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ABSTRACT

Continual Test-Time Adaptation (CTTA) enables models to adapt to sequential
domain shifts during testing, but reliance on pseudo-labels makes them prone to
error accumulation. Reliable uncertainty estimation is thus critical. We study
this problem under the calibration-aided CTTA setting, where a small calibration
buffer from the source domain is available as reference. We propose the Confor-
mal Uncertainty Indicator (CUI), a plug-and-play method that leverages Confor-
mal Prediction (CP) with calibration data. Unlike standard CP, which suffers from
a coverage gap under domain shifts, CUI jointly measures model shift and data
shift to adjust conformal quantiles and restore coverage. The resulting prediction
set size provides a reliable indicator of test-time uncertainty. Building on this,
we introduce a CUI-guided adaptation strategy that updates models only on confi-
dent samples. Experiments on three benchmarks show that CUI achieves accurate
uncertainty estimation and improves the robustness of multiple CTTA baselines.

1 INTRODUCTION

Recently, Continual Test-Time Adaptation (CTTA) (Wang et al., 2022) has attracted significant
attention for enabling trained models to handle sequential domain shifts through self-adaptation.
However, in many high-stakes scenarios, the cost of incorrect predictions is prohibitively high, as
in autonomous driving (Sójka et al., 2023) and medical imaging (Chen et al., 2024), where even
a single error can cause serious risks and errors may accumulate during continual adaptation. To
address this issue, it is crucial to evaluate the reliability of each prediction before using it for adap-
tation. Uncertainty estimation provides a common approach, but existing methods such as Bayesian
approximation (Maddox et al., 2019), Monte Carlo dropout (Gal & Ghahramani, 2016), or entropy-
based scores (Shi et al., 2024) are either computationally expensive or prone to overconfidence, and
thus less effective for continual adaptation.

This limitation is further exacerbated by the strict CTTA setting, which assumes no source data
are available and leaves prediction evaluation without any reliable reference. In many real-world
scenarios, however, it is acceptable and even necessary to maintain a small static calibration buffer
of source samples to support reliable long-term adaptation. We refer to this extended variant as
Calibration-aided CTTA (CCTTA), which forms the focus of this work. Our goal is to investigate
how calibration data can be effectively exploited to enhance uncertainty estimation at test time.

The availability of calibration data in CCTTA naturally motivates the use of Conformal Prediction
(CP) (Vovk et al., 2005), which provides a principled framework for uncertainty estimation. By
constructing set-valued predictions, CP not only guarantees that the true label lies within the set with
a pre-specified probability but also uses the set size (often referred to as inefficiency) as a natural
measure of prediction uncertainty. It further offers two desirable properties: it is model-agnostic,
requiring no assumptions or modifications to the underlying model, and it provides controllable
coverage, ensuring that uncertainty estimates are statistically valid. These features make CP an
attractive candidate for continual adaptation, where reliable uncertainty quantification is essential
for avoiding error accumulation. However, applying CP in continual domain shift scenarios is far
from straightforward. Classical CP relies on the assumption of data exchangeability, meaning that
the order and distribution of observations are assumed not to change. This assumption is violated
under distribution shift, leading to a coverage gap in which the actual coverage falls far below the
nominal guarantee (Barber et al., 2023), and uncertainty estimates become untrustworthy in practice.
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Figure 1: Illustration of the proposed CUI for calibration-aided CTTA. CUI leverages conformal
prediction to produce set-valued outputs, where small sets indicate reliable samples for stronger
adaptation and large sets reflect higher uncertainty. By compensating the coverage gap, CUI enables
trustworthy uncertainty estimates to guide reliable adaptation.

To close the coverage gap, we propose Conformal Uncertainty Indicator (CUI), a plug and play un-
certainty estimator for CCTTA. CUI uses a small labeled calibration set from the source domain and
jointly considers model shift, reflected in how the model’s predictions deviate from calibration be-
havior, and data shift, captured by representation discrepancies between calibration and test samples.
These signals are used to adaptively correct the conformal quantile, thereby compensating for the
violation of exchangeability and restoring reliable coverage. As a result, the size of the prediction
set becomes a trustworthy indicator of test-time uncertainty. Furthermore, we introduce a CUI-
guided adaptation strategy that updates the model only on confident samples, improving robustness
of existing CTTA methods without additional supervision. Our contributions are three-fold:
(1) We propose the Conformal Uncertainty Indicator (CUI), a plug-and-play uncertainty estimator

for CTTA that leverages a small calibration buffer from the source domain.
(2) CUI addresses the coverage gap of conformal prediction under domain shifts by jointly model-

ing model shift and data shift to calibrate prediction sets, making set size a reliable measure of
test-time uncertainty.

(3) We further introduce a CUI-guided adaptation strategy that selectively updates models on confi-
dent samples, improving the robustness of multiple CTTA baselines across benchmark datasets.

2 RELATED WORK

Continual Test-Time Adaptation. Test-Time Adaptation (TTA) enables source-free, online adap-
tation of a model to target domain characteristics (Jain & Learned-Miller, 2011; Sun et al., 2020;
Wang et al., 2020). CTTA (Wang et al., 2022) extends TTA to sequentially changing domains, ad-
dressing long-term adaptation but suffering from error accumulation and forgetting (Tarvainen &
Valpola, 2017; Wang et al., 2022). Mean-teacher approaches (Tarvainen & Valpola, 2017) stabilize
learning via exponential moving averages, while augmentation-averaged predictions (Wang et al.,
2022; Brahma & Rai, 2023; Döbler et al., 2023; Yang et al., 2023) increase robustness to out-of-
distribution inputs. Contrastive objectives (Döbler et al., 2023; Chakrabarty et al., 2023) preserve
semantic consistency, and parameter restoration (Wang et al., 2022; Brahma & Rai, 2023) prevents
forgetting. Most existing methods are developed under the strict CTTA setting, where no source
data are available once deployment begins. Although this constraint enforces a fully source-free
scenario, it also leaves prediction evaluation without any reliable reference information, making cal-
ibrated uncertainty estimation infeasible in practice.
Conformal Prediction. CP (Vovk et al., 2005) provides a principled framework for quantifying
uncertainty by generating prediction sets that contain the true label with a user-specified proba-
bility. Its distribution-free validity and model-agnostic nature make it appealing for safety-critical
applications, including medical diagnostics (Caruana et al., 2015), autonomous driving (Lekeufack
et al., 2023), and finance. Recent work has extended CP to risk control and complex prediction
scenarios (Farinhas et al., 2023). However, standard CP relies on the assumption of exchangeability,
which breaks under domain shifts and leads to a coverage gap (Barber et al., 2023). To the best of
our knowledge, conformal prediction has not been explored in CTTA, where estimating uncertainty
in long-term, continually changing test environments is especially crucial.
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3 PRELIMINARY: CTTA AND CP

3.1 CALIBRATION-AIDED CONTINUAL TEST-TIME ADAPTATION

CTTA methods adapt a pre-trained classification model from a source domain to unlabeled tar-
get streams Dk = {xk

m}Nk

m=1, where k indexes the target domain. At each step, the model must
both provide a prediction and update itself without access to ground-truth labels. Existing ap-
proaches are typically studied under the strict CTTA setting, where no source data are accessible
after deployment. While this enforces a fully source-free protocol, it leaves prediction evaluation
without any reference information, making calibrated uncertainty estimation infeasible. In con-
trast, the Calibration-aided CTTA (CCTTA) setting allows a small static calibration buffer from the
source domain, providing valuable reference data for estimating prediction reliability during contin-
ual adaptation. This paper focuses on uncertainty estimation under the CCTTA setting. To achieve
this, we require a principled framework that can provide statistically valid uncertainty estimates, and
conformal prediction (CP) offers a natural foundation.

3.2 CONFORMAL PREDICTION AND COVERAGE GAP ISSUE

We introduce CP under a classification task. Let X be the input space and Y := {1, · · · ,K} be the
label space. We use π : X → RK to denote the pre-trained model that is used to predict the label of
a test sample. The model prediction in this classification task is generally made as

ŷ = argmaxy∈Y π(y|x), (1)

where π(y|x) can be seen as the confidence of that x being labeled to class y. Such point predictions,
however, do not quantify predictive uncertainty. Conformal prediction (CP) (Vovk et al., 2005)
provides a distribution-free framework to address this by constructing a prediction set P(x) ⊆ Y
that contains the true label with high probability. Specifically, CP guarantees marginal coverage:

P(y ∈ P(x)) ≥ 1− α, (2)

for a user-specified error level α ∈ (0, 1). For example, setting α = 0.1 ensures that the constructed
prediction set includes the true label at least 90% of the time.

However, the coverage guarantee in Eq. (2) holds only under the assumption that calibration and
test data are exchangeable, i.e., drawn from the same distribution (Vovk et al., 2005; Barber et al.,
2023; Gibbs & Candès, 2022; Farinhas et al., 2023; Zou & Liu, 2024). When domain shifts occur,
this assumption is violated and the coverage can drop substantially. Prior studies (Yilmaz & Heckel,
2022; Bhatnagar et al., 2023) show that even mild shifts cause sharp declines in coverage. This
phenomenon is known as the coverage gap (Barber et al., 2023), defined as

κ = (1− α)− P (y ∈ P(x)) , (3)

where 1−α is the expected coverage and P (y ∈ P(x)) is the achieved coverage. Several extensions
of CP attempt to compensate for this gap. NexCP (Barber et al., 2023) generalizes CP by employing
weighted quantiles and a randomization technique, enabling robust predictive inference even when
data exchangeability assumptions are violated. However, this method is designed for training phase
and highly depends on a pre-defined domain shift value, which is not allowed in testing time. More-
over, QTC (Yilmaz & Heckel, 2022) recalibrate the quantile for coverage compensation. However,
QTC suffers from the unreliable domain gap measurement in continual domain shifts and ignores
the model differences. More details about existing non-exchangeable CP methods are discussed in
Sec. 4.3. This paper seeks to design a CP method for CTTA to act as an uncertainty indicator during
testing time, and solve the coverage gap issue.

4 CONFORMAL UNCERTAINTY INDICATOR FOR CTTA

4.1 CP WITH QUANTILE COMPENSATION

To close the coverage gap of conformal prediction under continual domain shifts, we propose the
Conformal Uncertainty Indicator (CUI), a plug-and-play uncertainty estimator for CCTTA. CUI
leverages a small labeled calibration set C = {(x1, y1) · · · , (x|C|, y|C|)} from the source domain and

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

adaptively adjusts the conformal quantile during testing. The key idea is to use both model and data
differences to quantify domain shift, thereby correcting the prediction sets so that their size becomes
a reliable measure of uncertainty. CUI is implemented in the following three steps.

Step 1: Estimating joint domain shifts

This step aims to obtain a reliable estimate of domain shifts under continual adaptation, which
is essential for compensating the conformal quantile and mitigating the coverage gap. Existing
extensions of CP have attempted to handle distribution shifts, but they remain inadequate for CTTA,
as they often rely on assumptions that do not hold under CTTA (see Sec. 4.3 for more details). In
particular, many approaches estimate domain discrepancy solely from the current model, which can
be unreliable due to error accumulation. For example, prototype-based distances derived from the
current model may no longer reflect the true data distribution once the model has drifted.

