
An Evaluation of Approaches to
Train Embeddings for Logical Inference

Yasir White1, Jevon Lipsey2, Jeff Heflin3

1Los Angeles Pierce College
2Colorado College
3Lehigh University

y.white005@gmail.com, jevonlipsey1029@gmail.com, heflin@cse.lehigh.edu

Abstract

Knowledge bases traditionally require manual optimization
to ensure reasonable performance when answering queries.
We build on previous neurosymbolic approaches by improv-
ing the training of an embedding model for logical statements
that maximizes similarity between unifying atoms and mini-
mizes similarity of non-unifying atoms. In particular, we eval-
uate three approaches to training this model by increasing
the occurrence of atoms with repeated terms, mutating an-
chor atoms to create positive and negative examples for use
in triplet loss, and training with the “hardest” examples.

Introduction
First-order logic is a powerful system for describing logical
theories that has been used to formalize various mathemati-
cal concepts, such as number theory and set theory. Various
algorithms have been designed to prove entailment or an-
swer queries over a set of statements expressed in first-order
logic or its fragments. Despite advances in automated theory
proving (ATP), first-order logic reasoning is not widely used
in practice in part due to difficulties with reasoning with very
large theories.

Several researchers have explored whether machine learn-
ing can be used to improve the performance of first-order
reasoning, similar to how AlphaGo used deep learning to
improve AI game playing (Silver et al. 2016). There have
been some promising results, but to date, no significant
progress. We hypothesize that best way to make progress
on the problem is solve three subproblems: representation,
learning strategy and control strategy. To make the problem
more amenable to study, we have restricted our initial inves-
tigation to the Horn fragment of first-order logic.

This work contributes to a general neurosymbolic ap-
proach for logical reasoning that has three key components:
1) an embedding model that maps logical statements to vec-
tors, 2) a scoring model that represents the likelihood that
a path leads to a successful answer, and 3) a guided rea-
soner, where the choices of a backward-chaining reasoner
are scored by the neural model. Prior approaches focused on
improving the scoring model and guided reasoner; here we
attempt different training methods for the embedding model

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to learn more useful embeddings and increase the overall
performance.

In particular, our contributions are

• Three improvements to the process for learning an em-
bedding model for logical statements

• An approach to evaluate the quality of the embeddings to
capture their intended semantics

• An evaluation of the embeddings ability to improve
the efficiency of reasoning using a downstream scoring
model

Background
Neurosymbolic AI seeks “to integrate neural network-based
methods with symbolic knowledge-based approaches”
(Sheth, Roy, and Gaur 2023). This can include a broad range
of topics from generating embeddings of knowledge graphs
to training a neural network to predict whether one logi-
cal statement entails another. One of the earliest attempts
to combine logic rules and neural networks was KBANN
(Towell and Shavlik 1994). KBANN takes propositional
Horn rules and directly encodes them into the neural net-
work. Kijsirikul and Lerdlamnaochai (2016) train a neural
network that can perform inductive learning on first-order
logic data. However, their architecture only allows the input
of data representing a conjunction of atoms, and the out-
put is a set of classes. There is no way to incorporate ax-
ioms into their reasoning. Rocktäschel and Riedel (2017)
trained a neural network to perform unification and apply
a backward-chaining-like process. This network was used to
predict missing atoms in a KB.

Recently, there have been reasoners that attempt to
leverage LLMs. AlphaGeometry generates proofs to solve
Olympiad geometric problems (Trinh et al. 2024). It uses
forward inference to find conclusions from a starting
premise, then uses a language model to generate auxiliary
points and retries the forward inference if the current proof
space fails. Rather than being query-driven, AlphaGeome-
try deduces new statements exhaustively. ReProver, another
LLM-based theorem prover for LeanDojo selects premises
from large math libraries (Yang et al. 2023). ReProver scores
the retrieved premises using an LLM. Inherent in using these
approaches is having unlimited access to an LLM and the
ability to fine-tune it to the needs of reasoning.



