end of the post-training
pipeline mainly targeted IFEval accuracy improvement as shown in Table 6.

Task LN-Nano-SFT
Reasoning

LN-Nano
Reasoning

DeepSeek-R1
Distilled-Llama-8B

Llama-3.1
8B-Instruct

DeepSeek-R1
Distilled

on | off on | off Qwen-7B

GPQA-Diamond 53.5 | 33.3 54.1 | 39.4 49.0 25.3 49.1
AIME24 62.5 | 3.3 61.3 | 3.0 50.4 10.0 55.6
AIME25-I 51.6 | 6.6 47.1 | 0.0 40.0 10.0 41.7
MATH500 94.4 | 38.0 95.4 | 36.6 89.1 50.4 92.8
BFCL V2 Live 62.9 | 62.6 63.9 | 63.6 37.8 44.3 39.2
LiveCodeBench (2408–2502) − | − 46.6 | − 39.6 11.8 37.6
IFEval 69.9 | 69.9 79.29 | 82.1 73.4 81.8 67.6

Table 6: LN-Nano and LN-Nano-SFT versus comparably sized models, split by Reasoning mode.

E.2 Artificial Analysis Comparison

According to Artificial Analysis (shown in Figure 6), an independent benchmarking and analysis
company focused on evaluating artificial intelligence models and API providers, LN-Ultra is the
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most intelligent open-sourced model as of April 2025. This release represents one of the largest
contributions to the open source community in support of developing reasoning models.

Figure 6: As of April 2025, our flagship model LN-Ultra is the most “intelligent” open model
according to Artificial Analysis.
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