To obtain a more reliable estimate, we jointly consider model shift and data shift. Model shift reflects
how much the current model θcrt deviates from the source model θsrc, while data shift captures how
the test batch B diverges from the calibration set C. We combine these perspectives by representing
each sample x with a joint probability vector that concatenates predictions from both models:

p(x) = softmax (concat(πθsrc(x), πθcrt(x))) . (4)

The domain shift score ρ is then obtained by comparing calibration and test samples via the
Jensen–Shannon (JS) divergence:

ρ =
∑

xcalib∈C

∑
xtest∈B

DJS(p(x
test)||p(xcalib)). (5)

We adopt JS divergence DJS as it is symmetric, bounded, and more stable than KL divergence,
making it suitable for measuring discrepancies between probability distributions in dynamic test-
time environments. This joint representation mitigates the bias from error accumulation and provides
a more faithful measure of domain discrepancy. A larger ρ indicates stronger distributional and
model drift, and in the next step we show how this signal is used to compensate the conformal
quantile to restore coverage.

Step 2: Compensating the quantile threshold.

The shift score ρ obtained in Step 1 reflects how far the current test environment has drifted from
the source distribution. Since larger shifts typically lead to a larger coverage gap, ρ can be used
as a proxy for the expected loss in coverage. In classical CP, the threshold conformal predictor
(THR) (Sadinle et al., 2019) constructs prediction sets by thresholding non-conformity scores. Given
a calibration set C, the quantile threshold τ∗ is defined as the (1− α)( |C|+1

|C| )-quantile of calibrated
non-conformity scores:

τ∗ = Quantile(C, (1− α)) = inf
{
τ : Ex∈CI{s(π(x))<τ} ≥ |C|+1

|C| (1− α)
}
. (6)

For each calibration example, the non-conformity score is computed as

s(πθcrt(x)) = 1− πθcrt(y|x), (7)

that is, one minus the predicted probability of the true class. Intuitively, a smaller score corresponds
to higher confidence in the correct label, while larger scores indicate greater uncertainty.

However, under continual domain shifts, τ∗ becomes unreliable. Because the calibration distribution
no longer matches the test distribution, τ∗ is often too strict and leads to under-coverage. To mitigate
this issue, we compensate the threshold using the shift score ρ:

τ̂ = τ∗ + β · ρ, (8)

where β is a tunable scaling factor. Increasing τ enlarges the prediction sets, thereby including more
candidate labels and restoring coverage closer to the nominal α level. This compensation mechanism
directly links the estimated shift to the degree of coverage correction, making the resulting prediction
sets more trustworthy for uncertainty estimation in CTTA.

Step 3: Computing the prediction set.

Given the compensated threshold τ̂ , we construct the prediction set for each test sample x as

P(x; τ̂) = {y ∈ Ytest | s(y|π(x)) < τ̂}, (9)

4
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Algorithm 1 Conformal Uncertainty Indicator in CTTA
Input: Test data point x, Pre-trained model π, calibration set C, test data stream X test

1: Point prediction via the pre-trained model: ŷ = argmaxy∈Y π(y|x)
2: Measure domain difference ρ using Eq. (5)
3: Compute non-conformity scores for calibration set using Eq. (7)
4: Obtain the threshold τ∗ = Quantile(C, 1− α)
5: Compensate threshold via τ̂ = τ∗ + β · ρ
6: Set prediction via threshold: P(x; τ̂) = {y ∈ Y|s(y|π(x)) < τ̂}

Output: Point prediction ŷ, Set prediction P

where s(y|π(x)) denotes the non-conformity score of class y under the current model prediction
π(x). The threshold τ̂ determines the size of the prediction set. A larger τ̂ allows more candi-
date labels to be included, resulting in larger sets, whereas a smaller τ̂ produces smaller sets. In
this way the set size naturally represents prediction uncertainty. Large sets indicate that the model
cannot confidently exclude many classes, while small sets correspond to more certain predictions.
Compared with scalar confidence measures such as entropy, the set-based formulation of CP pro-
vides statistically valid coverage guarantees, which makes it more reliable in continual domain shift
scenarios. The complete procedure of CUI is summarized in Algorithm 1.

4.2 CUI-GUIDED ADAPTATION

The size of the prediction set produced by CUI provides a natural indicator of reliability. A predic-
tion set of size one implies that the model is confident about a single label, which we regard as the
most reliable case. Larger sets indicate greater uncertainty, since the model cannot confidently rule
out multiple alternatives. Empty prediction sets may occasionally occur under severe shifts, and we
treat them as maximally unreliable. This allows CUI to guide adaptation and reduce the risk of error
accumulation in CTTA.

We design a strategy that weights the contribution of each test sample according to its reliability.
Samples with smaller prediction sets receive larger weights, which ensures that confident predictions
play a stronger role in adaptation. Consider the case of Mean Teacher based adaptation (Wang et al.,
2022; Brahma & Rai, 2023). The student is updated from the teacher’s predictions, and the teacher
is updated through exponential moving averaging (EMA) from the student. Under this setting, the
CUI-guided student loss is defined as

L = −Ex∈Bγ(x) · πθtea(x) log πθstu(x), (10)

where θtea and θstu are the teacher and student models, respectively. The weight γ(x) is determined
by the relative size of the prediction set:

γ(x) =


maxx′∈B(|P(x′)|)− |P(x)|+ δ

maxx′∈B(|P(x′)|)− 1 + δ
, |P(x)| > 0

0, |P(x)| = 0,

(11)

where δ is a small constant that avoids division by zero. This design normalizes weights within each
mini-batch, so that reliable samples consistently dominate the update. When |P(x)| = 1, we obtain
γ(x) = 1, which corresponds to the most reliable case. Although we describe the approach using
Mean Teacher, the weighting scheme is general and can be integrated into other CTTA frameworks.
This makes CUI a flexible plug-in for reliability-aware adaptation.

4.3 DISCUSSION

Comparison with existing non-exchangeable CP methods. We compare our CUI with two re-
cent non-exchangeable CP methods, including NexCP (Farinhas et al., 2023) and QTC (Yilmaz &
Heckel, 2022). First, both NexCP and QTC are designed only for uncertainty indication instead
of adaptation improvement. NexCP is designed for training time, where it specifies a constant to
represent the domain difference from the source domain to the target domain. Specifically, NexCP
directly compensates the coverage by

P(y ∈ P(x)) ≥ 1− α− 2
∑n

i=1
wiϵi, (12)

5
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where ϵi is a predefined constant measure of how much the distribution has shifted from the test
sample to the i-th calibrated sample and wi is a corresponding weight. NexCP will satisfy marginal
coverage, and are exact when the magnitude of the distribution shift is known, which is infeasible in
test time. In contrast, CUI is designed for testing, and measuring the distribution shifts adaptatively.

QTC proposes to replace the user-specified α to a new coverage level βQTC calculated as

βQTC = min
[
Ex∈CI{s(π(x))<Quantile(B,α)}, 1− Ex∈BI{s(π(x))<Quantile(C,1−α)}

]
. (13)

Based on the current model π, QTC finds a threshold on the scores of the model on the unlabeled
samples and predicts the coverage level by utilizing how the distribution of the scores changes across
test distribution with respect to this threshold. However, QTC ignore the adaptation on continual
domain shifts may suffer serious error accumulation, making the current model unreliable. This
leads to the CP results being unreliable too. Instead, our CUI considers the error accumulation and
evaluates domain shifts based on a joint distribution difference. More details are shown in Appendix.

Calibration data in testing. As defined in the CCTTA setting, a small labeled calibration buffer
from the source domain is available at test time. This assumption is not unique to our work, since
many related areas also rely on maintaining small data buffers. Many continual learning (Rolnick
et al., 2019; Van de Ven et al., 2020) methods store and retrain previous training examples to avoid
catastrophic forgetting of past tasks, named replay strategy. In comparison with replay, the calibra-
tion set in CUI is not used for adaptation but calibration in testing time, and the calibration set will
not be updated in our method. Practical approaches in real-world settings involve storing samples to
improve testing outcomes, such as Tomani et al. (2021) and Rahimi et al. (2020) leverage post-hoc
calibration to achieve better performance under domain drift scenarios by using validation or calibra-
tion sets. In the CTTA tasks, some existing methods use source data to improve the adaptation such
as Döbler et al. (2023). The proposed CUI is plug-and-play, particularly well-suited for scenarios
where the continuous accumulation of errors over long-term testing periods is unacceptable, such
as in autonomous driving and medical applications. In these contexts, proactively assessing model
uncertainty is essential to ensure safety and reliability, and it is acceptable for users to maintain a
small set of calibration data. Furthermore, for a fair comparison, calibration sets are consistently
employed across all methods discussed in the experiments.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTING

Dataset. We employ the CIFAR10-to-CIFAR10C, CIFAR100-to-CIFAR100C, and ImageNet-to-
ImageNetC datasets as benchmarks to assess the effectiveness of CUI (CIFAR10C, CIFAR100C
and ImageNetC for short). Each dataset comprises 15 distinct types of corruption, each applied at
severity level of 5. These corruptions are applied to test images from the original datasets.
Calibration Set Construction. For each dataset, we construct a small labeled calibration buffer
from the source domain in two possible ways: (i) splitting off a disjoint portion of source data
before pretraining (privacy-first, which requires retraining), or (ii) reusing a small subset of the
training data (efficiency-first, which avoids retraining). In our experiments, we adopt the efficiency-
first strategy and set the calibration buffer sizes to 50, 100, and 500 for CIFAR10C, CIFAR100C,
and ImageNetC, respectively. The buffer is fixed throughout testing and used solely for CP.
Pretrained Model. Following previous studies (Wang et al., 2020; 2022), we adopt pretrained
WideResNet-28 (Zagoruyko & Komodakis, 2016) model for CIFAR10C, pretrained ResNeXt-
29 (Xie et al., 2017) for CIFAR100C, and standard pretrained ResNet-50 (He et al., 2016) for Ima-
genetC. For a fair comparison, we conduct all experiments in a same environment.
Evaluation Metric: We use two kinds of metrics including testing performance, CP performance.
We use D̂ to represent the testing data with labels. (1) For testing performance, we use the error rate
(ERR) following existing CTTA methods (Wang et al., 2022). (2) For CP performance, we leverage
coverage and inefficiency for joint evaluation:

COV = E(x,y)∈D̂I (y ∈ P(x)) , INE = Ex∈D̂ |P(x)| . (14)

The coverage should be near to the user expectation and the inefficiency should be small but larger
than 0. Specifically, COV closer to 1 − α indicates a more effective uncertainty estimation of the
CP. For example, with α = 0.1, the COV should be close to 90%. INE, on the other hand, indicates
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Table 1: Results of combining CUI with exiting CTTA methods on the three datasets. For cal-
ibration, the privacy-first strategy uses a disjoint split with a retrained source model, while the
efficiency-first strategy reuses common-used pre-trained source model. For each SOTA method,
the first line means the vanilla implementation only with CUI for uncertainty estimation, and the
second line means the method uses uncertainty to guide the adaptation. Because CUI does not
change the ERR, we omit the results of these methods w/o both CUI and CPAda for saving space.

