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ABSTRACT

Image generation models have encountered challenges related to scalability and
quadratic complexity, primarily due to the reliance on Transformer-based back-
bones. In this study, we introduce MaskMamba, a novel hybrid model that inte-
grates Mamba and Transformer architectures, utilizing Masked Image Modeling
for non-autoregressive image synthesis. We meticulously redesign the bidirec-
tional Mamba architecture by implementing two key modifications: (1) replac-
ing causal convolutions with standard convolutions to better capture global con-
text, and (2) utilizing concatenation instead of multiplication, which significantly
boosts performance while accelerating inference speed. Additionally, we explore
various hybrid schemes of MaskMamba, including both serial and grouped paral-
lel arrangements. Furthermore, we incorporate an in-context condition that allows
our model to perform both class-to-image and text-to-image generation tasks. Our
MaskMamba outperforms Mamba-based and Transformer-based models in gener-
ation quality. Notably, it achieves a remarkable 54.44% improvement in inference
speed at a resolution of 2048× 2048 over Transformer.

1 INTRODUCTION

In recent years, the field of generative image models in computer vision has witnessed significant ad-
vancements, particularly in class-to-image (Gao et al. (2023); Sun et al. (2024); Sauer et al. (2022))
and text-to-image tasks (Yu et al. (2022; 2023); Bao et al. (2023)). Traditional autoregressive gen-
erative models, such as VQGAN (Esser et al. (2021)) and LlamaGen (Sun et al. (2024)), demon-
strate excellent performance in class-conditional generation. In the realm of text-conditional gener-
ation, models like Parti (Yu et al. (2021; 2022)) and DALL-E (Ramesh et al. (2021)) convert images
into discrete tokens using the image tokenizer and project the encoded text features to caption em-
beddings via an additional MLP (Chen et al. (2023)), operating in an autoregressive manner for
both training and inference. Concurrently, non-autoregressive methods, including MAGE (Li et al.
(2023)) and MUSE (Chang et al. (2023)), leverage Masked Image Modeling, transforming images
into discrete tokens during training and predicting randomly masked tokens.

Another prominent approach to image generation involves diffusion models (Song & Ermon (2019);
Song et al. (2020); Ho et al. (2020); Dhariwal & Nichol (2021); Nichol et al. (2021)), such as LDM
(Rombach et al. (2022)) with an UNet backbone. Although these models demonstrate high gener-
ation quality, their convolutional neural network architecture imposes constraints that hinder scala-
bility. To address this challenge, Transformer-based generative models, such as DiT (Peebles & Xie
(2023)), enhance global modeling capabilities through attention mechanisms and significantly im-
prove generation quality. However, the computational complexity of attention mechanisms increases
quadratically with sequence length, which constrains both training and inference efficiency.

Mamba (Gu & Dao (2023)) presents a state-space model (Gu et al. (2022; 2021)) characterized
by linear time complexity, offering substantial advantages in managing long sequence tasks. Con-
temporary image generation efforts, including DiM (Teng et al. (2024)), ZigMa (Hu et al. (2024)),
and diffuSSM (Yan et al. (2024)), primarily replace the original Transformer block with a Mamba
module. These models enhance both efficiency and scalability. Nevertheless, generating images
based on diffusion models typically requires hundreds of iterations, which can be prohibitively time-
consuming.
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Figure 1: Examples of class-conditional (top) and text-conditional (bottom) image generation using
MaskMamba-XL.

To eliminate the quadratic complexity growth with sequence length in Transformer models and the
excessive generation iterations in autoregressive models, we introduce MaskMamba that integrates
Mamba and Transformer architectures and utilizes non-autoregressive Masked Image Modeling (Ni
et al. (2024); Lezama et al. (2022)) for image synthesis. We meticulously redesign Bi-Mamba (Mo
& Tian (2024); Zhu et al. (2024)) to render it suitable for masked image generation by replacing the
causal convolution with standard convolution. Meanwhile, we select concatenation instead of mul-
tiplication in the final stage of Bi-Mamba to reduce computational complexity, notably improving
the inference speed by 17.77% compared to Bi-Mamba (Zhu et al. (2024)).

