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ABSTRACT

Continual Test-Time Adaptation (CTTA) enables models to adapt to sequential
domain shifts during testing, but reliance on pseudo-labels makes them prone to
error accumulation. Reliable uncertainty estimation is thus critical. We study
this problem under the calibration-aided CTTA setting, where a small calibration
buffer from the source domain is available as reference. We propose the Confor-
mal Uncertainty Indicator (CUI), a plug-and-play method that leverages Confor-
mal Prediction (CP) with calibration data. Unlike standard CP, which suffers from
a coverage gap under domain shifts, CUI jointly measures model shift and data
shift to adjust conformal quantiles and restore coverage. The resulting prediction
set size provides a reliable indicator of test-time uncertainty. Building on this,
we introduce a CUI-guided adaptation strategy that updates models only on confi-
dent samples. Experiments on three benchmarks show that CUI achieves accurate
uncertainty estimation and improves the robustness of multiple CTTA baselines.

1 INTRODUCTION

Recently, Continual Test-Time Adaptation (CTTA) (Wang et al.l [2022) has attracted significant
attention for enabling trained models to handle sequential domain shifts through self-adaptation.
However, in many high-stakes scenarios, the cost of incorrect predictions is prohibitively high, as
in autonomous driving (Sdjka et al., [2023) and medical imaging (Chen et al.| [2024), where even
a single error can cause serious risks and errors may accumulate during continual adaptation. To
address this issue, it is crucial to evaluate the reliability of each prediction before using it for adap-
tation. Uncertainty estimation provides a common approach, but existing methods such as Bayesian
approximation (Maddox et al., 2019), Monte Carlo dropout (Gal & Ghahramani, |2016)), or entropy-
based scores (Shi et al.||2024) are either computationally expensive or prone to overconfidence, and
thus less effective for continual adaptation.

This limitation is further exacerbated by the strict CTTA setting, which assumes no source data
are available and leaves prediction evaluation without any reliable reference. In many real-world
scenarios, however, it is acceptable and even necessary to maintain a small static calibration buffer
of source samples to support reliable long-term adaptation. We refer to this extended variant as
Calibration-aided CTTA (CCTTA ), which forms the focus of this work. Our goal is to investigate
how calibration data can be effectively exploited to enhance uncertainty estimation at test time.

The availability of calibration data in CCTTA naturally motivates the use of Conformal Prediction
(CP) (Vovk et al.l 2005), which provides a principled framework for uncertainty estimation. By
constructing set-valued predictions, CP not only guarantees that the true label lies within the set with
a pre-specified probability but also uses the set size (often referred to as inefficiency) as a natural
measure of prediction uncertainty. It further offers two desirable properties: it is model-agnostic,
requiring no assumptions or modifications to the underlying model, and it provides controllable
coverage, ensuring that uncertainty estimates are statistically valid. These features make CP an
attractive candidate for continual adaptation, where reliable uncertainty quantification is essential
for avoiding error accumulation. However, applying CP in continual domain shift scenarios is far
from straightforward. Classical CP relies on the assumption of data exchangeability, meaning that
the order and distribution of observations are assumed not to change. This assumption is violated
under distribution shift, leading to a coverage gap in which the actual coverage falls far below the
nominal guarantee (Barber et al.|2023)), and uncertainty estimates become untrustworthy in practice.
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Figure 1: Tllustration of the proposed CUI for calibration-aided CTTA. CUI leverages conformal
prediction to produce set-valued outputs, where small sets indicate reliable samples for stronger
adaptation and large sets reflect higher uncertainty. By compensating the coverage gap, CUI enables
trustworthy uncertainty estimates to guide reliable adaptation.

To close the coverage gap, we propose Conformal Uncertainty Indicator (CUI), a plug and play un-
certainty estimator for CCTTA. CUI uses a small labeled calibration set from the source domain and
jointly considers model shift, reflected in how the model’s predictions deviate from calibration be-
havior, and data shift, captured by representation discrepancies between calibration and test samples.
These signals are used to adaptively correct the conformal quantile, thereby compensating for the
violation of exchangeability and restoring reliable coverage. As a result, the size of the prediction
set becomes a trustworthy indicator of test-time uncertainty. Furthermore, we introduce a CUI-
guided adaptation strategy that updates the model only on confident samples, improving robustness
of existing CTTA methods without additional supervision. Our contributions are three-fold:

(1) We propose the Conformal Uncertainty Indicator (CUI), a plug-and-play uncertainty estimator
for CTTA that leverages a small calibration buffer from the source domain.

(2) CUI addresses the coverage gap of conformal prediction under domain shifts by jointly model-
ing model shift and data shift to calibrate prediction sets, making set size a reliable measure of
test-time uncertainty.

(3) We further introduce a CUI-guided adaptation strategy that selectively updates models on confi-
dent samples, improving the robustness of multiple CTTA baselines across benchmark datasets.

2 RELATED WORK

Continual Test-Time Adaptation. Test-Time Adaptation (TTA) enables source-free, online adap-
tation of a model to target domain characteristics (Jain & Learned-Miller, 2011} |Sun et al., 2020;
Wang et al.,[2020). CTTA (Wang et al.| [2022) extends TTA to sequentially changing domains, ad-
dressing long-term adaptation but suffering from error accumulation and forgetting (Tarvainen &
Valpolal 2017} [Wang et al.,|2022). Mean-teacher approaches (Tarvainen & Valpola, [2017) stabilize
learning via exponential moving averages, while augmentation-averaged predictions (Wang et al.,
2022 Brahma & Rail 2023} |Dobler et al.l 2023} |Yang et al.l [2023) increase robustness to out-of-
distribution inputs. Contrastive objectives (Dobler et al., 2023} (Chakrabarty et al. [2023) preserve
semantic consistency, and parameter restoration (Wang et al., 2022 |Brahma & Rail 2023)) prevents
forgetting. Most existing methods are developed under the strict CTTA setting, where no source
data are available once deployment begins. Although this constraint enforces a fully source-free
scenario, it also leaves prediction evaluation without any reliable reference information, making cal-
ibrated uncertainty estimation infeasible in practice.

Conformal Prediction. CP (Vovk et al 2005) provides a principled framework for quantifying
uncertainty by generating prediction sets that contain the true label with a user-specified proba-
bility. Its distribution-free validity and model-agnostic nature make it appealing for safety-critical
applications, including medical diagnostics (Caruana et al.,[2015), autonomous driving (Lekeufack
et al.l 2023), and finance. Recent work has extended CP to risk control and complex prediction
scenarios (Farinhas et al.| [2023)). However, standard CP relies on the assumption of exchangeability,
which breaks under domain shifts and leads to a coverage gap (Barber et al.| [2023). To the best of
our knowledge, conformal prediction has not been explored in CTTA, where estimating uncertainty
in long-term, continually changing test environments is especially crucial.
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3 PRELIMINARY: CTTA AND CP

3.1 CALIBRATION-AIDED CONTINUAL TEST-TIME ADAPTATION

CTTA methods adapt a pre-trained classification model from a source domain to unlabeled tar-

get streams DF = {xﬁz}ﬁil, where k indexes the target domain. At each step, the model must
both provide a prediction and update itself without access to ground-truth labels. Existing ap-
proaches are typically studied under the strict CTTA setting, where no source data are accessible
after deployment. While this enforces a fully source-free protocol, it leaves prediction evaluation
without any reference information, making calibrated uncertainty estimation infeasible. In con-
trast, the Calibration-aided CTTA (CCTTA) setting allows a small static calibration buffer from the
source domain, providing valuable reference data for estimating prediction reliability during contin-
ual adaptation. This paper focuses on uncertainty estimation under the CCTTA setting. To achieve
this, we require a principled framework that can provide statistically valid uncertainty estimates, and
conformal prediction (CP) offers a natural foundation.

3.2 CONFORMAL PREDICTION AND COVERAGE GAP ISSUE

We introduce CP under a classification task. Let X’ be the input space and ) := {1,--- , K} be the
label space. We use 7 : X — R¥ to denote the pre-trained model that is used to predict the label of
a test sample. The model prediction in this classification task is generally made as

§ = argmaxyey m(y|z), (1)

where 7(y|z) can be seen as the confidence of that x being labeled to class y. Such point predictions,
however, do not quantify predictive uncertainty. Conformal prediction (CP) (Vovk et al. [2005)
provides a distribution-free framework to address this by constructing a prediction set P(z) C Y
that contains the true label with high probability. Specifically, CP guarantees marginal coverage:

Py € P(z)) > 1—a, (2)

for a user-specified error level a € (0, 1). For example, setting o = 0.1 ensures that the constructed
prediction set includes the true label at least 90% of the time.

However, the coverage guarantee in Eq. (2)) holds only under the assumption that calibration and
test data are exchangeable, i.e., drawn from the same distribution (Vovk et al., 2005; Barber et al.,
2023 |Gibbs & Candes, 2022 |[Farinhas et al., 2023 |[Zou & Liu, [2024). When domain shifts occur,
this assumption is violated and the coverage can drop substantially. Prior studies (Yilmaz & Heckel,
2022; Bhatnagar et al.| 2023) show that even mild shifts cause sharp declines in coverage. This
phenomenon is known as the coverage gap (Barber et al., [2023), defined as

k=(1-—a)—P(y € P(x)), (3)

where 1 — o is the expected coverage and P (y € P(z)) is the achieved coverage. Several extensions
of CP attempt to compensate for this gap. NexCP (Barber et al.}|2023) generalizes CP by employing
weighted quantiles and a randomization technique, enabling robust predictive inference even when
data exchangeability assumptions are violated. However, this method is designed for training phase
and highly depends on a pre-defined domain shift value, which is not allowed in testing time. More-
over, QTC (Yilmaz & Heckel, [2022)) recalibrate the quantile for coverage compensation. However,
QTC suffers from the unreliable domain gap measurement in continual domain shifts and ignores
the model differences. More details about existing non-exchangeable CP methods are discussed in
Sec. This paper seeks to design a CP method for CTTA to act as an uncertainty indicator during
testing time, and solve the coverage gap issue.

4 CONFORMAL UNCERTAINTY INDICATOR FOR CTTA

4.1 CP WITH QUANTILE COMPENSATION

To close the coverage gap of conformal prediction under continual domain shifts, we propose the
Conformal Uncertainty Indicator (CUI), a plug-and-play uncertainty estimator for CCTTA. CUI
leverages a small labeled calibration set C = {(x1,y1) - , (%], ¥|c|)} from the source domain and
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adaptively adjusts the conformal quantile during testing. The key idea is to use both model and data
differences to quantify domain shift, thereby correcting the prediction sets so that their size becomes
a reliable measure of uncertainty. CUI is implemented in the following three steps.

Step 1: Estimating joint domain shifts

This step aims to obtain a reliable estimate of domain shifts under continual adaptation, which
is essential for compensating the conformal quantile and mitigating the coverage gap. Existing
extensions of CP have attempted to handle distribution shifts, but they remain inadequate for CTTA,
as they often rely on assumptions that do not hold under CTTA (see Sec. for more details). In
particular, many approaches estimate domain discrepancy solely from the current model, which can
be unreliable due to error accumulation. For example, prototype-based distances derived from the
current model may no longer reflect the true data distribution once the model has drifted.