Method Privacy First (Calibration data ∩ Training data = ∅) Efficiency First (Calibration data ⊂ Training data)
1. CUI: Sec. 4.1 α = 0.3 α = 0.2 α = 0.1 α = 0.3 α = 0.2 α = 0.1
2. CPAda: Sec. 4.2 ERR COV INE ERR COV INE ERR COV INE ERR COV INE ERR COV INE ERR COV INE

C
IF

A
R

10
-C

IF
A

R
10

C

Tent + CUI 21.65 69.12 0.89 21.65 78.45 1.96 21.65 87.93 2.33 20.45 68.55 0.81 20.45 77.88 1.02 20.45 87.67 1.57
Tent + CUI + CPAda 19.70 69.04 0.81 19.25 76.73 1.02 19.25 87.17 1.56 18.06 67.91 0.77 18.32 78.19 1.01 18.22 87.57 1.29
CoTTA + CUI 16.34 68.77 0.81 16.34 78.45 1.89 16.34 87.85 1.66 16.22 67.86 1.15 16.22 75.36 1.09 16.22 89.35 1.90
CoTTA + CUI + CPAda 15.73 68.77 0.81 15.75 77.93 1.03 15.71 87.02 1.46 15.52 66.62 0.81 15.73 77.25 1.00 15.65 88.53 1.61
SATA + CUI 16.31 68.25 0.75 16.31 77.78 0.95 16.31 86.07 1.24 16.13 68.28 0.84 16.13 77.14 0.85 16.13 85.61 1.09
SATA + CUI + CPAda 15.79 68.83 0.75 15.76 76.68 0.89 15.72 86.97 1.30 15.59 67.94 0.73 15.56 78.49 0.92 15.60 88.68 1.24
RDumb + CUI 18.31 68.62 0.76 18.31 78.82 0.94 18.31 85.60 1.15 17.63 68.37 0.76 17.63 77.87 0.91 17.63 86.23 1.17
RDumb + CUI + CPAda 16.73 73.55 0.83 16.73 79.30 0.94 16.81 86.41 1.18 16.23 68.30 0.74 16.31 76.63 0.87 16.33 84.38 1.09
C-CoTTA +CUI 14.99 68.39 0.73 14.99 78.42 1.23 14.99 86.92 1.75 14.74 66.16 0.70 14.74 77.46 0.87 14.74 87.52 1.44
C-CoTTA +CUI + CPAda 14.75 66.97 0.72 14.72 77.10 1.14 14.76 86.42 1.55 14.32 68.82 0.74 14.38 75.53 0.85 14.33 88.47 1.64
RMT + CUI 14.66 68.86 0.75 14.66 76.81 1.14 14.66 87.37 1.45 14.54 68.29 0.85 14.54 78.37 1.10 14.54 89.06 1.50
RMT + CUI + CPAda 14.33 66.53 0.72 14.36 78.04 1.22 14.44 86.29 1.26 14.28 69.17 0.83 14.31 77.28 0.91 14.25 86.58 1.70

C
IF

A
R

10
0-

C
IF

A
R

10
0C

Tent + CUI 62.24 69.23 2.66 62.24 78.50 4.44 62.24 87.24 11.19 60.93 69.04 17.32 60.93 77.15 27.97 60.93 84.63 35.52
Tent + CUI + CPAda 46.50 68.88 1.53 46.56 76.85 3.68 45.95 87.42 4.13 49.87 68.22 20.66 52.90 78.93 24.34 51.56 84.48 28.61
CoTTA + CUI 36.41 68.08 1.86 36.41 77.01 2.82 36.41 87.31 4.96 32.50 66.59 2.42 32.50 78.39 5.11 32.50 88.68 11.58
CoTTA + CUI + CPAda 32.11 67.81 1.69 32.16 79.33 3.34 32.31 89.64 9.69 30.93 64.65 1.85 30.99 75.08 3.16 31.59 84.61 6.45
SATA + CUI 33.46 69.32 1.81 33.46 76.84 2.79 33.46 87.39 7.06 30.30 68.69 1.55 30.30 77.80 2.64 30.30 87.82 6.02
SATA + CUI + CPAda 32.38 68.36 1.65 32.39 77.85 2.92 32.46 89.51 8.64 29.14 68.81 1.44 28.94 76.29 2.08 28.78 84.92 3.69
RDumb + CUI 45.93 68.01 2.29 45.93 76.86 3.38 45.93 88.48 7.23 45.10 68.56 2.06 45.10 78.02 2.21 45.10 87.68 2.23
RDumb + CUI + CPAda 42.12 68.62 1.76 42.23 79.30 2.94 42.26 86.21 7.89 43.42 69.49 2.72 43.22 76.10 2.86 43.36 85.28 3.40
C-CoTTA +CUI 32.79 68.58 1.83 32.79 78.12 3.21 32.79 88.37 7.62 29.90 69.75 1.71 29.90 76.54 2.51 29.90 84.51 4.70
C-CoTTA +CUI + CPAda 31.52 68.08 1.66 31.44 77.96 2.97 31.47 88.19 7.20 29.31 68.79 2.46 29.28 78.64 2.60 29.17 86.08 5.32
RMT + CUI 32.53 68.37 1.45 32.53 77.06 2.75 32.53 88.48 7.46 29.00 69.41 1.69 29.00 76.71 2.62 29.00 87.97 5.80
RMT + CUI + CPAda 31.43 67.47 1.39 31.32 76.71 2.62 31.45 86.97 6.40 28.35 67.67 1.40 28.33 77.06 2.75 28.28 87.71 4.49

Im
ag
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et

-I
m
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Tent + CUI 63.69 68.12 43.09 63.69 78.07 114.50 64.69 87.42 265.59 62.60 69.09 47.80 62.60 79.40 82.62 62.60 88.48 163.09
Tent + CUI + CPAda 62.50 69.26 47.89 62.53 76.89 112.25 62.60 88.71 272.71 61.50 69.26 47.89 61.53 76.19 43.25 61.60 88.71 164.50
CoTTA + CUI 69.03 68.88 84.43 69.03 79.01 110.13 69.03 88.28 188.43 62.70 68.43 69.74 62.70 78.07 90.86 62.70 86.70 171.33
CoTTA + CUI + CPAda 67.56 67.74 80.13 67.42 78.42 114.43 67.32 89.04 179.64 61.22 69.01 69.32 61.30 77.42 86.23 61.24 87.40 172.24
SATA + CUI 61.81 69.83 81.31 61.81 76.97 118.13 61.81 87.95 212.59 60.10 69.38 75.93 60.10 77.42 120.44 60.10 88.12 218.29
SATA + CUI + CPAda 60.62 69.10 54.99 60.92 79.09 113.38 60.87 89.46 224.14 58.52 68.24 64.18 58.54 78.71 121.57 58.65 87.32 192.66
RDumb + CUI 64.46 66.68 21.67 64.46 79.49 57.39 64.46 88.55 156.87 62.45 67.54 23.38 62.45 79.22 67.03 62.45 88.83 147.44
RDumb + CUI + CPAda 62.25 67.29 22.74 62.29 78.28 56.45 62.18 87.34 152.11 60.26 67.57 24.52 60.32 78.39 62.16 60.54 89.01 156.74
C-CoTTA +CUI 60.42 68.11 36.13 60.42 75.19 32.61 60.42 87.70 91.22 59.40 67.45 17.09 59.40 78.14 39.26 59.40 88.09 100.20
C-CoTTA +CUI + CPAda 59.48 68.03 20.87 59.52 77.24 42.90 59.53 88.74 96.05 58.36 68.31 18.73 58.33 79.05 40.46 58.39 87.67 98.40
RMT + CUI 61.64 69.79 19.44 61.64 78.05 37.59 61.64 86.15 82.13 59.80 69.53 18.73 59.80 78.04 38.18 59.80 86.83 82.37
RMT + CUI + CPAda 59.62 69.71 18.98 59.65 78.57 39.07 59.66 86.04 76.99 59.28 69.57 19.30 59.25 76.91 34.27 59.30 87.35 87.60

lower uncertainty when closer to 1, while values closer to 0 suggest that no valid prediction. INE
greater than 1, with larger values indicating higher uncertainty.

5.2 MAJOR RESULTS

CUI is a play-and-plug uncertainty indicator. To evaluate the effect of CUI, we select several
well-known and state-of-the-art methods as the baseline methods, including TENT (Wang et al.,
2020), CoTTA (Wang et al., 2022), SATA (Chakrabarty et al., 2023), RMT (Döbler et al., 2023),
C-CoTTA (Shi et al., 2024) and RDumb (Press et al., 2024). All compared methods adopt the same
pre-trained model under the same calibration set construction strategy. For each selected method,
we use the proposed CUI for uncertainty measurement, and based on this, we compare two results:
one without adaptation and one using CUI guidance for domain adaptation. These two results are
represented as adjacent rows in the table, such as “CoTTA+CUI” and “CoTTA+CUI+CPAda”. We
use three expected coverage factors α = 0.1, 0.2, 0.3, which represent that the user would like
90%, 80%, 70% coverage for the prediction. The results are shown in Table 1. First, with the in-
clusion of CUI, it is possible to estimate uncertainty (INE) that closely aligns with the predefined
α values. In most cases, when CPAda is not employed, the INE values reveal significant inherent
uncertainties within the baseline method. These uncertainties are associated with the dataset that
more complex datasets typically exhibit higher INE values. Moreover, the INE varies depending on
the α value. Specifically, smaller α values correspond to larger INE, as smaller α thresholds de-
mand higher fault tolerance. This relationship highlights the trade-off between the level of certainty
required and the algorithm’s ability to meet that requirement. Second, the integration of CUI-guided
CPAda improves existing methods, reducing ERR and lowering INE, indicating more accurate and
confident predictions. Finally, the comparison between Privacy-First and Efficiency-First strate-
gies shows minimal performance differences, suggesting that users can select the calibration dataset
construction method based on their specific application needs without compromising results.
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Table 2: Comparisons with non-exchangeable CP methods.
Privacy First Efficiency First

w/o CPAda w/ CPAda w/o CPAda w/ CPAda
α CP Method ERR COV INE ERR COV INE ERR COV INE ERR COV INE

N/A 35.15 23.39 0.28 - - - 32.77 34.27 0.44 - - -

0.3

THR Sadinle et al. (2019) 35.15 23.39 0.28 35.18 21.31 0.24 32.72 34.17 0.44 31.89 39.81 0.50
NexCP Farinhas et al. (2023) 35.15 23.46 0.28 35.21 21.75 0.25 32.72 34.68 0.45 31.70 40.31 0.51
QTC Yilmaz & Heckel (2022) 35.15 40.70 0.59 33.79 42.25 0.59 32.72 52.15 0.87 31.00 53.13 0.75
SaoCP Bhatnagar et al. (2023) 35.15 35.87 0.49 34.16 41.41 0.58 32.72 62.97 1.43 29.71 68.20 1.30
CUI 35.15 69.64 2.70 32.76 68.02 2.18 32.72 68.95 2.01 29.48 68.07 2.17

0.2

THR Sadinle et al. (2019) 35.15 29.05 0.37 34.80 27.93 0.34 32.72 42.17 0.60 31.43 48.32 0.67
NexCP Farinhas et al. (2023) 35.15 29.42 0.37 34.78 28.39 0.35 32.72 41.87 0.59 31.32 48.36 0.66
QTC Yilmaz & Heckel (2022) 35.15 46.63 0.75 33.54 47.84 0.73 32.72 59.96 1.22 30.53 61.53 0.99
SaoCP Bhatnagar et al. (2023) 35.15 44.01 0.68 33.71 51.35 0.86 32.72 71.15 2.24 29.36 74.98 1.78
CUI 35.15 77.58 4.60 32.59 77.46 3.64 32.72 76.73 3.42 29.17 79.15 2.27