We further investigate various MaskMamba hybrid schemes, including serial and grouped parallel
schemes (Shaker et al. (2024)). In serial schemes, we explore alternating layer-by-layer arrange-
ments, as well as placing the Transformer in the last N/2 layers. For grouped parallel schemes, we
assess the effects of partitioning the model into two or four groups along the channel dimension. Our
findings indicate that placing the Transformer in the final layers significantly enhances the model’s
ability to capture global context. Additionally, we implement an in-context condition that allows our
model to perform both class-to-image and text-to-image generation tasks within a single framework
as show in Fig.1. Meanwhile, we investigate the placement of condition embeddings (Zhu et al.
(2024)) by inserting them at differnent positions of the input sequence including head, middle, and
tail. The results indicate that placing condition embedding at the middle yields optimal performance.

In the experimental section, we substantiate the generative capabilities of MaskMamba through two
distinct tasks: class-conditional generation and text-conditional generation, utilizing various model
sizes for each task. For class-to-image generation task, we execute training over 300 epochs on
the ImageNet1k (Deng et al. (2009)) dataset, benchmarking our MaskMamba against Transformer-
based and Mamba-based models of analogous size. The results demonstrate that our MaskMamba
outperforms both counterparts with respect to generation quality and inference speed. Furthermore,
we train and evaluate on CC3M (Sharma et al. (2018)) dataset, attaining superior performance on
CC3M and MS-COCO (Lin et al. (2014)) valid datasets.

In summary, our contributions include:

1. We redesign Bi-Mamba to improve its suitability for masked image generation tasks by
replacing causal convolution with standard convolution. Additionally, we substitute multi-
plication with concatenation at the final stage, resulting in a significant performance boost
and a 17.77% increase in inference speed compared to Bi-Mamba.

2. We introduce MaskMamba, a unified generative model that integrates redesigned Bi-
Mamba and Transformer layers, enabling class-to-image and text-to-image generation tasks
to be performed in the same model through an in-context condition.

3. Our MaskMamba surpasses both Transformer-based and Mamba-based models in terms of
generation quality and inference speed on the ImageNet1k and CC3M datasets.

2 RELATED WORK

Image Generation. The domain of image generation is witnessing significant advancements in cur-
rent research. Initial autoregressive image generative models (Yu et al. (2021); Ding et al. (2021)),
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such as VQGAN (Esser et al. (2021)) and LlamaGen (Sun et al. (2024)), have illustrated the potential
to generate high-fidelity images by transforming images into discrete tokens and applying autore-
gressive models to generate image tokens. The advent of text-to-image generative models, like Parti
(Yu et al. (2021; 2022)) and DALL-E (Ramesh et al. (2021)), have further propelled progress within
this area. Nonetheless, these models exhibit specific inefficiencies in their generation process. To
address these issues, non-autoregressive generative models such as MaskGIT (Chang et al. (2022)),
MAGE (Li et al. (2023)), and MUSE (Chang et al. (2023)) enhance generation efficiency through
Masked Image Modeling. Simultaneously, diffusion models (Song & Ermon (2019); Song et al.
(2020); Ho et al. (2020); Dhariwal & Nichol (2021); Nichol et al. (2021); Saharia et al. (2022)),
represented by LDM (Rombach et al. (2022)), excel in generation quality despite experiencing scal-
ability constraints linked to their convolutional neural network-based architecture. To overcome
these limitations, Transformer-based generative models, including DiT (Peebles & Xie (2023)), ad-
vance global modeling capabilities by incorporating attention mechanisms. However, these models
continue to struggle with the quadratic increase in computational complexity when processing ex-
tensive sequences.

