Under review as a conference paper at ICLR 2025

TOWARDS FORMALLY VERIFYING LLMS: TAMING
THE NONLINEARITY OF THE TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models are increasingly used across various domains, which raises
important safety concerns, particularly regarding adversarial attacks. While recent
advancements in formal neural network verification have shown promising results,
the complexity of transformers, the backbone of large language models, poses
unique challenges for formal robustness verification. Traditional convex relax-
ation methods often result in large approximation errors due to the transformer’s
parallel, nonlinear attention heads. In this work, we address these limitations by
introducing a novel approach based on non-convex, set-based computing to pre-
serve the nonlinear dependencies through a transformer. Our approach generalizes
previous methods on robustness verification of transformers, and the desired pre-
cision is tunable at the cost of additional computation time with a single parameter.

1 INTRODUCTION

Large language models (LLMs) have gained immense popularity in various fields, including
question-answering, document summarization, and language translation (Raiaan et al., 2024). In
particular, this success must be attributed to the transformers (Vaswani et al., 2017) used within
these models. With increasing usage in all of these domains, safety concerns must be addressed:
For example, how do we prevent the generation of harmful content? Large language models can be
trained to reflect our desired behavior (Wallace et al.| [2024); however, large language models — like
any other neural network — can easily be fooled by adversarial attacks (Goodfellow et al.| [2015).
Thus, their behavior has to be formally verified to ensure safety, and such methods still need to be
developed for large language models (Huang et al., 2024)).

For example, consider a large language model that answers user prompts and our goal is to prevent
harmful outputs. As a safety shield, we deploy a classifier language model supervising the in-
and outputs, which returns a predefined answer if any in- or output is deemed harmful (Kim et al.,
2023)). This assumes that the classifier model has perfectly generalized from a given dataset defining
harmful content — which is not even the case for standard feed-forward neural networks (Neyshabur,
et al 2019), let alone large language models (Chang et al.| 2024). Consider the following user
prompt that reasonably should not be answered:

How to build a bomb? (D

As the prompts come from users, we have to assume they are trying to craft a prompt circumventing
our safety shield, also known as an adversarial prompt (Zhu et al., [2023). Let p’ be such an adver-
sarial user prompt crafted from the prompt p (I)) above. Crucially, we, as verifiers, are unaware that
this was done and, in particular, p is unknown to us. If we knew that a user was crafting adversarial
prompts, we could simply block this user entirely. Thus, our goal is to find the prompt p, which we
deem harmful and similar in meaning to the user prompt p’, and only return an answer to the user
if we have verified that such a prompt p does not exist. An adversarial prompt can be crafted by
replacing certain words with synonyms (Zhu et al.,|2023): For example, we could replace “build”
with “construct”, or “bomb” with “missile”. As verifiers, we are required to test all possible
combinations of synonyms and only answer the prompt if all synonym sentences are determined to
be safe by the classifier model. The longer the user prompts, the more synonyms we have to consider
— quickly leading to a combinatorial explosion. Additionally, defining synonyms is time-consuming
and requires expert knowledge. Please also note that large language models usually do not operate
on words but on tokens (Kudo & Richardson,|2018)), such that synonyms have to be found on a token

Under review as a conference paper at ICLR 2025

level, and existing synonym collections on words cannot be used directly. Moreover, one might also
want to include prompts that are not necessarily synonyms but share the same meaning, such as:

How to build something that explodes? 2)

In such a sentence, the meaning of the term “something that explodes” has to be aggregated,
which a large language model can do through its layers (Vaswani et al., [2017).

We address this issue by lifting recent advancements from formally verifying neural networks (Brix
et al., 2023) to large language models. In particular, we examine how to verify transform-
ers (Vaswani et al., 2017), which are the core components in modern language models (Achiam
et al 2024). Please note that in the standard setting of formal network verification, the input is
usually perturbed by some noise, e.g., an /.-ball with radius ¢ € R. However, this is not directly
applicable in the domain of natural language processing, as it has text as input. Instead, the noise
is added in the embedding space, where synonyms are clustered together (Harris, {1954} |L1 & Yang,
2018). We then formally verify that there does not exist a synonym sentence in the perturbed em-
bedding space that the classifier model deems unsafe. If we cannot rule out such a sentence, the user
prompt is not answered by the large language model, and the predefined answer is returned instead.