0.1

THR Sadinle et al. (2019) 35.15 37.25 0.52 34.20 37.12 0.49 32.72 53.69 0.95 30.64 59.89 0.97
NexCP Farinhas et al. (2023) 35.15 37.71 0.53 34.17 37.70 0.51 32.72 53.17 0.92 30.62 59.83 0.97
QTC Yilmaz & Heckel (2022) 35.15 55.56 1.10 33.25 54.29 0.93 32.72 69.14 1.92 29.58 72.31 1.50
SaoCP Bhatnagar et al. (2023) 35.15 53.28 0.99 33.30 59.00 1.16 32.72 83.51 5.64 29.37 80.99 2.47
CUI 35.15 86.41 9.30 32.74 89.02 11.48 32.72 86.38 7.78 29.17 88.35 5.47

5.3 MORE ANALYSIS ON THE PROPOSED METHOD

Comparisons with non-exchangeable CP methods. In Table 2, we compare our CUI with other
CP methods including THR Sadinle et al. (2019), NexCP Barber et al. (2023) and QTC Yilmaz &
Heckel (2022). THR is an exchangeable CP method and never considers domain shifts in CTTA,
thus it obtains an obvious coverage gap. NexCP and QTC are two non-exchangeable methods, with
detailed comparisons available in Sec. 4.3. First, for NexCP, we use the same fixed value for domain
shift estimation as in the original paper, and NexCP is only slightly better than THR and struggles
to estimate domain differences in advance during testing. Then, although QTC estimates domain
differences in real time, it neglects the unreliability of the current model due to error accumulation
over long testing periods. This method yields better results than both THR and NexCP. However,
these methods all suffer from coverage gap issues, and the uncertainty estimation is unreliable in
CTTA, even if their INE is close to 1. Instead, CUI obtains near-expected coverage when estimating
testing uncertainty. Next, we compare our domain adaptation method (CPAda) using different CP
techniques that are similar to the proposed method, and the results show that CUI provides better
guidance for adaptation and obtains lower error rates.
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Figure 2: Changes of COV and INE.
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Figure 3: Hyperparameters on CIFAR100C.
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Figure 4: Time and memory cost on CIFAR100C.

Coverage and Inefficiency changes in CTTA. In Fig. 2, we show the coverage and inefficiency
changes of different CP methods. As shown in Fig. 2(a), coverage varies significantly across meth-
ods, reflecting domain disparities. Existing methods, such as THR and NexCP, show notable cover-
age gaps, while QTC performs well initially but struggles with error accumulation. In contrast, CUI
achieves comparable initial coverage to QTC and surpasses it in later domains. Fig. 2(b) illustrates
inefficiency trends, revealing that existing methods, despite low coverage, fail to account for error
accumulation during domain shifts, leading to overconfidence. CUI, however, captures this accumu-
lation, with inefficiency increasing as domains change, reflecting growing uncertainty. When CUI
guides domain adaptation, inefficiency decreases, demonstrating effective uncertainty control.
Storage analysis and comparison with replay strategy. As discussed in Sec. 4.3, CP-based meth-
ods need to maintain an extra calibration set for uncertainty estimation. Although effectively mea-
suring uncertainty is crucial in testing systems, using CP requires a certain amount of memory
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Table 3: Comparison with replay strategy.
Privacy First Efficiency First

Method Storage ERR COV INE ERR COV INE

Baseline 35.15 23.39 0.28 32.77 34.27 0.44

Soure Replay 35.03 21.88 0.25 32.64 7.47 0.08
CUI + CPAda 100

32.59 78.11 3.29 29.17 79.15 2.27

Soure Replay 35.02 13.34 0.14 32.52 8.20 0.09
CUI + CPAda 200

31.97 79.02 7.61 29.38 77.05 2.04

Soure Replay 34.22 13.74 0.15 32.09 8.97 0.09
CUI + CPAda 300

31.33 78.59 5.12 29.77 77.48 2.18

Table 4: Comparison on DomainNet-126.
Method real clipart painting sketch Mean

Tent 43.88 45.48 38.23 38.54 41.53
Tent+CUI + CPAda 41.70 44.78 36.90 36.72 40.03

CoTTA 43.00 42.80 36.85 37.04 39.92
CoTTA+CUI + CPAda 41.32 40.17 35.42 34.81 37.93

RMT 38.86 39.22 33.31 33.63 36.26
RMT+CUI + CPAda 37.34 37.82 31.23 32.06 34.61

storage. We analyze the impact of this storage on performance in Table 3 and find that a larger
storage capacity leads to better CP performance, as more calibration data provides a more accurate
representation of the original data distribution. Additionally, we compare CUI with a classic storage
method in continual learning, the source replay strategy, where we use the same samples for replay
when conducting adaptation. We find that CUI achieves better accuracy while maintaining the same
amount of stored data, which shows the significance of reducing error accumulation in CTTA.
Impacts of user-specified coverage level α. In CP, we have a user-specified coverage level α ∈
(0, 1) (Eq. (2)), which is generally considered to represent a user pre-specified error rate. In Fig. 3(a),
we show that the infuence of different α from 0.1 to 0.9. The results show that a large α means that
the user accepts a lower coverage rate, reflecting a large error rate.
Analysis of compensation factor β. We also analyze the influence of different compensation factors
β in Eq. (8), which represents the compensation level. The results are shown in Fig. 3(b), we find
that small β decrease the compensation performance and large β may result in overcompensation.
Time and memory cost. We analyze CUI’s impact on time and memory cost increases compared
to the original methods, as shown in Fig. 4. It is evident that our CUI and CPAda strategies slightly
increase implementation time due to the forward propagation of calibration data. However, CPAda
reduces memory costs by performing backpropagation only on selected samples.
Error comparison on DomainNet (Peng et al., 2019). DomainNet is a commonly used domain
shift dataset in the traditional TTA task. We evaluate the proposed method on DomainNet. As shown
in Table 4, our method can improve Tent, CoTTA, and RMT by introducing uncertainty estimation.

Table 5: Comparison on Small Batch Sizes.
Method 100 50 10

Tent 22.06 28.66 75.34
Tent+CUI + CPAda 19.75 22.38 72.09

CoTTA 18.27 20.43 57.25
CoTTA+CUI + CPAda 16.52 18.33 52.75

SATA 16.45 16.90 20.72
SATA+CUI + CPAda 15.77 16.23 20.34

Table 6: Comparison on Different corruption orders.
Method 1 2 3 4 5 avg std

Tent 20.45 20.08 18.73 19.27 21.65 20.04 1.13
Tent+CUI + CPAda 18.06 19.22 18.01 18.65 18.35 18.46 0.50

CoTTA 16.22 16.33 16.80 16.53 16.68 16.51 0.24
CoTTA+CUI + CPAda 15.52 15.23 15.46 15.51 15.58 15.46 0.14

SATA 16.13 16.18 16.42 16.16 16.27 16.23 0.12
SATA+CUI + CPAda 15.59 15.49 15.72 15.53 15.79 15.62 0.13

Sensitivity to batch size. We further evaluate different batch sizes {100, 50, 10} in Table 5. Perfor-
mance decreases for all methods as the batch size becomes smaller, yet CUI consistently improves
robustness across settings, showing no additional instability under small-batch adaptation.
Sensitivity to corruption order. To assess robustness against different corruption sequences, we
evaluated 5 randomly sampled orders (Table 6). Compared with other methods, CUI consistently
reduced error rate, demonstrating improved stability under varying corruption orders.

6 CONCLUSION

We studied uncertainty estimation for CTTA under a calibration-aided setting. We proposed the
CUI, which leverages a small labeled calibration buffer with conformal prediction. CUI jointly
measures model shift and data shift to correct conformal quantiles, closes the coverage gap under
domain shifts, and yields prediction sets whose size serves as a calibrated indicator of test-time
uncertainty. We further introduced a CUI-guided adaptation strategy that updates models only on
confident samples and improves the robustness of existing CTTA baselines. Experiments on three
benchmarks validate that CUI provides reliable uncertainty estimates and enhances downstream
adaptation. CUI requires a calibration buffer from the source domain, which may not always be
available, and it currently operates at the instance level, limiting direct application to fine-grained
tasks such as pixel-level segmentation. Future work will explore relaxing the reliance on calibration
data through online or privacy-preserving calibration and extending CUI to structured outputs and
dense prediction tasks.
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A COVERAGE PROOF IN CONFORMAL PREDICTION

A.1 COVERAGE IN EXCHANGEABLE CONFORMAL PREDICTION (WITHOUT DOMAIN SHIFT)

Theorem 1 (Exchangeable Conformal Prediction (Vovk et al., 2005)). Assume the calibration set
C and a new data sample x are i.i.d. (or more generally, exchangeable), and the model π treats the
input data points symmetrically. Given a specified coverage level α, the quantile can be calculated
by

τ∗ = Quantile[C, (1− α)] = inf

{
τ :

1

|C|
∑
x∈C

I{s(π(x))<τ} ≥ |C|+ 1

|C|
(1− α)

}
. (15)

Then, the conformal prediction set is defined as

P(x) = {y|s(π(x)) < τ∗}, (16)

and satisfies
P(y ∈ P(x)) ≥ 1− α. (17)

Proof. The coverage proof of exchangeable CP is following Barber et al. (2023). First, we define
the strange data points in the calibration set as an index set:

S = {i ∈ [1, n+ 1] : s(π(xi)) > τ∗} (18)

The strange points are with the largest ⌊α(n+ 1)⌋ non-conformity score. Because of the definition
of quantile, it is easy to find that

|S| ≤ α(n+ 1). (19)

Then, for a test sample xn+1, if it was failed-coverage, say ŷn+1 /∈ P(xn+1), this means that
s(π(xi)) > τ∗. Thus, we have the strange probability:

p(yn+1 /∈ P(xn+1)) = p(n+ 1 ∈ S)
= Ei∈[1,n+1]p(i ∈ S)

=
|S|

n+ 1

(20)

Because of the exchangeability assumation, we have

p(yn+1 /∈ P(xn+1)) ≤ α (21)

The coverage of exchangeable conformal prediction is obtained proof. □

A.2 COVERAGE IN NON-EXCHANGEABLE CONFORMAL PREDICTION (WITH DOMAIN
SHIFTS)

In this subsection, we prove that why the proposed method can be used to compensate coverage gap
in CP when domain shifts. First, following Barber et al. (2023), we give the lower bound of the
coverage in non-exchangeable CP when the domain shifts is known.

12
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Lemma 1 (Coverage gap upper bound). Assume that ∀x ∈ C and xtest are independent. In a CP
approach, the coverage gap can be bounded by the following inequality:

κ = (1− α)− P {y ∈ P(x)}

≤ 2

n+ 1

n∑
i=1

wi · dTV

[
(xi, yi), (x

test, ytest)
]
,

(22)

where dTV is a total variation distance. wi is a prespecified importance weight for the i-th calibra-
tion sample, and is set to 1 in general CP.