Mamba Vision. The Transformer (Vaswani (2017)), established as a leading network architecture,
is extensively utilized across various tasks. Nonetheless, its quadratic computational complexity
presents significant obstacles for the efficient handling of long sequence tasks. In recent develop-
ments, the advent of a novel State-Space Model (Gu et al. (2021)), denominated as Mamba (Gu
& Dao (2023); Dao & Gu (2024)), has shown substantial promise in tackling long sequence tasks,
capturing significant interest within the research community. The Mamba architecture has effec-
tively supplanted conventional Transformer frameworks in multiple domains, delivering noteworthy
results. The Mamba family (Gao et al. (2024); Hatamizadeh & Kautz (2024); Lieber et al. (2024);
Pilault et al. (2024)) encompasses a broad spectrum of applications, including text generation, ob-
ject recognition, 3D point cloud processing, recommendation systems, and image generation, with
numerous implementations based on frameworks such as Vision-Mamba (Zhu et al. (2024)), U-
Mamba (Ma et al. (2024)), and Rec-Mamba (Yang et al. (2024)). Vision-Mamba employs a bidirec-
tional state-space model structure in conjunction with a hybrid Transformer (Hatamizadeh & Kautz
(2024)). However, Mamba has not yet been explored in the context of non-autoregressive image
generation. Presently, the majority of Mamba-based generative tasks adhere to the diffusion model
paradigm (Hu et al. (2024); Teng et al. (2024)), which entails complexities related to training and
the number of inference iterations. Addressing these challenges, we have designed a novel hybrid
Mamba structure aimed at extending the application of Mamba in non-autoregressive image gener-
ation (Li et al. (2023); Chang et al. (2022; 2023)) tasks, integrating it with Masked Image Modeling
(He et al. (2022)) for both training and inference, thereby enhancing the efficiency of these pro-
cesses.

3 METHOD

3.1 MASKMAMBA MODEL: OVERVIEW

Overview. As illustrated in Fig.2, our MaskMamba fundamentally consists of three components.
Firstly, the image pixels x ∈ RH×W×3 are quantized into discrete tokens q ∈ Qh×w via an im-
age tokenizer (Yu et al. (2021); Van Den Oord et al. (2017); Esser et al. (2021)), where h = H/r,
w = W/r, and r represents the downsample ratio of the image tokenizer. These discrete tokens
q ∈ Qh×w serve as indices of the image codebook. Then, we randomly sample the masking ratio
mr (range from 0.55 to 1.0), and mask out mr · (h · w) tokens, replacing them with a learnable
mask token [M ]. Secondly, we transform the class id into a learnable label embedding (Peebles
& Xie (2023); Esser et al. (2021)), denoted as {cls}. On the other hand, regarding the text con-
ditions, we first extract features using a T5-Large Encoder (Colin (2020)) and then map the ex-
tracted features to caption embeddings (Chen et al. (2023)), denoted as {t1, t2, . . . , tN}. Lastly,
we concat condition embeddings {cond} with the image token embeddings {q1, q2, . . . , qh·w} at
middle, where {cond} represents {cls} or {t1, t2, . . .}, and add positional embedding to these
{q1, q2, . . . , [M ], . . . , qi, cond, qj , [M ], . . . , qh·w}. The training objective is to predict the token in-
dices of the masked regions utilizing cross-entropy loss (Zhang & Sabuncu (2018)).

Model Configuration. We present two types of image generation models: class-conditional and
text-conditional models. In accordance with the standards established by prior work (Radford et al.
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Figure 2: MaskMamba Pipeline Overview.

Type Model Params Layers Hidden dim
MaskMamba-B 103M 12 768

C2I MaskMamba-L 329M 24 1024
MaskMamba-XL 741M 36 1280

T2I MaskMamba-XL 742M 36 1280

Table 1: Model sizes and configurations of MaskMamba.

(2019); Touvron et al. (2023)), we adhere to the standard configurations for the Mamba. As shown
in Tab.1, we provide three different versions of the class-conditional model, with parameter sizes
ranging from 103M to 741M. The generated images have a resolution of 256 × 256, and after a
downsampling factor of 16, the length of the image token embeddings is set to 256. The length of
the class-condition embedding is set to 1, and the length of the text-condition embedding N is set to
120.