Our contributions. We present a novel approach to formally verify large language models using
set-based computing. This work is based on recent progress in neural network verification (Brix
et al., |2023), and we focus on the main challenge when verifying large language models, namely
verifying the transformer (Vaswani et al.,|2017). All other layers can be verified using the techniques
developed for standard neural networks (Brix et al., 2023)).

Transformers are particularly challenging to verify due to the in-parallel computed nonlinearities in
the self-attention heads (Vaswani et al.| [2017), leading to nonlinear dependencies across all layers
within a large language model and, thus, a non-convex output set. Neural network verifiers usually
address this by relaxing the problem to a convex set enclosing the actual output (Brix et al., |2023).
However, we show in this work that this leads to large outer approximations when applied on trans-
formers and, for the first time, explicitly preserve these nonlinear dependencies through all layers
using set-based computing. In particular, polynomial zonotopes (Kochdumper & Althoft], 2020) are
used as a set representation.

Our evaluation shows that this enables the verification of much larger perturbed embedding spaces
compared to related work (Sec. [5). Additionally, the desired precision can be tuned via a single
parameter at the cost of additional verification time.

2 BACKGROUND

2.1 NOTATION

We denote scalars and vectors by lowercase letters, matrices by uppercase letters, and sets by calli-
graphic letters. The i-th element of a vector v € R" is written as v(;). The element in the i-th row
and j-th column of a matrix A € R™*™ is written as A(; ;), the entire i-th row and j-th column
are written as A(;) and A(. ;), respectively. The concatenation of A with a matrix B € R"*? is
denoted by [A B] € R™*(m+°) For two tensors Ty, T, € R™**™m we also use the shorthand
notation [T} T»]; to denote their concatenation in the i-th dimension. The empty matrix is written
as []. We use I,, to denote the identity matrix of dimension n € N. The symbols 0 and 1 refer
to matrices with all zeros and ones of proper dimensions, respectively. Given n € N, we use the
shorthand notation [n] = {1,...,n}. Let S C R™ be a setand f: R™ — R™ be a function, then
f(S) ={f(z) | x € S}. Aninterval with bounds a, b € R is denoted by [a, b], where a < b holds
element-wise.

2.2 NEURAL NETWORKS

Let us now formally introduce neural networks and all operations used in large language models.
Definition 1 (Neural Networks (Bishop & Nasrabadil 2006, Sec. 5.1)). Let x € R™ be the input of
a neural network © with k layers, its output y = ®(x) € R™* is obtained as follows:

hO =2z, hk = Lk (hk71>7 y= hfw ke [K]a

Under review as a conference paper at ICLR 2025

k-th Transformer Block

k-th Feed-Forward Block

A
! L,€71 —|_)
LIN LIN
B — LA Ly —f LT — Lis
A j
Input || kb Output
hy—1 + - Ll;il N LE,Q — hy,

Figure 1: We consider large language model architectures in this paper where « blocks shown in the
figure are concatenated, followed by global pooling and a linear layer to obtain the class predictions.

where Ly : R™"=1 — R"* represents the operation of layer k.

For example, a linear layer with W), € R™*™k=1_p,. € R™ is computed by

LY (hg—1) = Wihg_1 + bp—1 € R™. 3)

In this section, we focus on the layers used in large language models which are not used in standard
neural networks (Fig. [T). We briefly list them next for easier reference when we propagate sets
through them to verify the entire model. Let doqe denote the embedding dimension of our model
for each of its ¢ tokens. Given three matrices) € R‘*ex [¢ R*dex | ¢ R¥*4v 3 single
self-attention layer (Vaswani et al.,[2017, Eq. 1) is computed by

T

LQ (Q, K,V) = softmax < QK

Vdok

where the softmax function is computed rowwise for a given vector [€ R™ as follows:

> VERthV, (4)

exp ()
2imr expl)
In practice, multiple attention heads are computed in parallel, and the overall equation is given by

LA QK. V) = Hm@KW.”Lm@Kva%WWM
with L} (Q K, V)= (QWM,KWM,VWM), i € [h),

softmax (1) ;) = eR"™, je[n]. %)