Proof. Let X = C ∪ {(xtest, ytest)}. Because ∀x ∈ C and xtest are independent, we have

κ = (1− α)− P {y ∈ P(x)}

≤ 1

n+ 1

n+1∑
i=1

wi · dTV (X , (x1, yi))

≤ 1

n+ 1

n∑
i=1

wi · (2dTV

[
(xi, yi), (x

test, ytest)
]

− dTV

[
(xi, yi), (x

test, ytest)
]2
)

≤ 2

n+ 1

n∑
i=1

wi · dTV

[
(xi, yi), (x

test, ytest)
]
,

(23)

where the second inequality can be obtained by the maximal coupling theorem (Den Hollander,
2012). That is, for two independent random variables x and y, if we have another two independent
random variables x̂ and ŷ and (x̂, ŷ)is a maximal coupling for (x, y), then we have dTV(x, y) =
p(x̂ ̸= ŷ). □

Theorem 2 (Exchangeable Conformal Prediction with Known Shifts (Barber et al., 2023)). Assume
the calibration set C is i.i.d., but a new data sample x is drawn from a different distribution. Given
a specified coverage level α, the quantile can be calculated by

τ∗ = Quantile[C, (1− α)] = inf

{
τ :

1

|C|
∑
x∈C

I{s(π(x))<τ} ≥ |C|+ 1

|C|
(1− α)

}
. (24)

Then, the conformal prediction set is defined as

P(x) = {y|s(π(x)) < τ∗}, (25)

and satisfies a coverage lower bound:

P(y ∈ P(x)) ≥ 1− α− 2

n

n∑
i=1

wi · dTV

[
(xi, yi), (x

test, ytest)
]
. (26)

Proof. This theorem can be easily obtained from Lemma 1.

A.3 COVERAGE OF CUI WITH DOMAIN SHIFTS

However, Theorem 2 is only appropriate for known domain difference. When the domain differ-
ences are unknown in test time, it is difficult to obtain a certain coverage lower bound. This explains
why NexCP performs poorly in the CTTA task. QTC has designed a dynamic method for estimating
domain differences, making it more suitable for testing compared to NexCP. However, the CTTA
task requires multiple domain changes, which significantly impacts the model’s ability to estimate
domain differences due to error accumulation. Specifically, we compute the joint distribution differ-
ence of current data and calibration data between the source and current models.

In CUI, we dynamically evaluate the domain difference between the source data and the current
test data. To mitigate the effect of error accumulation, we consider both model and data difference.
We use the Jensen-Shannon (JS) divergence as the metric. Joint feature representation captures

13
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correlations between different features, providing a more holistic view of the data distribution and
how different models process it. The joint distribution can better reflect subtle differences between
domains, enhancing the precision of JS divergence measures. Moreover, comparing joint feature
distributions allows for a more detailed assessment of how much the current model has gained
compared to the source model.

B UNCERTAINTY EVALUATION USING OTHER METRICS

In the main paper, we use two kinds of metrics including testing performance, CP performance. We
use D̂ to represent the testing data with labels. (1) For testing performance, we use the error rate
(ERR) following existing CTTA methods Wang et al. (2022) and the small, the better. (2) For CP
performance, we leverage coverage and inefficiency for joint evaluation. The coverage should be
near to the user expectation and the inefficiency should be small but larger than 0.
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Figure 5: Uncertainty comparisons with QTC on CIFAR100-to-CIFAR100C using NLL,BS and
ECE metrics.

In this subsection, for uncertainty measure, we use Negative Log Likelihood (NLL), Brier Score
(BS, Brier (1950)) and Expected Calibration Error (ECE, Naeini et al. (2015)):

NLL = − E(x,y)∈D̂ log(p(y|x)),

BS = E(x,y)∈D̂ (p(x)− 1(y))
2
,

ECE =

10∑
i=1

|Bi|
|D̂|

|acc(Bi)− conf(Bi)| ,

(27)

where 1(·) means onehot. In ECE, we split samples into 10 bins by probability, and acc(Bi) means
the bin accuracy and conf(Bi) is the mean confidence of the bin. The three metrics NLL, BS, and
ECE are always used in scenarios where the true labels are known, which is impossible at test time
and thus cannot be used as an uncertainty indicator. We compare CUI with QTC in Fig. 5, and
find our method still outperforms this non-exchangeable CP method in these traditional uncertainty
measures.

C DETAILED RESULTS

In our experiments, we employ the CIFAR10C, CIFAR100C, and ImageNetC datasets as bench-
marks to assess the robustness of classification models. Each dataset comprises 15 distinct types
of corruption, each applied at five different levels of severity (from 1 to 5). These corruptions are
systematically applied to test images from the original CIFAR10 and CIFAR100 datasets, as well
as validation images from the original ImageNet dataset. The 15 types of corruption are Gaussian,
Shot, Impulse, Defocus, Glass, Motion, Zoom, Snow, Frost, Fog, Brightness, Contrast, Elastic,
Pixelate, Jpeg. We show the detailed error results for each type of corruption in Tables 7, 8 and 9.

14
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Table 7: Classification error rate (%) for the standard CIFAR10-to-CIFAR10C CTTA task. All
results are evaluated with the largest corruption severity level 5 in an online fashion.

Strategy α Method Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe. Avg.

Pr
iv

ac
y

Fi
rs

t

0.3

Tent+CUI 24.73 20.82 29.39 14.71 33.20 17.38 14.78 19.77 19.38 19.67 14.66 19.11 26.33 22.13 28.62 21.65
Tent+CUI+CPAda 24.57 20.23 28.01 14.08 31.51 16.50 14.40 17.77 16.76 17.60 11.65 15.10 23.75 19.59 23.91 19.70
CoTTA+CUI 24.42 21.82 26.07 11.78 27.19 12.63 10.69 15.09 14.29 12.44 7.65 10.88 18.32 13.88 17.97 16.34
CoTTA+CUI+CPAda 23.09 20.63 25.84 10.51 26.39 11.53 10.26 14.05 14.08 12.52 7.72 10.44 17.18 13.71 18.00 15.73
SATA+CUI 23.31 19.63 28.16 11.59 28.10 12.55 10.42 14.03 13.69 12.27 7.64 10.69 18.92 14.16 19.53 16.31
SATA+CUI+CPAda 22.92 18.39 26.45 11.42 27.36 12.38 9.96 13.81 13.20 12.05 7.53 10.38 18.91 13.37 18.79 15.79
RDumb+CUI 24.06 19.81 27.56 12.93 29.55 15.10 12.78 16.67 16.57 15.52 9.48 13.27 21.67 17.48 22.25 18.31
RDumb+CUI+CPAda 23.27 20.53 25.21 11.47 27.44 12.81 11.50 15.58 14.92 13.24 8.31 10.75 20.51 15.55 19.89 16.73
C-CoTTA+CUI 23.43 17.75 23.26 11.85 24.35 12.61 10.35 13.73 12.53 11.95 8.37 9.82 16.46 12.10 16.32 14.99
C-CoTTA+CUI+CPAda 21.82 17.30 23.61 11.81 24.48 12.51 10.21 13.02 12.32 11.93 7.96 9.68 16.57 12.32 15.76 14.75
RMT+CUI 22.62 18.89 25.36 10.27 24.94 11.58 10.14 13.37 12.67 11.49 8.19 9.87 15.28 11.26 14.53 14.66
RMT+CUI+CPAda 22.09 17.86 23.93 10.63 23.82 11.83 10.49 12.79 12.51 11.07 8.33 9.56 15.10 11.04 13.94 14.33

0.2

Tent+CUI 24.73 20.82 29.39 14.71 33.20 17.38 14.78 19.77 19.38 19.67 14.66 19.11 26.33 22.13 28.62 21.65
Tent+CUI+CPAda 24.77 20.67 28.34 13.73 30.32 16.01 13.88 17.65 16.73 16.03 10.48 13.61 23.16 19.26 24.10 19.25
CoTTA+CUI 24.42 21.82 26.07 11.78 27.19 12.63 10.69 15.09 14.29 12.44 7.65 10.88 18.32 13.88 17.97 16.34
CoTTA+CUI+CPAda 23.05 20.33 25.44 10.61 26.29 11.53 10.46 15.05 14.08 12.22 7.72 10.44 17.18 13.91 18.00 15.75
SATA+CUI 23.31 19.63 28.16 11.59 28.10 12.55 10.42 14.03 13.69 12.27 7.64 10.69 18.92 14.16 19.53 16.31
SATA+CUI+CPAda 22.92 18.27 26.45 11.43 27.23 12.17 9.96 13.76 13.20 12.15 7.53 10.28 18.91 13.36 18.79 15.76
RDumb+CUI 24.06 19.81 27.56 12.93 29.55 15.10 12.78 16.67 16.57 15.52 9.48 13.27 21.67 17.48 22.25 18.31
RDumb+CUI+CPAda 23.27 20.53 25.21 11.47 27.44 12.81 11.50 15.58 14.92 13.24 8.31 10.75 20.51 15.55 19.89 16.73
C-CoTTA+CUI 23.43 17.75 23.26 11.85 24.35 12.61 10.35 13.73 12.53 11.95 8.37 9.82 16.46 12.10 16.32 14.99
C-CoTTA+CUI+CPAda 21.84 17.31 23.52 11.81 24.48 12.51 10.03 13.02 12.23 11.83 7.96 9.68 16.56 12.32 15.70 14.72
RMT+CUI 22.62 18.89 25.36 10.27 24.94 11.58 10.14 13.37 12.67 11.49 8.19 9.87 15.28 11.26 14.53 14.66
RMT+CUI+CPAda 21.81 17.66 23.92 10.76 23.53 11.93 10.08 13.28 12.29 11.42 8.16 9.93 15.41 11.21 13.97 14.36

0.1

Tent+CUI 24.73 20.82 29.39 14.71 33.20 17.38 14.78 19.77 19.38 19.67 14.66 19.11 26.33 22.13 28.62 21.65
Tent+CUI+CPAda 24.77 20.67 28.34 13.73 30.32 16.01 13.88 17.65 16.73 16.03 10.48 13.61 23.16 19.26 24.10 19.25
CoTTA+CUI 24.42 21.82 26.07 11.78 27.19 12.63 10.69 15.09 14.29 12.44 7.65 10.88 18.32 13.88 17.97 16.34
CoTTA+CUI+CPAda 23.05 20.31 25.44 10.21 26.29 11.33 10.46 15.05 14.08 12.12 7.76 10.44 17.18 13.91 18.00 15.71
SATA+CUI 23.31 19.63 28.16 11.59 28.10 12.55 10.42 14.03 13.69 12.27 7.64 10.69 18.92 14.16 19.53 16.31
SATA+CUI+CPAda 22.92 18.12 26.45 11.43 27.23 12.17 9.96 13.76 13.09 12.15 7.44 10.28 18.62 13.36 18.79 15.72
RDumb+CUI 24.06 19.81 27.56 12.93 29.55 15.10 12.78 16.67 16.57 15.52 9.48 13.27 21.67 17.48 22.25 18.31
RDumb+CUI+CPAda 23.30 20.52 25.30 11.41 27.89 12.98 11.37 15.80 14.87 13.13 8.36 10.95 20.29 15.87 20.07 16.81
C-CoTTA+CUI 23.43 17.75 23.26 11.85 24.35 12.61 10.35 13.73 12.53 11.95 8.37 9.82 16.46 12.10 16.32 14.99
C-CoTTA+CUI+CPAda 21.82 17.31 23.61 11.81 24.33 12.51 10.17 12.96 12.57 11.93 7.96 9.68 16.59 12.32 15.76 14.76
RMT+CUI 22.62 18.89 25.36 10.27 24.94 11.58 10.14 13.37 12.67 11.49 8.19 9.87 15.28 11.26 14.53 14.66
RMT+CUI+CPAda 22.06 17.40 23.43 10.17 23.52 10.98 10.33 13.05 12.55 11.38 8.10 9.94 15.45 11.23 14.28 14.44

α Method Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe. Avg.