Other researchers have used various representations for
logical statements, particularly in the context of automated
theorem proving. Jakubův and Urban use an approach based
on term walks of length three (Jakubův and Urban 2017).
They parse each logical statement and create a digraph of it.
They then extract every sequence of three nodes from this
graph and create a code for it. This code has one dimension
for each possible sequence; thus for a vocabulary Σ, the vec-
tor must have |Σ|3 dimensions. This approach does not scale
to KBs that have many constants.

Crouse et al. (2021) propose a chain-based approach that
starts with a graph like Jakubův and Urban, but extracts pat-
terns from a clause that start with predicates and end with
variables or constants. Each sequence is hashed using MD5
and then that value is further reduced to d dimensions by
the modulo operator. Negative clauses are represented by
concatenation of an additional d dimensions. When creating
the patterns, all variables are replaced by the symbol “*”.
This models the semantics that a variable can match with
any term, but not that if the same variable appears multiple
times in an expression, it must match the same term in ev-
ery occurrence. Furthermore, the hashing and modulo oper-
ator addresses the scalability problem of termwalk, but does
mean that statements are placed in latent space at random,
as opposed to based on some inherent notion of similarity.

Arnold and Heflin (2022) proposed that embeddings
for logical atoms could be learned in a way that retains
the semantics of variables. A core operation used by any
first-order logic reasoning algorithm is unification, where
Unify(α, β) returns a substitution σ such that ασ = βσ or
fails. A set of unifying atoms and another set of non-unifying
atoms can be found procedurally. Using a neural network
that optimizes triplet loss (Vassileios Balntas and Mikola-
jczyk 2016), these atoms can be mapped into embeddings
such that unifying atoms are near, and non-unifying atoms
are far away. We describe Arnold and Heflin’s approach and
our improvements in subsequent sections.

Learning to Improve Logical Inference
Backward-chaining is an algorithm for Horn logic infer-
ence that operates by starting with a goal and systematically
working backward through a series of rules and known facts
to determine the conditions required to achieve the goal. Tra-
ditional backward chaining reasoners often rely on a brute-
force approach to explore potential solutions, which can lead
to inefficiencies as the complexity and scale of the problem
increases. Even relatively small knowledge bases of thou-
sands of statements can result in searches of millions of
nodes unless they have been carefully designed by a knowl-
edge engineer. Previous work looked at learning a scoring
model to direct the search along promising paths and com-
pared chainbased, termwalk, and unification as a means for
solving this problem (Jia et al. 2023). Our work improves on
the previous unification approach to learn meaningful em-
beddings for logical statements.

The workflow of our system is shown in Figure 1. Start-
ing with a knowledge base (KB) of facts and rules, we use a
forward-chaining reasoner to infer new facts from the exist-

Figure 1: Representation of model structure

ing information. From these new facts, we randomly substi-
tute constants with variables and divide the resulting list into
one hundred training queries and one hundred test queries.
We then solve the training queries using a randomized back-
ward chaining reasoner, exploring all possible paths to a so-
lution within a predefined depth limit. For each path, we
assign < goal, rule, score > tuples to the results. Here,
goal refers to the target query, rule denotes the logical state-
ment(s) used in the proof, and score represents the effective-
ness of a rule, with a score of 1 indicating a successful rule
and 0 indicating a rule that does not lead to a solution.

We have a two-step training process. First, we learn
embeddings for atoms using triplet loss (Vassileios Bal-
ntas and Mikolajczyk 2016). Triplet loss requires a set of
⟨anchor, positive, negative⟩ tuples and learns embeddings
that place the anchors close to the positive examples, and
far from negative examples. Arnold and Heflin’s original
approach for training the embedding model (Arnold and
Heflin 2022) involved generating a list of atoms at random,
and for each atom, selecting from the same list a unifying
atom to serve as the positive example and an atom that does
not unify to serve as the negative example. Together, the
anchor, positive, and negative atom are mapped onto a 50-
dimensional embedding space using a three-layer network
that minimizes triplet loss.