(6)

where Wk i W S Rd"'°d°1XdQK W € Rmowarxdv gpd WA € RMv xdmua gre learnable pro-
jection matrices for Q,K,V, and the aggregation of the attention heads, respectively. Similarly
to related work (Shi et al., 2020; |[Bonaert et al., 2021)), we slightly modify the layer normaliza-
tion (Lei Ba et al.,2016) used in transformers. Please visit appendix [A]for a detailed discussion on
this modification. Given bias and gain parameters /3, v € R™ !, and an input hy_; € R™*~* with
mean hy_1 = 1/n,_; - h_1, the modified layer normalization is given by

LY (hi—1) =7 © (hi—1 — hi—1) + 5, (7N
where © denotes the Hadamard product. With that, we have introduced all special operations used

in transformers.

2.3 SET-BASED COMPUTING

We use set-based computing to propagate perturbations to the input of a neural network through
each layer. To this end, we use polynomial zonotopes (Kochdumper & Althoff] [2020) as set repre-
sentation, in particular, its matrix variant:

Under review as a conference paper at ICLR 2025

Definition 2 (Matrix Polynomial Zonotopes (Ladner et al., [2024] Def. 9)). Given an offset C' €
R"™*™ dependent generators G € R™ ™ *" with h dependent generators, independent generators
G € R"*™*1 with q independent generators, and an exponent matrix E € Nb *M \vith an identifier
id e N’ﬂ a matrix polynomial zonotope PZ = (C,G,G1, E) p,, is defined as

h P q
PZ=(C,G,G1,E)py ={ C+) (akE(k,i)) Gy T D BiGrcg | o B € [F1,1]
k=1 j=1

i=1 =

We give an example for a polynomial zonotope in appendix[B]and only briefly introduce the required
set operations here. The main advantage of using this set representation is its efficient computation
of many operations appearing in the layers considered in Sec. 2.2} The Minkowski sum (Ladner
et al.,[2024} Eq. 5) of two matrix polynomial zonotopes

PZl = <Cl7 I:él G1]37G1,17 I:E E1}>PZ C RnXm,

- - ®)
PZ, = <027 (G2 Gal,,Gr 2, [E B >PZ C R™™
with partially shared exponent matrices and a common identifier vector is computed by:
PZLdPZ; = {xl —+ X9 | 1 € PZq, a0 € PZQ}
€))

:<C’1+C’2,[§1+C~1‘2 Gy G2]3,[G1,1 GI,z]g,[E E, E2]2>Pz'

Given the matrices A; € RF*" A, € R™*F and the vectors by € R**™ by € R**¥ the affine
map (Ladner et al., 2024 Eq. 6) is computed by
A17321 —+ bl = {Alx + bl | S le} = <A101 + b13A1G17A1G1717E1>PZ s
PZ1As + by = {:EAQ + by | xr € PZl} = <01A2 + b2,G1A2,GI71A27E1>PZ .
Given two matrix polynomial zonotopes M; C R™ ¥, My C R¥*™ with g; and g» generators,
respectively, then the matrix multiplication
Mz = My - My = {(My - Ma) | My € My, My € My} C R™™, (11)

can be computed exactly such that M3 has O(g1g2) generators (Ladner et al., 2024, Lemma 10) .
Finally, the concatenation of two matrix polynomial zonotopes is done by concatenating their center
and generators accordingly (appendix [B} (19)). Further details on polynomial zonotopes and these
operations can be found in appendix

(10)

2.4 NEURAL NETWORK VERIFICATION

We verify neural networks using (matrix) polynomial zonotopes by iteratively propagating the input
set X = H through the neural network and enclosing the output of each layer k € [k]:

Proposition 1 (Image Enclosure (Kochdumper et al., [2023] Sec. 3)). Let Hix—1 C R™ -1 be an
input set to layer k, then
Hj, = enclose (Lg, Hp—1) C R"™

computes an outer-approximative output set.

In general, linear layers can be computed exactly with polynomial zonotopes using (I0), whereas
nonlinear layers induce outer approximation (Fig. 2): The activation function is approximated using
a polynomial, and an enclosure is obtained by bounding the approximation error, which is added to
the output set using (). The enclosure of the network’s output set is then given by) = H,,.