3.2 MASKMAMBA MODEL: ARCHITECTURE

3.2.1 BI-MAMBA-V2 LAYER.

Convolution Replacement. As illustrated in Fig.3 (c), we redesign the original Bi-Mamba (Zhu
et al. (2024)) architecture to better accommodate tasks associated with masked image generation. We
substitute the original causal convolution with a standard convolution. Given the non-autoregressive
nature of masked image generation task, the causal convolution only permits unidirectional token
mixing, which hinders the potential of non-autoregressive image generation. In contrast, the stan-
dard convolution enables tokens to interact bidirectionally across all positions in the input sequence,
effectively capturing the global context.

Symmetric SSM Branch Design. We incorporate a symmetric SSM branch to better accommodate
masked image generation. In the symmetric branch, we first flip the input x before the Backward
SSM, then flip it back after the Backward SSM to amalgamate it with the results of the Forward SSM.
Additionally, compared to the right-side branch of Bi-Mamba, we employ an extra convolution to
mitigate feature loss. To fully exploit the advantages of all the branches, we project the input into
a feature space of size C/2, thereby ensuring that the final concatenated dimensions are consistent.
Our output can be denoted as Xout, which is computed using the following Eq.1.
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Figure 3: (a) Structure of the original Mamba (Gu & Dao (2023)). (b) Bi-Mamba structure proposed
in VisionMamba (Zhu et al. (2024)), which introduces a new branch specifically designed for vision
tasks. (c) Our redesigned Mamba for masked image generation tasks by using standard convolution
instead of causal convolution and replacing the final-stage multiplication with concatenation to re-
duce computation.

x = σ (Conv (Linear (C,C/2) (Xin )))

xf = x, xb = Flip(x)

x̂ = ForwardSSM(xf ) + Flip (BackwardSSM(xb))

z = σ (Conv (Linear (C,C/2) (Xin )))

Xout = Linear (C,C) (Concat (x̂, z))

(1)

3.2.2 MASKMABA HYBRID SCHEME.

Group Scheme Design. As displayed in Fig.4 (a) and Fig.4 (b), we design two group mixing
schemes. In group scheme v1, the input is divided into two groups along the channel dimension,
which are then processed separately by our Bi-Mamba-v2 layer and Transformer layer. The pro-
cessed results are then concatenated along the channel dimension and finally feed them into the
Norm and Project layers. In group scheme v2, the input is divided into four groups along the chan-
nel dimension. Two of these groups are processed by our Bi-Mamba-v2 layer in the Forward SSM
and the Backward SSM, while the other two groups are processed by the Transformer layer.

Serial Scheme Design. As shown in Fig.4 (c) and Fig.4 (d), we also design two serial mixing
schemes. In serial scheme v1, we alternate layer-by-layer arrangements of our Bi-Mamba-v2 and
Transformer. In serial scheme v2, we place our Bi-Mamba-v2 in the first N/2 layers and Trans-
former in the last N/2 layers. Due to the attention mechanism of Transformer, which can better
enhance feature representation, Transformer layer are placed after Mamba layer in all serial modes.

3.3 IMAGE GENERATION BY MASKMAMBA

We employ masked image generation methods (Li et al. (2023); Chang et al. (2022)) for image syn-
thesis. During the forward pass, we first initialize 256 masked tokens for generating a resolution of
256×256 image. Subsequently, we concatenated the condition embeddings with mask tokens at the
middle position. Inspired by the iterative generation approach of MUSE (Chang et al. (2023)), our
decoding process also adopts a cosine schedule (Chang et al. (2022)) that chooses a fixed propor-
tion of the highest-confidence masked tokens for prediction at each step. These tokens are then set
unmasked for remaining steps and the set of masked tokens is correspondingly reduced. Through
this methodology, we can infer 256 tokens utilizing merely 20 decoding steps, in contrast to the 256
steps necessitated by autoregressive methods (Touvron et al. (2023); Sun et al. (2024)).
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Figure 4: We design two categories of hybrid configurations: group parallel and cascading serial.
In group scheme, the model is divided into two or four groups. In serial scheme, we use a layer-
wise interleaved structure of Bi-Mamba-v2 and Transformer, or place Bi-Mamba-v2 in the first N/2
layers and Transformer in the last N/2 layers.