To obtain a more reliable estimate, we jointly consider model shift and data shift. Model shift reflects
how much the current model 8™ deviates from the source model 6%, while data shift captures how
the test batch B diverges from the calibration set C. We combine these perspectives by representing
each sample x with a joint probability vector that concatenates predictions from both models:

p(x) = softmax (concat(mgs (), Tgern ())) . 4)

The domain shift score p is then obtained by comparing calibration and test samples via the
Jensen—Shannon (JS) divergence:

P= e Dmens Dis (@) [p(@™)). 5)

We adopt JS divergence Djg as it is symmetric, bounded, and more stable than KL divergence,
making it suitable for measuring discrepancies between probability distributions in dynamic test-
time environments. This joint representation mitigates the bias from error accumulation and provides
a more faithful measure of domain discrepancy. A larger p indicates stronger distributional and
model drift, and in the next step we show how this signal is used to compensate the conformal
quantile to restore coverage.

Step 2: Compensating the quantile threshold.

The shift score p obtained in Step 1 reflects how far the current test environment has drifted from
the source distribution. Since larger shifts typically lead to a larger coverage gap, p can be used
as a proxy for the expected loss in coverage. In classical CP, the threshold conformal predictor
(THR) (Sadinle et al.,[2019) constructs prediction sets by thresholding non-conformity scores. Given

a calibration set C, the quantile threshold 7* is defined as the (1 — a/)( ‘C“g"l )-quantile of calibrated

non-conformity scores:

— Quantile(C, (1 — Oz)) = inf {T : EwECH{s(‘n(m))<T} > |C||CJ|r1 (1 - Ot)} . (6)
For each calibration example, the non-conformity score is computed as
S(ﬂ'ecrl(.’f)) = 1 — Wgcrl(y‘.'lj)7 (7)

that is, one minus the predicted probability of the true class. Intuitively, a smaller score corresponds
to higher confidence in the correct label, while larger scores indicate greater uncertainty.

However, under continual domain shifts, 7* becomes unreliable. Because the calibration distribution
no longer matches the test distribution, 7* is often too strict and leads to under-coverage. To mitigate
this issue, we compensate the threshold using the shift score p:

F=71"4+08"p, ®)
where [ is a tunable scaling factor. Increasing 7 enlarges the prediction sets, thereby including more
candidate labels and restoring coverage closer to the nominal « level. This compensation mechanism

directly links the estimated shift to the degree of coverage correction, making the resulting prediction
sets more trustworthy for uncertainty estimation in CTTA.

Step 3: Computing the prediction set.
Given the compensated threshold 7, we construct the prediction set for each test sample x as
P(a;7) = {y € V' | s(ylr(x)) < 7}, ©
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Algorithm 1 Conformal Uncertainty Indicator in CTTA

Input: Test data point x, Pre-trained model 7, calibration set C, test data stream X'
1: Point prediction via the pre-trained model: § = arg max ey m(y|z)

Measure domain difference p using Eq. (3)

Compute non-conformity scores for calibration set using Eq.

Obtain the threshold 7% = Quantile(C, 1—a)

Compensate threshold via7 =7* + 8- p

: Set prediction via threshold: P(z;7) = {y € YVis(y|n(z)) < 7}

Output Point prediction ¢, Set prediction P

A A A

where s(y|m(z)) denotes the non-conformity score of class y under the current model prediction
m(x). The threshold 7 determines the size of the prediction set. A larger 7 allows more candi-
date labels to be included, resulting in larger sets, whereas a smaller 7 produces smaller sets. In
this way the set size naturally represents prediction uncertainty. Large sets indicate that the model
cannot confidently exclude many classes, while small sets correspond to more certain predictions.
Compared with scalar confidence measures such as entropy, the set-based formulation of CP pro-
vides statistically valid coverage guarantees, which makes it more reliable in continual domain shift
scenarios. The complete procedure of CUI is summarized in Algorithm|[I]

4.2 CUI-GUIDED ADAPTATION

The size of the prediction set produced by CUI provides a natural indicator of reliability. A predic-
tion set of size one implies that the model is confident about a single label, which we regard as the
most reliable case. Larger sets indicate greater uncertainty, since the model cannot confidently rule
out multiple alternatives. Empty prediction sets may occasionally occur under severe shifts, and we
treat them as maximally unreliable. This allows CUI to guide adaptation and reduce the risk of error
accumulation in CTTA.

We design a strategy that weights the contribution of each test sample according to its reliability.
Samples with smaller prediction sets receive larger weights, which ensures that confident predictions
play a stronger role in adaptation. Consider the case of Mean Teacher based adaptation (Wang et al.,
2022; Brahma & Rail 2023)). The student is updated from the teacher’s predictions, and the teacher
is updated through exponential moving averaging (EMA) from the student. Under this setting, the
CUI-guided student loss is defined as

L =—-E.epvy(z) - mou(z) log mesu (), (10)

where °* and 0™ are the teacher and student models, respectively. The weight v(x) is determined
by the relative size of the prediction set:

maxy es([PE)) ~ [P +6
@)= 4 maes(P@I) —14s 0 T@I=0 an
0. [P(x)] =0,

where ¢ is a small constant that avoids division by zero. This design normalizes weights within each
mini-batch, so that reliable samples consistently dominate the update. When |P(z)| = 1, we obtain
~(x) = 1, which corresponds to the most reliable case. Although we describe the approach using
Mean Teacher, the weighting scheme is general and can be integrated into other CTTA frameworks.
This makes CUI a flexible plug-in for reliability-aware adaptation.

4.3 DISCUSSION

Comparison with existing non-exchangeable CP methods. We compare our CUI with two re-
cent non-exchangeable CP methods, including NexCP (Farinhas et al., 2023) and QTC (Yilmaz &
Heckel, [2022). First, both NexCP and QTC are designed only for uncertainty indication instead
of adaptation improvement. NexCP is designed for training time, where it specifies a constant to
represent the domain difference from the source domain to the target domain. Specifically, NexCP
directly compensates the coverage by

PlyeP@)>1-a-23" we, (12)
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where ¢; is a predefined constant measure of how much the distribution has shifted from the test
sample to the ¢-th calibrated sample and w; is a corresponding weight. NexCP will satisfy marginal
coverage, and are exact when the magnitude of the distribution shift is known, which is infeasible in
test time. In contrast, CUI is designed for testing, and measuring the distribution shifts adaptatively.

QTC proposes to replace the user-specified « to a new coverage level Sqrc calculated as

BQTC = min [EIGCH{S(W(.%))<Quantile(8,a)}; 1- ]EzGB]I{s(Tr(:c))<Quantile(C,1—a)}]~ (13)

Based on the current model 7, QTC finds a threshold on the scores of the model on the unlabeled
samples and predicts the coverage level by utilizing how the distribution of the scores changes across
test distribution with respect to this threshold. However, QTC ignore the adaptation on continual
domain shifts may suffer serious error accumulation, making the current model unreliable. This
leads to the CP results being unreliable too. Instead, our CUI considers the error accumulation and
evaluates domain shifts based on a joint distribution difference. More details are shown in Appendix.

Calibration data in testing. As defined in the CCTTA setting, a small labeled calibration buffer
from the source domain is available at test time. This assumption is not unique to our work, since
many related areas also rely on maintaining small data buffers. Many continual learning (Rolnick
et al.l|2019;|Van de Ven et al 2020) methods store and retrain previous training examples to avoid
catastrophic forgetting of past tasks, named replay strategy. In comparison with replay, the calibra-
tion set in CUI is not used for adaptation but calibration in testing time, and the calibration set will
not be updated in our method. Practical approaches in real-world settings involve storing samples to
improve testing outcomes, such as/Tomani et al.|(2021)) and Rahimi et al.[(2020)) leverage post-hoc
calibration to achieve better performance under domain drift scenarios by using validation or calibra-
tion sets. In the CTTA tasks, some existing methods use source data to improve the adaptation such
as |Dobler et al.|(2023). The proposed CUI is plug-and-play, particularly well-suited for scenarios
where the continuous accumulation of errors over long-term testing periods is unacceptable, such
as in autonomous driving and medical applications. In these contexts, proactively assessing model
uncertainty is essential to ensure safety and reliability, and it is acceptable for users to maintain a
small set of calibration data. Furthermore, for a fair comparison, calibration sets are consistently
employed across all methods discussed in the experiments.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTING

Dataset. We employ the CIFAR10-to-CIFAR10C, CIFAR100-to-CIFAR100C, and ImageNet-to-
ImageNetC datasets as benchmarks to assess the effectiveness of CUI (CIFAR10C, CIFAR100C
and ImageNetC for short). Each dataset comprises 15 distinct types of corruption, each applied at
severity level of 5. These corruptions are applied to test images from the original datasets.
Calibration Set Construction. For each dataset, we construct a small labeled calibration buffer
from the source domain in two possible ways: (i) splitting off a disjoint portion of source data
before pretraining (privacy-first, which requires retraining), or (ii) reusing a small subset of the
training data (efficiency-first, which avoids retraining). In our experiments, we adopt the efficiency-
first strategy and set the calibration buffer sizes to 50, 100, and 500 for CIFAR10C, CIFAR100C,
and ImageNetC, respectively. The buffer is fixed throughout testing and used solely for CP.
Pretrained Model. Following previous studies (Wang et al. [2020; |2022), we adopt pretrained
WideResNet-28 (Zagoruyko & Komodakis, 2016) model for CIFARI0C, pretrained ResNeXt-
29 (Xie et al.,|2017) for CIFAR100C, and standard pretrained ResNet-50 (He et al., 2016) for Ima-
genetC. For a fair comparison, we conduct all experiments in a same environment.

Evaluation Metric: We use two kinds of metrics including testing performance, CP performance.
We use D to represent the testing data with labels. (1) For testing performance, we use the error rate
(ERR) following existing CTTA methods (Wang et al.,2022). (2) For CP performance, we leverage
coverage and inefficiency for joint evaluation:

COV =E, ,,cpl(y € P(2)), INE =E, 5 [P(z)|. (14)

The coverage should be near to the user expectation and the inefficiency should be small but larger
than 0. Specifically, COV closer to 1 — « indicates a more effective uncertainty estimation of the
CP. For example, with o = 0.1, the COV should be close to 90%. INE, on the other hand, indicates
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Table 1: Results of combining CUI with exiting CTTA methods on the three datasets. For cal-
ibration, the privacy-first strategy uses a disjoint split with a retrained source model, while the
efficiency-first strategy reuses common-used pre-trained source model. For each SOTA method,
the first line means the vanilla implementation only with CUI for uncertainty estimation, and the
second line means the method uses uncertainty to guide the adaptation. Because CUI does not
change the ERR, we omit the results of these methods w/o both CUI and CPAda for saving space.

