

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SIGNAL COLLAPSE IN ONE-SHOT PRUNING: WHEN SPARSE MODELS FAIL TO DISTINGUISH NEURAL REP- RESENTATIONS

006
007 **Anonymous authors**
008 Paper under double-blind review

010 011 ABSTRACT

013 The size of modern neural networks has made inference increasingly resource-
014 intensive. Network pruning reduces model size by sparsifying parameters. One-
015 shot pruning, which selects parameters via impact-based importance scores and
016 applies second-order parameter updates, often incurs severe accuracy loss. We
017 identify for the first time that this degradation occurs due to a phenomenon we
018 refer to as *signal collapse*, which is a significant reduction in activation variance
019 across layers, rather than the removal of ‘important’ parameters. To address this,
020 we introduce **REFLOW**, which restores layer-wise activation variance without
021 modifying any parameters. REFLOW uncovers high-quality sparse subnetworks
022 within the original parameter space, enabling vanilla magnitude pruning to match or
023 exceed complex baselines with minimal computational overhead. On ImageNet at
024 80% unstructured sparsity, REFLOW recovers ResNeXt-101 top-1 accuracy from
025 below 0.41% to 78.9%, and at structured 2:4 N:M sparsity, it recovers ResNeXt-
026 101 from 10.75% to 79.07%. By shifting the focus of the pruning paradigm from
027 parameter selection to signal preservation, REFLOW delivers sparse models with
028 state-of-the-art performance with minimal computational overhead.

029 1 INTRODUCTION

031 Modern neural networks comprise hundreds of millions to billions of parameters Young et al. (2017);
032 Sung et al. (2024), making inference costly and often prohibitive in hardware-limited environments Rajbhandari et al. (2020). Pruning offers an efficient path by removing parameters while
033 preserving accuracy Wang (2021); Jiang et al. (2022); Lee et al. (2019); Wang et al. (2020); Tanaka
034 et al. (2020). In practice, many systems rely on *iterative pruning* by: (i) estimating *which weights to*
035 *prune* at the current sparsity, (ii) removing them, (iii) fine-tuning the remaining weights to recover
036 performance, and (iv) repeating until the target sparsity is reached. Each round requires retraining
037 over large datasets; as sparsity grows, more rounds with careful pruning and learning rate schedules
038 are needed. These prune–fine-tune–evaluate cycles scale poorly—for contemporary model sizes they
039 often require days to weeks of compute Benbaki et al. (2023).

040 This motivates *one-shot* pruning: compress once, without retraining. One-shot methods fall into two
041 categories: **magnitude pruning (MP)**, which removes small-magnitude weights Hanson & Pratt
042 (1988); Mozer & Smolensky (1989); Han et al. (2015); Gordon et al. (2020), and **impact-based**
043 **pruning (IP)**, which is loss-aware—estimating *weight importance* with *second-order (Hessian)*
044 *information* to decide which parameters to prune, then applying a *single Hessian-based update*
045 *on the surviving weights* to offset pruning-induced loss LeCun et al. (1989); Hassibi et al. (1993);
046 Singh & Alistarh (2020); Benbaki et al. (2023). This one-shot Hessian-based update is *distinct from retraining*: there are no fine-tuning epochs; a single (approximate) second-order step adjusts
047 the remaining parameters. While outperforming magnitude pruning, second-order information is
048 costly because backward passes retain per-layer activations and intermediate tensors. Memory is
049 dominated by activations (often exceeding the model weights) and well above that required by
050 inference. Hessian-based estimates add further compute and memory overhead Singh & Alistarh
051 (2020); Benbaki et al. (2023). In practice, for example, *Combinatorial Brain Surgeon, a one shot*
052 *pruning method, takes hours to one-shot prune MobileNet* ($\approx 4.2M$ parameters) and does not scale
053 well to larger architectures Yu et al. (2022).

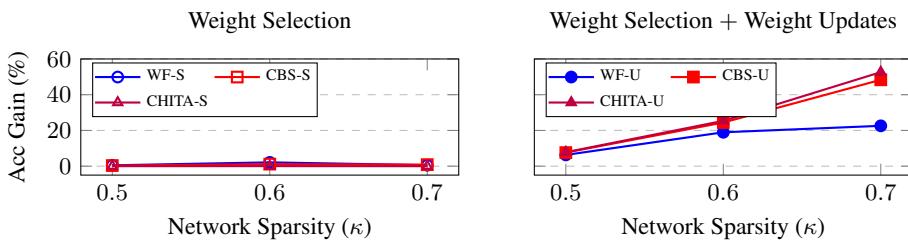


Figure 1: Comparison of test accuracy gain of impact-based pruning methods over magnitude pruning for a pre-trained MobileNet on ImageNet at different sparsity levels. **Left:** Selection-only pruning methods. **Right:** Pruning methods with weight updates achieve significant accuracy gains.

Empirically, IP often outperforms MP in one shot LeCun et al. (1989); Hassibi et al. (1993); Singh & Alistarh (2020); Benbaki et al. (2023). A straightforward hypothesis is that IP wins because it decides *which weights to prune* using loss-aware heuristic (gradients and Hessian information), whereas MP relies only on magnitude. We test this directly by decoupling IP into (i) *weight selection* and (ii) the *Hessian-based weight update*. When we keep only the selection step—WoodFisher-S, CBS-S, CHITA-S—performance matches MP (Figure 1, left), while the gains appear almost entirely *after* the Hessian-based update (Figure 1, right). Thus, differences in *which weights are pruned* are not the principal cause of the MP–IP performance gap.

What, then, fails after pruning? We identify a *new point of failure in one-shot pruning: signal collapse*. One-shot pruning *reduces activation variance at each layer*. This reduction activation variance cumulates across layers, resulting in nearly constant activations in the later layers (variance $\rightarrow 0$), so distinct inputs map to nearly identical representations, $f(\theta, x_1) \approx f(\theta, x_2)$ for $x_1 \neq x_2$. Crucially, IP’s *single-shot Hessian-based weight update* partially mitigates this collapse by restoring activation variance—especially in early/mid layers—which explains much of IP’s accuracy gain over MP despite similar weight selection.

Building on this observation, we introduce REFLOW, which *directly mitigates signal collapse by restoring activation variance*, enabling MP to outperform IP at high sparsity—*without* gradient/Hessian computations or weight updates. REFLOW runs end-to-end in a few tens of seconds, in sharp contrast to *hours* for second-order IP pipelines, and turns simple MP into a scalable baseline. On ImageNet at 80% sparsity, ResNet-152 recovers from under 1% to **68.2%**, and ResNeXt-101 from under 0.41% to **78.9%**, indicating that high-quality sparse models emerge by *restoring activation flow* rather than optimizing weight-selection heuristics, and that high-performing sparse sub-networks already exist *within* the original pre-trained weights.

Contributions. This work makes the following key observations and contributions:

1. For the first time in the context of pruning, we identify **signal collapse as the leading cause of accuracy loss in addition to the removal of critical weights**.
2. **Signal collapse can be mitigated without updating any trainable weights.** Our work REFLOW restores activation flow, enabling networks pruned by MP to outperform IP methods *without requiring gradient or Hessian computations*.
3. We demonstrate that **high-performing sparse sub-networks inherently exist in the original parameter space**. Unlike IP methods, which rely on updating unpruned weights to find a solution outside the original parameter space, our approach addresses signal collapse to uncover these sub-networks directly within the original weights.

2 BACKGROUND & RELATED WORK

This section provides the mathematical formulation of pruning and reviews existing work on pruning methods.

108 2.1 PROBLEM SETUP
109

110 Consider a pre-trained deep neural network (DNN) $f(\theta; x)$ parameterized by $\theta \in \mathbb{R}^d$ and input x .
 111 Pruning produces a sparse sub-network $f(\theta \odot m; x)$, where $m \in \{0, 1\}^d$ is a binary mask, and \odot
 112 denotes element-wise multiplication. Sparsity $\kappa \in [0, 1]$ is the proportion of parameters set to zero.
 113 Pruning assigns scores $z \in \mathbb{R}^d$ to parameters importance, using methods ranging from simple weight
 114 magnitude to loss-aware based pruning scores.