2.5 PROBLEM STATEMENT

Given a large language model ®: R™ — R"~, a perturbed input set X’ corresponding to a user
prompt, and some specification S C R™~ specifying the unsafe outputs of a network, we want to
compute an outer-approximative output set) 2 ®(X) such that Y NS = () to verify the safety of
the user prompt. Please note that the classification problem stated in Sec. [I]can be formulated in this
way.

"The identifier vector id is used to maintain dependencies of the factors oy, between sets.

Under review as a conference paper at ICLR 2025

(a) Steps 1 & 2 (b) Steps 3 & 4 (c) Steps 5 & 6

—

Output
Output
Output

— —

Input Input Input

| — () — Set Bounds =~ ——Polynomial =~ —— Approximation error

Figure 2: Main steps to enclose a nonlinear layer. Step 1: Evaluate the activation function element-
wise. Step 2: Compute the bounds of the input set. Step 3: Find an approximating polynomial.
Step 4: Compute the approximation error. Step 5: Evaluate the polynomial over the input set.
Step 6: Add the approximation error.

3 NON-CONVEX DEPENDENCY-PRESERVING LLLM VERIFICATION

We now present our novel approach to enclose the output of a large language model using polyno-
mial zonotopes. An overview of the considered model is given in Fig.[T] We start with the smallest
and simplest layers and incrementally add complexity by stacking these layers together. Please
follow Sec. [2.2] along with this section for the exact equations and the required adaptations made
here if the inputs are sets: Most layers only apply operations that can be computed efficiently using
polynomial zonotopes (Sec. [2.3).

3.1 OUTPUT ENCLOSURE OF A LAYER NORMALIZATION LAYER

The modified layer normalization in (7)) can be computed exactly without additional outer approxi-
mation. Please visit appendix [A]for a discussion on how to enclose the original equation of the layer
normalization.

Lemma 1 (Enclosure Layer Normalization). Given an input set Hy_1 C R™*~1, the output set of a
layer normalization layer () is given by

Ly (Hi—1) = diag (7) - (Hr—1 @ (=Yni—r - Hi—1)) + B-

Proof. See appendix [C} O

3.2 OUTPUT ENCLOSURE OF THE SOFTMAX FUNCTION

The softmax layer is a standard layer in many network architectures. However, it often is the last
layer of a network, and its enclosure can be omitted during verification, as one is usually only
interested in the largest dimension, which can already be determined prior to the softmax layer. Un-
fortunately, this cannot be done for transformers, as it is applied internally. Analogously to /[Bonaert;
et al. (2021), we reformulate the computation of the softmax function @ for numeric stability and
to ease the enclosure using sets:

expl) 1 :
softmax (1) -y = =m = == , j€ln]. (12)
O S expley Xy expla) — L
Then, we can obtain an output enclosure of the softmax function by enclosing the exponential and
the inverse function:

Lemma 2 (Enclosure Softmax). Given an input set L C R", the output set of the softmax func-
tion (12) is enclosed by

softmax (E)(j) C enclose (:E — 1/z, 1 enclose (exp, Ly @ fﬁ(j))) , JE€nl

The output set has n more generators than the input set.

Under review as a conference paper at ICLR 2025

Proof. See appendix[C] O

Please note that the inverse function is only defined for positive inputs, which can, e.g., be ensured
through the enclosure of exp using (Singh et al, 2018}, Thm. 3.2). Computing good convex bounds
has extensively been discussed in the literature (Bonaert et al., 2021 [Wei et al.,[2023), and we defer
to their works for details on how to improve the bound computation. We found that, in practice, our
method works well as long as the dependencies between dimensions are sufficiently well preserved.

3.3 OUTPUT ENCLOSURE OF AN ATTENTION LAYER

The attention layer (@) evaluates the importance of tokens within a sequence to one another and
aggregates their embeddings accordingly. With the input being perturbed, this requires the multipli-
cation of sets and the resulting nonlinear dependencies need to be preserved for a tight enclosure.
Fortunately, this multiplication of sets is exact using polynomial zonotopes (TT)), which is the unique
advantage of our approach over related work. Please visit appendix [B] for a detailed discussion on
dependency-preserving operations and, in particular, see Fig. 4p for a comparison of our approach
with related work. Thus, we only induce outer approximations through the enclosure of the softmax
function.