Method Privacy First (Calibration data N Training data = ()) Efficiency First (Calibration data C Training data)
1. : Sec.|4 a=0.3 a=02 a=0.1 a=0.3 a=02 a=0.1
2. CPAda: Sec: ERR COV INE ‘ERR COV INE |ERR COV INE [[ERR COV INE ‘ERR COV INE ‘ERR COV INE
Tent + 21.65 69.12 0.89 |21.65 78.45 1.96 |21.65 87.93 2.33 |[20.45 68.55 0.81 |20.45 77.88 1.02 |20.45 87.67 1.57
Tent + + CPAda 19.70 69.04 0.81 [19.25 76.73 1.02 |19.25 87.17 1.56 ||18.06 67.91 0.77 [18.32 78.19 1.01 ‘1822 87.57 1.29
g CoTTA + 16.34 68.77 0.81 [16.34 78.45 1.89 |16.34 87.85 1.66 ||16.22 67.86 1.15 |16.22 75.36 1.09 16.22 89.35 1.90
% |COTTA + +CPAda ||15.73 68.77 0.81 |15.75 77.93 1.03 |15.71 87.02 1.46 |[15.52 66.62 0.81 [15.73 77.25 1.00 15.65 88.53 1.61
é SATA + 16.31 68.25 0.75 |16.31 77.78 0.95 |16.31 86.07 1.24 ||16.13 68.28 0.84 [16.13 77.14 0.85 ‘16,13 85.61 1.09
T |SATA + + CPAda 15.79 68.83 0.75 |15.76 76.68 0.89 |15.72 86.97 1.30 [|15.59 67.94 0.73 |15.56 78.49 0.92 |15.60 88.68 1.24
& |RDumb + 18.31 68.62 0.76 |18.31 78.82 0.94 |18.31 85.60 1.15 |[17.63 68.37 0.76 |17.63 77.87 091 17.63 86.23 1.17
& |RDumb + + CPAda ||16.73 73.55 0.83 [16.73 79.30 0.94 |16.81 86.41 1.18 |[16.23 68.30 0.74 |16.31 76.63 0.87 16.33 84.38 1.09
Z |C-CoTTA + 14.99 68.39 0.73 [14.99 78.42 123 |14.99 86.92 1.75 ||14.74 66.16 0.70 (14.74 77.46 0.87 ‘14.74 87.52 1.44
3] C-CoTTA + + CPAda||14.75 66.97 0.72 (14.72 77.10 1.14 |14.76 86.42 1.55 ||14.32 68.82 0.74 |14.38 75.53 0.85 |14.33 88.47 1.64
RMT + 14.66 68.86 0.75 |14.66 76.81 1.14 |14.66 87.37 1.45 ||14.54 68.29 0.85 |14.54 78.37 1.10 14.54 89.06 1.50
RMT + + CPAda 14.33 66.53 0.72 |14.36 78.04 122 |14.44 86.29 1.26 ||14.28 69.17 0.83 |14.31 77.28 091 14.25 86.58 1.70
Tent + 62.24 69.23 2.66 |62.24 78.50 4.44 |62.24 87.24 11.19 ||60.93 69.04 17.32|60.93 77.15 27.97 |60.93 84.63 35.52
© |Tent + + CPAda 46.50 68.88 1.53 |46.56 76.85 3.68 |45.95 87.42 4.13 |/49.87 68.22 20.66|52.90 78.93 24.34 |51.56 84.48 28.61
2 |CoTTA + 36.41 68.08 1.86 (36.41 77.01 2.82 |36.41 87.31 4.96 |(32.50 66.59 2.42 ([32.50 78.39 5.11 32.50 88.68 11.58
% |CoTTA + + CPAda |[32.11 67.81 1.69 |32.16 79.33 3.34 (32.31 89.64 9.69 (|30.93 64.65 1.85|30.99 75.08 3.16 31.59 84.61 6.45
Z|SATA + 33.46 69.32 1.81 (33.46 76.84 2.79 |33.46 87.39 7.06 [|30.30 68.69 1.55 |30.30 77.80 2.64 ‘30.30 87.82 6.02
T |SATA + + CPAda 32.38 68.36 1.65 |32.39 77.85 2.92 |32.46 89.51 8.64 ||29.14 68.81 1.44 |28.94 76.29 2.08 |28.78 84.92 3.69
& |RDumb + 4593 68.01 2.29 |45.93 76.86 3.38 |45.93 88.48 7.23 ||45.10 68.56 2.06 [45.10 78.02 221 45.10 87.68 2.23
= |RDumb + + CPAda |[42.12 68.62 1.76 [42.23 79.30 2.94 |42.26 86.21 7.89 |(43.42 69.49 2.72 |43.22 76.10 2.86 43.36 85.28 3.40
5 C-CoTTA + 32.79 68.58 1.83 (32.79 78.12 3.21 |32.79 88.37 7.62 [|29.90 69.75 1.71 |29.90 76.54 2.51 [29.90 84.51 4.70
B |C-CoTTA + + CPAda||31.52 68.08 1.66 |31.44 77.96 2.97 |31.47 88.19 7.20 [|29.31 68.79 2.46 |29.28 78.64 2.60 |29.17 86.08 5.32
O |RMT + 32.53 68.37 1.45(32.53 77.06 2.75 |32.53 88.48 7.46 [|29.00 69.41 1.69 |29.00 76.71 2.62 29.00 87.97 5.80
RMT + + CPAda 31.43 67.47 1.39 (3132 76.71 2.62 |31.45 86.97 6.40 ||28.35 67.67 1.40 |28.33 77.06 2.75 28.28 87.71 4.49
Tent + 63.69 68.12 43.09(63.69 78.07 114.50|64.69 87.42 265.59/62.60 69.09 47.80|62.60 79.40 82.62 [62.60 88.48 163.09
Tent + + CPAda 62.50 69.26 47.8962.53 76.89 112.25|62.60 88.71 272.71|61.50 69.26 47.89|61.53 76.19 43.25 ‘61.60 88.71 164.50
% CoTTA + 69.03 68.88 84.43(69.03 79.01 110.13|69.03 88.28 188.43/62.70 68.43 69.74|62.70 78.07 90.86 62.70 86.70 171.33
Z |CoTTA + + CPAda ||67.56 67.74 80.13|67.42 78.42 114.43|67.32 89.04 179.64|/61.22 69.01 69.32(61.30 77.42 86.23 61.24 87.40 172.24
88| SATA + 61.81 69.83 81.31(61.81 76.97 118.13|61.81 87.95 212.59((60.10 69.38 75.93(60.10 77.42 120,44‘60,10 88.12 218.29
E SATA + + CPAda 60.62 69.10 54.99(60.92 79.09 113.38|60.87 89.46 224.14|/58.52 68.24 64.18|58.54 78.71 121.57|58.65 87.32 192.66
< |RDumb + 64.46 66.68 21.67|64.46 79.49 57.39 |64.46 88.55 156.87/62.45 67.54 23.38|62.45 79.22 67.03 62.45 88.83 147.44
Z |RDumb + + CPAda ||62.25 67.29 22.74|62.29 78.28 56.45 |62.18 87.34 152.11|(60.26 67.57 24.52|60.32 78.39 62.16 60.54 89.01 156.74
gn C-CoTTA + 60.42 68.11 36.13|60.42 75.19 32.61 |60.42 87.70 91.22 ||59.40 67.45 17.09(59.40 78.14 39.26 ‘59.40 88.09 100.20
£ |C-CoTTA + + CPAda|[59.48 68.03 20.87(59.52 77.24 42.90 |59.53 88.74 96.05 ||58.36 68.31 18.73|58.33 79.05 40.46 |58.39 87.67 98.40
= |RMT + 61.64 69.79 19.44|61.64 78.05 37.59 |61.64 86.15 82.13 ||59.80 69.53 18.73|59.80 78.04 38.18 59.80 86.83 82.37
RMT + + CPAda 59.62 69.71 18.98(59.65 78.57 39.07 |59.66 86.04 76.99 ||59.28 69.57 19.30(59.25 76.91 34.27 59.30 87.35 87.60

lower uncertainty when closer to 1, while values closer to 0 suggest that no valid prediction. INE
greater than 1, with larger values indicating higher uncertainty.

5.2 MAIJOR RESULTS

CUI is a play-and-plug uncertainty indicator. To evaluate the effect of CUI, we select several
well-known and state-of-the-art methods as the baseline methods, including TENT (Wang et al.,
2020), CoTTA (Wang et al., [2022)), SATA (Chakrabarty et al., 2023), RMT (Débler et al., [2023)),
C-CoTTA (Shi et al.} 2024) and RDumb (Press et al.,[2024). All compared methods adopt the same
pre-trained model under the same calibration set construction strategy. For each selected method,
we use the proposed CUI for uncertainty measurement, and based on this, we compare two results:
one without adaptation and one using CUI guidance for domain adaptation. These two results are
represented as adjacent rows in the table, such as “CoTTA+CUI” and “CoTTA+CUI+CPAda”. We
use three expected coverage factors « = 0.1,0.2,0.3, which represent that the user would like
90%, 80%, 70% coverage for the prediction. The results are shown in Table [I} First, with the in-
clusion of CUI, it is possible to estimate uncertainty (INE) that closely aligns with the predefined
« values. In most cases, when CPAda is not employed, the INE values reveal significant inherent
uncertainties within the baseline method. These uncertainties are associated with the dataset that
more complex datasets typically exhibit higher INE values. Moreover, the INE varies depending on
the o value. Specifically, smaller o values correspond to larger INE, as smaller o thresholds de-
mand higher fault tolerance. This relationship highlights the trade-off between the level of certainty
required and the algorithm’s ability to meet that requirement. Second, the integration of CUI-guided
CPAda improves existing methods, reducing ERR and lowering INE, indicating more accurate and
confident predictions. Finally, the comparison between Privacy-First and Efficiency-First strate-
gies shows minimal performance differences, suggesting that users can select the calibration dataset
construction method based on their specific application needs without compromising results.
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Table 2: Comparisons with non-exchangeable CP methods.