Class-conditional image generation. The label embeddings are derived from the index of each cat-
egory. These label embeddings are concatenated with the masked tokens and MaskMamba gradually
predicts these mask tokens through a cosine schedule.

Text-conditional image generation. We first extract text features using a T5-Large Encoder (Colin
(2020)) and then transform the extracted features to caption embeddings. Similar to the label embed-
dings, we concatenate these caption embeddings with the masked token embeddings. MaskMamba
gradually predicts these mask tokens through a cosine schedule.

Classifier-free guidance image generation. The classifier-free guidance (CFG) method proposed
by diffusion models (Ho & Salimans (2022)) is a highly effective technique for enhancing the con-
ditional generation capabilities of models, particularly in handling text and image features. Thus,
we apply this approach to our model. During the training phase, to simulate the process of un-
conditional image generation, we randomly drop the condition embeddings with a probability of
0.1. In the inference phase, the logit ℓg for each token is determined by the following equation:
ℓg = (1−s)ℓu+s (ℓc),where ℓu is uncondition logit, ℓc is condition logit and s is scale of the CFG.

4 EXPERIMENTAL RESULTS

4.1 CLASS-CONDITIONAL IMAGE GENERATION

Training Setup. All of class-to-image generation models are trained for 300 epochs on the Ima-
geNet 256× 256 dataset, with consistent training parameter settings across all models. Specifically,
the base learning rate is set to 1e-4 per 256 batch size, and the global batch size is 1024. Addition-
ally, we employ the AdamW optimizer with β1 = 0.9 and β2 = 0.95. The dropout rate is consistently
set to, including for conditions. During training, the mask rate varies from 0.5 to 1. All training and
inference of the models are conducted on V100 GPUs with 32GB of memory.

Evaluation Metrics. We use FID-50K (Heusel et al. (2017)) as the primary evaluation metric, while
employing Inception Score (Salimans et al. (2016)) (IS) and Inception Score standard deviation (IS-
std) as assessment criteria. On the ImageNet validation dataset, we generate 50,000 images based
on the CFG and evaluate all models using the aforementioned metrics.
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(a) MaskMamba-L with cfg=3.0,iterations=20 (b) MaskMamba-XL with cfg=3.0,iterations=20 

Figure 5: Examples of class-conditional image generation using MaskMamba-L (left) and
MaskMamba-XL (right) with cfg=3.0, iterations=25.

Type Model Parameters FID-50k↓ IS↑ Precision↑ Recall↑ Steps

AR
VQGAN (Esser et al. (2021)) 227M 18.64 80.4 0.78 0.26 256
VQGAN (Esser et al. (2021)) 1.4B 15.78 74.3 - - 256

LlamaGen-B (Sun et al. (2024)) 111M 8.69 124.33 0.78 0.46 256

Mask

MAGE-B (Li et al. (2023)) 200M 11.10 81.17 - - 20
MAGE-L (Li et al. (2023)) 463M 9.10 105.1 - - 20

MaskGIT (Chang et al. (2022)) 227M 6.18 182.1 0.83 0.57 10
Transformer-B 101M 11.72 90.11 0.73 0.50 25
Transformer-L 324M 7.08 127.44 0.76 0.55 25

Transformer-XL 736M 5.96 140.81 0.75 0.58 25
MaskMamba-B 103M 10.88 89.84 0.70 0.55 25
MaskMamba-L 329M 6.61 127.74 0.73 0.59 25

MaskMamba-XL 741M 5.79 139.30 0.73 0.60 25

Table 2: Model comparisons on class-conditional Generation on ImageNet 256 × 256 bench-
mark. We utilized FID-50K as the primary evaluation metric, supplemented by Inception Score(IS)
as an auxiliary assessment criterion. During the generation process, with cfg set to 3.0.