Second, the goal/rule/score tuples are converted into vec-
tors using the embedding model. Finally, supervised learn-
ing with a two-layer neural net is used to train a scoring
model. Initial experiments have show that the learned model
is often able to significantly reduce backward-chaining
search, sometimes by an order or magnitude or more. How-



Repeat Chance Repeat Const. Repeat Var. Atoms
0% 85.5% 14.5% 110
15% 58.8% 41.2% 476
30% 54.5% 45.5% 864

Table 1: Repeating terms in anchors. Repeat Chance is the
additional probability that a anchor repeats a term. Repeat
Const. and Repeat Var. represent the % of produced RTAs
that repeat constants and variables respectively. Atoms is the
total number of RTAs from 10,000 generated atoms.

ever, for some queries (and even some KBs) the improve-
ments have failed to materialize.

Our Approach
In this paper, we experimented with techniques to improve
the quality of the embedding model, with the goal of improv-
ing performance in downstream tasks. We evaluated three
types of improvements: First, we increased the likelihood to
generate more atoms with repeated terms. Second, we define
specific mutations for the atom to generate optimal training
data, and lastly, we periodically train the model on samples
with the highest loss (Harwood et al. 2017).

Generating Atoms with Repeated Terms
We define repeated term atoms (RTAs) as logical facts that
are not produced frequently by uniform distribution, but
have additional semantics that the embedding model should
learn. For example, loves(X,X) will unify with far fewer
atoms than loves(X,Y ). Initially with our uniform random
generation, the likelihood that we had a second term repeat
was 1/4(1/v + 1/c), a computed probability of 2.6% when
the number of variables (v) was 10 and the number of con-
stants (c) was 200. We modified the anchor generation pro-
cess to produce a repeated term with a fixed probability. If
the random atom has an arity ≥ 2 then the repeat chance
determines the likelihood that the next term will be a repeat
of a preceding one. Table 1 shows the impact of setting the
term repeat chance to different values. The prior embedding
approach only generated 110 (out of 10, 000) atoms with a
repeated constant or variable. By creating an additional re-
peat chance of 15%, we are able to produce 3.3× as many
atoms with a repeated term. Note, since this process only
applies to atoms with arity ≥ 2, the resulting repeated term
atoms is less than 15% of the total anchors. As expected, in-
creasing the repeat chance to 30% nearly doubles the atoms
with repeated terms. However, our preliminary experiments
showed that generating too many RTAs resulted in a reduc-
tion in downstream performance. In our following experi-
ments we use a repeat chance of 15% that has improved the
overall performance of our embedding model and guided
reasoner. In an ablation study discussed later, we measure
it’s effectiveness on synthetic knowledge bases.

Mutating Atoms to Generate Triplets
An important observation we made is that the condi-
tions for defining positive and negative atoms are already

Algorithm 1: Anchor Mutation
Input: An anchor atom anchor
Output: A mutated triplet

1: positive← anchor
2: negative← anchor

3: # Modify positive atom “p(α1, α2, ...αi)” arguments
4: for αi in positive do
5: if RAND() ≥ 0.5 then
6: if αi is a Variable then
7: # with uniform chance
8: sub← {αi/Cnew}or{ αi/Vnew}
9: else

10: sub← {αi/Vnew}
11: end if
12: apply substitution sub to positive
13: end if
14: end for
15: # Modify negative atom“n(α1, α2, ...αi)” arguments
16: for αi in negative do
17: if RAND() ≥ 0.5 then
18: if αi is a Constant then
19: αi ← Cnew

20: end if
21: end if
22: end for
23: if UNIFY(anchor, negative) then
24: n← Pnew

25: end if
26: return ⟨anchor, positive, negative⟩

well defined. For example, given an anchor atom like
mom(X, john), we can convert this into a positive or equiv-
alent atom by replacing X with a constant, such as mary. To
make it a negative atom, we can replace john with a differ-
ent constant, such as jill. Generally, to derive a positive or
equivalent logical statement from an anchor, we can change
a variable into another variable or constant, or vice versa. On
the other hand, to obtain a negative or non-equivalent state-
ment, we can either replace a constant with another constant
or alter the predicate itself, such as changing mom to a dif-
ferent predicate.