Privacy First Efficiency First
w/o CPAda w/ CPAda w/o CPAda w/ CPAda
a  CP Method ERR COV INE | ERR COV INE ERR COV INE | ERR COV INE

3515 2339 028 | - - - || 3277 3427 044 | - - -
3515 2339 028 | 3518 2131 024 || 3272 3417 044 | 3189 3981 050

Z
>

Sadinle et al | 2019

03 NexCP [m 35.15 2346 028 | 3521 2175 0.25 3272 3468 045 | 31.70 4031 051
: QTC lmaz & Hecke 3515 40.70 0.59 | 33.79 4225 0.59 3272 5215 0.87 | 31.00 53.13 0.75
Sao 3515 3587 049 | 3416 4141 0.58 3272 6297 143 | 29.71 6820 130

3515 69.64 270 | 3276 68.02 2.18 3272 6895 201 | 2948 68.07 2.17

3515 29.05 0.37 | 3480 2793 0.34 3272 4217 0.60 | 3143 4832 0.67
3515 2942 037 | 3478 2839 0.35 3272 41.87 059 | 3132 4836 0.66
3515 46.63 0.75 | 33.54 4784 0.73 3272 5996 122 | 30.53 61.53 099
3515 4401 0.68 | 3371 5135 0.86 3272 7115 224 | 2936 7498 1.78
35.15 7758 4.60 | 32.59 7746 3.64 3272 7673 342 | 2917 79.15 227

35.15 3725 052 | 3420 37.12 049 3272 5369 095 | 30.64 5989 0.97
3515 37.71 0.53 | 3417 3770 0.51 3272 53.17 092 | 30.62 59.83 097
35.15 5556  1.10 | 3325 5429 093 3272 69.14 192 | 2958 7231 150
3515 5328 0.99 | 3330 59.00 1.16 3272 83.51 5.64 | 2937 80.99 247
35.15 8641 930 | 3274 89.02 1148 | 3272 8638 7.78 | 29.17 8835 547

Sadinle et al (2019
0n Nex -{m

0.1

5.3 MORE ANALYSIS ON THE PROPOSED METHOD

Comparisons with non-exchangeable CP methods. In Table[2] we compare our CUI with other
CP methods including THR [Sadinle et al.| (2019), NexCP [Barber et al.| (2023)) and QTC
(2022). THR is an exchangeable CP method and never considers domain shifts in CTTA,
thus it obtains an obvious coverage gap. NexCP and QTC are two non-exchangeable methods, with
detailed comparisons available in Sec. @ First, for NexCP, we use the same fixed value for domain
shift estimation as in the original paper, and NexCP is only slightly better than THR and struggles
to estimate domain differences in advance during testing. Then, although QTC estimates domain
differences in real time, it neglects the unreliability of the current model due to error accumulation
over long testing periods. This method yields better results than both THR and NexCP. However,
these methods all suffer from coverage gap issues, and the uncertainty estimation is unreliable in
CTTA, even if their INE is close to 1. Instead, CUI obtains near-expected coverage when estimating
testing uncertainty. Next, we compare our domain adaptation method (CPAda) using different CP
techniques that are similar to the proposed method, and the results show that CUI provides better
guidance for adaptation and obtains lower error rates.
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Figure 2: Changes of COV and INE. Figure 4: Time and memory cost on CIFAR100C.

Coverage and Inefficiency changes in CTTA. In Fig. 2| we show the coverage and inefficiency
changes of different CP methods. As shown in Fig. 2[a), coverage varies significantly across meth-
ods, reflecting domain disparities. Existing methods, such as THR and NexCP, show notable cover-
age gaps, while QTC performs well initially but struggles with error accumulation. In contrast, CUI
achieves comparable initial coverage to QTC and surpasses it in later domains. Fig. 2(b) illustrates
inefficiency trends, revealing that existing methods, despite low coverage, fail to account for error
accumulation during domain shifts, leading to overconfidence. CUI, however, captures this accumu-
lation, with inefficiency increasing as domains change, reflecting growing uncertainty. When CUI
guides domain adaptation, inefficiency decreases, demonstrating effective uncertainty control.

Storage analysis and comparison with replay strategy. As discussed in Sec.[.3] CP-based meth-
ods need to maintain an extra calibration set for uncertainty estimation. Although effectively mea-
suring uncertainty is crucial in testing systems, using CP requires a certain amount of memory
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Table 3: Comparison with replay strategy. Table 4: Comparison on DomainNet-126.

Privacy First Efficiency First Method | real | clipart | painting | sketch | Mean
ERR COV INE || ERR COV INE

Method ‘ Storage

Baseline | 3515 2339 028 || 3277 3427 044  Lent 43881 4548 | 3823 | 38.54 | 41.53
Tent+ + CPAda 41.70 | 44.78 36.90 | 36.72 | 40.03
Soure Replay | |0 [35.03 2188 0253264 747 008
+CPAda 3250 78.11 3292917 7915 227  CoTTA 43.00 | 42.80 | 36.85 | 37.04 | 39.92
Soure Replay 00 |3502 1334 0.1413252 820 0.09 CoTTA+ + CPAda | 41.32 | 40.17 3542 34.81 | 37.93
+CPAda 31.97 79.02 7.61|[29.38 77.05 2.04
P 2 1391 0155200 597 oo RMT ‘38.86‘ 39.22 ‘ 3331 ‘ 33.63 ‘36.26
oure Replay X . . X . . ~ .
+ CpAda| 300 ‘31133 7859 5'12H29_77 7748 218 RMT+ + CPAda |37.34| 37.82 31.23 32.06 | 34.61

storage. We analyze the impact of this storage on performance in Table [3| and find that a larger
storage capacity leads to better CP performance, as more calibration data provides a more accurate
representation of the original data distribution. Additionally, we compare CUI with a classic storage
method in continual learning, the source replay strategy, where we use the same samples for replay
when conducting adaptation. We find that CUI achieves better accuracy while maintaining the same
amount of stored data, which shows the significance of reducing error accumulation in CTTA.
Impacts of user-specified coverage level «. In CP, we have a user-specified coverage level o €
(0,1) (Eq. ), which is generally considered to represent a user pre-specified error rate. In Fig. a),
we show that the infuence of different o from 0.1 to 0.9. The results show that a large o means that
the user accepts a lower coverage rate, reflecting a large error rate.

Analysis of compensation factor 5. We also analyze the influence of different compensation factors
 in Eq. (8), which represents the compensation level. The results are shown in Fig. [3(b), we find
that small 3 decrease the compensation performance and large 5 may result in overcompensation.
Time and memory cost. We analyze CUI’s impact on time and memory cost increases compared
to the original methods, as shown in Fig.[4] It is evident that our CUI and CPAda strategies slightly
increase implementation time due to the forward propagation of calibration data. However, CPAda
reduces memory costs by performing backpropagation only on selected samples.

Error comparison on DomainNet (Peng et al., [2019). DomainNet is a commonly used domain
shift dataset in the traditional TTA task. We evaluate the proposed method on DomainNet. As shown
in Table ] our method can improve Tent, CoOTTA, and RMT by introducing uncertainty estimation.

Table 5: Comparison on Small Batch Sizes. Table 6: Comparison on Different corruption orders.

Method 100 50 10 Method 1 2 3 4 5 avg std
Tent 22.06 28.66 75.34 Tent 20.45 20.08 18.73 19.27 21.65 20.04 1.13
Tent+ + CPAda 19.75 22.38 72.09 Tent+ + CPAda 18.06 19.22 18.01 18.65 18.35 18.46 0.50
CoTTA 18.27 20.43 57.25 CoTTA 16.22 1633 16.80 16.53 16.68 16.51 0.24
CoTTA+ + CPAda 16.52 1833 52.75 CoTTA+ + CPAda 15.52 1523 1546 1551 15.58 15.46 0.14
SATA 16.45 16.90 20.72 SATA 16.13 16.18 1642 16.16 1627 16.23 0.12
SATA+ +CPAda 1577 16.23 20.34 SATA+ +CPAda 1559 1549 1572 1553 1579 15.62 0.13

Sensitivity to batch size. We further evaluate different batch sizes {100, 50, 10} in Table|5| Perfor-
mance decreases for all methods as the batch size becomes smaller, yet CUI consistently improves
robustness across settings, showing no additional instability under small-batch adaptation.
Sensitivity to corruption order. To assess robustness against different corruption sequences, we
evaluated 5 randomly sampled orders (Table [6). Compared with other methods, CUI consistently
reduced error rate, demonstrating improved stability under varying corruption orders.

6 CONCLUSION

We studied uncertainty estimation for CTTA under a calibration-aided setting. We proposed the
CUI, which leverages a small labeled calibration buffer with conformal prediction. CUI jointly
measures model shift and data shift to correct conformal quantiles, closes the coverage gap under
domain shifts, and yields prediction sets whose size serves as a calibrated indicator of test-time
uncertainty. We further introduced a CUI-guided adaptation strategy that updates models only on
confident samples and improves the robustness of existing CTTA baselines. Experiments on three
benchmarks validate that CUI provides reliable uncertainty estimates and enhances downstream
adaptation. CUI requires a calibration buffer from the source domain, which may not always be
available, and it currently operates at the instance level, limiting direct application to fine-grained
tasks such as pixel-level segmentation. Future work will explore relaxing the reliance on calibration
data through online or privacy-preserving calibration and extending CUI to structured outputs and
dense prediction tasks.
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A COVERAGE PROOF IN CONFORMAL PREDICTION

A.1 COVERAGE IN EXCHANGEABLE CONFORMAL PREDICTION (WITHOUT DOMAIN SHIFT)

Theorem 1 (Exchangeable Conformal Prediction (Vovk et al., |2005)). Assume the calibration set
C and a new data sample x are i.i.d. (or more generally, exchangeable), and the model T treats the

input data points symmetrically. Given a specified coverage level o, the quantile can be calculated
by

1 1
7% = Quantile[C, (1 — «)] = inf {7’: ﬁ Z]I{S(K(I)KT} > |C:(/j|_(1 — a)} ) (15)
z€eC
Then, the conformal prediction set is defined as
P(x) = {yls(r(x)) <77}, (16)
and satisfies
PlyeP(z) > 1-a. (17)

Proof. The coverage proof of exchangeable CP is following |Barber et al.| (2023). First, we define
the strange data points in the calibration set as an index set:
S={ie[l,n+1]:s(m(x;)) > 7"} (18)

The strange points are with the largest | «(n + 1) | non-conformity score. Because of the definition
of quantile, it is easy to find that
S| < a(n +1). (19)

Then, for a test sample x,,1, if it was failed-coverage, say ¥n11 ¢ P(x,+1), this means that
s(m(x;)) > 7*. Thus, we have the strange probability:

P(Ynt1 € P(znt1)) =p(n+1€S)
=Eicinryp(i €8)

(20)
_ s
n+1
Because of the exchangeability assumation, we have
P(Ynt1 ¢ P(ant1)) < @ 21
The coverage of exchangeable conformal prediction is obtained proof. |

A.2 COVERAGE IN NON-EXCHANGEABLE CONFORMAL PREDICTION (WITH DOMAIN
SHIFTS)

In this subsection, we prove that why the proposed method can be used to compensate coverage gap

in CP when domain shifts. First, following Barber et al.| (2023)), we give the lower bound of the
coverage in non-exchangeable CP when the domain shifts is known.

12
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Lemma 1 (Coverage gap upper bound). Assume that Vx € C and z'*** are independent. In a CP
approach, the coverage gap can be bounded by the following inequality:

k=(1—-a)—P{yeP(x)}

2 < ‘ ,
Zwi cdry [(i, i), (20, y*h)]
=1

B (22)
T n+1 —

where drv is a total variation distance. w; is a prespecified importance weight for the i-th calibra-
tion sample, and is set to 1 in general CP.

Proof. Let X = C U {(a**, y**s)}. Because Vx € C and 2" are independent, we have

k= (1-a)-P{ycP()}
1 n+1

< sz ~dyv (X, (21,95))
n+1 p

1 & est , tes
“n+1 Zwi - (2drv [(‘Tmyz)r (z" " t)] (23)
i=1

— drv [(#i, yi), (2, y*)])

2 n
“n+1 > wi - dry [(@,yi), (27, y*oh)]
i=1

2

where the second inequality can be obtained by the maximal coupling theorem (Den Hollander,
2012). That is, for two independent random variables x and y, if we have another two independent
random variables & and ¢ and (&, §)is a maximal coupling for (z,y), then we have dry(x,y) =
p(& # ).