Proposition 2 (Enclosure Attention). Given three sets Q,K C Rt 9ex Y C RV with go,gic,gy
generators, respectively, the output set of an attention layer @) is enclosed by

Viqx
where KT is computed by transposing the center and each generator of K. The output set has
O(gogxgy + t2gy) generators.

Proof. See appendix[C] O

T
L4 (Q,K,V) C enclose (Softmax, QK) V,

3.4 OUTPUT ENCLOSURE OF A MULTI-HEAD ATTENTION LAYER

The output enclosure of the attention heads (Prop. [2) is computed multiple times in parallel dur-
ing the verification of large language models (Fig. [I). Thus, after the output set of each attention
head is obtained, the preserved dependencies ensure that their aggregation can be computed without
inducing additional outer approximations:

Proposition 3 (Enclosure Multi-Head Attention). Given three sets Q, K,V C RXdmoa yith
go, i, gy generators, respectively, the output set of a multi-head attention layer (6)) is enclosed
by

LYHA (Q K, V) C [Hia - Hin), Wi

with Hy.; = enclose (Lgi, oW, KWK, VW,Xi) . ieln).
The output set has O(gogigy + ht?gy) generators.
Proof. See appendix[C] O

3.5 OUTPUT ENCLOSURE OF A LARGE LANGUAGE MODEL

After all enclosures of special layers appearing in a large language model are defined (Fig.[T), we can
put everything together and compute an enclosure of the output set of the entire model. In this work,
we consider a classifier model, as described in Sec. [I] Alg. [T]provides the pseudocode to verify the
classifier model having x transformer blocks with £ attention heads each, linear and normalization
layers in between, and a global pooling layer at the end to obtain the final classification. Please note
that our approach is general and can also be used for other architectures, as the enclosures do not
rely on a specific concatenation of the layers.

Alg. requires aset X C R¥¥dmoat a5 input; however, large language models have text as input. The
text is split into ¢ tokens and each token is mapped into an embedding space of dimension dpogel-
Thus, the input to the model is then given by

= Rthmudcl_ (13)

Under review as a conference paper at ICLR 2025

Algorithm 1 Enclosing the Output of a Large Language Model

Require: Large language model ® and input set X'. > Initialize input set
1: Ho+ X
2: for k € [x] do > Iterate over transformers
3: for i € [h] do > Iterate over attention heads
4 Hii + enclose (Lgi, Hk,lw,fi, Hi W, Hi 1 W);) > Atiention head (Prop. 2
5: end for —
6: ’Hk — [Hk 1] 1 > Aggregate attention heads (Prop. (3
7: H, — L,,C 1 (Hk 1@ 7-[) > Residual connection (@) and normalization (Lemma |l
8 Hy L'y (LACT (LL (H k))) > Regular neural network layers (Prop. |l
9: Hy — LN k.2 (Hk 1 H) > Residual connection (9) and normalization (Lemma |l

10: end for -

11: Y« LEN (LGP (7)) > Global Average Pooling (T0) + Linear (3)

12: return Output set Y O O(X)

To also enclose synonyms of the input text, we construct an {,-ball with radius ¢ € R, around z
as follows:

X = <£U, [GLl G1;2 s Gl;dmode] G2,1 s Gt;dmode]]g) []7 It'dmodcl>pz - RthmOdelv

e ifi=kandj=1I, (14)

0 otherwise, i,k €t], 4,1 € [dmodel],

with Gi,j(k,l) = {
Thus, the overall generator matrix G € R modei X (tdmoset) hag g = (t - dmodel) generators with
(initially) no dependencies between each other, as the exponent matrix is an identity matrix (Def. [2)).
This constructs a hypercube representing the ¢.,-ball around z, which is transformed to more com-
plex sets within a large language model, particularly within the attention layer (Fig. dp).