4.1.1 QUALITATIVE RESULTS

Comparisons with Other Image Generation Methods. As shown in Tab.2, we compare our
MaskMamba model with popular image generation models, including autoregressive (AR) meth-
ods (Esser et al. (2021); Sun et al. (2024)), mask-prediction models (Mask) (Li et al. (2023); Chang
et al. (2022)), and Transformer-based models (Masked Image Modeling training with the same hy-
perparameters), focusing on the differences in their backbone networks. MaskMamba adopts the
serial scheme v2 mode. Comparisons across various model sizes show that MaskMamba exhibits
competitive performance. As illustrated in Fig.5, we randomly select images from MaskMamba-XL
models demonstrate high-quality results even when trained only on ImageNet.

4.1.2 EXPERIMENT ANALYSIS

Effect of Class-Free Guidance(CFG) and generation interations. Fig.6 (a) shows FID and IS
variations with the number of iterations in image generation with cfg set to 3. The model achieves
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(a) Effect of itera.ons (b) Effect of class-free guidance (cfg)

Figure 6: (a) The variation of FID and IS with respect to the number of generation iterations. (b)
The scores of FID and IS under different cfg settings.
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Figure 7: The comparison of inference speed (left) and GPU memory (right) for the Bi-Mamba-v2,
Bi-Mamba, and Transformer. Infer speed varies by resolution, while GPU memory varies by batch
size.

best performance at 25 iterations and further increasing iterations would deteriorate FID. Fig.6 (b)
shows FID and IS scores for different cfg settings, indicating that while class-free guidance enhances
visual quality and the model achieves best performance at cfg=3.

Efficency Analysis. We conduct a series of experiments to evaluate the effectiveness of our re-
designed Bi-Mamba-v2 layer, the original Bi-Mamba layer, and the Transformer layer. To assess
inference experiments on higher-resolution images, we primarily focus on inference speed and mem-
ory usage with a single layer. All efficiency analysis are conducted on an A100 40G device, compar-
ing the inference speed of these models at different resolutions, as shown in Fig. 7. The results indi-
cate that when the resolution is below 1024×1024, our Bi-Mamba-v2 layer and the Bi-Mamba layer
are slightly slower than the Transformer layer. However, when the resolution exceeds 1024× 1024,
our Bi-Mamba-v2 layer is faster than both the Transformer and Bi-Mamba layer. Notably, at a res-
olution of 2048 × 2048, our Bi-Mamba-v2 layer is 1.5 times faster than the Transformer layer. We
also compare GPU memory usage at different batch sizes. The memory usage of our Bi-Mamba-v2
layer is comparable to that of the Bi-Mamba layer, while the Transformer layer, due to its quadratic
complexity, exhibits a rapid increase in memory usage as the batch size increases. When the batch
size reaches 6, the Transformer layer consumes 63GB of GPU memory, leading to out of memory,
while our Bi-Mamba-v2 layer requires only 38GB. These experimental results demonstrate that our
Bi-Mamba-v2 Layer can generate images at a faster speed and with lower memory usage.

Effect of different hybrid schemes. As indicated in Tab.3, we perform a comparative analysis of
the image generation outcomes under various hybrid configurations of MaskMamba, categorized
into two types: parallel and serial. As depicted in Fig.4, in the grouped parallel configurations, we
examine the effects of dividing the model into two and four groups. In the layered serial config-
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Model Scheme Parameters FID-50k ↓ IS ↑
MaskMamba-L-Group-v1 - 327M 10.04 96.35
MaskMamba-L-Group-v2 - 278M 8.95 102.72
MaskMamba-L-Serial-v1 MSMS...MSMS 329M 7.45 115.90
MaskMamba-L-Serial-v2 MMMM...SSSS 329M 6.73 122.99

Table 3: Comparison of different hybrid schemes in MaskMamba for class-conditional Gener-
ation on ImageNet 256 × 256 benchmark. For all models, the cfg scale is 3 and the number of
iteration is 20.