115 2.2 RELATED WORK
116

117 **Magnitude-Based Pruning (MP)** is a simple and widely used pruning method Han et al. (2015);
 118 Frankle & Carbin (2019); Mozer & Smolensky (1989); Li et al. (2017); Tanaka et al. (2020); Renda
 119 et al. (2020); Gordon et al. (2020); Hanson & Pratt (1988); Liu et al. (2021); Eccles et al. (2024). MP
 120 ranks weights based on their absolute values:
 121

$$z_i = |\bar{\theta}_i|. \quad (1)$$

122 It prunes parameters with the smallest magnitudes, which is computationally efficient. However,
 123 MP does not account for the impact of pruning on the loss function, which can result in suboptimal
 124 pruning decisions.
 125

126 **Impact-Based Pruning (IP)** explicitly considers the loss function to guide pruning decisions LeCun
 127 et al. (1989); Hassibi & Stork (1992); Singh & Alistarh (2020). The impact of pruning is quantified
 128 as a second-order Taylor expansion of the loss function \mathcal{L} centered at the pre-trained weights $\bar{\theta}$:
 129

$$\mathcal{L}(\bar{\theta} + \delta\theta) - \mathcal{L}(\bar{\theta}) = \delta\theta^\top \nabla \mathcal{L}(\bar{\theta}) + \frac{1}{2} \delta\theta^\top H \delta\theta + O(\|\delta\theta\|^3), \quad (2)$$

130 where $H = \nabla^2 \mathcal{L}(\bar{\theta})$ is the Hessian.
 131

132 Assuming $\bar{\theta}$ represents a local minimum of the loss (as is often the case for pre-trained networks),
 133 the gradient term $\nabla \mathcal{L}(\bar{\theta}) = 0$. For small perturbations $\delta\theta$, the higher-order terms become negligible,
 134 leading to the local quadratic approximation:
 135

$$\mathcal{L}(\bar{\theta} + \delta\theta) - \mathcal{L}(\bar{\theta}) \approx \frac{1}{2} \delta\theta^\top H \delta\theta. \quad (3)$$

136 Below we review key IP methods that build on this quadratic approximation.
 137

138 *Optimal Brain Damage (OBD)* improves on MP by estimating the increase in loss due to pruning
 139 LeCun et al. (1989). Assuming the Hessian H is diagonal, the pruning score for a weight $\bar{\theta}_i$
 140 is:
 141

$$z_i = \frac{\bar{\theta}_i^2}{2H_{ii}}. \quad (4)$$

142 While OBD ranks weights based on their impact on loss using a diagonal Hessian approximation, it
 143 ignores parameter interactions.
 144

145 *Optimal Brain Surgeon (OBS)* generalizes OBD by considering the full Hessian to capture cross-
 146 parameter interactions Hassibi et al. (1993):
 147

$$z_i = \frac{\bar{\theta}_i^2}{2[H^{-1}]_{ii}}, \quad \delta\theta^* = \frac{-\bar{\theta}_i[H^{-1}]e_i}{[H^{-1}]_{ii}}. \quad (5)$$

148 Here, z_i represents the pruning score, and $\delta\theta^*$ defines the Hessian-based weight updates applied to
 149 the unpruned weights. OBS is computationally expensive for modern networks due to the cost of
 150 inverting the Hessian H ; nonetheless, it outperforms MP and OBD.
 151

152 *Modern Hessian-Based Methods*: To reduce the computational cost of OBS, WoodFisher Singh &
 153 Alistarh (2020) introduces block-diagonal approximations of the Hessian via the empirical Fisher
 154 information matrix derived from a subset of training data:
 155

$$H \approx \frac{1}{n} \sum_{i=1}^n \nabla \ell_i(\bar{\theta}) \nabla \ell_i(\bar{\theta})^\top, \quad (6)$$

162 where $\ell_i(\bar{\theta})$ is the loss for a single data point. This approximation reduces computational overhead
 163 but still focuses on pruning individual weights, without explicitly accounting for interactions between
 164 multiple weights.

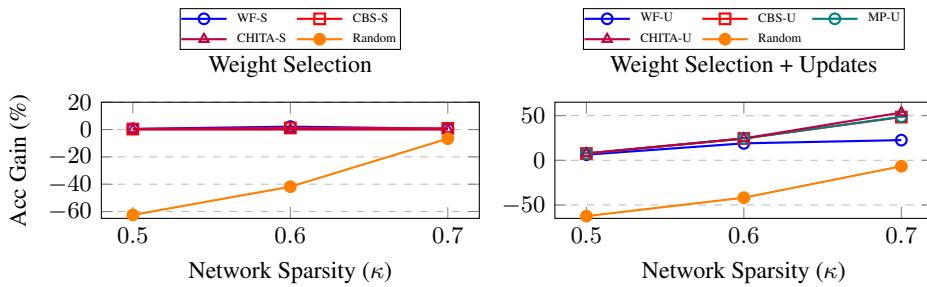
165 *Pruning Multiple Weights:* Combinatorial Brain Surgeon (CBS) Yu et al. (2022) considers the joint
 166 effect of pruning multiple weights simultaneously, outperforming WoodFisher. However, its reliance
 167 on a dense Hessian $H \in \mathbb{R}^{p \times p}$ makes it computationally intensive, taking hours to prune MobileNet
 168 and is not scalable for large networks, such as ResNet-50. CHITA Benbaki et al. (2023) uses memory-
 169 efficient quadratic approximations for faster pruning than CBS but still relies on Hessian-based
 170 updates, modifying unpruned weights rather than identifying existing sparse sub-networks in the
 171 original parameter space.

3 REASSESSING IMPACT-BASED PRUNING

3.1 REVISITING WEIGHT SELECTION

178 As discussed above, MP selects weights based on their absolute magnitudes, while IP’s weight
 179 selection leverages second-order approximations of the loss (see Equation 5), followed by Hessian-
 180 based weight updates. To isolate the effect of selection, we compare MP with ‘selection-only’ variants
 181 of IP (WF-S, CBS-S, CHITA-S), denoted as *IP-selection*, which prune without weight updates. We
 182 also include random pruning and vanilla MP as baselines.

183 Figure 2 (Left) shows that IP-selection (WF-S, CBS-S, CHITA-S) offers only marginal improvements
 184 (up to 2%) over MP, while random pruning severely reduces accuracy. This indicates that both MP
 185 and IP-selection identify meaningful parameters, unlike random pruning. However, the negligible
 186 difference between MP and IP-selection underscores the limited role of weight selection in pruning
 187 performance.



198 Figure 2: Comparison of test accuracy gain over magnitude pruning for a pre-trained MobileNet
 199 (trained on ImageNet) at different sparsity levels. **Left:** Selection-only pruning methods (IP-selection).
 200 **Right:** Methods with Hessian-based weight updates.

202 Further analysis of the similarity between pruning decisions made by MP and CHITA is provided in
 203 the Appendix E to demonstrate that both methods produce nearly identical masks, underscoring the
 204 limited role of weight selection.

3.2 ROLE OF HESSIAN-BASED WEIGHT UPDATES

209 While selection-only pruning methods have a limited impact on pruning performance, Hessian-based
 210 updates are critical for recovering accuracy after pruning. We therefore apply the same update step to
 211 MP (denoted MP-U), and compare it alongside the full IP methods with updates (WF-U, CBS-U,
 212 CHITA-U).

213 Figure 2 (Right) shows that MP-U achieves gains on par with WF-U, CBS-U, and CHITA-U—far
 214 outperforming selection-only and naive MP. This demonstrates that it is the Hessian-based update,
 215 not the choice of the pruning mask, that drives accuracy recovery. Combining MP’s simple selection
 with Hessian updates matches the state of the art, making expensive IP-selection unnecessary.

216 **Insights:** Impact-based selection-only pruning offers limited gains over magnitude pruning, con-
 217 firming the limited role of weight selection. In contrast, adding Hessian-based updates results in
 218 substantial accuracy recovery. These findings *shift the focus from weight selection to exploring other*
 219 *reasons*, beyond the pruning mask, that affect final pruning performance.
 220

221 **4 UNDERSTANDING SIGNAL COLLAPSE AND RESTORING PERFORMANCE**
 222 **LOSS WITH REFLOW**
 223

225 We examine why one-shot pruning resulting in severe performance loss by introducing *signal collapse*
 226 - a phenomenon in which activation variance vanishes in deep layers, rendering the network unable
 227 to distinguish inputs. We then present **REFLOW**, which restores variance without updating any
 228 trainable weights.
 229

230 **Notation and Setup:** Consider a pretrained network $f(\theta)$ with parameters $\theta \in \mathbb{R}^d$. At layer ℓ , let
 231

$$232 \mathbf{X}_\ell = f(\mathbf{H}_{\ell-1}; \theta_\ell) \quad \text{and} \quad \mathbf{Z}_\ell(n) = \frac{\mathbf{X}_\ell(n) - \mu_\ell}{\sqrt{\text{Var}_\ell^{(\text{orig})}(\mathbf{X}_\ell) + \epsilon}} \gamma_\ell + \beta_\ell \quad (7)$$

234 denote the pre-BatchNorm activation and its BatchNorm output, respectively.
 235

236 **Defining Signal Collapse:** Let $\text{Var}_\ell^{(\text{pruned})}$ and $\text{Var}_\ell^{(\text{orig})}$ be the post-BN variances at layer ℓ in the
 237 pruned and original networks. We say that *signal collapse* can be observed in a network if
 238

$$239 \lim_{\ell \rightarrow L} \frac{\text{Var}_\ell^{(\text{pruned})}}{\text{Var}_\ell^{(\text{orig})}} \rightarrow 0, \quad (8)$$

241 where L is the total number of layers. When the variance ratio approaches zero in deeper layers, the
 242 activations become nearly constant, producing uniform outputs, and the network thus loses its ability
 243 to distinguish between different inputs.
 244

245 **4.1 WHY PRUNING CAUSES SIGNAL COLLAPSE**
 246

247 Signal collapse originates from two complementary effects. First, pruning zeros out most weights
 248 and reduces the variance of the pruned pre-BN activation:
 249

$$250 \text{Var}_\ell^{(\text{pruned})}(\mathbf{X}'_\ell) \ll \text{Var}_\ell^{(\text{orig})}(\mathbf{X}_\ell), \quad (9)$$

251 as shown in Appendix A.3.
 252

253 Second, normalization operation in BatchNorm still divides by the original running variance, so the
 254 post-BN variance further reduces due to over-normalization:
 255

$$256 \text{Var}_\ell^{(\text{pruned})}(\mathbf{Z}'_\ell) \ll \text{Var}_\ell^{(\text{orig})}(\mathbf{Z}_\ell). \quad (10)$$