Theorem 2 (Exchangeable Conformal Prediction with Known Shifts (Barber et al., 2023))). Assume
the calibration set C is i.i.d., but a new data sample x is drawn from a different distribution. Given
a specified coverage level o, the quantile can be calculated by

7% = Quantile[C, (1 — «)] = inf {7’: \%| Zﬂ{s(ﬂ(:v)xr} > |C:g|_1(1 - a)} ) (24)

zeC

Then, the conformal prediction set is defined as
P(x) = {yls(r(x)) <77}, (25)

and satisfies a coverage lower bound:

n

2
Ply € P(@)) > 1—a— =3 wi-drv [(ws,), (", 5] (26)

i=1

Proof. This theorem can be easily obtained from Lemmal|[I]

A.3 COVERAGE OF CUI WITH DOMAIN SHIFTS

However, Theorem [2|is only appropriate for known domain difference. When the domain differ-
ences are unknown in test time, it is difficult to obtain a certain coverage lower bound. This explains
why NexCP performs poorly in the CTTA task. QTC has designed a dynamic method for estimating
domain differences, making it more suitable for testing compared to NexCP. However, the CTTA
task requires multiple domain changes, which significantly impacts the model’s ability to estimate
domain differences due to error accumulation. Specifically, we compute the joint distribution differ-
ence of current data and calibration data between the source and current models.

In CUI, we dynamically evaluate the domain difference between the source data and the current
test data. To mitigate the effect of error accumulation, we consider both model and data difference.
We use the Jensen-Shannon (JS) divergence as the metric. Joint feature representation captures

13
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correlations between different features, providing a more holistic view of the data distribution and
how different models process it. The joint distribution can better reflect subtle differences between
domains, enhancing the precision of JS divergence measures. Moreover, comparing joint feature
distributions allows for a more detailed assessment of how much the current model has gained
compared to the source model.

B UNCERTAINTY EVALUATION USING OTHER METRICS

In the main paper, we use two kinds of metrics including testing performance, CP performance. We
use D to represent the testing data with labels. (1) For testing performance, we use the error rate
(ERR) following existing CTTA methods [Wang et al.| (2022) and the small, the better. (2) For CP
performance, we leverage coverage and inefficiency for joint evaluation. The coverage should be
near to the user expectation and the inefficiency should be small but larger than 0.

(€)) ) A3)
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16 0.18 0.16
= 14 o 016 = 0.12
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Figure 5: Uncertainty comparisons with QTC on CIFAR100-to-CIFAR100C using NLL,BS and
ECE metrics.

In this subsection, for uncertainty measure, we use Negative Log Likelihood (NLL), Brier Score

(BS, (1950)) and Expected Calibration Error (ECE, [Naeini et al.| (2015))):

NLL = —E,  eplog(p(ylz)),
BS =K, cp (p(x) — 1(1))?,

27)

10 IB,|
ECE = Z |7§| lacc(B;) — conf(B;)],
i=1

where 1(-) means onehot. In ECE, we split samples into 10 bins by probability, and acc(B;) means
the bin accuracy and conf(/;) is the mean confidence of the bin. The three metrics NLL, BS, and
ECE are always used in scenarios where the true labels are known, which is impossible at test time
and thus cannot be used as an uncertainty indicator. We compare CUI with QTC in Fig. 5] and
find our method still outperforms this non-exchangeable CP method in these traditional uncertainty
measures.

C DETAILED RESULTS

In our experiments, we employ the CIFAR10C, CIFAR100C, and ImageNetC datasets as bench-
marks to assess the robustness of classification models. Each dataset comprises 15 distinct types
of corruption, each applied at five different levels of severity (from 1 to 5). These corruptions are
systematically applied to test images from the original CIFAR10 and CIFAR100 datasets, as well
as validation images from the original ImageNet dataset. The 15 types of corruption are Gaussian,
Shot, Impulse, Defocus, Glass, Motion, Zoom, Snow, Frost, Fog, Brightness, Contrast, Elastic,
Pixelate, Jpeg. We show the detailed error results for each type of corruption in Tables[7] [§]and[9]
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Table 7: Classification error rate (%) for the standard CIFAR10-to-CIFAR10C CTTA task. All

results are evaluated with the largest corruption severity level 5 in an online fashion.

Strategy\ « Method Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe. Avg.
Tent+ 2473 2082 2939 14.71 3320 17.38 1478 19.77 1938 19.67 14.66 19.11 2633 22.13 28.62 21.65
Tent+CUI+CPAda 2457 20.23 28.01 14.08 31.51 16.50 1440 17.77 16.76 17.60 11.65 15.10 23.75 19.59 2391 19.70
CoTTA+ 2442 21.82 2607 1178 27.19 12.63 10.69 15.00 1429 12.44 7.65 10.88 1832 13.88 17.97 16.34
CoTTA+CUI+CPAda  23.09 20.63 25.84 1051 26.39 11.53 10.26 14.05 14.08 1252 7.72 1044 17.18 13.71 18.00 15.73
SATA+ 2331 19.63 28.16 1159 28.10 12.55 1042 14.03 13.69 1227 7.64 10.69 18.92 14.16 19.53 16.31

0.3 SATA+CUI4CPAda  22.92 18.39 2645 1142 27.36 1238 996 1381 1320 1205 7.53 1038 1891 1337 1879 1579

> RDumb+ 24.06 19.81 27.56 12.93 29.55 15.10 12.78 16.67 1657 1552 9.48 1327 21.67 17.48 22.25 1831
RDumb+CUI+CPAda  23.27 20.53 25.21 11.47 27.44 12.81 11.50 15.58 14.92 13.24 831 10.75 20.51 15.55 19.89 16.73
C-CoTTA+ 2343 17.75 2326 11.85 2435 1261 1035 13.73 1253 11.95 837 9.82 1646 12.10 1632 14.99
C-CoTTA+CUI+CPAda 21.82 17.30 23.61 11.81 24.48 12.51 10.21 13.02 12.32 11.93 7.96 9.68 16.57 12.32 15.76 14.75

RMT+ 2262 18.89 2536 10.27 24.94 11.58 10.14 1337 12.67 1149 8.19 9.87 1528 11.26 14.53 14.66
RMT+CUI+CPAda 22,09 17.86 23.93 10.63 23.82 11.83 10.49 12.79 12.51 11.07 833 9.56 15.10 11.04 13.94 14.33

Tent+ 2473 20.82 29.39 14.71 3320 17.38 14.78 19.77 19.38 19.67 14.66 19.11 2633 22.13 28.62 21.65
Tent+CUT+CPAda 2477 20.67 2834 13.73 3032 16.01 13.88 17.65 16.73 16.03 10.48 13.61 23.16 19.26 24.10 19.25

CoTTA+ 24.42 21.82 26.07 11.78 27.19 12.63 10.69 15.09 14.29 12.44 7.65 10.88 18.32 13.88 17.97 16.34

7 CoTTA+CUI+CPAda  23.05 20.33 25.44 10.61 2629 11.53 10.46 15.05 14.08 12.22 7.72 10.44 17.18 13.91 18.00 15.75
> SATA+ 2331 19.63 28.16 1159 28.10 12.55 1042 14.03 13.69 1227 7.64 10.69 18.92 14.16 19.53 16.31
5 |gg SATA+CUL+CPAda 2292 1827 2645 1143 27.23 1217 9.96 1376 1320 1215 753 1028 1891 13.36 18.79 1576
& ** RDumb+ 24.06 19.81 27.56 12.93 29.55 15.10 12.78 16.67 1657 1552 9.48 1327 21.67 17.48 22.25 1831
£ RDumb+CU+CPAda  23.27 20.53 25.21 11.47 27.44 12.81 11.50 15.58 14.92 1324 831 10.75 20.51 15.55 19.89 16.73
C-CoTTA+ 2343 1775 2326 11.85 2435 12,61 1035 13.73 1253 1195 837 9.82 1646 12.10 1632 14.99
C-CoTTA+CUI+CPAda 21.84 17.31 23.52 11.81 24.48 12.51 10.03 13.02 12.23 11.83 7.96 9.68 16.56 12.32 1570 14.72

RMT+ 2262 18.89 2536 10.27 24.94 11.58 10.14 1337 12.67 1149 8.19 9.87 1528 11.26 14.53 14.66
RMT+CUI+CPAda  21.81 17.66 23.92 10.76 23.53 11.93 10.08 13.28 1229 1142 8.16 993 1541 1121 13.97 14.36

Tent+ 2473 20.82 29.39 1471 3320 17.38 14.78 19.77 19.38 19.67 14.66 19.11 2633 22.13 28.62 21.65
Tent+CUI+CPAda 2477 20.67 2834 13.73 3032 1601 13.88 17.65 16.73 16.03 1048 13.61 23.16 19.26 24.10 19.25

CoTTA+ 24.42 21.82 2607 1178 27.19 12.63 10.69 15.09 14.29 1244 7.65 10.88 18.32 13.88 17.97 16.34
CoTTA+CUI+CPAda  23.05 20.31 2544 1021 2629 11.33 10.46 15.05 14.08 12.12 7.76 10.44 17.18 13.91 18.00 15.71

SATA+ 2331 19.63 28.16 1159 28.10 12.55 1042 14.03 13.69 1227 7.64 10.69 18.92 14.16 19.53 1631

0.1 SATA+CUL+CPAda 2292 18.12 2645 1143 27.23 12.17 9.96 1376 13.09 1215 744 1028 1862 1336 18.79 1572

" RDumb+ 24.06 19.81 27.56 12.93 29.55 15.10 12.78 16.67 1657 1552 9.48 1327 21.67 17.48 22.25 1831
RDumb+CUI+CPAda  23.30 20.52 25.30 11.41 27.89 12.98 11.37 15.80 14.87 13.13 8.36 10.95 20.29 15.87 20.07 16.81
C-CoTTA+ 2343 1775 2326 11.85 2435 1261 1035 13.73 1253 11.95 837 9.82 1646 12.10 1632 14.99
C-CoTTA+CUI+CPAda 21.82 17.31 23.61 11.81 24.33 12.51 10.17 12.96 12.57 1193 7.96 9.68 16.59 12.32 1576 14.76

RMT+ 2262 18.89 2536 10.27 24.94 11.58 10.14 1337 12.67 1149 8.19 9.87 1528 11.26 14.53 14.66
RMT+CUI+CPAda 22,06 17.40 23.43 10.17 23.52 10.98 10.33 13.05 12.55 1138 8.10 9.94 1545 1123 14.28 14.44

\(v Method Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe. Avg.
Tent+ 2477 2068 28.54 1357 31.93 1548 14.47 19.79 18.80 1891 12.81 1691 2550 19.80 24.84 2045
Tent+CUI+CPAda 24.08 18.60 26.90 12.95 30.14 16.02 12.84 1627 15.06 15.85 9.83 13.04 20.96 16.42 21.87 18.06