Defining these rules allows us to change the original gen-
eration of triplets into something much more effective, and
further allows us to control the data our model receives for
training. We generate a list of anchor atoms as before, but
instead of finding the positive and negative atom in a prede-
fined list, we simply generate them by mutating the proper-
ties of the anchor atom using a controlled, random approach.

The pseudo-code of the mutation approach is displayed in
Algorithm 1. For each anchor atom, the code creates a posi-
tive (unifying) and negative (non-unifying) atom. To create a
positive example, the code mutates each term αi with a 50%
probability. If it is a variable, it can be mutated to either a
constant or a new variable. If it is a constant, then it must be
mutated to a variable (since a constant can never unify with
a different constant). These mutations are treated as substi-



tutions that are applied to the entire atom, so that repeated
occurences will be replaced with the same new term (line
14). To create a negative example, the code mutates each
term αi with a 50% probability. In the case where the final
negative atom still unifies with the anchor (e.g., if it only has
variable terms), the predicate is replaced with a new predi-
cate. As written, the pseudo-code only produces one triplet
per anchor, but it can be called several times per anchor to
produce more triplets.

The initial randomized triplet generation approach typ-
ically results in many positive, negative, and anchor
triplets that inherently repeat since they can be rear-
ranged for equivalence. An example case being the triplet
< female(Y ), mother(mary), father(john) > which
can be rearranged as < mother(mary), female(Y ),
father(john) >. It’s important to observe that our use
of Triplet Loss reduces the distance between the an-
chor and positive atom, while increasing the distance be-
tween the anchor and negative atom. When rearranged
for equivalence, the anchor-positive pair retains the same
distance-closing behavior while the anchor-negative pair
separates < mother(mary), father(john) > instead of
< female(Y ), father(john) >. It can be argued that the
model gains some knowledge from rearranged triplets, but
our research shows that it’s more valuable for the model
to learn on a completely new set of triplets. By prevent-
ing cases like these and multiples of the same triplet, our
model can train on more diverse and valuable information.
With our mutation approach, we can easily limit and control
the amount of repeated anchors and enrich the training data
while still keeping it organic. This adjustment captures rare
but potentially significant semantics that could improve the
ability of the model to handle unseen queries.

The number of possible atoms depends on the vocabu-
lary of the KB. We describe the vocabulary for kb using
npkb, nckb, nvkb and makb to represent the number of pred-
icates, number of constants, number of variables and maxi-
mum arity. Then the maximum number of unique atoms is
npkb ∗(nckb+nvkb)

makb . As this quantity grows, more data
will be needed for the model to capture the semantics of
the atoms. An important consideration is how many triplets
should contain the same anchor. Our experiments have sug-
gested that if this number is too low there is insufficient data
to learn how that anchor relates to other atoms, but if the
number is too high, then there may be too few anchors to
properly generalize to unseen anchors. We define the triplets
related to a single, unique anchor as the “triplets per anchor”
(TPA). Through the later discussed ablation study (see Ta-
ble 4), we observed that increases in the number of TPA of-
ten lead to increases in performance of the model, largely
depending on the size of the knowledge base and vocabu-
lary used. We define a target number of triplets to generate
synthetically, and based on a desired number of TPA, the
number of unique atoms changes. For instance, if our target
for training is 500k triplets, and our desired number of TPA
is 50, the embedding model will train on 10k unique an-
chors, with each anchor having 50 related triplets. Similarly
our training target could remain 500k triplets, but a TPA of
20 would generate 25k unique anchors. In many ways, this

relationship can be observed as a trade-off function between
the amount of unique anchors generated and the number of
triplets generated per anchor.