257 See Appendix A.4 for further details.
 258

259 **4.2 CUMULATIVE REDUCTION IN ACTIVATION VARIANCE ACROSS LAYERS RESULTS IN**
 260 **SIGNAL COLLAPSE**
 261

262 We define the per-layer variance ratio as
 263

$$264 \eta_\ell = \frac{\text{Var}_\ell^{(\text{pruned})}(\mathbf{Z}'_\ell)}{\text{Var}_\ell^{(\text{orig})}(\mathbf{Z}_\ell)} < 1.$$

265 Since each layer's input equals the previous layer's output ($\mathbf{H}_{\ell+1} = \mathbf{Z}_\ell$):
 266

$$267 \text{Var}_L^{(\text{pruned})}(\mathbf{Z}'_L) = \left(\prod_{\ell=1}^L \eta_\ell \right) \text{Var}_L^{(\text{orig})}(\mathbf{Z}_L). \quad (11)$$

270 If $\eta_\ell \approx 0.9$ over $L = 25$ layers then
 271

$$272 \prod_{\ell=1}^{25} 0.9 = 0.9^{25} \approx 0.072. \quad (12)$$

273
 274

275 In the extreme, such that $\kappa \rightarrow 1$,
 276

$$277 \lim_{\kappa \rightarrow 1} \text{Var}_L^{(\text{pruned})}(\mathbf{Z}'_L) = \left(\prod_{\ell=1}^L \eta_\ell \right) \text{Var}_L^{(\text{orig})}(\mathbf{Z}_L) \rightarrow 0. \quad (13)$$

278
 279

280 **Insight:** Since $\text{Var}(\mathbf{Z}'_L) \rightarrow 0$, the layer- L outputs collapse to their mean,
 281

$$282 \lim_{\text{Var}(\mathbf{Z}'_L) \rightarrow 0} \mathbf{Z}'_L(n) = \text{Mean}(\mathbf{Z}'_L), \quad (14)$$

283

284 so any two inputs map to nearly identical representations - $(\mathbf{Z}'_L(\mathbf{x}_1) \approx \mathbf{Z}'_L(\mathbf{x}_2))$.
 285

286 4.3 EMPIRICAL VALIDATION

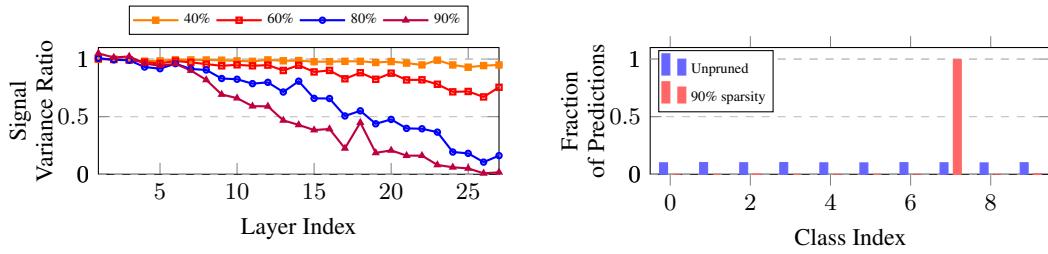
287

288 We empirically validate signal collapse via two **global scalar metrics** at each BN layer:
 289

$$290 \text{Mean}_\ell = \frac{1}{|\mathbf{Z}_\ell|} \sum_{x \in \mathbf{Z}_\ell} x, \quad \text{Var}_\ell = \frac{1}{|\mathbf{Z}_\ell|} \sum_{x \in \mathbf{Z}_\ell} (x - \text{Mean}_\ell)^2.$$

291
 292

293 Figure 3 (Left) plots the ratio $\text{Var}_\ell^{(\text{pruned})}/\text{Var}_\ell^{(\text{orig})}$ at various sparsities κ , showing severe collapse
 294 for $\kappa = 0.9$. Figure 3 (Right) shows that 90%-sparse ResNet-20, which has undergone variance
 295 collapse, predicts almost all inputs to a single class. This behaviour aligns with our analysis of
 296 Equation 14, leading to nearly identical representations for different inputs.



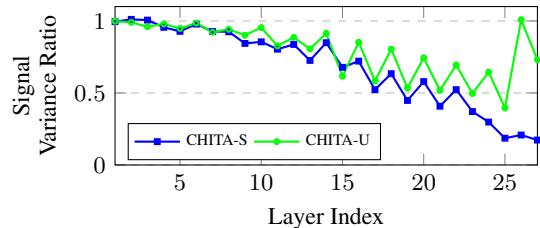
306 Figure 3: Signal collapse under high sparsity. **Left:** Layer-wise variance ratio $\text{Var}_\ell^{(\text{pruned})}/\text{Var}_\ell^{(\text{orig})}$
 307 for MobileNet on ImageNet. Higher sparsity leads to signal collapse in deeper layers. **Right:** Class-
 308 prediction distribution of ResNet-20 on CIFAR-10, where the 90%-sparse model maps nearly all
 309 inputs to one class.

310
 311

312 4.4 HESSIAN-BASED UPDATES MITIGATE SIGNAL COLLAPSE

313

314 Building on our earlier findings that Hessian-
 315 based weight updates are essential to recovering
 316 accuracy after pruning, we hypothesize that this
 317 is because they counteract signal collapse. In an
 318 80%-sparse MobileNet on ImageNet, pruning
 319 with CHITA-S (without weight update) results
 320 in progressive variance collapse across layers,
 321 whereas CHITA-U (with weight update) miti-
 322 gates complete signal collapse by recovering
 323 variance in the deeper layers. This confirms
 324 partial mitigation of variance collapse (see Fig-
 325 ure 4).



326 Figure 4: Layer-wise signal variance ratios
 $\text{Var}_\ell^{(\text{pruned})}/\text{Var}_\ell^{(\text{Baseline})}$ in 80% sparse MobileNet on ImageNet.

324 4.5 RESTORING SIGNAL PROPAGATION TO MITIGATE COLLAPSE
325326 To reverse collapse, we introduce **REFLOW** - a BN-recalibration that updates only each layer's
327 running mean and variance (Appendix A.6). After pruning, we gather a small calibration set \mathcal{B} and
328 compute

329
$$\hat{\mu}_\ell = \frac{1}{|\mathcal{B}|} \sum_{n \in \mathcal{B}} \mathbf{X}'_\ell(n), \quad \widehat{\text{Var}}_\ell = \frac{1}{|\mathcal{B}|} \sum_{n \in \mathcal{B}} (\mathbf{X}'_\ell(n) - \hat{\mu}_\ell)^2. \quad (15)$$

330
331

332 Replacing the original BN statistics with the pruned-model statistics results in
333

334
$$\mathbf{Z}'_\ell^{(\text{REFLOW})}(n) = \frac{\mathbf{X}'_\ell(n) - \hat{\mu}_\ell}{\sqrt{\widehat{\text{Var}}_\ell + \epsilon}} \gamma_\ell + \beta_\ell, \quad (16)$$

335
336

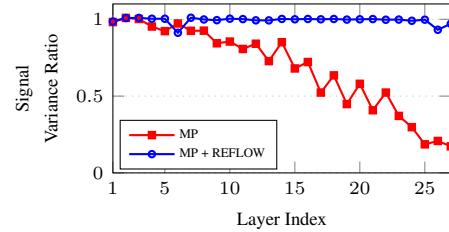
337 which fully restores the variance profiles to match the unpruned network (Figure 5) without updating
338 any trainable weights.340 5 EXPERIMENTAL RESULTS
341342 We apply REFLow to magnitude pruning (MP) and
343 evaluate it across small, medium, and large archi-
344 tectures. The results highlight that REFLow con-
345 sistently recovers performance in pruned networks,
346 achieving state-of-the-art accuracy without requiring
347 computationally expensive Hessian-based updates.
348 By mitigating signal collapse, REFLow discovers
349 high-quality sparse subnetworks within the original
350 parameter space.351 5.1 PERFORMANCE ON SMALL ARCHITECTURES
352353 We begin by evaluating REFLow on small architectures, namely ResNet-20 He et al. (2015)
354 pre-trained on CIFAR-10 Krizhevsky (2009) and MobileNet Howard et al. (2017) pre-trained on
355 ImageNet Deng et al. (2009), with less than 5 million parameters and comparing them to state-of-
356 the-art one-shot pruning methods, namely WF Singh & Alistarh (2020), CBS Yu et al. (2022), and
357 CHITA Benbaki et al. (2023).358 Table 1 highlights REFLow's accuracy improvements across all sparsity levels. For ResNet-20,
359 REFLow restores accuracy to 49.16% at 0.9 sparsity, outperforming CHITA (15.60%) and MP
360 (11.79%). On MobileNet, REFLow achieves 43.37% accuracy at 0.8 sparsity, surpassing CHITA
361 (29.78%) and MP (0.11%).363
364 Table 1: Performance of pruning methods on small architectures (ResNet-20 on CIFAR-10; MobileNet
365 on ImageNet) at various sparsities. Unpruned accuracies are 91.57% and 71.96%. Best results in
366 **bold**.

Figure 5: Variance ratios in pruned MobileNet (ImageNet) at 80% sparsity.