E
ffi

ci
en

cy
Fi

rs
t

0.3

Tent+CUI 24.77 20.68 28.54 13.57 31.93 15.48 14.47 19.79 18.80 18.91 12.81 16.91 25.50 19.80 24.84 20.45
Tent+CUI+CPAda 24.08 18.60 26.90 12.95 30.14 16.02 12.84 16.27 15.06 15.85 9.83 13.04 20.96 16.42 21.87 18.06
CoTTA+CUI 23.71 21.07 25.10 11.47 27.16 12.41 11.21 15.22 14.79 12.63 8.23 10.68 18.21 14.24 17.21 16.22
CoTTA+CUI+CPAda 23.15 19.30 24.67 11.35 26.32 11.29 10.35 14.14 14.09 11.44 8.18 10.42 17.07 14.14 16.84 15.52
SATA+CUI 22.94 19.68 26.66 11.58 27.52 12.40 10.40 13.82 13.65 12.50 7.93 10.80 19.33 13.97 18.74 16.13
SATA+CUI+CPAda 22.54 17.66 25.68 11.48 26.80 12.43 9.91 13.68 12.96 11.97 7.67 10.27 18.84 13.45 18.49 15.59
RDumb+CUI 23.25 18.01 26.22 12.85 28.74 14.49 12.17 17.17 15.82 15.33 9.77 13.44 20.34 16.20 20.64 17.63
RDumb+CUI+CPAda 22.92 19.72 24.14 11.67 26.73 12.49 10.92 15.16 14.27 13.17 7.95 10.20 19.69 15.08 19.31 16.23
C-CoTTA+CUI 22.07 17.40 23.26 11.70 24.31 12.54 10.19 13.04 12.46 11.65 8.01 9.84 16.58 12.16 15.93 14.74
C-CoTTA+CUI+CPAda 21.44 16.91 23.12 11.41 24.08 12.11 9.63 12.62 11.83 11.43 7.56 9.28 16.16 11.92 15.30 14.32
RMT+CUI 22.10 17.34 23.95 11.01 23.71 12.98 10.55 13.34 12.95 11.56 8.57 9.76 14.92 11.39 13.91 14.54
RMT+CUI+CPAda 22.00 17.44 23.57 10.65 23.43 11.91 10.15 12.89 12.25 11.33 8.37 9.75 15.08 11.15 14.17 14.28

0.2

Tent+CUI 24.77 20.68 28.54 13.57 31.93 15.48 14.47 19.79 18.80 18.91 12.81 16.91 25.50 19.80 24.84 20.45
Tent+CUI+CPAda 24.46 18.93 27.45 12.44 29.90 14.79 11.77 16.19 15.36 15.27 9.85 12.52 22.83 18.38 24.70 18.32
CoTTA+CUI 23.71 21.07 25.10 11.47 27.16 12.41 11.21 15.22 14.79 12.63 8.23 10.68 18.21 14.24 17.21 16.22
CoTTA+CUI+CPAda 23.09 20.63 25.84 10.51 26.39 11.53 10.26 14.05 14.08 12.52 7.72 10.44 17.18 13.71 18.00 15.73
SATA+CUI 22.94 19.68 26.66 11.58 27.52 12.40 10.40 13.82 13.65 12.50 7.93 10.80 19.33 13.97 18.74 16.13
SATA+CUI+CPAda 22.48 17.67 25.71 11.39 26.59 12.43 9.88 13.70 13.03 11.98 7.64 10.36 18.74 13.21 18.58 15.56
RDumb+CUI 23.25 18.01 26.22 12.85 28.74 14.49 12.17 17.17 15.82 15.33 9.77 13.44 20.34 16.20 20.64 17.63
RDumb+CUI+CPAda 23.21 19.85 24.52 11.54 26.86 12.57 10.68 15.20 14.47 13.22 7.77 10.52 19.68 15.30 19.31 16.31
C-CoTTA+CUI 22.07 17.40 23.26 11.70 24.31 12.54 10.19 13.04 12.46 11.65 8.01 9.84 16.58 12.16 15.93 14.74
C-CoTTA+CUI+CPAda 21.44 16.73 23.12 11.41 24.14 12.11 9.61 12.62 11.93 11.64 7.68 9.28 16.53 11.98 15.49 14.38
RMT+CUI 22.10 17.34 23.95 11.01 23.71 12.98 10.55 13.34 12.95 11.56 8.57 9.76 14.92 11.39 13.91 14.54
RMT+CUI+CPAda 22.04 17.36 23.51 10.87 23.43 11.93 10.33 12.95 12.54 11.43 8.64 9.67 14.96 11.14 13.91 14.31

0.1

Tent+CUI 24.77 20.68 28.54 13.57 31.93 15.48 14.47 19.79 18.80 18.91 12.81 16.91 25.50 19.80 24.84 20.45
Tent+CUI+CPAda 24.45 18.83 27.45 12.34 29.90 14.79 11.77 16.19 15.36 15.27 9.85 12.52 22.83 18.38 24.70 18.22
CoTTA+CUI 23.71 21.07 25.10 11.47 27.16 12.41 11.21 15.22 14.79 12.63 8.23 10.68 18.21 14.24 17.21 16.22
CoTTA+CUI+CPAda 23.13 20.32 25.47 11.35 26.17 11.29 10.23 14.44 14.09 11.92 7.16 10.55 18.07 13.34 17.18 15.65
SATA+CUI 22.94 19.68 26.66 11.58 27.52 12.40 10.40 13.82 13.65 12.50 7.93 10.80 19.33 13.97 18.74 16.13
SATA+CUI+CPAda 22.62 17.81 25.74 11.51 26.94 12.42 9.97 13.50 13.03 11.87 7.71 10.25 18.79 13.35 18.55 15.60
RDumb+CUI 23.25 18.01 26.22 12.85 28.74 14.49 12.17 17.17 15.82 15.33 9.77 13.44 20.34 16.20 20.64 17.63
RDumb+CUI+CPAda 23.07 19.85 24.41 11.55 26.96 12.73 10.65 15.26 14.17 13.26 7.76 10.40 19.88 15.66 19.41 16.33
C-CoTTA+CUI 22.07 17.40 23.26 11.70 24.31 12.54 10.19 13.04 12.46 11.65 8.01 9.84 16.58 12.16 15.93 14.74
C-CoTTA+CUI+CPAda 21.51 16.91 23.12 11.54 24.08 12.11 9.64 12.62 11.83 11.43 7.56 9.28 16.16 11.92 15.30 14.33
RMT+CUI 22.10 17.34 23.95 11.01 23.71 12.98 10.55 13.34 12.95 11.56 8.57 9.76 14.92 11.39 13.91 14.54
RMT+CUI+CPAda 22.01 17.15 23.57 10.67 23.46 11.71 10.30 12.85 12.50 11.50 8.38 9.48 15.09 11.24 13.80 14.25
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Table 8: Classification error rate (%) for the standard CIFAR100-to-CIFAR100C CTTA task. All
results are evaluated with the largest corruption severity level 5 in an online fashion.

Strategy α Method Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe. Avg.

Pr
iv

ac
y

Fi
rs

t

0.3

Tent+CUI 44.50 41.26 52.54 36.88 53.27 45.81 47.81 58.73 62.80 72.26 70.90 78.75 88.28 87.92 91.94 62.24
Tent+CUI+CPAda 41.64 38.02 47.42 32.98 46.63 38.18 35.12 43.52 43.56 49.30 43.91 53.31 60.39 57.00 66.52 46.50
CoTTA+CUI 43.33 40.80 50.66 30.42 44.27 32.18 30.24 34.13 33.51 40.21 27.16 34.19 37.49 30.24 37.37 36.41
CoTTA+CUI+CPAda 38.31 35.50 43.51 27.24 39.11 28.97 26.68 30.66 29.17 35.66 24.32 29.79 32.86 27.12 32.68 32.11
SATA+CUI 40.41 38.11 49.26 27.74 42.02 29.85 26.93 31.03 30.95 32.82 24.06 25.98 34.88 28.93 38.97 33.46
SATA+CUI+CPAda 39.20 36.79 46.01 28.16 40.64 29.53 26.76 30.26 30.23 31.89 23.45 25.17 33.69 27.86 36.11 32.38
RDumb+CUI 41.10 37.80 46.91 33.01 47.25 38.93 35.49 43.98 43.14 48.97 43.63 50.34 58.21 54.98 65.19 45.93
RDumb+CUI+CPAda 40.62 37.68 46.61 32.38 45.97 37.29 34.37 41.03 40.70 44.54 38.34 42.37 48.76 45.65 55.42 42.12
C-CoTTA+CUI 42.45 38.61 48.49 27.38 41.00 29.90 25.87 30.44 29.85 32.39 24.01 25.27 32.32 27.62 36.27 32.79
C-CoTTA+CUI+CPAda 40.88 36.82 45.82 26.97 39.45 28.78 25.70 29.32 28.11 31.75 23.38 24.33 30.98 26.48 34.09 31.52
RMT+CUI 45.50 39.20 39.46 32.36 35.90 31.55 28.68 30.03 29.85 31.69 27.08 29.31 29.90 27.76 29.62 32.53
RMT+CUI+CPAda 44.50 37.62 38.46 31.36 34.22 30.55 27.68 29.03 28.85 30.69 26.08 28.31 28.90 26.76 28.62 31.43

0.2

Tent+CUI 44.50 41.26 52.54 36.88 53.27 45.81 47.81 58.73 62.80 72.26 70.90 78.75 88.28 87.92 91.94 62.24
Tent+CUI+CPAda 41.67 38.02 47.12 32.96 46.79 38.56 35.83 44.49 43.02 49.98 45.64 52.60 57.89 57.63 66.22 46.56
CoTTA+CUI 43.33 40.80 50.66 30.42 44.27 32.18 30.24 34.13 33.51 40.21 27.16 34.19 37.49 30.24 37.37 36.41
CoTTA+CUI+CPAda 38.27 35.65 43.76 27.36 38.85 28.97 26.76 30.85 29.29 35.59 24.26 29.99 33.04 26.95 32.87 32.16
SATA+CUI 40.41 38.11 49.26 27.74 42.02 29.85 26.93 31.03 30.95 32.82 24.06 25.98 34.88 28.93 38.97 33.46
SATA+CUI+CPAda 39.18 36.72 46.47 27.77 40.69 29.62 26.62 30.28 29.84 31.86 23.43 25.12 33.94 28.15 36.22 32.39
RDumb+CUI 41.10 37.80 46.91 33.01 47.25 38.93 35.49 43.98 43.14 48.97 43.63 50.34 58.21 54.98 65.19 45.93
RDumb+CUI+CPAda 41.08 37.68 46.84 32.57 45.97 37.43 34.75 41.12 40.70 44.61 38.34 42.47 48.56 45.75 55.68 42.23
C-CoTTA+CUI 42.45 38.61 48.49 27.38 41.00 29.90 25.87 30.44 29.85 32.39 24.01 25.27 32.32 27.62 36.27 32.79
C-CoTTA+CUI+CPAda 40.63 36.70 45.69 26.87 39.29 28.71 25.43 29.21 28.36 31.60 23.35 24.29 30.99 26.51 33.98 31.44
RMT+CUI 45.50 39.20 39.46 32.36 35.90 31.55 28.68 30.03 29.85 31.69 27.08 29.31 29.90 27.76 29.62 32.53
RMT+CUI+CPAda 44.32 37.69 38.42 31.45 33.92 30.55 27.18 28.73 28.85 30.59 26.08 27.94 28.90 26.66 28.54 31.32