Training on Hard Samples
The final improvement to the embedding model involves
a technique that focuses on training with the hardest sam-
ples. In prior work our training loss would tend to flatten
out early, so we focus training on semi-hard and hard sam-
ples, which improves the generalization of the model (Har-
wood et al. 2017). Similar improvements from training on
hard samples have been observed in Convolutional Neural
Networks through the work of Sahayam, Zakkam, and Ja-
yarama (2023). After generating a synthetic dataset of a few
hundred thousand triplets, we continuously use half of the
set with the highest loss to represent our “hardest” samples.
During training at every n-epochs, we validate the model’s
performance and continue refining it using a subset of the
original generation of triplets, focusing on the training sam-
ples with the highest loss. This forces the model to learn
and focus on difficult triplets that will help it solve queries
quickly. As we train the embedding model on the hardest
samples, the “hard” samples gradually become “easy” sam-
ples, and the previously difficult samples are removed from
the new subset of hard samples collected every 10 epochs
from the original synthetic dataset. Through this practice our
model is still successful in training on all synthetic triplets
generated.

Evaluation
In this section we evaluate the proposed changes to the train-
ing of the embedding model. First, we examine the extent
to which the embedding model achieves it goal. We then
conduct a study to see how the changes impact the perfor-
mance of the end-to-end system. Finally, we conduct an ab-
lation study to determine the extent to which each change
contributes to performance.

Semantics of our Embeddings
The goal of our embedding model is to capture fundamen-
tal semantics about first-order logic, and we train it to place
unifying atoms close and non-unifying atom far away. In
this section we compare Arnold and Heflin’s prior embed-
ding training approach to one that uses the ideas proposed in
this paper. Unlike Arnold and Heflin, we determine how well
the embeddings generalize by creating a test set of anchors
that is distinct from the training anchors, and then generating
positive and negative examples for these anchors.

In Figure 2, we present a histogram of the accuracy of
the new embedding model to determine how well the model
associates 50,000 unseen anchors with a unifying example
(anchor, positive pair), and how well it associates a non-
unifying example (anchor, negative pair). In this figure, there
are two peaks for the unifying examples. We hypothesize
that first peak is because some positive examples likely
had “perfect” predictions because some anchors in the val-
idation set were positive examples in the training set. Our
histograms are different than those originally presented by



Figure 2 Figure 3

Histogram of similarity scores for unseen atoms and their unifying pairs (blue) and their non-unifying pairs (red & orange) on
a KB using 20 predicates, 200 constants, 10 variables, and a maximum arity of 2. Figure 2 represents the new embeddings

approach, and Figure 3 represents the prior approach.

Arnold and Heflin since we measure training loss with pair-
wise distance as opposed to cosine distance (Arnold and
Heflin 2022). Pairs closer to 0 in latent space indicate a very
similar positive example, while pairs farther away indicate
an anchor may not be related to it’s pairing. In Figure 3 we
contrast the results of our new embeddings approach with
that of Arnold and Heflin (2022) by creating a histogram
under the same conditions. Note, because the different mea-
sures result in differences in scales, we normalize distances
in both diagrams to the range [0,1] before displaying in the
histograms. When comparing the histograms, one can see
that there is less separation between the two classes of data
in the prior approach.

We can also observe statistical differences with Total Vari-
ation (TV) distance:

DTV (P,Q) =
1

2

∑
x∈X

|P (x)−Q(x)| (1)

TV distance measures the maximum difference between two
discrete probability distributions by comparing the frequen-
cies of the similarity scores. It ranges from 0 (identical distri-
butions) to 1 (completely unlike distributions). From recent
prior work in Figure 3 we compute a TV distance of 0.28,
and from our improvements to the embedding model in Fig-
ure 2, a TV distance of 0.52. Generally, we have seen that
the more TV distance between positive and negative simi-
larity distributions, the less nodes our model explores in the
search space until it reaches a solution. This metric hints at
the significance of our improvements over prior work, be-
cause the embedding model is able to properly distinguish
between a related and non-related atom.

Reasoner Size Mean Nodes Median
Standard 250 17,204.0 1998.7
Previous Embeddings 250 981.8 3.4
New Embeddings 250 42.5 3.2
Standard 375 167,297.8 3035.3
Previous Embeddings 375 129,393.9 11.0
New Embeddings 375 33,280.0 2.8
Standard 500 3,419,493.6 552,639.1
Previous Embeddings 500 8,481,922.1 2.8
New Embeddings 500 3,916,035.3 2.8

Table 2: Comparing reasoners on different KB sizes. Mean
Nodes is an average taken across 5 different KBs generated
for the size. Median is an average of the median nodes ex-
plored in each KB.