Dataset	Network	Sparsity	MP	WF	CBS	CHITA	REFLOW
CIFAR-10	ResNet-20	0.4	89.98	91.15	91.21	91.19	91.25
		0.5	88.44	90.23	90.58	90.60	90.66
		0.6	85.24	87.96	88.88	89.22	89.49
		0.7	78.79	81.05	81.84	84.12	86.65
		0.8	54.01	62.63	51.28	57.90	78.50
		0.9	11.79	11.49	13.68	15.60	49.16
ImageNet	MobileNet	0.4	69.16	71.15	71.45	71.50	71.59
		0.5	62.61	68.91	70.21	70.42	70.48
		0.6	41.94	60.90	66.37	67.30	67.83
		0.7	6.78	29.36	55.11	59.40	61.54
		0.8	0.11	0.24	16.38	29.78	43.37
Weight Update		-	-	X	✓	✓	X

378 5.2 SCALING REFLOW TO MEDIUM-SIZED ARCHITECTURES
379

380 We evaluate REFLOW on medium-sized architectures, namely ResNet-50 pre-trained on ImageNet
381 (25 million parameters). For this size, we compare REFLOW to CHITA and M-FAC Frantar et al. (2021),
382 as WF and CBS are computationally prohibitive. Figure 6 shows that REFLOW outperforms CHITA and
383 M-FAC across all sparsity levels. At high sparsities, REFLOW offers superior accuracy without the over-
384 head of Hessian computation.
385

389 5.3 SCALING REFLOW TO LARGE
390 ARCHITECTURES
391

392 To test REFLOW’s scalability, we prune four large ImageNet models ($\geq 100M$ parameters) - ResNet-101, ResNet-
393 152, RegNetX-32GF, and ResNeXt-101 at 80% sparsity.
394 Impact-based methods cannot cope at this scale: CBS relies on computing a dense Hessian, and CHITA requires
395 multiple gradient passes per layer, making them impractical for large networks. Vanilla magnitude pruning col-
396 lapses below 5% accuracy on all models, whereas RE-
397 FLOW recovers Top-1 accuracies of 64.1%, 68.2%, 73.0%,
398 and 78.9%, respectively. In particular, on ResNeXt-101,
399 REFLOW restores accuracy from 0.4% to 78.9%, just
400 4.0% below the dense 82.9% baseline despite removing
401 80% of weights. These results further demonstrate that
402 signal collapse is a fundamental bottleneck in one-shot
403 pruned networks.
404

407 5.4 EXTENSION TO STRUCTURED SPARSITY
408

409 We extended our evaluation to structured pruning patterns,
410 specifically 2:4 (N:M) sparsity, which offers practical hard-
411 ware speedups. Note that existing one-shot Hessian-based
412 methods (WoodFisher, CBS, CHITA) do not natively sup-
413 port structured sparsity. Table 2 reports ImageNet top-1
414 accuracies for ResNet-50 and ResNeXt-101 under 2:4
415 structured sparsity, comparing magnitude pruning (MP)
416 with and without REFLOW.
417

418 5.5 COMPARISONS IN THE CONTEXT OF GRADUAL PRUNING

419 We compare REFLOW extensively against prior *gradual* (prune-retrain) methods on **ResNet-50/****ImageNet**. For a fair setup, we use the **STR** pre-trained checkpoint and the **Incremental**
420 polynomial sparsity schedule. At each pruning step we apply magnitude pruning followed by
421 REFLOW as a fast, forward-only calibration (no gradients/Hessians). Table 3 reports pruned
422 top-1 accuracy at **80%** and **90%** sparsity, showing that REFLOW (gradual) is competitive with
423 state-of-the-art gradual pruning baselines.
424

426 Table 3: Pruned top-1 accuracy on ImageNet (**ResNet-50**) under gradual pruning with light retraining
427 baselines. REFLOW (gradual) applies REFLOW after each pruning step (forward-only).
428

Sparsity	GMP+LS	VD	RIGL+ERK	SNFS+LS	STR	DNW	REFLOW
0.80	75.58	75.28	75.10	74.90	76.19	76.20	76.60
0.90	73.91	73.84	73.00	72.90	74.31	74.00	75.09

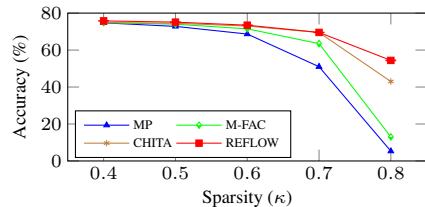


Figure 6: ResNet-50 test accuracy vs. network sparsity on ImageNet.

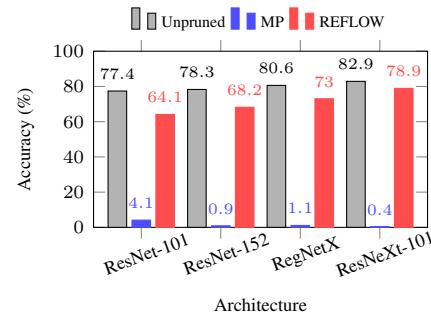


Figure 7: Unpruned, MP, and REFLOW ImageNet accuracy at 80% sparsity on various architectures.

Table 2: Structured Sparsity (2:4) on ImageNet (inference speed-up relative to dense model).

Model	Baseline	MP	REFLOW (speedup)
ResNet-50	76.13%	4.28%	64.03% (1.3x)
ResNeXt-101	82.99%	10.75%	79.07% (1.2x)

432 5.6 CONVERGENCE WITH REFLOW
433

434 Building on the results in Table 1, we evaluate
435 the impact of REFLOW across pruning meth-
436 ods with varying complexities: MP, CHITA-
437 S (selection-only), and CHITA (selection with
438 Hessian-based updates). CHITA updates the un-
439 pruned weights using second-order information,
440 while CHITA-S applies the same selection cri-
441 teria without weight updates. This distinction
442 isolates the role of weight updates and quanti-
443 fies whether REFLOW can compensate for their
444 absence.

445 Figure 8 shows that REFLOW bridges the performance gap between MP, CHITA-S, and CHITA-U.
446 REFLOW enables simpler selection based approaches, such as MP and CHITA-S, to achieve compa-
447 rable accuracy as CHITA-U (Hessian-based weight updates), although the latter is computationally
448 intensive. This highlights that mitigating signal collapse, rather than employing complex pruning
449 selection heuristics, is the key to recovering performance in one-shot pruned networks.

450 5.7 EXTENSION TO TRANSFORMER ARCHITECTURES
451

452 We also observe *signal collapse* in Transformers. In CNNs, BatchNorm exposes running
453 means/variances that we can recalibrate after pruning, whereas LayerNorm computes statistics
454 *per sample* and exposes only the affine parameters $(\gamma_\ell, \beta_\ell)$. We therefore briefly recalibrate these
455 LN parameters on a small calibration set while freezing all other weights, which restores activation
456 variance and recovers large accuracy drops (Table 4). Extending this analysis to LLMs is future work;
457 Appendix A.7 gives the method and derivations.

458
459 Table 4: ImageNet pruning of ViT variants: accuracy with magnitude pruning (MP) vs. MP+LN
460 update. Baselines: ViT-B/16 81.07%, ViT-L/32 76.96%.

Model	ViT-B/16				ViT-L/32			
	Sparsity	0.4	0.5	0.6	0.7	0.4	0.5	0.6
MP	54.87	26.50	6.74	0.47	57.85	34.49	8.95	0.94
MP+LN	77.65	75.51	71.33	62.62	72.57	69.86	65.53	58.64

466 6 CONCLUSION
467

468 This work identifies signal collapse as a critical bottleneck in one-shot neural network pruning.
469 Performance loss in pruned networks is due to **signal collapse** in addition to the removal of critical
470 parameters. We propose **REFLOW** (**R**estoring **F**low of **L**ow-variance signals), a simple yet effective
471 method that mitigates signal collapse without computationally expensive weight updates. REFLOW
472 highlights the importance of mitigating signal collapse in sparse networks and enables magnitude
473 pruning to match or surpass state-of-the-art one-shot pruning methods such as CHITA, CBS, and WF.

474 REFLOW consistently achieves state-of-the-art accuracy across diverse architectures, restoring
475 ResNeXt-101 from under 0.41% to 78.9% top-1 accuracy at 80% sparsity on ImageNet. Its lightweight
476 design makes it a practical solution for delivering high-quality sparse models without the overhead
477 of traditional approaches. These findings challenge the traditional emphasis on weight selection
478 strategies and underscore the critical role of maintaining signal propagation for achieving high-quality
479 sparse networks in the context of one-shot pruning.

481
482 REFERENCES
483

484 Riade Benbaki, Wenyu Chen, Xiang Meng, Hussein Hazimeh, Natalia Ponomareva, Zhe Zhao, and
485 Rahul Mazumder. Fast as CHITA: Neural Network Pruning with Combinatorial Optimization. In
486 *International Conference on Machine Learning*, 2023.

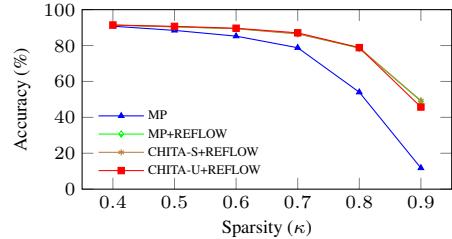


Figure 8: ResNet-20 test accuracy vs. Network sparsity on CIFAR-10.

486 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
 487 Hierarchical Image Database. In *IEEE Conference on Computer Vision and Pattern Recognition*,
 488 2009.