CoTTA+ 2371 21.07 25.10 11.47 27.16 1241 11.21 1522 14.79 12.63 823 10.68 1821 14.24 17.21 16.22
CoTTA+CUI+CPAda  23.15 19.30 24.67 11.35 26.32 11.29 10.35 14.14 1409 1144 8.18 1042 17.07 14.14 16.84 15.52

SATA+ 2294 19.68 26.66 1158 27.52 12.40 10.40 13.82 13.65 1250 7.93 10.80 19.33 13.97 18.74 16.13

0 SATA+CUL+CPAda  22.54 17.66 2568 1148 26.80 1243 9.91 13.68 12.96 1197 7.67 10.27 1884 1345 18.49 1559

> RDumb+ 2325 18.01 2622 12.85 28.74 1449 12.17 17.17 15.82 1533 9.77 1344 2034 1620 20.64 17.63
RDumb+CU+CPAda 22,92 19.72 24.14 11.67 2673 12.49 10.92 15.16 14.27 13.17 7.95 10.20 19.69 15.08 19.31 16.23
C-CoTTA+ 2207 17.40 2326 1170 2431 12.54 10.19 13.04 1246 11.65 8.01 9.84 1658 12.16 1593 14.74
C-CoTTA+CUI+CPAda 21.44 1691 23.12 1141 24.08 12.11 9.63 12.62 11.83 1143 7.56 928 16.16 11.92 1530 14.32

RMT+ 2210 17.34 2395 11.01 23.71 12.98 10.55 13.34 12.95 11.56 857 9.76 14.92 11.39 13.91 14.54
RMT+CUI+CPAda 22,00 17.44 23.57 10.65 2343 1191 10.15 12.89 1225 11.33 837 9.75 1508 11.15 14.17 14.28

Tent+ 2477 2068 2854 1357 31.93 1548 14.47 19.79 18.80 1891 12.81 1691 2550 19.80 24.84 2045
Tent+CUI+CPAda 24.46 18.93 2745 1244 29.90 14.79 1177 16.19 1536 1527 9.85 12.52 22.83 18.38 24.70 18.32

. CoTTA+ 2371 21.07 25.10 11.47 27.16 1241 11.21 1522 1479 12.63 823 10.68 1821 14.24 17.21 16.22
E CoTTA+CUI+CPAda  23.09 20.63 25.84 10.51 26.39 11.53 10.26 14.05 14.08 12.52 7.72 10.44 17.18 13.71 18.00 15.73
& SATA+ 2294 19.68 26.66 1158 27.52 1240 1040 13.82 13.65 1250 7.93 10.80 19.33 13.97 18.74 16.13
T |, SATA+CUL+CPAda 2248 17.67 2571 11.39 2659 1243 9.88 13.70 13.03 1198 7.64 1036 1874 1321 1858 1556
2 ** RDumb+ 2325 18.01 2622 12.85 28.74 1449 12.17 17.17 15.82 1533 9.77 1344 2034 1620 20.64 17.63
& RDumb+CUI+CPAda 2321 19.85 24.52 11.54 26.86 12.57 10.68 1520 14.47 1322 7.7 10.52 19.68 15.30 19.31 16.31
=) C-CoTTA+ 2207 17.40 2326 1170 2431 12.54 10.19 13.04 1246 11.65 8.01 9.84 1658 12.16 1593 14.74
C-CoTTA+CUI+CPAda 21.44 1673 23.12 1141 24.14 12.11 9.61 12.62 1193 11.64 7.68 928 16.53 11.98 1549 14.38

RMT+ 22.10 17.34 2395 11.01 23.71 12.98 1055 13.34 1295 11.56 857 9.76 14.92 11.39 1391 14.54
RMT+CUI+CPAda 22,04 17.36 23.51 10.87 2343 11.93 10.33 12.95 12.54 1143 8.64 9.67 14.96 11.14 1391 1431

Tent+ 2477 2068 28.54 1357 31.93 1548 14.47 19.79 18.80 1891 12.81 1691 2550 19.80 24.84 2045
Tent+CUI+CPAda 2445 18.83 27.45 1234 2990 14.79 1177 16.19 1536 1527 9.85 1252 22.83 1838 2470 18.22

CoTTA+ 2371 21.07 25.10 11.47 27.16 12.41 11.21 1522 14.79 12.63 823 10.68 1821 14.24 17.21 16.22
CoTTA+CUI+CPAda  23.13 20.32 2547 11.35 26.17 11.29 10.23 14.44 1409 1192 7.16 10.55 18.07 13.34 17.18 15.65

SATA+ 22.94 19.68 26.66 11.58 27.52 12.40 1040 13.82 13.65 12.50 7.93 10.80 19.33 13.97 18.74 16.13

0.1 SATA+CUL+CPAda  22.62 17.81 2574 11.51 26.94 1242 997 1350 13.03 1187 7.71 1025 1879 1335 1855 15.60

" RDumb+ 2325 18.01 26.22 12.85 28.74 14.49 12.17 17.17 15.82 1533 9.77 13.44 2034 1620 20.64 17.63
RDumb+CUI+CPAda  23.07 19.85 24.41 11.55 2696 12.73 10.65 15.26 14.17 13.26 7.76 10.40 19.88 15.66 19.41 16.33
C-CoTTA+ 2207 17.40 2326 1170 2431 12.54 10.19 13.04 1246 11.65 8.01 9.84 16.58 12.16 1593 14.74
C-CoTTA+CUI+CPAda 21.51 1691 23.12 11.54 24.08 12.11 9.64 12.62 11.83 1143 7.56 928 16.16 11.92 1530 14.33

RMT+ 2210 17.34 23.95 11.01 23.71 12.98 10.55 13.34 12,95 11.56 857 9.76 14.92 11.39 13.91 14.54
RMT+CU+CPAda 22,01 17.15 23.57 10.67 2346 11.71 10.30 12.85 12.50 11.50 838 9.48 15.09 11.24 13.80 14.25
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Table 8: Classification error rate (%) for the standard CIFAR100-to-CIFAR100C CTTA task. All
results are evaluated with the largest corruption severity level 5 in an online fashion.

Strategy\ « Method Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe. Avg.
Tent+ 44.50 41.26 52.54 36.88 53.27 45.81 47.81 58.73 62.80 72.26 70.90 78.75 88.28 87.92 91.94 62.24
Tent+CUI+CPAda 41.64 38.02 47.42 3298 46.63 38.18 35.12 43.52 43.56 49.30 43.91 53.31 60.39 57.00 66.52 46.50
CoTTA+ 43.33 40.80 50.66 30.42 44.27 32.18 30.24 34.13 33.51 40.21 27.16 34.19 37.49 30.24 37.37 36.41
CoTTA+CUI+CPAda  38.31 35.50 43.51 27.24 39.11 28.97 26.68 30.66 29.17 35.66 24.32 29.79 32.86 27.12 32.68 32.11
SATA+ 40.41 38.11 49.26 27.74 42.02 29.85 26.93 31.03 30.95 32.82 24.06 25.98 34.88 28.93 38.97 33.46

03 SATA+CUI+CPAda 39.20 36.79 46.01 28.16 40.64 29.53 26.76 30.26 30.23 31.89 23.45 25.17 33.69 27.86 36.11 32.38

™" RDumb+ 41.10 37.80 46.91 33.01 47.25 38.93 35.49 43.98 43.14 48.97 43.63 50.34 58.21 54.98 65.19 45.93
RDumb+CUI+CPAda  40.62 37.68 46.61 32.38 45.97 37.29 34.37 41.03 40.70 44.54 38.34 42.37 48.76 45.65 55.42 42.12
C-CoTTA+ 42.45 38.61 48.49 27.38 41.00 29.90 25.87 30.44 29.85 32.39 24.01 25.27 32.32 27.62 36.27 32.79
C-CoTTA+CUI+CPAda 40.88 36.82 45.82 26.97 39.45 28.78 25.70 29.32 28.11 31.75 23.38 24.33 30.98 26.48 34.09 31.52

RMT+ 45.50 39.20 39.46 32.36 35.90 31.55 28.68 30.03 29.85 31.69 27.08 29.31 29.90 27.76 29.62 32.53
RMT+CUI+CPAda 44.50 37.62 38.46 31.36 34.22 30.55 27.68 29.03 28.85 30.69 26.08 28.31 28.90 26.76 28.62 31.43

Tent+ 44.50 41.26 52.54 36.88 53.27 45.81 47.81 58.73 62.80 72.26 70.90 78.75 88.28 87.92 91.94 62.24
Tent+CUI+CPAda 41.67 38.02 47.12 32.96 46.79 38.56 35.83 44.49 43.02 49.98 45.64 52.60 57.89 57.63 66.22 46.56

CoTTA+ 43.33 40.80 50.66 30.42 44.27 32.18 30.24 34.13 33.51 40.21 27.16 34.19 37.49 30.24 37.37 36.41

2 CoTTA+CUI+CPAda  38.27 35.65 43.76 27.36 38.85 28.97 26.76 30.85 29.29 35.59 24.26 29.99 33.04 26.95 32.87 32.16
= SATA+ 40.41 38.11 49.26 27.74 42.02 29.85 26.93 31.03 30.95 32.82 24.06 25.98 34.88 28.93 38.97 33.46
z 0.2 SATA+CUI+CPAda 39.18 36.72 46.47 27.77 40.69 29.62 26.62 30.28 29.84 31.86 23.43 25.12 33.94 28.15 36.22 32.39
g ““ RDumb+ 41.10 37.80 46.91 33.01 47.25 38.93 35.49 43.98 43.14 48.97 43.63 50.34 58.21 54.98 65.19 45.93
E RDumb+CUI+CPAda  41.08 37.68 46.84 32.57 45.97 37.43 34.75 41.12 40.70 44.61 38.34 42.47 48.56 45.75 55.68 42.23
C-CoTTA+ 42.45 38.61 48.49 27.38 41.00 29.90 25.87 30.44 29.85 32.39 24.01 25.27 32.32 27.62 36.27 32.79
C-CoTTA+CUI+CPAda 40.63 36.70 45.69 26.87 39.29 28.71 25.43 29.21 28.36 31.60 23.35 24.29 30.99 26.51 33.98 31.44

RMT+ 45.50 39.20 39.46 32.36 35.90 31.55 28.68 30.03 29.85 31.69 27.08 29.31 29.90 27.76 29.62 32.53
RMT+CUI+CPAda 44.32 37.69 38.42 31.45 33.92 30.55 27.18 28.73 28.85 30.59 26.08 27.94 28.90 26.66 28.54 31.32

Tent+ 44.50 4126 52.54 36.88 53.27 45.81 47.81 58.73 62.80 72.26 70.90 78.75 88.28 87.92 91.94 62.24
Tent+CUI+CPAda 41.83 37.97 49.00 32.81 46.95 37.99 34.86 43.77 42.96 48.87 42.95 50.56 57.79 54.98 65.89 45.95