0.1

Tent+CUI 44.50 41.26 52.54 36.88 53.27 45.81 47.81 58.73 62.80 72.26 70.90 78.75 88.28 87.92 91.94 62.24
Tent+CUI+CPAda 41.83 37.97 49.00 32.81 46.95 37.99 34.86 43.77 42.96 48.87 42.95 50.56 57.79 54.98 65.89 45.95
CoTTA+CUI 43.33 40.80 50.66 30.42 44.27 32.18 30.24 34.13 33.51 40.21 27.16 34.19 37.49 30.24 37.37 36.41
CoTTA+CUI+CPAda 38.02 35.52 43.75 27.41 39.11 29.01 26.99 31.17 29.41 35.95 24.46 30.39 33.48 26.89 33.10 32.31
SATA+CUI 40.41 38.11 49.26 27.74 42.02 29.85 26.93 31.03 30.95 32.82 24.06 25.98 34.88 28.93 38.97 33.46
SATA+CUI+CPAda 39.28 36.75 46.56 27.80 40.89 29.33 26.74 30.32 29.82 32.00 23.31 25.42 34.10 28.05 36.48 32.46
RDumb+CUI 41.10 37.80 46.91 33.01 47.25 38.93 35.49 43.98 43.14 48.97 43.63 50.34 58.21 54.98 65.19 45.93
RDumb+CUI+CPAda 41.08 37.68 46.84 32.59 45.97 37.46 34.87 41.12 40.70 44.54 38.34 42.47 48.76 45.75 55.68 42.26
C-CoTTA+CUI 42.45 38.61 48.49 27.38 40.92 29.9 25.87 30.44 29.85 32.39 24.01 25.27 32.32 27.62 36.27 32.79
C-CoTTA+CUI+CPAda 40.69 36.71 45.74 26.78 39.40 28.68 25.43 29.36 28.45 31.74 23.20 24.20 31.07 26.61 34.03 31.47
RMT+CUI 45.50 39.20 39.46 32.36 35.90 31.55 28.68 30.03 29.85 31.69 27.08 29.31 29.90 27.76 29.62 32.53
RMT+CUI+CPAda 44.52 37.74 38.42 31.45 33.92 30.55 27.18 28.83 28.85 30.59 26.68 27.94 28.90 27.66 28.54 31.45
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Tent+CUI 37.28 35.64 41.98 37.94 50.88 46.59 47.10 57.33 62.42 70.92 71.04 82.14 88.85 90.69 93.08 60.93
Tent+CUI+CPAda 36.46 33.23 36.35 28.99 40.32 33.06 31.65 38.68 42.22 54.16 59.02 71.09 77.79 78.55 86.42 49.87
CoTTA+CUI 38.22 35.52 43.96 27.49 39.39 29.38 27.03 31.27 29.63 36.34 24.49 30.74 33.66 27.10 33.16 32.50
CoTTA+CUI+CPAda 37.13 33.30 42.23 26.12 37.48 27.48 26.03 30.17 27.32 35.43 23.63 28.24 31.72 26.32 31.41 30.93
SATA+CUI 35.56 32.74 36.09 26.24 35.77 28.11 25.38 29.43 29.39 32.97 23.66 26.51 31.20 27.05 33.93 30.30
SATA+CUI+CPAda 34.42 31.45 34.54 24.72 34.39 27.06 24.45 28.53 28.49 31.50 22.74 25.36 30.87 26.60 32.04 29.14
RDumb+CUI 41.10 37.80 46.91 33.01 47.25 38.93 35.49 43.98 43.14 48.97 42.72 48.11 56.71 50.98 61.44 45.10
RDumb+CUI+CPAda 40.64 38.68 47.84 32.59 46.97 38.46 35.87 42.12 41.70 45.54 39.34 43.47 52.76 47.75 57.68 43.42
C-CoTTA+CUI 37.19 33.85 35.08 27.79 33.70 28.57 26.07 28.56 28.32 30.60 24.96 26.70 27.74 26.11 33.37 29.90
C-CoTTA+CUI+CPAda 36.93 33.55 34.60 27.28 33.08 27.75 25.91 28.28 27.89 30.31 24.65 26.46 27.75 25.43 29.79 29.31
RMT+CUI 37.26 33.72 35.68 26.42 32.62 26.97 25.25 27.62 27.58 29.78 24.67 26.31 27.13 25.84 28.25 29.00
RMT+CUI+CPAda 36.15 33.36 35.33 24.62 32.23 25.64 24.09 27.29 26.99 30.03 23.58 25.48 26.87 25.33 28.32 28.35

0.2

Tent+CUI 37.28 35.64 41.98 37.94 50.88 46.59 47.10 57.33 62.42 70.92 71.04 82.14 88.85 90.69 93.08 60.93
Tent+CUI+CPAda 36.29 33.31 36.78 29.40 41.08 36.26 36.88 47.81 55.30 65.52 63.31 70.36 78.05 78.56 84.61 52.90
CoTTA+CUI 38.22 35.52 43.96 27.49 39.39 29.38 27.03 31.27 29.63 36.34 24.49 30.74 33.66 27.10 33.16 32.50
CoTTA+CUI+CPAda 37.13 33.30 42.23 26.12 37.58 27.68 26.03 30.67 27.42 35.43 23.63 28.24 31.72 26.32 31.41 30.99
SATA+CUI 35.56 32.74 36.09 26.24 35.77 28.11 25.38 29.43 29.39 32.97 23.66 26.51 31.20 27.05 33.93 30.30
SATA+CUI+CPAda 34.72 31.75 33.54 26.13 33.39 26.96 24.35 28.40 27.69 31.90 22.54 24.36 29.87 25.60 33.04 28.94
RDumb+CUI 41.10 37.80 46.91 33.01 47.25 38.93 35.49 43.98 43.14 48.97 42.72 48.11 56.71 50.98 61.44 45.10
RDumb+CUI+CPAda 40.64 38.68 47.84 32.59 46.97 38.46 35.87 42.12 41.70 45.54 39.34 43.47 52.76 47.75 57.68 43.22
C-CoTTA+CUI 37.19 33.85 35.08 27.79 33.70 28.57 26.07 28.56 28.32 30.60 24.96 26.70 27.74 26.11 33.37 29.90
C-CoTTA+CUI+CPAda 36.78 33.37 34.49 27.32 33.07 27.69 25.65 28.34 28.03 30.27 24.79 26.45 27.57 25.54 29.82 29.28
RMT+CUI 37.26 33.72 35.68 26.42 32.62 26.97 25.25 27.62 27.58 29.78 24.67 26.31 27.13 25.84 28.25 29.00
RMT+CUI+CPAda 36.61 33.96 34.90 25.67 31.96 26.19 24.70 26.99 26.65 29.40 23.89 25.69 26.04 24.80 27.52 28.33

0.1

Tent+CUI 37.28 35.64 41.98 37.94 50.88 46.59 47.10 57.33 62.42 70.92 71.04 82.14 88.85 90.69 93.08 60.93
Tent+CUI+CPAda 35.99 33.14 36.51 29.50 41.38 36.66 37.82 48.35 54.45 63.08 60.07 65.86 73.89 74.71 81.95 51.56
CoTTA+CUI 38.22 35.52 43.96 27.49 39.39 29.38 27.03 31.27 29.63 36.34 24.49 30.74 33.57 27.06 33.42 32.50
CoTTA+CUI+CPAda 38.43 34.80 42.59 26.62 37.58 27.98 26.63 30.87 27.82 35.73 23.93 29.54 32.72 26.72 31.91 31.59
SATA+CUI 35.56 32.74 36.09 26.24 35.77 28.11 25.38 29.43 29.39 32.97 23.66 26.51 31.12 27.65 33.93 30.30
SATA+CUI+CPAda 34.02 31.15 33.54 25.30 33.39 26.96 23.95 28.43 27.69 31.90 22.54 24.36 29.87 25.60 33.04 28.78
RDumb+CUI 41.10 37.80 46.91 33.01 47.25 38.93 35.49 43.98 43.14 48.97 42.72 48.11 56.71 50.98 61.44 45.10
RDumb+CUI+CPAda 42.19 38.79 47.95 33.70 47.08 38.57 35.98 42.23 41.81 45.65 39.45 43.58 49.87 46.86 56.72 43.36
C-CoTTA+CUI 37.19 33.85 35.08 27.79 33.70 28.57 26.07 28.56 28.32 30.60 24.96 26.70 27.74 26.11 33.37 29.90
C-CoTTA+CUI+CPAda 36.63 33.33 34.26 27.25 32.98 27.48 25.64 27.89 27.89 30.27 24.55 26.51 27.66 25.57 29.65 29.17
RMT+CUI 37.26 33.72 35.68 26.42 32.62 26.97 25.25 27.62 27.58 29.78 24.67 26.31 27.13 25.84 28.25 29.00
RMT+CUI+CPAda 37.25 33.76 34.97 25.47 31.71 26.41 24.43 26.75 27.10 29.44 23.17 25.17 26.33 24.39 27.87 28.28
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Table 9: Classification error rate (%) for the standard ImageNet-to-ImageNetC CTTA task. All
results are evaluated with the largest corruption severity level 5 in an online fashion.

Strategy α Method Gau. Sho. Imp. Def. Gla. Mot. Zoo. Sno. Fro. Fog Bri. Con. Ela. Pix. Jpe. Avg.
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0.3

Tent+CUI 81.58 75.88 72.94 77.50 77.50 65.56 55.58 61.88 64.48 55.50 38.30 73.04 54.00 47.82 53.86 63.69
Tent+CUI+CPAda 81.22 74.51 72.74 75.10 74.40 68.02 55.38 61.48 63.01 51.20 38.12 72.01 51.00 46.24 53.16 62.50
CoTTA+CUI 87.14 85.42 84.06 85.26 84.26 74.72 66.20 67.42 68.04 55.16 42.72 75.58 55.92 49.34 54.18 69.03
CoTTA+CUI+CPAda 86.42 84.24 83.21 83.39 82.11 73.58 64.20 66.27 67.43 53.13 41.52 73.14 53.97 47.74 53.08 67.56
SATA+CUI 78.00 76.44 75.60 77.86 78.02 65.88 55.76 57.02 63.08 45.62 34.84 72.58 50.90 44.74 50.88 61.81
SATA+CUI+CPAda 76.02 74.98 74.12 77.06 76.58 64.44 54.34 56.12 62.42 44.84 34.80 70.08 50.04 44.02 49.42 60.62
RDumb+CUI 81.10 71.88 70.46 77.34 73.52 69.04 62.26 65.50 66.22 57.58 44.78 68.62 56.64 48.26 53.72 64.46
RDumb+CUI+CPAda 78.66 70.84 68.94 76.72 72.28 65.98 59.72 63.02 63.82 53.56 40.04 66.72 54.30 46.96 52.24 62.25
C-CoTTA+CUI 76.84 74.02 71.80 76.20 74.22 66.34 57.00 56.16 61.28 49.22 40.34 65.32 49.68 43.80 44.12 60.42
C-CoTTA+CUI+CPAda 75.52 72.14 69.06 74.92 72.96 65.66 57.26 55.48 60.32 48.72 40.10 63.02 49.20 43.76 44.14 59.48
RMT+CUI 79.76 74.52 72.18 75.46 72.88 65.18 59.08 59.32 60.50 52.56 45.36 61.42 50.26 47.78 48.38 61.64
RMT+CUI+CPAda 77.18 72.04 70.04 72.58 70.60 61.92 56.38 58.22 58.86 51.06 43.90 58.56 49.14 46.34 47.48 59.62