489 Bailey J. Eccles, Philip Rodgers, Peter Kilpatrick, Ivor Spence, and Blesson Varghese. DNNShifter:
 490 An Efficient DNN Pruning System for Edge Computing. In *Future Generation Computer Systems*,
 491 2024.

492 Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable
 493 Neural Networks. In *International Conference on Learning Representations*, 2019.

494 Elias Frantar, Eldar Kurtic, and Dan Alistarh. M-FAC: Efficient Matrix-Free Approximations of
 495 Second-Order Information. In *Neural Information Processing Systems*, 2021.

496 Mitchell A. Gordon, Kevin Duh, and Nicholas Andrews. Compressing BERT: Studying the Effects
 497 of Weight Pruning on Transfer Learning. *arXiv*, abs/2002.08307, 2020.

498 Song Han, Jeff Pool, John Tran, and William J. Dally. Learning Both Weights and Connections for
 499 Efficient Neural Networks. In *Neural Information Processing Systems*, 2015.

500 Stephen Hanson and Lorien Pratt. Comparing Biases for Minimal Network Construction with
 501 Back-Propagation. In *Neural Information Processing Systems*, 1988.

502 Babak Hassibi and David Stork. Second Order Derivatives for Network Pruning: Optimal Brain
 503 Surgeon. In *Neural Information Processing Systems*, 1992.

504 Babak Hassibi, David Stork, and Gregory Wolff. Optimal Brain Surgeon: Extensions and Performance
 505 Comparisons. In *Neural Information Processing Systems*, 1993.

506 Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
 507 *IEEE Conference on Computer Vision and Pattern Recognition*, 2015.

508 Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
 509 Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Convolutional Neural Networks for
 510 Mobile Vision Applications. *arXiv*, abs/1704.04861, 2017.

511 Yuang Jiang, Shiqiang Wang, Víctor Valls, Bong Jun Ko, Wei-Han Lee, Kin K. Leung, and Lean-
 512 dros Tassiulas. Model Pruning Enables Efficient Federated Learning on Edge Devices. *IEEE*
 513 *Transactions on Neural Networks and Learning Systems*, 2022.

514 Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. REPAIR:
 515 REnormalizing Permuted Activations for Interpolation Repair. In *International Conference on*
 516 *Learning Representations*, 2023.

517 Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. *Technical Report*, 2009.
 518 URL <https://www.cs.toronto.edu/~kriz/cifar.html>.

519 Yann LeCun, John Denker, and Sara Solla. Optimal Brain Damage. In *Neural Information Processing*
 520 *Systems*, 1989.

521 Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-shot Network Pruning Based
 522 on Connection Sensitivity. In *International Conference on Learning Representations*, 2019.

523 Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning Filters for
 524 Efficient ConvNets. In *International Conference on Learning Representations*, 2017.

525 Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola
 526 Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse Training via Boosting
 527 Pruning Plasticity with Neuroregeneration. *arXiv*, abs/2106.10404, 2021.

528 Michael C. Mozer and Paul Smolensky. Using Relevance to Reduce Network Size Automatically.
 529 *Connection Science*, 1989.

530 Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
 531 Network Design Spaces. In *IEEE conference on computer vision and pattern recognition*, 2020.

540 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory Optimizations
541 toward Training Trillion Parameter Models. In *International Conference for High Performance*
542 *Computing, Networking, Storage and Analysis*, 2020.

543

544 Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing Rewinding and Fine-tuning in Neural
545 Network Pruning. In *International Conference on Learning Representations*, 2020.

546

547 Sidak Pal Singh and Dan Alistarh. WoodFisher: Efficient Second-Order Approximation for Neural
548 Network Compression. In *Neural Information Processing Systems*, 2020.

549

550 Yi-Lin Sung, Jaehong Yoon, and Mohit Bansal. ECoFLaP: Efficient Coarse-to-Fine Layer-Wise
551 Pruning for Vision-Language Models. In *International Conference on Learning Representations*,
2024.

552

553 Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Pruning Neural Networks
554 without Any Data by Iteratively Conserving Synaptic Flow. In *Neural Information Processing*
555 *Systems*, 2020.

556

557 Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking Winning Tickets Before Training by
558 Preserving Gradient Flow. In *International Conference on Learning Representations*, 2020.

559

560 Ziheng Wang. SparseDNN: Fast Sparse Deep Learning Inference on CPUs. *arXiv*, abs/2101.07948,
561 2021.

562

563 Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated Residual
564 Transformations for Deep Neural Networks. In *IEEE conference on computer vision and pattern*
565 *recognition*, 2017.

566

567 Tom Young, Devamanyu Hazarika, Soujanya Poria, and E. Cambria. Recent Trends in Deep Learning
568 Based Natural Language Processing. *IEEE Computational Intelligence Magazine*, 2017.

569

570 Xin Yu, Thiago Serra, Sri Kumar Ramalingam, and Shandian Zhe. The Combinatorial Brain Surgeon:
571 Pruning Weights That Cancel One Another in Neural Networks. In *International Conference on*
572 *Machine Learning*, 2022.

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A FULL DERIVATIONS FOR SIGNAL COLLAPSE AND REFLOW**
 595

596 All notation used in Section 4 is highlighted and complete, self-contained proofs of the key inequalities
 597 and equations (Equation (9) – Equation (16)) are presented.
 598

599 **A.1 DEFINITIONS AND ASSUMPTIONS**
 600

601 At layer ℓ of the original network (cf. Equation (7)):

$$602 \quad \mathbf{X}_\ell = f(\mathbf{H}_{\ell-1}; \theta_\ell), \quad \mathbf{Z}_\ell(n) = \frac{\mathbf{X}_\ell(n) - \mu_\ell}{\sqrt{\text{Var}_\ell^{(\text{orig})}(\mathbf{X}_\ell) + \epsilon}} \gamma_\ell + \beta_\ell. \quad (17)$$

603

604 Here $\mathbf{H}_{\ell-1} = \mathbf{Z}_{\ell-1}$ is the post-BN output of layer $\ell - 1$, and $(\mu_\ell, \text{Var}_\ell^{(\text{orig})}(\mathbf{X}_\ell))$ are BN's stored
 605 running mean and variance.
 606

607 **Probabilistic assumptions.** For each fixed batch index n , we assume the components of $\mathbf{H}_{\ell-1}(n) = (H_{\ell-1,1}(n), \dots, H_{\ell-1,d}(n))$ satisfy
 608

$$609 \quad \mathbb{E}[H_{\ell-1,i}(n)] = 0, \quad \text{Cov}(H_{\ell-1,i}(n), H_{\ell-1,j}(n)) = 0 \quad (i \neq j). \quad (18)$$

610

611 These zero-mean and uncorrelated assumptions are standard in pruning and BatchNorm analyses.
 612

613 **A.2 WEIGHT MASKING NOTATION**
 614

615 After one-shot pruning at sparsity κ , we zero most weights. We define
 616

$$617 \quad \mathcal{S} = \{i : W'_{\ell,i} \neq 0\}, \quad W'_{\ell,i} = \begin{cases} W_{\ell,i}, & i \in \mathcal{S}, \\ 0, & \text{otherwise.} \end{cases} \quad (19)$$

618

619 Hence the pruned pre-BN activation is
 620

$$621 \quad \mathbf{X}'_\ell(n) = \sum_{i \in \mathcal{S}} W'_{\ell,i} H_{\ell-1,i}(n). \quad (20)$$

622

623 **A.3 PRUNED PRE-BN VARIANCE (PROOF OF EQUATION (9))**
 624

625 We now prove that
 626

$$627 \quad \text{Var}_\ell^{(\text{pruned})}(\mathbf{X}'_\ell) \ll \text{Var}_\ell^{(\text{orig})}(\mathbf{X}_\ell), \quad (21)$$

628

629 i.e. main Equation (9).
 630

631 **Proof.** From Equation (20) we have
 632

$$633 \quad \mathbf{X}'_\ell(n) = \sum_{i \in \mathcal{S}} W'_{\ell,i} H_{\ell-1,i}(n).$$

634

635 By the zero-mean assumption in Equation (18),
 636

$$637 \quad \mathbb{E}[\mathbf{X}'_\ell(n)] = \sum_{i \in \mathcal{S}} W'_{\ell,i} \mathbb{E}[H_{\ell-1,i}(n)] = 0.$$

638

639 Hence, by definition of variance,
 640

$$641 \quad \text{Var}[\mathbf{X}'_\ell(n)] = \mathbb{E}[(\mathbf{X}'_\ell(n) - 0)^2] = \mathbb{E}\left[\left(\sum_{i \in \mathcal{S}} W'_{\ell,i} H_{\ell-1,i}(n)\right)^2\right].$$

642

643 Expanding the square inside the expectation gives two terms:
 644

$$645 \quad \left(\sum_{i \in \mathcal{S}} W'_{\ell,i} H_{\ell-1,i}\right)^2 = \sum_{i \in \mathcal{S}} (W'_{\ell,i})^2 H_{\ell-1,i}^2 + \sum_{\substack{i,j \in \mathcal{S} \\ i \neq j}} W'_{\ell,i} W'_{\ell,j} H_{\ell-1,i} H_{\ell-1,j}.$$