CoTTA+ 43.33 40.80 50.66 30.42 44.27 32.18 30.24 34.13 33.51 40.21 27.16 34.19 37.49 30.24 37.37 36.41
CoTTA+CUI+CPAda  38.02 35.52 43.75 27.41 39.11 29.01 26.99 31.17 29.41 35.95 24.46 30.39 33.48 26.89 33.10 32.31

SATA+ 40.41 38.11 49.26 27.74 42.02 29.85 26.93 31.03 30.95 32.82 24.06 25.98 34.88 28.93 38.97 33.46

01 SATA+CUI+CPAda 39.28 36.75 46.56 27.80 40.89 29.33 26.74 30.32 29.82 32.00 23.31 25.42 34.10 28.05 36.48 32.46

" RDumb+ 41.10 37.80 46.91 33.01 47.25 38.93 35.49 43.98 43.14 48.97 43.63 50.34 58.21 54.98 65.19 45.93
RDumb+CUI+CPAda  41.08 37.68 46.84 32.59 45.97 37.46 34.87 41.12 40.70 44.54 38.34 42.47 48.76 45.75 55.68 42.26
C-CoTTA+ 42.45 38.61 48.49 27.38 40.92 29.9 2587 30.44 29.85 32.39 24.01 25.27 32.32 27.62 36.27 32.79
C-CoTTA+CUI+CPAda 40.69 36.71 45.74 26.78 39.40 28.68 25.43 29.36 28.45 31.74 23.20 24.20 31.07 26.61 34.03 31.47

RMT+ 45.50 39.20 39.46 32.36 35.90 31.55 28.68 30.03 29.85 31.69 27.08 29.31 29.90 27.76 29.62 32.53
RMT+CUI+CPAda 44.52 37.74 38.42 31.45 33.92 30.55 27.18 28.83 28.85 30.59 26.68 27.94 28.90 27.66 28.54 31.45

| @ Method Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe. Avg.
Tent+ 37.28 35.64 41.98 37.94 50.88 46.59 47.10 57.33 62.42 70.92 71.04 82.14 88.85 90.69 93.08 60.93
Tent+CUI+CPAda 36.46 33.23 36.35 28.99 40.32 33.06 31.65 38.68 42.22 54.16 59.02 71.09 77.79 78.55 86.42 49.87

CoTTA+ 38.22 35.52 43.96 27.49 39.39 29.38 27.03 31.27 29.63 36.34 24.49 30.74 33.66 27.10 33.16 32.50
CoTTA+CUI+CPAda  37.13 33.30 42.23 26.12 37.48 27.48 26.03 30.17 27.32 35.43 23.63 28.24 31.72 26.32 31.41 30.93

SATA+ 35.56 32.74 36.09 26.24 35.77 28.11 2538 29.43 29.39 32.97 23.66 26.51 31.20 27.05 33.93 30.30

0.3 SATA+CUI+CPAda 34.42 31.45 34.54 24.72 34.39 27.06 24.45 28.53 28.49 31.50 22.74 25.36 30.87 26.60 32.04 29.14

" RDumb+ 41.10 37.80 46.91 33.01 47.25 38.93 35.49 43.98 43.14 48.97 42.72 48.11 56.71 50.98 61.44 45.10
RDumb+CUI+CPAda  40.64 38.68 47.84 32.59 46.97 38.46 35.87 42.12 41.70 45.54 39.34 43.47 52.76 47.75 57.68 43.42
C-CoTTA+ 37.19 33.85 35.08 27.79 33.70 28.57 26.07 28.56 28.32 30.60 24.96 26.70 27.74 26.11 33.37 29.90
C-CoTTA+CUI+CPAda 36.93 33.55 34.60 27.28 33.08 27.75 25.91 28.28 27.89 30.31 24.65 26.46 27.75 25.43 29.79 29.31

RMT+ 37.26 33.72 35.68 26.42 32.62 26.97 2525 27.62 27.58 29.78 24.67 26.31 27.13 25.84 28.25 29.00
RMT+CUI+CPAda 36.15 33.36 35.33 24.62 32.23 25.64 24.09 27.29 26.99 30.03 23.58 25.48 26.87 25.33 28.32 28.35

Tent+ 37.28 35.64 41.98 37.94 50.88 46.59 47.10 57.33 62.42 70.92 71.04 82.14 88.85 90.69 93.08 60.93
Tent+CUI+CPAda 36.29 33.31 36.78 29.40 41.08 36.26 36.88 47.81 55.30 65.52 63.31 70.36 78.05 78.56 84.61 52.90

- CoTTA+ 38.22 35.52 43.96 27.49 39.39 29.38 27.03 31.27 29.63 36.34 24.49 30.74 33.66 27.10 33.16 32.50
£z CoTTA+CUI+CPAda  37.13 33.30 42.23 26.12 37.58 27.68 26.03 30.67 27.42 35.43 23.63 28.24 31.72 26.32 31.41 30.99
t SATA+ 35.56 32.74 36.09 26.24 35.77 28.11 25.38 29.43 29.39 32.97 23.66 26.51 31.20 27.05 33.93 30.30
g 0.2 SATA+CUI+CPAda 34.72 31.75 33.54 26.13 33.39 26.96 24.35 28.40 27.69 31.90 22.54 24.36 29.87 25.60 33.04 28.94
-2 *“ RDumb+ 41.10 37.80 46.91 33.01 47.25 38.93 35.49 43.98 43.14 48.97 42.72 48.11 56.71 50.98 61.44 45.10
& RDumb+CUI+CPAda  40.64 38.68 47.84 32.59 46.97 38.46 35.87 42.12 41.70 45.54 39.34 43.47 52.76 47.75 57.68 43.22
= C-CoTTA+ 37.19 33.85 35.08 27.79 33.70 28.57 26.07 28.56 28.32 30.60 24.96 26.70 27.74 26.11 33.37 29.90
C-CoTTA+CUI+CPAda 36.78 33.37 34.49 27.32 33.07 27.69 25.65 28.34 28.03 30.27 24.79 26.45 27.57 25.54 29.82 29.28

RMT+ 37.26 33.72 35.68 26.42 32.62 26.97 25.25 27.62 27.58 29.78 24.67 26.31 27.13 25.84 28.25 29.00
RMT+CUI+CPAda 36.61 33.96 34.90 25.67 31.96 26.19 24.70 26.99 26.65 29.40 23.89 25.69 26.04 24.80 27.52 28.33

Tent+ 37.28 35.64 41.98 37.94 50.88 46.59 47.10 57.33 62.42 70.92 71.04 82.14 88.85 90.69 93.08 60.93
Tent+CUI+CPAda 35.99 33.14 36.51 29.50 41.38 36.66 37.82 48.35 54.45 63.08 60.07 65.86 73.89 74.71 81.95 51.56

CoTTA+ 38.22 35.52 43.96 27.49 39.39 29.38 27.03 31.27 29.63 36.34 24.49 30.74 33.57 27.06 33.42 32.50
CoTTA+CUI+CPAda  38.43 34.80 42.59 26.62 37.58 27.98 26.63 30.87 27.82 35.73 23.93 29.54 32.72 26.72 31.91 31.59

SATA+ 35.56 32.74 36.09 26.24 35.77 28.11 25.38 29.43 29.39 32.97 23.66 26.51 31.12 27.65 33.93 30.30

01 SATA+CUI+CPAda 34.02 31.15 33.54 25.30 33.39 26.96 23.95 28.43 27.69 31.90 22.54 24.36 29.87 25.60 33.04 28.78

" RDumb+ 41.10 37.80 46.91 33.01 47.25 38.93 35.49 43.98 43.14 48.97 42.72 48.11 56.71 50.98 61.44 45.10
RDumb+CUI+CPAda  42.19 38.79 47.95 33.70 47.08 38.57 35.98 42.23 41.81 45.65 39.45 43.58 49.87 46.86 56.72 43.36
C-CoTTA+ 37.19 33.85 35.08 27.79 33.70 28.57 26.07 28.56 28.32 30.60 24.96 26.70 27.74 26.11 33.37 29.90
C-CoTTA+CUI+CPAda 36.63 33.33 34.26 27.25 32.98 27.48 25.64 27.89 27.89 30.27 24.55 26.51 27.66 25.57 29.65 29.17

RMT+ 37.26 33.72 35.68 26.42 32.62 26.97 2525 27.62 27.58 29.78 24.67 26.31 27.13 25.84 28.25 29.00
RMT+CUI+CPAda 37.25 33.76 34.97 2547 31.71 26.41 24.43 26.75 27.10 29.44 23.17 25.17 26.33 24.39 27.87 28.28
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Table 9: Classification error rate (%) for the standard ImageNet-to-ImageNetC CTTA task. All

results are evaluated with the largest corruption severity level 5 in an online fashion.

Strategy\ « Method Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe. Avg.
Tent+CUl 81.58 75.88 72.94 77.50 77.50 65.56 55.58 61.88 64.48 55.50 38.30 73.04 54.00 47.82 53.86 63.69
Tent+CUI+CPAda 81.22 74.51 7274 75.10 74.40 68.02 5538 61.48 63.01 51.20 38.12 72.01 51.00 46.24 53.16 62.50
CoTTA+CUI 87.14 8542 84.06 85.26 84.26 74.72 66.20 67.42 68.04 55.16 42.72 75.58 5592 49.34 54.18 69.03
CoTTA+CUI+CPAda  86.42 84.24 83.21 83.39 82.11 73.58 64.20 66.27 67.43 53.13 41.52 73.14 53.97 47.74 53.08 67.56
SATA+CUI 78.00 76.44 75.60 77.86 78.02 65.88 55.76 57.02 63.08 45.62 34.84 7258 50.90 44.74 50.88 61.81

0.3 SATA+CUL+CPAda  76.02 74.98 74.12 77.06 76.58 64.44 5434 5612 62.42 4484 3480 70.08 50.04 44.02 4942 60.62

> RDumb+CUl 81.10 71.88 70.46 77.34 73.52 69.04 62.26 65.50 66.22 57.58 44.78 68.62 56.64 4826 53.72 64.46
RDumb+CUI+CPAda  78.66 70.84 68.94 76.72 72.28 65.98 59.72 63.02 63.82 53.56 40.04 66.72 54.30 46.96 52.24 62.25
C-CoTTA+CUI 76.84 74.02 71.80 76.20 74.22 66.34 57.00 56.16 61.28 49.22 40.34 6532 49.68 43.80 44.12 60.42
C-CoTTA+CUI+CPAda 75.52 72.14 69.06 74.92 72.96 65.66 57.26 5548 60.32 48.72 40.10 63.02 49.20 43.76 44.14 59.48
RMT+CUI 79.76 74.52 72.18 75.46 72.88 65.18 59.08 59.32 60.50 52.56 45.36 61.42 50.26 47.78 48.38 61.64
RMT+CUI+CPAda  77.18 72.04 70.04 72.58 70.60 61.92 56.38 58.22 58.86 51.06 43.90 58.56 49.14 46.34 47.48 59.62