Backbone Parameters FID-50k ↓ IS ↑
Bi-Mamba-L 377M 12.29 87.39

Bi-Mamba-V2-L 333M 8.97 103.97
Transformer-L 324M 7.08 127.44

(Bi-Mamba + Transformer)-L 358M 7.82 110.87
(Bi-Mamba-V2 + Transformer)-L 329M 6.61 127.74

Table 4: Comparison of different backbones in MaskMamba for class-conditional Generation
on ImageNet 256× 256 benchmark. For all models, the cfg scale is 3 and the number of iteration
is 25.

urations, we design an interleaved structure of Bi-Mamba-v2 and Transformer {MSMS...MSMS},
as well as an alternative configuration {MMMM...SSSS} where the first N/2 layers are Mamba
and the subsequent N/2 layers are Transformer. The findings from these experiments elucidate the
performance and efficiency of the different hybrid configurations.

Effect of different backbones. We conduct ablation experiments on different backbones: Bi-
Mamba proposed in VisionMamba (Zhu et al. (2024)), redesigned Bi-Mamba-V2, and Transformer
(Vaswani (2017)). Bi-Mamba-L uses only the original Bi-Mamba as a layer, while Bi-Mamba-V2-L
uses redesigned Bi-Mamba-v2. The Transformer consists solely of the Transformer architecture. In
(Bi-Mamba + Transformer)-L, the first N/2 layers are Bi-Mamba, followed by N/2 layers of the
Transformer. In (Bi-Mamba-V2 + Transformer)-L, the first N/2 layers are Bi-Mamba-v2, followed
by N/2 layers of the Transformer. The results indicate that the redesigned Bi-Mamba-v2 outper-
forms the original Bi-Mamba, and the combination of Mamba with Transformer yields even better
performance. Consequently, we select (Bi-Mamba-V2 + Transformer) for MaskMamba.

Effect of different condition positions. We conduct ablation experiments to assess the impact of
the placement of condition embedding cond on model performance. Specifically, we examine the
effects of concatenating the condition embedding at different positions in the sequence, such as
the head, middle, and tail. The experimental results indicate that optimal performance is achieved
when the condition embedding is placed in the middle. This outcome is primarily attributed to the
mechanism of selective scan. Since we randomly mask a portion of the image tokens, positioning the
condition embedding at either the beginning or the end leads to insufficient supervisory information
for controlling conditional generation, primarily due to the increased attention distance. distance.

Condition postions Scheme FID-50k ↓ IS ↑
Head ⟨cond, q1, q2, . . . , . . . , qh·w⟩ 7.15 117.71

Middle ⟨q1, q2, . . . , cond, . . . , qh·w⟩ 6.73 122.99
Tail ⟨q1, q2, . . . , . . . , qh·w, cond⟩ 7.04 119.78

Table 5: Comparison of different condition postions in sequence for class-conditional gener-
ation on ImageNet 256 × 256 benchmark. For all models, the cfg scale is 3 and the number of
iteration is 20.
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Backbone Parameters FID-CC3M-10K ↓ IS ↑ FID-COCO-30K ↓ IS ↑
Transformer-XL 736M 19.20 14.98 43.21 14.44
MaskMamba-XL 741M 18.11 16.90 25.93 18.34

Table 6: Comparison of Transformer-XL and MaskMamba-XL for text-conditional generation
on CC3M (Sharma et al. (2018)) and MS-COCO (Lin et al. (2014)) datasets. For all models, the
cfg scale is 3 and the number of iteration is 20.

explore the remote villages 
and natural splendour of the 
mountains. 

trophy awarded for the 
world championships

a vintage tractor at the 
rally 

boulders and pebbles are 
visible through the clear 
waters . 

Figure 8: Examples of text-conditional image generation using MaskMamba-XL, with the corre-
sponding captions below the images.