Reasoning Performance
To test how our proposed embedding approach impacts
downstream tasks, we consider three different KB sizes: 250
statements, 375 statements and 500 statements. For each
size, we generate a set of 5 synthetic KBs, as performance
can be very different between KBs of the same size. We use
200, 300 and 400 constants in the 250, 375 and 500 state-
ment KBs. Since larger vocabularies should require more
training, we trained 250KB using 100k triplets, and both the
375KB and 500KB were trained using 200k triplets.

We have three representative reasoners, 1) a standard
backward-chaining reasoner (Standard), 2) a guided rea-
soner trained using the original unification embedding ap-
proach (Previous Embeddings), and 3) a guided reasoner
trained using everything proposed in this paper (repeated
terms, mutated atoms, hard samples) to improve embeddings
(New Embeddings). Both the previous embeddings and new



Reasoner Nodes explored Time
Baseline 981.8 39.4
Hard samples 325.2 40.2
Mutations 231.3 25.0
Repeated Terms 99.0 24.4
All improvements 42.5 19.2

Table 3: Ablation study results. Nodes explored is an average
taken across 5 different KBs. Time is an average measured
in seconds.

embeddings systems use the Min Goal control strategy of
Schack et al. (2024).

We report our results in Table 2. For each of the 5 KBs,
we generated 100 unique queries. We collected the mean
nodes explored across the 500 queries (100 per KB) to ob-
tain our Mean Nodes metric displayed in the table. To obtain
the Median nodes metric, we averaged the median nodes
explored across each of the 5 KBs. The rows for Standard
and Previous Embeddings are results reported in Schack
et al. (2024). The New Embeddings experiments were con-
ducted under (almost) identical conditions. The only differ-
ence is in the maximum number of nodes before a query
fails: 100,000,000 in Schack et al., while 10,000,000 for the
New Embeddings reasoner. This adjustment allowed the ex-
periments to be conducted in days as opposed to weeks. To
ensure the results are comparable, we adjusted the nodes for
every failed query from 10,000,000 to 100,000,000. Some of
the failed queries might have actually terminated with fewer
nodes if given the larger cutoff, which means the New Em-
beddings approach could be even better than reported here.

We make the following observations from the data.
Across each size, the medians are smaller than the mean
because of a few large outliers present in each knowledge
base. The medians for the two embedding approaches are
orders of magnitude smaller than those of the standard rea-
soner. With the exception of the 375 KBs, the previous em-
beddings and new embeddings have very similar medians.
The results for the means show that the new embeddings are
much better than those of the previous system, ranging be-
tween 9.2% and 46.2% of the mean nodes explored. This
basically means there are fewer large outliers, possibly in-
dicating that the system generalizes better. It also scales to
larger KBs better, although it can still be impacted by the
occasional outlier. For example, we had an unexpected out-
come where one set of queries in the 500KB New Embed-
dings reasoner raised the mean nodes explored significantly,
and believe that this is due to the stochastic nature of train-
ing since all other individual experiments resulted in a much
lower nodes explored.

Ablation Study
To understand how each of our proposed embedding mod-
ifications impacted performance, we conducted an ablation
study. Each ablation was conducted with 5 different knowl-
edge bases of size 250. We used 20 predicates with a maxi-
mum arity of 2, and 200 unique constants when generating
each synthetic KB. To keep the environment of our experi-

ments as constant as possible, we also utilize the same KB
and testing queries across the baseline and each ablation.
Our results are shown in Table 3. Baseline represents recent
prior work on learned embeddings (Schack et al. 2024), Mu-
tations represents the triplets per anchor approach, Repeated
terms represents the increase in repeated term atom genera-
tion, and Hard samples represents our minimization of ex-
amples with the highest triplet loss.