Please note that we use the same set H;_; for the query, key, and value in the attention layer
(Alg. [1] line), which allows us to simplify the number of generators derived in Prop. 2] Further,
we reasonably assume that ¢, diodel, b << gx. Thus,

Lemma 3. The number of generators of Hy, k € k], in Alg. is (’)(ggck).
Proof. See appendix[C] O

Reducing the number of generators. Although the number of transformer blocks « is typically
small, the direct computation of the output set) = H,, quickly becomes intractable. Thus, we want
to limit the number of generators to gmax € R by applying an order reduction method (Kochdumper
& Althoff}, 2020} Sec. II-E): The rapid growth stems from the matrix-set multiplications (I 1)) within
the attention layer (@), where the center and each generator of one set is multiplied with the cen-
ter and each generator of the other set. The multiplications of the generators result in higher-order
terms (see second example in appendix [B]), enabling the exact enclosure of the multiplication; how-
ever, many of these higher-order terms contribute only a little to the overall set and can be outer-
approximated by an interval without losing much precision (Kochdumper & Althoff} |2020} Sec. II-
B). Thus, we introduce a parameter pji, € R limiting the number of generators of the higher-order
terms relative to the dimension of the resulting set. We do not apply an order reduction on the lin-
ear terms resulting from the multiplication of the centers with each generator, respectively, as their
dependencies between attention heads have to be kept for a tight enclosure. Please note that setting
the error order pji,, = 1 results in an interval hull of all higher-order terms, which corresponds to the
approach in related work (Bonaert et al., 2021, Sec. 5.1); therefore, our approach is a direct gener-
alization of their approach. Additionally, we apply an additional order reduction after each residual
connection (Fig. [1)) such that the total number of generators does not exceed gmax € Ry. Thus,
we keep the nonlinear dependencies as long as possible and only apply relaxations when necessary.
Similar deferred relaxation techniques have also shown to be beneficial in other non-convex verifi-
cation approaches on standard neural networks (Wei et al.,|2023}; Ladner & Althoft, 2023}; [Fatnassi
et al., [2023).

Under review as a conference paper at ICLR 2025

Theorem 1 (Enclosure of Large Language Models). Given a large language model ® and an input
set X with gx generators, Alg. [I| computes an output set Y satisfying the problem statement
stated in Sec. The computational complexity is bounded by O (thdy dmodel Gmax)-

Proof. See appendix[C] O

4 EXPERIMENTAL RESULTS

We evaluate our approach on four large language models M;, ¢ € [4], trained from scratch for binary
classification. All hyperparameters and additional experiments are given in appendix [D] The first
two models are trained on the medial safety dataset (Abercrombie & Rieser}2022)), and the last two
models are trained on the Yelp dataset (Zhang et al., [2016)), We implemented our approach into the
Matlab toolbox CORA (Althoff] 2015). All computations were performed in a docker container on
an Intel® Core™ Gen. 11 i7-11800H CPU @2.30GHz with 64GB memory.

4.1 ON SYNONYM SENTENCE ENUMERATION AND FORMAL VERIFICATION

Let us first compare how our approach scales with the number of synonyms captured by the em-
bedding space compared to enumerating all synonym sentences. Fig. |3p shows that enumerating
all synonym sentences quickly becomes computationally infeasible, while our approach can capture
synonym sentences in a single verification query and guarantees safety in a few seconds. Please note
that reasonable sentences have many more synonyms as exemplary shown in Tab. |1} This sentence
from the medical safety dataset has 96 synonym words with more than 2 billion synonym sentences.

4.2 VERIFICATION RESULTS ON LARGE LANGUAGE MODELS

Let us now evaluate our verification approach and compare it to a state-of-the-art transformer veri-
fication approach based on zonotopes ((Bonaert et al.,|2021))) and naive interval bound propagation
((Jaulin et all 2001)). We show the tighter enclosure of a single attention head in Fig. [Bp, which
has to be attributed to the ability to compute the multiplication of two polynomial zonotopes ex-
actly at the cost of additional verification time. Further details on this unique advantage are
given in appendix [B]

This tighter enclosure allows us to verify the safety of much larger perturbed embedding spaces. We
present the averaged results of 20 sentences with up to 27 tokens of each dataset, respectively, in
Tab.[2] For each sentence, we perform a binary search to determine the largest input set that is still
verifiable with each approach, respectively, where we normalize the verified volume of the zonotope
baseline to 1. Our approach allows adaptively increasing the parameter pj, to compute tighter
enclosures and thus larger verified perturbed embedding spaces at the cost of additional computation
time. Please note that setting pim = 1 corresponds to the zontope approach and no nonlinear

Table 1: Synonyms contained in a perturbed embedding space for a verified example sentence.