646

648 Taking expectations term by term and using $\mathbb{E}[H_{\ell-1,i}] = 0$ and $\text{Cov}(H_{\ell-1,i}, H_{\ell-1,j}) = 0$ for $i \neq j$,

$$649 \quad \mathbb{E}[H_{\ell-1,i}^2] = \text{Var}[H_{\ell-1,i}], \quad \mathbb{E}[H_{\ell-1,i}H_{\ell-1,j}] = 0 \quad (i \neq j).$$

650 Thus

$$652 \quad \text{Var}[\mathbf{X}'_\ell(n)] = \sum_{i \in \mathcal{S}} (W'_{\ell,i})^2 \mathbb{E}[H_{\ell-1,i}^2] + \sum_{i \neq j} W'_{\ell,i} W'_{\ell,j} \underbrace{\mathbb{E}[H_{\ell-1,i}H_{\ell-1,j}]}_0 \\ 653 \\ 654 \\ 655 \\ 656 = \sum_{i \in \mathcal{S}} (W'_{\ell,i})^2 \text{Var}[H_{\ell-1,i}].$$

657 On the other hand, the unpruned activation $\mathbf{X}_\ell(n) = \sum_{i=1}^d W_{\ell,i} H_{\ell-1,i}(n)$ has variance

$$659 \quad \text{Var}_\ell^{(\text{orig})}(\mathbf{X}_\ell) = \sum_{i=1}^d W_{\ell,i}^2 \text{Var}[H_{\ell-1,i}].$$

660 Since $\mathcal{S} \subset \{1, \dots, d\}$ and $|\mathcal{S}| \ll d$, dropping most nonnegative summands gives

$$663 \quad \sum_{i \in \mathcal{S}} W_{\ell,i}^2 \text{Var}[H_{\ell-1,i}] \ll \sum_{i=1}^d W_{\ell,i}^2 \text{Var}[H_{\ell-1,i}],$$

664 which completes the proof of Equation (21).

A.4 OVER-NORMALIZATION BY BATCHNORM (PROOF OF EQUATION (10))

665 We next prove

$$666 \quad \text{Var}_\ell^{(\text{pruned})}(\mathbf{Z}'_\ell) \ll \text{Var}_\ell^{(\text{orig})}(\mathbf{Z}_\ell), \quad (22)$$

667 i.e. main Equation (10).

668 **Proof.** Even after pruning, BN still uses its stored μ_ℓ and $\sigma_\ell^2 = \text{Var}_\ell^{(\text{orig})}(\mathbf{X}_\ell)$:

$$669 \quad \mathbf{Z}'_\ell(n) = \frac{\mathbf{X}'_\ell(n) - \mu_\ell}{\sqrt{\sigma_\ell^2 + \epsilon}} \gamma_\ell + \beta_\ell.$$

670 Adding β_ℓ is shift-invariant, so $\text{Var}(\mathbf{Z}'_\ell) = \text{Var}((\mathbf{X}'_\ell - \mu_\ell)\gamma_\ell / \sqrt{\sigma_\ell^2 + \epsilon})$. By $\text{Var}(aX + b) = a^2\text{Var}(X)$:

$$671 \quad \text{Var}_\ell^{(\text{pruned})}(\mathbf{Z}'_\ell) = \left(\frac{\gamma_\ell}{\sqrt{\sigma_\ell^2 + \epsilon}} \right)^2 \text{Var}_\ell^{(\text{pruned})}(\mathbf{X}'_\ell), \quad (23a)$$

$$672 \quad \text{Var}_\ell^{(\text{orig})}(\mathbf{Z}_\ell) = \left(\frac{\gamma_\ell}{\sqrt{\sigma_\ell^2 + \epsilon}} \right)^2 \text{Var}_\ell^{(\text{orig})}(\mathbf{X}_\ell). \quad (23b)$$

673 Dividing Equation (23a) by Equation (23b) and using Equation (21) gives Equation (22).

A.5 CUMULATIVE COLLAPSE ACROSS LAYERS (PROOF OF EQUATION (11) – EQUATION (13))

674 Define the per-layer factor

$$675 \quad \eta_\ell = \frac{\text{Var}_\ell^{(\text{pruned})}(\mathbf{Z}'_\ell)}{\text{Var}_\ell^{(\text{orig})}(\mathbf{Z}_\ell)}, \quad 0 < \eta_\ell < 1. \quad (24)$$

676 Since $\mathbf{H}_{\ell+1} = \mathbf{Z}_\ell$, one shows by induction:

$$677 \quad \text{Var}_{\ell+1}^{(\text{pruned})}(\mathbf{X}'_{\ell+1}) = \eta_\ell \text{Var}_{\ell+1}^{(\text{orig})}(\mathbf{X}_{\ell+1}) \quad (25)$$

678 and therefore

$$679 \quad \text{Var}_L^{(\text{pruned})}(\mathbf{Z}'_L) = \left(\prod_{\ell=1}^L \eta_\ell \right) \text{Var}_L^{(\text{orig})}(\mathbf{Z}_L), \quad (26)$$

680 with $\prod_{\ell=1}^L \eta_\ell \rightarrow 0$ as $\kappa \rightarrow 1$, yielding

$$681 \quad \lim_{\kappa \rightarrow 1} \text{Var}_L^{(\text{pruned})}(\mathbf{Z}'_L) = 0. \quad (27)$$

702 A.6 REFLOW CALIBRATION (PROOF OF EQUATION (16))
703704 Collect a small calibration set \mathcal{B} of size B and compute
705

706
$$\hat{\mu}_\ell = \frac{1}{B} \sum_{n \in \mathcal{B}} \mathbf{X}'_\ell(n), \quad (28a)$$

707

708
$$\widehat{\text{Var}}_\ell = \frac{1}{B} \sum_{n \in \mathcal{B}} (\mathbf{X}'_\ell(n) - \hat{\mu}_\ell)^2. \quad (28b)$$

709

710
711 Replace each BN layer’s stored $(\mu_\ell, \sigma_\ell^2)$ by $(\hat{\mu}_\ell, \widehat{\text{Var}}_\ell)$. Then
712

713
$$\mathbf{Z}'_\ell^{(\text{REFLOW})}(n) = \frac{\mathbf{X}'_\ell(n) - \hat{\mu}_\ell}{\sqrt{\widehat{\text{Var}}_\ell + \epsilon}} \gamma_\ell + \beta_\ell, \quad (29)$$

714

715 exactly matching main Equation (16). By construction, $\text{Var}[\mathbf{Z}'_\ell^{(\text{REFLOW})}] =$
716 $\text{Var}_\ell^{(\text{pruned})}(\mathbf{X}'_\ell) / \widehat{\text{Var}}_\ell = 1$ (up to ϵ), fully restoring the variance profile.
717718 **Summary of Assumptions.** All proofs rely on (i) zero-mean, uncorrelated pre-BN activations
719 Equation (18), (ii) $\mathbb{E}[\mathbf{X}'_\ell] = 0$ after masking, and (iii) fixed BN running statistics until recalibration—standard in second-order pruning analyses and sufficient to explain—and correct—signal
720 collapse via REFLOW.
721722 A.7 EXTENSION TO TRANSFORMER ARCHITECTURES
723724 **Motivation.** One-shot pruning in Transformers also results in signal collapse: layer-wise activation
725 variance contracts with depth, leading to *signal collapse* and severe accuracy loss. Unlike BatchNorm
726 (BN), which exposes running $(\mu_\ell, \sigma_\ell^2)$ for post-pruning recalibration, LayerNorm (LN) computes
727 statistics *per sample* and exposes only affine parameters $(\gamma_\ell, \beta_\ell)$ —so variance restoration must act
728 through these parameters rather than recomputing global moments.
729730 **Calibration budget and sample efficiency.** For ViTs, we recalibrate only LN affine parameters
731 using a small labeled calibration set of ≈ 500 mini-batches, which in our setup takes ≤ 5 minutes
732 wall clock. With batch size 128, that corresponds to $500 \times 128 = 64,000$ images—about **5%** of
733 ImageNet’s 1.28M training images. Consistent with our CNN results, we also observed that accuracy
734 saturates quickly with far fewer batches (e.g., tens of batches suffice in the BN-recalibration setting),
735 underscoring that the calibration acts as variance restoration rather than full fine-tuning.
736737 **Notation and LN-affine calibration.** Let $X'_\ell(n) \in \mathbb{R}^{d_\ell}$ be the post-pruning pre-LN activation at
738 layer ℓ for example n . LN produces
739

740
$$Z'_\ell(n; \gamma, \beta) = \frac{X'_\ell(n) - \mu_n(X'_\ell)}{\sqrt{\text{Var}_n(X'_\ell) + \epsilon}} \gamma + \beta, \quad (30)$$

741

742 where $\gamma, \beta \in \mathbb{R}^{d_\ell}$ are elementwise affine parameters. We recalibrate *only* $(\gamma_\ell, \beta_\ell)$ by minimizing
743

744
$$(\gamma_\ell^*, \beta_\ell^*) = \arg \min_{\gamma, \beta} \frac{1}{|\mathcal{B}|} \sum_{n \in \mathcal{B}} \mathcal{L}(f(Z'_\ell(n; \gamma, \beta)), y_n), \quad (31)$$