We first focus on measuring improvements from our spe-
cific mutations and triplets per anchor approach. The result
is a mean nodes explored of 231.3, showing a 76.4% de-
crease from prior work. This decrease represents a reduc-
tion in time and resources needed to answer a set of queries.
We hypothesize that this approach which also controls the
number of triplet repeats per anchor is another parameter
that could be fine-tuned to reduce the nodes explored. The
relationship, which we previously referred to as the trade-
off function, implies that generating a specific number of
triplet repeats per anchor is better than giving our embed-
ding model more data to train on, and that this relationship
varies based on the number of unique predicates and con-
stants present in our knowledge base.

We investigate this trade-off function and the effective-
ness of the mutation technique, particularly on a KB of size
500 with 20 unique predicates and 400 unique constants.
In Table 4, we report our results when using a fixed num-
ber of 200,000 training triplets. The number of triplets per
anchor has a noticeable impact on performance. Increasing
the synthetic data generated in many obvious cases increases
training time, and strains computational resources like mem-
ory. With our work, we achieved a 49.9% average decrease
in nodes explored from 5 to 20 TPA without increasing the
amount of synthetic training data generated. However, when
the TPA is too large (30 in this experiment), end-to-end per-
formance begins to suffer. We hypothesize that this is due to
the model not seeing enough unique anchors to generalize
well.

Next, we observe the improvements of an increase in re-
peated terms by no longer generating anchor atoms uni-
formly. The result is a mean nodes explored of 99.0, rep-
resenting a 89.9% decrease from prior work. This is another
parameter that could be fine-tuned to improve overall per-
formance, but we are unable to identify a relationship for
the ideal number of RTAs needed to achieve lower nodes
explored, nonetheless, a small increase in RTAs tends to im-
prove our results significantly.

Finally, we examine the effects of training our model on

TPA Nodes explored Median
5 7,816,589.1 2.8

10 5,239,567.7 2.8
20 3,916,035.3 2.8
30 8,638,852.5 2.8

Table 4: Results from experiments using 5 KBs with 500
statements. TPA referring to the number of triplets related to
an anchor. Nodes explored is an average across 5 KBs and
100 queries.



the half of the original dataset with the highest triplet loss.
We observed an average of 325.2 nodes explored, a notable
66.8% decrease. Although “hard examples” lags slightly in
terms of improvements against the other ablations, it still
shows promise. In future work we will improve on this tech-
nique by training on the most valuable samples with triplet
mining, as opposed to training on the hardest half of exam-
ples (Harwood et al. 2017).

In summary, our ablation study shows that individually
each of our three proposals significantly improves upon
Arnold and Heflin’s original approach for learning embed-
dings. Of these, the training for repeated terms has the great-
est impact, followed by generating positive and negative ex-
amples by mutation, and then training using hard samples.

Conclusion

Our team’s work is important to the efforts of researchers
to reduce the computational resources required to infer so-
lutions to logical queries and mathematical proofs. By fo-
cusing on approaches to train an embedding model, we
have showed that while working on methods for scoring and
choosing queries are important, there are downstream bene-
fits by improving the embeddings for logical inference. The
choice of representation for symbolic atoms and the process
for learning these representations can have a significant ef-
fect. To put it pithily, “representation matters.” Starting from
a goal that the right representation for logical atoms is one
that places unifying atoms close in latent space, we have
demonstrated three approaches to help us learn good repre-
sentations: intentionally oversample anchor atoms that have
repeated terms, create positive and negative samples by mu-
tating these anchors, and use a training process that regularly
emphasizes the hard atoms.

Through this work, our observations led us to hypothe-
size that more relationships likely exist, like the previously
mentioned trade-off function where using more triplets per
anchor becomes better than adding more data. We also hy-
pothesize an additional relationship between the size of our
knowledge base vocabulary, and the trade off function. In
any case, there are many parameters we could have fine-
tuned to optimize performance, and we plan to investigate
the relationship between these parameters. Future work will
test larger and more realistic knowledge bases, which of-
ten tend to be less complex than our synthetically generated
KBs, with our main objective to demonstrate the impact of
our improvements on real-world systems. Once we have a
good understanding of how to design embeddings for Dat-
alog, we would like to extend the approach to embeddings
for full first-order logic, and evaluate whether similar bene-
fits can be achieved for the resolution algorithm.