Token #Synonyms Synonyms

dull 14 heavy, flat, uncomfortable, ...
chest 4 body, heart, ...

pain 1 ache

when 1 whenever

bending 16 turning, leaning, bowing, ...
in 6 at, into, within, ...

certain 12 specific, chosen, fixed, ...
directions 10 position, ways, angle, ...
and 1 besides

when 1 whenever

breathing 4 air, oxygen, ...

Under review as a conference paper at ICLR 2025

(a) (b)

20 T

,QE) 15 |- . - 0 N
= i
S 10 1 2
= £ 005 .
=
E 51 .
> —0.1 5

0 ‘ ‘ ‘ ‘ |

5 10 15 -0.3 —0.2 -0.1 0
Number of word synonyms hi,1)
| —— Enumeration —— Zonotope (Bonaert et al., 2021) —— Polynomial zonotope (ours)

Figure 3: (a) Comparison of the time needed to verify all synonym sentences by enumerating them
and a single verification query using our approach. (b) Enclosure comparison of a single attention
head @) with pj;, = oo.

Table 2: Comparison of verified embedding space with interval bound propagation (IBP), zono-
topes (Z,[Bonaert et al.[(2021))), and polynomial zonotopes (PZ, ours).

Model 1 Model 3
Verified Volume Time [s] Verified Volume Time [s]
Approach Mean Max. Mean Max.
IBP 0.00 0.00 0.02 0.00 0.00 0.02
Z (baseline) 1.00 1.00 6.90 1.00 1.00 5.97
PZ (piim = 2) 1,874.07 29,723.35 201.71 17,432.27 331, 146.39 170.71
PZ (piim = 5) | 2,993.96 46,621.47 283.55 | 80,593.07 1,531,038.79 228.33

dependencies are captured anymore. Further details on this tradeoff are given in appendix |[D|on two
more models.

5 RELATED WORK

This work continuous the progressive effort to formally verify neural networks in recent years (Brix
et al.,[2023): As neural networks are vulnerable to adversarial attacks (Goodfellow et al.,|2015)), for-
mally verifying them against input perturbations is of immense importance in safety-critical scenar-
ios. Neural network verifiers can generally be categorized into optimization-based verifiers Zhang
et al. (2018)); Katz et al.[|(2019); Henriksen & Lomuscio| (2020); Singh et al.|(2019) and approaches
using set-based computing (Gehr et al.| (2018]); Singh et al.| (2018]); Lopez et al.| (2023)); Kochdumper
et al.| (2023). Early approaches focused on computing the exact output set of neural networks with
ReLU activations, which has been shown to be NP-hard (Katz et al., [2017). Convex relaxations of
the problem (Singh et al., 2018; | Xu et al., [2020) and efficient branch-and-bound techniques (Wang
et al [2021) have shown to achieve impressive verification results (Brix et al.| [2023). Recently,
non-convex relaxations have also shown to be effective in this field of research (Kochdumper et al.,
2023 'Wang et al.,|2023}; |Ladner & Althoff} 2023; [Fatnassi et al., 2023} |Ortiz et al., [2023]).

While the robustness of large language models against adversarial prompts has been investi-
gated (Sun et al., 2024, Sec. 9), research on the non-existence of such prompts using formal ver-
ification is limited and, as in this work, only perturbations to the embedding space of the input of
large language models (Vaswani et al., 2017)) are considered: As with standard neural networks, |Shi
et al.| (2020) use linear bounds to verify the robustness with at most two perturbed words. This work
has been extended to the zonotope domain (Bonaert et al.,2021)), enabling the verification of longer
sentences with all words being perturbed. Other works also investigated finding better bounds of the
softmax function within transformers (Wei et al., 2023;|Shi et al., 2024). Recently, the importance of

Under review as a conference paper at ICLR 2025

carrying dependencies between each attention head and dimension has been stressed (Zhang et al.,
2024); however, they also apply convex relaxations in each step and thus lose precision at each
nonlinearity.