Tent+C Ul 81.58 75.88 72.94 77.50 77.50 65.56 55.58 61.88 64.48 55.50 38.30 73.04 54.00 47.82 53.86 63.69
Tent+CUI+CPAda 81.22 74.51 72.74 75.10 74.39 68.22 55.38 61.48 63.01 51.16 38.12 72.11 51.17 46.21 53.17 62.53
CoTTA+CUI 87.14 8542 84.06 85.26 84.26 74.72 66.20 67.42 68.04 55.16 42.72 75.58 55.92 49.34 54.18 69.03

7 CoTTA+CUI+CPAda  86.32 84.14 82.81 83.26 82.06 73.42 64.20 66.15 67.32 53.01 41.32 73.04 53.63 47.53 53.03 67.42
> SATA+CUI 78.00 76.44 75.60 77.86 78.02 65.88 55.76 57.02 63.08 45.62 34.84 7258 50.90 44.74 50.88 61.81
5 |gg SATA+CULCPAda 7650 76.26 7464 77.74 76.26 6542 5434 56.34 62.62 4494 3458 70.44 5096 43.24 49.52 60.92
& 2 RDumb+CUl 81.10 71.88 70.46 77.34 73.52 69.04 62.26 65.50 66.22 57.58 44.78 68.62 56.64 48.26 53.72 64.46
£ RDumb+CUI+CPAda  78.68 70.14 69.36 76.94 71.97 66.62 60.17 63.16 63.46 53.04 40.24 67.70 54.70 46.28 51.84 62.29
C-CoTTA+CUI 76.84 74.02 71.80 76.20 74.22 6634 57.00 56.16 61.28 49.22 40.34 6532 49.68 43.80 44.12 60.42
C-CoTTA+CUI+CPAda 75.52 72.24 69.06 74.92 72.96 65.76 57.26 55.58 60.32 48.82 40.10 63.10 49.20 43.76 44.14 59.52

RMT+C Ul 79.76 74.52 72.18 75.46 72.88 65.18 59.08 59.32 60.50 52.56 45.36 61.42 50.26 47.78 48.38 61.64
RMT+CUI+CPAda  77.19 71.89 69.69 72.71 70.69 62.97 57.25 56.83 58.75 51.33 43.75 58.99 49.09 46.21 47.37 59.65

Tent+CUl 81.58 75.88 72.94 77.50 77.50 65.56 55.58 61.88 64.48 55.50 38.30 73.04 54.00 47.82 53.86 64.69
Tent+CUI+CPAda 81.38 74.74 72.92 77.14 7402 6506 55.80 61.90 62.83 51.48 38.02 71.96 51.04 47.50 53.22 62.60
CoTTA+CUI 87.14 8542 84.06 85.26 84.26 7472 66.20 67.42 68.04 55.16 42.72 75.58 55.92 49.34 54.18 69.03
CoTTA+CUI+CPAda  86.16 84.14 82.76 83.16 81.98 73.30 64.17 66.13 67.26 52.82 41.13 73.04 53.18 47.53 53.03 67.32
SATA+CUI 78.00 76.44 75.60 77.86 78.02 65.88 55.76 57.02 63.08 45.62 34.84 7258 50.90 44.74 50.88 61.81

0.1 SATA+CUL+CPAda 7616 75.34 7432 77.32 76.06 6524 5434 56.50 63.36 45.00 34.96 70.48 50.22 4396 49.82 60.87

* RDumb+CUl 81.10 71.88 70.46 77.34 73.52 69.04 62.26 65.50 66.22 57.58 4478 68.62 56.64 48.26 53.72 64.46
RDumb+CUI+CPAda  78.66 70.84 68.94 7672 72.28 65.98 59.72 63.02 63.82 53.56 40.04 66.72 53.3 46.96 52.14 62.18
C-CoTTA+CUI 76.84 74.02 71.80 7620 7422 6634 57.00 56.16 6128 49.22 4034 6532 49.68 43.80 44.12 60.42
C-CoTTA+CUI+CPAda 75.52 72.38 69.58 75.76 73.16 65.28 56.52 55.26 60.96 49.36 39.68 64.04 48.86 42.68 43.90 59.53
RMT+CUI 79.76 7452 72.18 75.46 72.88 65.18 59.08 59.32 60.50 52.56 4536 61.42 50.26 47.78 4838 61.64
RMT+CUI+CPAda  77.26 72.54 70.28 72.88 70.04 62.44 56.68 57.58 59.08 51.28 43.02 58.68 48.88 46.50 47.76 59.66

\ « Method Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe. Avg.
Tent+CUI 81.18 74.73 72.48 77.16 74.00 66.30 5536 61.44 63.04 51.32 38.03 72.02 51.08 47.60 53.28 62.60
Tent+CUI+CPAda 81.04 73.22 72.42 7697 65.32 65.79 5433 61.31 62.01 50.28 37.02 71.04 50.58 46.90 54.28 61.50
CoTTA+CUI 81.38 74.78 73.00 77.24 74.10 66.20 55.68 61.72 63.20 51.30 38.08 71.90 50.94 47.62 53.36 62.70
CoTTA+CUI+CPAda  79.90 73.30 71.52 75.76 72.62 64.72 5420 60.24 61.72 49.82 36.60 70.42 49.46 46.14 51.88 61.22
SATA+CUI 7652 7328 71.62 75.06 73.58 6344 5334 58.64 6142 47.32 34.65 69.08 49.04 44.79 49.82 60.10

0 SATA+CUL+CPAda 7493 71.69 70.03 73.47 71.99 6185 5175 57.05 59.83 45.73 33.06 67.49 4745 43.20 48.23 5852

> RDumb+CUl 79.28 70.44 68.02 75.54 7124 66.58 60.46 64.42 64.40 55.76 42.68 65.64 54.46 46.00 51.86 62.45
RDumb+CUI+CPAda  81.22 72.56 70.18 77.88 73.52 68.36 61.74 67.14 66.90 57.40 44.68 68.54 56.14 47.96 53.94 60.26
C-CoTTA+CUI 7518 7170 69.52 75.70 72.64 65.46 56.64 55.62 60.08 49.54 40.36 6334 48.48 43.12 44.26 59.40
C-CoTTA+CUI+CPAda 74.09 70.56 68.41 74.59 71.53 64.35 55.53 54.51 58.97 48.23 39.15 62.24 47.37 4221 43.65 58.36
RMT+CUI 77.84 72.06 69.98 73.04 71.28 64.52 56.94 57.16 59.54 51.18 43.22 59.16 48.46 45.70 46.54 59.80
RMT+CUI+CPAda 7672 71.92 69.26 72.68 69.76 62.20 56.40 56.94 58.22 51.04 4342 58.14 49.02 46.36 47.16 59.28

Tent+CUl 81.18 74.73 72.48 77.16 74.00 66.30 5536 61.44 63.04 51.32 38.03 72.02 51.08 47.60 53.28 62.60
Tent+CUI+CPAda 81.07 73.12 72.53 76.97 65.62 65.79 54.63 61.31 61.01 49.11 37.42 71.74 50.48 47.90 54.28 61.53

. CoTTA+CUI 81.38 7478 73.00 77.24 74.10 66.20 55.68 61.72 63.20 51.30 38.08 71.90 50.94 47.62 53.36 62.70
E CoTTA+CUI+CPAda  79.98 73.38 71.60 75.84 72.70 64.80 54.28 60.32 61.80 49.90 36.68 70.50 49.54 46.22 51.96 61.30
& SATA+CUI 7652 7328 71.62 75.06 73.58 6344 5334 58.64 6142 47.32 34.65 69.08 49.04 44.79 49.82 60.10
T |, SATA+CUL+CPAda 7492 71.64 7006 73.44 71.98 6182 5132 57.75 59.79 45.76 33.07 67.48 47.62 43.33 48.13 58.54
2 2 RDumb+CUl 79.28 70.44 68.02 75.54 7124 66.58 60.46 64.42 64.40 55.76 42.68 65.64 54.46 46.00 51.86 62.45
& RDumb+CUI+CPAda  76.64 67.88 66.06 73.14 69.18 64.14 58.36 62.18 62.56 53.62 40.90 64.56 52.20 43.90 49.62 60.32
=) C-CoTTA+CUI 75.18 7170 69.52 75.70 72.64 6546 56.64 55.62 60.08 49.54 4036 6334 48.48 43.12 44.26 59.40
C-CoTTA+CUI+CPAda 74.07 70.59 68.41 74.59 71.53 64.35 55.53 54.51 58.97 4843 39.25 62.23 47.37 42.01 43.15 58.33
RMT+CUI 77.84 72.06 69.98 73.04 71.28 64.52 56.94 57.16 59.54 51.18 43.22 59.16 48.46 45.70 46.54 59.80
RMT+CUI+CPAda  76.68 72.54 70.06 72.36 70.56 62.40 55.92 57.18 59.16 51.50 43.26 58.70 48.86 46.08 47.18 59.25

Tent+CUl 81.18 7473 72.48 77.16 74.00 66.30 5536 61.44 6304 51.32 38.03 72.02 51.08 47.60 53.28 62.60
Tent+CUI+CPAda 81.07 73.12 72.53 76.97 65.62 65.79 54.63 61.31 61.01 49.11 37.42 71.74 50.48 48.90 54.48 61.60
CoTTA+CUI 81.38 7478 73.00 77.24 74.10 6620 55.68 61.72 6320 51.30 38.08 71.90 50.94 47.62 53.36 62.70
CoTTA+CUI+CPAda  79.92 73.32 71.54 7578 72.64 64.74 5422 60.26 61.74 49.84 36.62 70.44 49.48 46.16 51.90 61.24
SATA+CUI 76.52 7328 71.62 75.06 73.58 6344 5334 58.64 6142 47.32 34.65 69.08 49.04 44.79 49.82 60.10

0.1 SATA+CUI+CPAda  74.94 71.61 70.02 73.46 72.07 61.93 51.31 57.86 59.80 45.72 33.62 6743 47.62 4381 4858 58.65

- RDumb+CUI 79.28 70.44 68.02 75.54 71.24 66.58 60.46 64.42 64.40 55.76 42.68 65.64 54.46 46.00 51.86 62.45
RDumb+CUI+CPAda  76.80 68.50 66.30 73.84 68.90 65.00 58.38 62.46 62.34 53.78 41.10 64.12 52.56 44.18 49.94 60.54
C-CoTTA+CUI 75.18 7170 69.52 75.70 72.64 65.46 56.64 55.62 60.08 49.54 40.36 6334 4848 43.12 44.26 59.40
C-CoTTA+CUI+CPAda 74.09 70.76 68.41 74.59 71.53 64.35 55.53 5444 5894 4823 39.14 62.23 47.37 42.63 43.65 58.39
RMT+CUI 77.84 72.06 69.98 73.04 71.28 64.52 56.94 57.16 59.54 51.18 43.22 59.16 48.46 45.70 46.54 59.80
RMT+CUI+CPAda  76.84 71.98 69.56 72.64 70.24 62.88 55.90 56.86 59.32 51.00 42.76 58.32 48.70 45.72 46.72 59.30
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D LLM USAGE DISCLOSURE

We used LLMs solely to correct grammatical errors in the writing. The model was not involved in
research design, data analysis, or result generation.
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