Acknowledgments

This work was conducted as part of an REU site supported
by the National Science Foundation under Grant No. CNS-
2051037.

References
Arnold, A.; and Heflin, J. 2022. Learning a More Efficient
Backward-Chaining Reasoner. In Proc. of the 10th Annual
Conf. on Advances in Cog. Systems (ACS-2022). Arlington,
VA, USA: Cog. Systems Foundation.
Crouse, M.; Abdelaziz, I.; Makni, B.; Whitehead, S.; Cor-
nelio, C.; Kapanipathi, P.; Srinivas, K.; Thost, V.; Witbrock,
M.; and Fokoue, A. 2021. A Deep Reinforcement Learning
Approach to First-Order Logic Theorem Proving. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 35(7):
6279–6287.
Harwood, B.; B G, V. K.; Carneiro, G.; Reid, I.; and Drum-
mond, T. 2017. Smart Mining for Deep Metric Learning.
In 2017 IEEE International Conference on Computer Vision
(ICCV), 2840–2848.
Jakubův, J.; and Urban, J. 2017. ENIGMA: Efficient
Learning-Based Inference Guiding Machine. In Geuvers,
H.; England, M.; Hasan, O.; Rabe, F.; and Teschke, O.,
eds., Intelligent Computer Mathematics, 292–302. Cham:
Springer International Publishing. ISBN 978-3-319-62075-
6.
Jia, Y.-B.; Johnson, G.; Arnold, A.; and Heflin, J. 2023. An
Evaluation of Strategies to Train More Efficient Backward-
Chaining Reasoners. In The Twelfth International Confer-
ence on Knowledge Capture. Pensacola, FL, USA.
Kijsirikul, B.; and Lerdlamnaochai, T. 2016. First-Order
Logical Neural Networks. International Journal of Hybrid
Intelligent Systems, 2(4): 253–267.
Rocktäschel, T.; and Riedel, S. 2017. End-to-end differen-
tiable proving. In Advances in Neural Information Process-
ing Systems, 31, volume 2017-Decem.
Sahayam, S.; Zakkam, J.; and Jayaraman, U. 2023. Can we
learn better with hard samples? arXiv:arXiv:2304.03486.
Schack, B.; Zhang, Y.; Hoffmeister, J.; and Heflin, J. 2024.
Query Optimization of Backward-Chaining Reasoning with
Learned Heuristics. In RuleML+RR Challenge. Bucharest,
Romania.
Sheth, A.; Roy, K.; and Gaur, M. 2023. Neurosymbolic AI-
Why, What, and How. arXiv preprint arXiv:2305.00813.
Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.;
Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneer-
shelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham,
J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.;
Kavukcuoglu, K.; Graepel, T.; and Hassabis, D. 2016. Mas-
tering the game of Go with deep neural networks and tree
search. Nature, 529: 484–489.
Towell, G. G.; and Shavlik, J. W. 1994. Knowledge-based
artificial neural networks. Artificial intelligence, 70(1-2):
119–165.
Trinh, T. H.; Wu, Y.; Le, Q. V.; He, H.; and Luong, T.
2024. Solving Olympiad geometry without human demon-
strations. Nature, 476–482.
Vassileios Balntas, D. P., Edgar Riba; and Mikolajczyk, K.
2016. Learning local feature descriptors with triplets and
shallow convolutional neural networks. In British Machine
Vision Conference (BMVC). BMVA Press.



Yang, K.; Swope, A. M.; Gu, A.; Chalamala, R.; Song,
P.; Yu, S.; Godil, S.; Prenger, R. J.; and Anandkumar,
A. 2023. LeanDojo: Theorem Proving with Retrieval-
Augmented Language Models. In Oh, A.; Naumann, T.;
Globerson, A.; Saenko, K.; Hardt, M.; and Levine, S., eds.,
Advances in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.