745

746 freezing all other weights (attention, MLP, embeddings). A few hundred forward-backwards passes
747 over \mathcal{B} with a first-order optimizer (e.g., Adam) is sufficient because the number of calibrated
748 parameters is tiny relative to the full model.
749750 **Why it mitigates collapse.** Pruning shrinks pre-LN variance. Although LN enforces unit variance
751 *pre-affine*, the downstream effective scales and centers are governed by $(\gamma_\ell, \beta_\ell)$. Calibrating these
752 parameters restores appropriate activation magnitudes and re-centers features across depth, halting the
753 compounding attenuation that yields near-constant late-layer representations.
754

756 **Empirical outcomes (ImageNet).** As reported in Table 4 (main body), LN-affine calibration
 757 converts large MP collapses into strong accuracies for both ViT-B/16 and ViT-L/32; e.g., at 60%
 758 sparsity MP yields 6.74%/8.95% vs. 71.33%/65.53% after calibration, with similarly large gains
 759 from 40–70% sparsity. These trends parallel our BN recalibration results for CNNs, indicating that
 760 activation-variance preservation is the key driver of post-pruning recovery regardless of architecture.
 761

762 B DETAILED COMPARISON WITH REPAIR

764 REPAIR (Jordan et al., 2023) addresses a variance collapse that arises when two pre-trained networks
 765 are linearly interpolated. Denote their aligned layer- ℓ pre-BatchNorm activations on input n by
 766 $\mathbf{X}_\ell^{(1)}(n)$ and $\mathbf{X}_\ell^{(2)}(n)$. Form the convex interpolation
 767

$$768 \mathbf{X}_{\ell,\alpha}(n) = (1 - \alpha) \mathbf{X}_\ell^{(1)}(n) + \alpha \mathbf{X}_\ell^{(2)}(n), \quad \alpha \in [0, 1]. \quad (32)$$

770 By bilinearity of variance, one obtains

$$771 \text{Var}[\mathbf{X}_{\ell,\alpha}] = (1 - \alpha)^2 \text{Var}[\mathbf{X}_\ell^{(1)}] + \alpha^2 \text{Var}[\mathbf{X}_\ell^{(2)}] + 2\alpha(1 - \alpha) \text{Cov}[\mathbf{X}_\ell^{(1)}, \mathbf{X}_\ell^{(2)}]. \quad (33)$$

773 Let $\sigma_i = \sqrt{\text{Var}[\mathbf{X}_\ell^{(i)}]}$. Since $\text{Cov}[\mathbf{X}_\ell^{(1)}, \mathbf{X}_\ell^{(2)}] \leq \sigma_1 \sigma_2$, the interpolated variance is strictly less than
 774 the squared convex combination,
 775

$$776 \text{Var}[\mathbf{X}_{\ell,\alpha}] < ((1 - \alpha)\sigma_1 + \alpha\sigma_2)^2.$$

778 REPAIR restores the intended standard deviation $(1 - \alpha)\sigma_1 + \alpha\sigma_2$ by inserting a temporary BatchNorm
 779 layer with scale β satisfying

$$780 \beta \sqrt{\text{Var}[\mathbf{X}_{\ell,\alpha}]} = (1 - \alpha)\sigma_1 + \alpha\sigma_2, \quad (34)$$

782 which yields the closed-form

$$784 \beta = \frac{(1 - \alpha)\sigma_1 + \alpha\sigma_2}{\sqrt{(1 - \alpha)^2\sigma_1^2 + \alpha^2\sigma_2^2 + 2\alpha(1 - \alpha)\text{Cov}[\mathbf{X}_\ell^{(1)}, \mathbf{X}_\ell^{(2)}]}}. \quad (35)$$

787 In contrast, REFLOW traces collapse to one-shot pruning in a single network. A pruning mask
 788 $m_{\ell,i}$ reduces the pre-BatchNorm variance $\text{Var}[\mathbf{X}_\ell]$ by dropping weight contributions, yielding
 789 $\text{Var}[\mathbf{X}'_\ell] \ll \text{Var}[\mathbf{X}_\ell]$ and hence a post-BN ratio $\eta_\ell < 1$ that compounds across layers (Equation (11)–
 790 Equation (13)). REFLOW then gathers a small calibration set \mathcal{B} and recomputes each layer’s running
 791 moments $(\mu_\ell, \sigma_\ell^2)$ via empirical estimates $\hat{\mu}_\ell, \widehat{\text{Var}}_\ell$ (Equation D.6 – Equation D.7), producing the
 792 corrected activation

$$793 \mathbf{Z}'_{\ell}^{(\text{REFLOW})}(n) = \frac{\mathbf{X}'_\ell(n) - \hat{\mu}_\ell}{\sqrt{\widehat{\text{Var}}_\ell + \epsilon}} \gamma_\ell + \beta_\ell,$$

796 which by construction restores $\text{Var}[\mathbf{Z}_\ell]$ exactly (Equation (16)).

797 Although both methods employ an affine variance-restoration, REPAIR’s β depends on two-network
 798 variances and their covariance (Equation 35), whereas REFLOW’s recalibration relies solely on the
 799 pruned model’s own statistics and a brief calibration. These differences in context, dependencies,
 800 and derivation underscore that REFLOW is the first weight-update-free, alignment-free solution for
 801 activation variance collapse in one-shot pruning.

803 C EXPERIMENTAL SETUP

805 This section provides a detailed overview of the experimental setup used in our study, including the
 806 pruning techniques, datasets, sparsity ranges, and computational environment.

808 We employed a range of established one-shot pruning techniques, which perform pruning in a single
 809 step, followed by Hessian-based updates of the remaining weights and reduce the impact on loss after
 pruning. Specifically, we considered WoodFisher Singh & Alistarh (2020), CBS Yu et al. (2022),

810 CHITA Benbaki et al. (2023), and Matrix-Free Approximate Curvature (M-FAC) Frantar et al. (2021).
 811 Performance metrics for these methods were sourced from existing literature Yu et al. (2022); Benbaki
 812 et al. (2023), with results averaged over three independent runs.

813 **Application of REFLOW:** In this work, REFLOW is applied to networks pruned using *magnitude*
 814 *pruning*. After pruning, Batch Normalization (BN) running statistics are recalibrated using a forward
 815 pass over a limited number of training samples.

816 **Hyperparameters:** For REFLOW, we used 50 training batches to recalibrate the running BN
 817 statistics, with a batch size of 128 across all experiments.

818 **Pre-Trained Networks and Datasets:** To ensure comparability with prior studies Yu et al. (2022);
 819 Benbaki et al. (2023), we adopted datasets and model architectures from the same studies. The
 820 analysis included three pre-trained networks: ResNet-20 He et al. (2015) trained on the CIFAR-10
 821 dataset Krizhevsky (2009), and MobileNet Howard et al. (2017) and ResNet-50 He et al. (2015)
 822 trained on the ImageNet dataset Deng et al. (2009).

823 We extended the analysis to include larger architectures that prior leading one-shot pruning meth-
 824 ods Singh & Alistarh (2020); Yu et al. (2022) did not explore and are unable to scale to efficiently.
 825 Specifically, we evaluated REFLOW on ResNet-101 He et al. (2015), ResNet-152 He et al. (2015),
 826 RegNetX Radosavovic et al. (2020), and ResNeXt-101 Xie et al. (2017), all trained on the ImageNet
 827 dataset.

828 **Sparsity Range:** We evaluated REFLOW across the following sparsity ranges, consistent with prior
 829 works Yu et al. (2022); Benbaki et al. (2023):

- 830 • **ResNet-20 on CIFAR-10:** Sparsity range of 0.4 to 0.9.
- 831 • **MobileNet on ImageNet:** Sparsity range of 0.4 to 0.8.
- 832 • **ResNet-50 on ImageNet:** Sparsity range of 0.4 to 0.9.

833 **Hardware:** All experiments were conducted on a computational setup comprising an NVIDIA RTX
 834 A6000 GPU with 48GB memory, 10,752 CUDA cores, and 336 Tensor cores capable of 309 TFLOPS
 835 peak performance, coupled with an AMD EPYC 7713P 64-Core CPU.

836 **Software:** The computational environment operated on Ubuntu 20.04.6 LTS (Focal Fossa), utilizing
 837 Python version 3.8.10 and PyTorch version 2.1.0.

838 D ABLATION STUDIES

839 In this section, we evaluate the performance of REFLOW through ablation studies. We analyze the
 840 impact of the number of training batches (N), layer-wise BN recalibration, and batch size on accuracy
 841 recovery in pruned networks.

842 D.1 EFFECT OF THE NUMBER OF TRAINING BATCHES ON PERFORMANCE

843 We analyze the impact of varying the number of training batches (N) on the performance of RE-
 844 FLOW, focusing on test accuracy. REFLOW is applied to sparse networks after magnitude pruning,
 845 recalibrating Batch Normalization (BN) statistics through a forward pass over N training batches.

846 Figure 9 shows the relationship between N and test accuracy for MobileNet at 80% sparsity. Accuracy
 847 improves significantly for small values of N , saturating around $N = 50$. Using $N = 50$ training
 848 batches with a batch size of 128 corresponds to only 6,400 images—less than 0.5% of the 1.28 million
 849 training samples in ImageNet.

850 In contrast, leading impact-based pruning methods such as WoodFisher Singh & Alistarh (2020)
 851 and CBS Yu et al. (2022) require 960,000 training samples for gradient computation, while CHITA
 852 Benbaki et al. (2023) requires 16,000 samples. REFLOW achieves comparable performance using
 853 just 6,400 samples without any gradient computation, relying solely on forward passes to update BN
 854 statistics. This minimal data requirement enables REFLOW to operate in scenarios where access to
 855 the full training dataset is limited, such as privacy-preserving applications or resource-constrained
 856 environments, where re-training is infeasible.