0.2

Tent+CUI 81.58 75.88 72.94 77.50 77.50 65.56 55.58 61.88 64.48 55.50 38.30 73.04 54.00 47.82 53.86 63.69
Tent+CUI+CPAda 81.22 74.51 72.74 75.10 74.39 68.22 55.38 61.48 63.01 51.16 38.12 72.11 51.17 46.21 53.17 62.53
CoTTA+CUI 87.14 85.42 84.06 85.26 84.26 74.72 66.20 67.42 68.04 55.16 42.72 75.58 55.92 49.34 54.18 69.03
CoTTA+CUI+CPAda 86.32 84.14 82.81 83.26 82.06 73.42 64.20 66.15 67.32 53.01 41.32 73.04 53.63 47.53 53.03 67.42
SATA+CUI 78.00 76.44 75.60 77.86 78.02 65.88 55.76 57.02 63.08 45.62 34.84 72.58 50.90 44.74 50.88 61.81
SATA+CUI+CPAda 76.50 76.26 74.64 77.74 76.26 65.42 54.34 56.34 62.62 44.94 34.58 70.44 50.96 43.24 49.52 60.92
RDumb+CUI 81.10 71.88 70.46 77.34 73.52 69.04 62.26 65.50 66.22 57.58 44.78 68.62 56.64 48.26 53.72 64.46
RDumb+CUI+CPAda 78.68 70.14 69.36 76.94 71.97 66.62 60.17 63.16 63.46 53.04 40.24 67.70 54.70 46.28 51.84 62.29
C-CoTTA+CUI 76.84 74.02 71.80 76.20 74.22 66.34 57.00 56.16 61.28 49.22 40.34 65.32 49.68 43.80 44.12 60.42
C-CoTTA+CUI+CPAda 75.52 72.24 69.06 74.92 72.96 65.76 57.26 55.58 60.32 48.82 40.10 63.10 49.20 43.76 44.14 59.52
RMT+CUI 79.76 74.52 72.18 75.46 72.88 65.18 59.08 59.32 60.50 52.56 45.36 61.42 50.26 47.78 48.38 61.64
RMT+CUI+CPAda 77.19 71.89 69.69 72.71 70.69 62.97 57.25 56.83 58.75 51.33 43.75 58.99 49.09 46.21 47.37 59.65

0.1

Tent+CUI 81.58 75.88 72.94 77.50 77.50 65.56 55.58 61.88 64.48 55.50 38.30 73.04 54.00 47.82 53.86 64.69
Tent+CUI+CPAda 81.38 74.74 72.92 77.14 74.02 65.06 55.80 61.90 62.88 51.48 38.02 71.96 51.04 47.50 53.22 62.60
CoTTA+CUI 87.14 85.42 84.06 85.26 84.26 74.72 66.20 67.42 68.04 55.16 42.72 75.58 55.92 49.34 54.18 69.03
CoTTA+CUI+CPAda 86.16 84.14 82.76 83.16 81.98 73.30 64.17 66.13 67.26 52.82 41.13 73.04 53.18 47.53 53.03 67.32
SATA+CUI 78.00 76.44 75.60 77.86 78.02 65.88 55.76 57.02 63.08 45.62 34.84 72.58 50.90 44.74 50.88 61.81
SATA+CUI+CPAda 76.16 75.34 74.32 77.32 76.06 65.24 54.34 56.50 63.36 45.00 34.96 70.48 50.22 43.96 49.82 60.87
RDumb+CUI 81.10 71.88 70.46 77.34 73.52 69.04 62.26 65.50 66.22 57.58 44.78 68.62 56.64 48.26 53.72 64.46
RDumb+CUI+CPAda 78.66 70.84 68.94 76.72 72.28 65.98 59.72 63.02 63.82 53.56 40.04 66.72 53.3 46.96 52.14 62.18
C-CoTTA+CUI 76.84 74.02 71.80 76.20 74.22 66.34 57.00 56.16 61.28 49.22 40.34 65.32 49.68 43.80 44.12 60.42
C-CoTTA+CUI+CPAda 75.52 72.38 69.58 75.76 73.16 65.28 56.52 55.26 60.96 49.36 39.68 64.04 48.86 42.68 43.90 59.53
RMT+CUI 79.76 74.52 72.18 75.46 72.88 65.18 59.08 59.32 60.50 52.56 45.36 61.42 50.26 47.78 48.38 61.64
RMT+CUI+CPAda 77.26 72.54 70.28 72.88 70.04 62.44 56.68 57.58 59.08 51.28 43.02 58.68 48.88 46.50 47.76 59.66
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Tent+CUI 81.18 74.73 72.48 77.16 74.00 66.30 55.36 61.44 63.04 51.32 38.03 72.02 51.08 47.60 53.28 62.60
Tent+CUI+CPAda 81.04 73.22 72.42 76.97 65.32 65.79 54.33 61.31 62.01 50.28 37.02 71.04 50.58 46.90 54.28 61.50
CoTTA+CUI 81.38 74.78 73.00 77.24 74.10 66.20 55.68 61.72 63.20 51.30 38.08 71.90 50.94 47.62 53.36 62.70
CoTTA+CUI+CPAda 79.90 73.30 71.52 75.76 72.62 64.72 54.20 60.24 61.72 49.82 36.60 70.42 49.46 46.14 51.88 61.22
SATA+CUI 76.52 73.28 71.62 75.06 73.58 63.44 53.34 58.64 61.42 47.32 34.65 69.08 49.04 44.79 49.82 60.10
SATA+CUI+CPAda 74.93 71.69 70.03 73.47 71.99 61.85 51.75 57.05 59.83 45.73 33.06 67.49 47.45 43.20 48.23 58.52
RDumb+CUI 79.28 70.44 68.02 75.54 71.24 66.58 60.46 64.42 64.40 55.76 42.68 65.64 54.46 46.00 51.86 62.45
RDumb+CUI+CPAda 81.22 72.56 70.18 77.88 73.52 68.36 61.74 67.14 66.90 57.40 44.68 68.54 56.14 47.96 53.94 60.26
C-CoTTA+CUI 75.18 71.70 69.52 75.70 72.64 65.46 56.64 55.62 60.08 49.54 40.36 63.34 48.48 43.12 44.26 59.40
C-CoTTA+CUI+CPAda 74.09 70.56 68.41 74.59 71.53 64.35 55.53 54.51 58.97 48.23 39.15 62.24 47.37 42.21 43.65 58.36
RMT+CUI 77.84 72.06 69.98 73.04 71.28 64.52 56.94 57.16 59.54 51.18 43.22 59.16 48.46 45.70 46.54 59.80
RMT+CUI+CPAda 76.72 71.92 69.26 72.68 69.76 62.20 56.40 56.94 58.22 51.04 43.42 58.14 49.02 46.36 47.16 59.28

0.2

Tent+CUI 81.18 74.73 72.48 77.16 74.00 66.30 55.36 61.44 63.04 51.32 38.03 72.02 51.08 47.60 53.28 62.60
Tent+CUI+CPAda 81.07 73.12 72.53 76.97 65.62 65.79 54.63 61.31 61.01 49.11 37.42 71.74 50.48 47.90 54.28 61.53
CoTTA+CUI 81.38 74.78 73.00 77.24 74.10 66.20 55.68 61.72 63.20 51.30 38.08 71.90 50.94 47.62 53.36 62.70
CoTTA+CUI+CPAda 79.98 73.38 71.60 75.84 72.70 64.80 54.28 60.32 61.80 49.90 36.68 70.50 49.54 46.22 51.96 61.30
SATA+CUI 76.52 73.28 71.62 75.06 73.58 63.44 53.34 58.64 61.42 47.32 34.65 69.08 49.04 44.79 49.82 60.10
SATA+CUI+CPAda 74.92 71.64 70.06 73.44 71.98 61.82 51.32 57.75 59.79 45.76 33.07 67.48 47.62 43.33 48.13 58.54
RDumb+CUI 79.28 70.44 68.02 75.54 71.24 66.58 60.46 64.42 64.40 55.76 42.68 65.64 54.46 46.00 51.86 62.45
RDumb+CUI+CPAda 76.64 67.88 66.06 73.14 69.18 64.14 58.36 62.18 62.56 53.62 40.90 64.56 52.20 43.90 49.62 60.32
C-CoTTA+CUI 75.18 71.70 69.52 75.70 72.64 65.46 56.64 55.62 60.08 49.54 40.36 63.34 48.48 43.12 44.26 59.40
C-CoTTA+CUI+CPAda 74.07 70.59 68.41 74.59 71.53 64.35 55.53 54.51 58.97 48.43 39.25 62.23 47.37 42.01 43.15 58.33
RMT+CUI 77.84 72.06 69.98 73.04 71.28 64.52 56.94 57.16 59.54 51.18 43.22 59.16 48.46 45.70 46.54 59.80
RMT+CUI+CPAda 76.68 72.54 70.06 72.36 70.56 62.40 55.92 57.18 59.16 51.50 43.26 58.70 48.86 46.08 47.18 59.25

0.1

Tent+CUI 81.18 74.73 72.48 77.16 74.00 66.30 55.36 61.44 63.04 51.32 38.03 72.02 51.08 47.60 53.28 62.60
Tent+CUI+CPAda 81.07 73.12 72.53 76.97 65.62 65.79 54.63 61.31 61.01 49.11 37.42 71.74 50.48 48.90 54.48 61.60
CoTTA+CUI 81.38 74.78 73.00 77.24 74.10 66.20 55.68 61.72 63.20 51.30 38.08 71.90 50.94 47.62 53.36 62.70
CoTTA+CUI+CPAda 79.92 73.32 71.54 75.78 72.64 64.74 54.22 60.26 61.74 49.84 36.62 70.44 49.48 46.16 51.90 61.24
SATA+CUI 76.52 73.28 71.62 75.06 73.58 63.44 53.34 58.64 61.42 47.32 34.65 69.08 49.04 44.79 49.82 60.10
SATA+CUI+CPAda 74.94 71.61 70.02 73.46 72.07 61.93 51.31 57.86 59.80 45.72 33.62 67.43 47.62 43.81 48.58 58.65
RDumb+CUI 79.28 70.44 68.02 75.54 71.24 66.58 60.46 64.42 64.40 55.76 42.68 65.64 54.46 46.00 51.86 62.45
RDumb+CUI+CPAda 76.80 68.50 66.30 73.84 68.90 65.00 58.38 62.46 62.34 53.78 41.10 64.12 52.56 44.18 49.94 60.54
C-CoTTA+CUI 75.18 71.70 69.52 75.70 72.64 65.46 56.64 55.62 60.08 49.54 40.36 63.34 48.48 43.12 44.26 59.40
C-CoTTA+CUI+CPAda 74.09 70.76 68.41 74.59 71.53 64.35 55.53 54.44 58.94 48.23 39.14 62.23 47.37 42.63 43.65 58.39
RMT+CUI 77.84 72.06 69.98 73.04 71.28 64.52 56.94 57.16 59.54 51.18 43.22 59.16 48.46 45.70 46.54 59.80
RMT+CUI+CPAda 76.84 71.98 69.56 72.64 70.24 62.88 55.90 56.86 59.32 51.00 42.76 58.32 48.70 45.72 46.72 59.30
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D LLM USAGE DISCLOSURE

We used LLMs solely to correct grammatical errors in the writing. The model was not involved in
research design, data analysis, or result generation.
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