4.2 TEXT-CONDITIONAL IMAGE GENERATION

Training setup. Similar to the class-conditional training strategy, we adapt a Masked Generative
non-autoregressive training strategy for the text. We train the model for 30 epochs on the CC3M
(Sharma et al. (2018)) dataset with an image resolution 256 × 256. The training parameters are
consistent with those of the previous experiments, the base learning rate is set to 1e-4 per 256 batch
size, and the global batch size is 1024. Additionally, we employ the AdamW optimizer with β1 =
0.9 and β2 = 0.95.

Model trained on CC3M. As shown in Table 6, we compare the performance of Transformer-XL
and our MaskMamba-XL in text-to-image generation, evaluating the FID and IS on the validation
sets of CC3M and MS-COCO. Our results consistently outperform the Transformer-based model.
As displayed in Figure 8, we utilize text from CC3M as prompts to generate images. MaskMamba-
XL is capable of producing high-quality images. However, due to limited training data and the
imprecision of the text descriptions in the CC3M dataset, some of generated images exhibit limita-
tions.

5 CONCLUSION.

In this work, we propose MaskMamba, a novel hybrid model that integrates Bi-Mamba-v2 and
Transformer architectures, utilizing Masked Image Modeling for non-autoregressive image synthe-
sis. We not only redesign a new Bi-Mamba-v2 structure to enhance its suitability for image gen-
eration but also investigate the effects of different model mixing strategies and the placement of
condition embeddings, ultimately identifying the optimal settings. Additionally, we provide a series
of class-conditional image generation models and text-conditional image generation models within a
single framework that incorporates an in-context condition. Our experiment results indicate that our
MaskMamba surpasses both Transformer-based and Mamba-based models in terms of generation
quality and inference speed. We hope our Masked Image Modeling for non-autoregressive image
synthesis in MaskMamba will inspire further exploration in Mamba image generation tasks.
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A APPENDIX

A.1 BASE MODEL CONFIGURATIONS

Our MaskMamba Training configurations is given in Tab.7.

Configuration Value
Optimizer AdamW

Optimizer momentum β1 = 0.9,β2 = 0.95
Base learning rate 1e-4

Learning rate schedule cosine decay
Training epochs 300
Warmup epochs 30

Weight decay 0.05
EMA 0.999

Mask ratio min 0.5
Mask ratio max 1.0

Table 7: Training hyperparameters for MaskMamba.

A.2 PSEUDO-CODE FOR BI-MAMBA-V2

Algorithm 1 PyTorch-like pseudo-code for Bi-mamba-v2-block

class BiMambaBlockV2(nn.Module):
def __init__(self, dim, mlp_ratio=4.0, drop=0., drop_path=0.,
act_layer=nn.GELU):

super().__init__()
self.attn = Bi-MambaLayer-v2(dim, d_state=16)
self.attn_flip = Bi-MambaLayer-v2(dim, d_state=16)

# proj weights
self.attn_flip.in_proj.weight = self.attn.in_proj.weight
self.attn_flip.in_proj.bias = self.attn.in_proj.bias
self.attn_flip.out_proj.weight = self.attn.out_proj.weight
self.attn_flip.out_proj.bias = self.attn.out_proj.bias

self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.
Identity()

self.norm2 = RMSNorm(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,

act_layer=act_layer, drop=drop)

def forward(self, x):
# bi mamba add
x = x + self.drop_path(self.attn(x) + self.attn_flip(x.flip(dims

=(1,))).flip(dims=(1,)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
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A.3 EXAMPLES OF CLASS-CONDITIONAL IMAGE GENERATION USING MASKMAMBA

Figure 9: Examples of class-conditional image generation using MaskMamba-B with cfg=3.0, iter-
ations=25.
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Figure 10: Examples of class-conditional image generation using MaskMamba-L with cfg=3.0,
iterations=25.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 11: Examples of class-conditional image generation using MaskMamba-XL with cfg=3.0,
iterations=25.
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