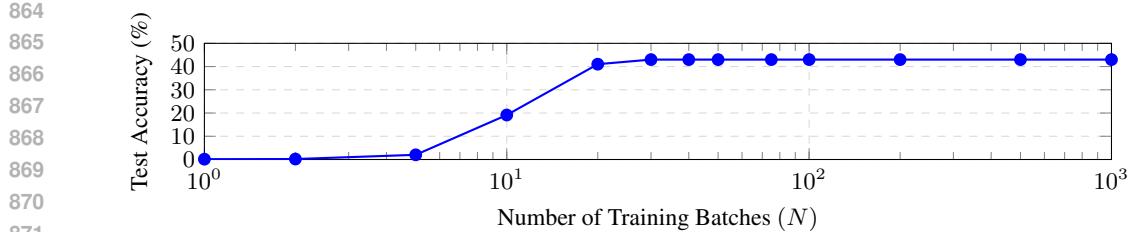


Figure 9: Test accuracy of MobileNet at 80% sparsity using REFLOW for different numbers of training batches (N). Accuracy improves significantly for $N \leq 20$, saturates around $N = 50$, and stabilizes for larger N .

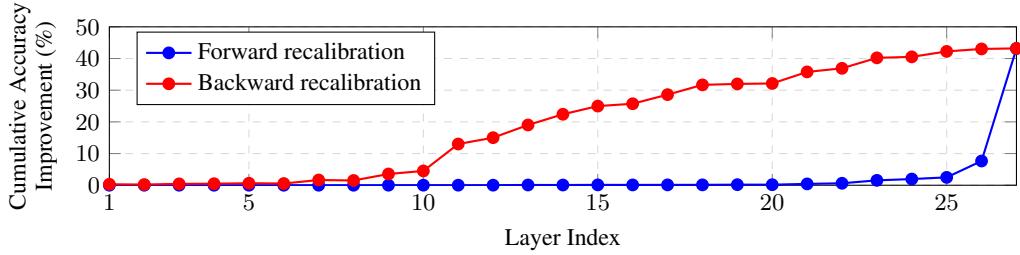


Figure 10: Cumulative accuracy improvement (%) for MobileNet at 80% sparsity after one-shot magnitude pruning. Forward recalibration progresses from the first BN layer to the last, while backward recalibration starts from the last BN layer. Backward recalibration achieves significant improvements earlier than forward recalibration, reflecting the higher sensitivity of deeper layers to pruning-induced changes.

D.2 IMPACT OF LAYER-WISE RECOVERY ON PERFORMANCE

To gain deeper insights into the recovery of test accuracy in sparse networks, we analyzed the contribution of individual Batch Normalization (BN) layers by recalibrating them sequentially. Specifically, the recalibration was performed one layer at a time, measuring the cumulative improvement in test accuracy after recalibrating each BN layer. This process was conducted in two directions: from the first BN layer to the last (forward direction) and from the last BN layer to the first (backward direction).

Figure 10 presents the cumulative effect of BN recalibration on test accuracy for MobileNet at 80% sparsity after one-shot pruning. In the forward direction, recalibrating early BN layers contributes minimally to accuracy recovery, with notable improvements only emerging as deeper layers are recalibrated. This pattern suggests that the shallower layers are less sensitive to changes in their BN statistics, whereas deeper layers play a more critical role in preserving network performance. Conversely, in the backward direction, recalibrating late BN layers produces substantial accuracy gains early on, with diminishing returns as earlier layers are recalibrated. These observations indicate that later layers are disproportionately impacted by pruning-induced changes, reflecting their higher sensitivity.

This behavior aligns with the phenomenon of *signal collapse*, where the variance of activations diminishes significantly in deeper layers of the pruned network. The variance ratio between pruned and original activations approaches zero in the final layers, leading to near-constant activations. This results in indistinguishable representations, which propagate to the output, causing uniform or incorrect predictions. The pronounced recovery observed when recalibrating the last layers supports this theoretical insight: correcting the BN statistics in these layers mitigates signal collapse, restoring the discriminative power of the network's activations.

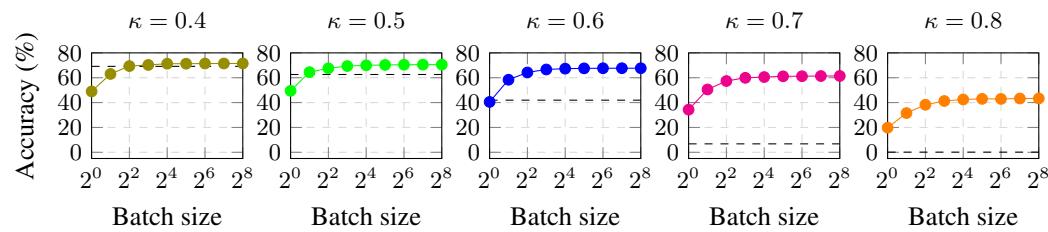


Figure 11: Test accuracy of MobileNet at different sparsity levels (κ) and varying batch sizes on ImageNet using REFLOW. Dashed lines represent the baseline accuracy for Magnitude Pruning (MP) without REFLOW.

D.3 EFFECT OF BATCH SIZE ON PERFORMANCE

Here, we investigate the influence of varying batch sizes on the test accuracy of REFLOW for different target sparsity levels (κ) as shown in Figure 11.

At lower sparsity levels ($\kappa = 0.4$ and $\kappa = 0.5$), using smaller batch sizes for REFLOW results in a drop in accuracy below the baseline performance of Magnitude Pruning (MP). This indicates that insufficient recalibration data can negatively impact performance in less sparse networks. However, increasing the batch size leads to a noticeable improvement in accuracy, with REFLOW surpassing MP at moderate and large batch sizes. These results demonstrate that networks with lower sparsity still benefit from recalibration when sufficient batch statistics are available.

For intermediate sparsity ($\kappa = 0.6$), the impact of batch size is more pronounced. Accuracy improves consistently with larger batch sizes, significantly outperforming MP even at smaller batch sizes. Saturation occurs at moderate batch sizes, highlighting the increased dependency on recalibration as network sparsity increases.

At higher sparsity levels ($\kappa = 0.7$ and $\kappa = 0.8$), larger batch sizes are critical for achieving substantial gains over MP. Accuracy improves steadily with batch size, with saturation occurring at higher batch sizes compared to lower sparsity levels. These results highlight the importance of recalibration in mitigating the performance degradation caused by high sparsity. The dashed lines in Figure 11 provide a reference to the baseline MP performance, underscoring the effectiveness of REFLOW in recovering accuracy, particularly for highly sparse networks.

E ANALYZING PRUNING SIMILARITY USING HAMMING DISTANCE

To further understand the limited role of weight selection, we analyze the *Normalized Hamming Distance* between pruning masks produced by MP, CHITA, and random pruning. CHITA is used as the representative state-of-the-art (SOTA) IP method.

The *Hamming Distance* between two masks $m^{(A)}$ and $m^{(B)}$ is defined as:

$$H(m^{(A)}, m^{(B)}) = \sum_{i=1}^d \mathbb{I}(m_i^{(A)} \neq m_i^{(B)}),$$

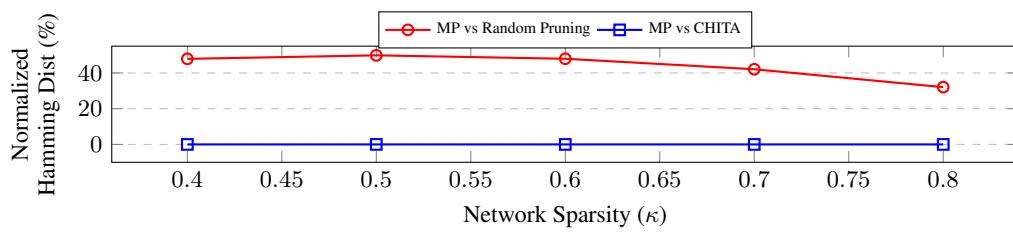
where $\mathbb{I}(\cdot)$ is the indicator function, d is the total number of parameters, and $m_i = 1$ indicates that parameter i is retained. The *Normalized Hamming Distance*, which measures the fraction of differing pruning decisions between two masks, is defined as:

$$H_{\text{norm}}(m^{(A)}, m^{(B)}) = \frac{H(m^{(A)}, m^{(B)})}{d}.$$

where $H(m^{(A)}, m^{(B)})$ is the Hamming Distance, and d is the total number of parameters.

Figure 12 shows that the Normalized Hamming Distance between MP and CHITA is negligible, indicating close similarity in their pruning decisions compared to the significant variation with random pruning. For ResNet-20 on CIFAR-10, it is 0.0018%. For MobileNet on ImageNet, it is 0.0095%. These results show that magnitude-based and IP-selection methods make nearly identical pruning

972 decisions, supporting the conclusion that the choice of weight selection (MP or IP-selection) has
 973 minimal influence on pruning performance.
 974



975
 976
 977
 978
 979
 980
 981
 982
 983 Figure 12: Normalized Hamming Distance (%) between pruning masks for Magnitude Pruning
 984 (MP) vs Random pruning and MP vs CHITA across sparsity levels. MP and CHITA have negligible
 985 variation, while MP and Random pruning show significant differences.
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025