We also consider the problem of formally verifying graph neural networks (Sélzer & Lange, 2023)
as closely related, as many of the operations within these networks (Kipf & Welling, [2017)) also
appear in large language models (Vaswani et al., 2017)). Thus, progress in either domain also pro-
pels progress in the other. In graph neural networks, approaches consider problems with perturbed
input (Ziigner & Glinnemann, |[2019) and also perturbed graph structure (Bojchevski & Giinnemann),
2019; Jin et al., [2020; [Ladner et al., [2024).

6 LIMITATIONS

Our work relies on the implicit assumption that words with similar meanings have similar word
embeddings and are thus captured by constructing an ¢,-ball around the embedding of a given
word. While literature (Harris, |1954; L1 & Yang, |2018)) and our experiments suggest that this holds,
we cannot guarantee that we capture all synonyms. More advanced perturbations might also be
beneficial to capture more synonyms, e.g., by considering the superpositions of features in word
embeddings (?). It might also be necessary to add further perturbations after the model aggregated
meanings of multiple words through each attention block (Vaswani et al.| 2017, Appendix). For
example, by adding perturbations after each transformer block (Alg. [} lines [2| to [I0)), one might
capture the example sentence as a synonym of (I). Furthermore, our approach does not output
the original harmful prompt to the adversarial user prompt (Sec. [I). We can only say that there
might exist an area in the embedding space, which might contain a harmful prompt. Additionally,
this unsafe area might also not correspond to an actual synonym sentence as it is sparsely populated.
However, we would rather want to be safe than output harmful content.

Our approach continues the progressive efforts to formally verify large language models (Shi et al.,
2020; [Bonaert et al., 2021). However, all methods are not yet applicable to modern-size large lan-
guage models (Achiam et al.| 2024), where both high precision and low verification time are desir-
able. Our approach is a generalization of Bonaert et al.| (2021]) based on zonotopes, where a balance
between precision and speed is adaptively struck via the parameter p;,. Please note that the total
number of generators gm,x also limits the precision. Order reduction methods are more challenging
for polynomial zonotopes than for zonotopes due to the additional complexity in the set represen-
tation. Recently, an approach was made addressing this underexplored problem (Ladner & Althoff}
2024), and any improvement on this relatively new set representation also propels our approach.

It is also worth noting that we only verify the robustness of large language models against adversarial
prompts to fool classifier models; however, other model architectures and safety constraints are also
worth considering, e.g., jailbreaks (Wei et al., 2024} |Casper et al.,|[2023), to prevent outputting false
claims or exposing private data. We defer to (Sun et al., 2024, Ch. 7) for a more detailed discussion
on the safety aspects of large language models.

Please note that transformers are also used in other domains, e.g., computer vision (Bhojanapalli
et al. [2021; [Khan et al., 2022), and our verification approach can also be applied there as our
enclosures are defined per layer and do not rely on a specific model.

7 CONCLUSION

We present a novel approach to tightly enclose the output set of a large language model given a
perturbed input. This tight enclosure is realized using non-convex set-based computing based on
polynomial zonotopes, which allows one to efficiently preserve nonlinear dependencies. This preser-
vation of dependencies is particularly important for the verification of large language models, as the
transformers used within large language models repeatedly compute complex nonlinear functions in
parallel. The desired precision can be tuned with a single parameter at the cost of additional com-
putation time. These advantages of our approach are demonstrated by rigorous theoretical analysis
and experiments, where we can verify much larger embedding spaces than approaches developed
in related work. We believe this work is a significant step towards improving these models’ formal
safety.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Gavin Abercrombie and Verena Rieser. Risk-graded safety for jandling medical queries in conver-
sational Al. In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 12th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pp. 234-243, 2022.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, and et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2024.

Matthias Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification
for Continuous and Hybrid Systems, pp. 120-151, 2015.

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and An-
dreas Veit. Understanding robustness of transformers for image classification. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 10231-10241, 2021.

Christopher M. Bishop and Nasser M. Nasrabadi. Pattern recognition and machine learning, vol-
ume 4. 2006.

Aleksandar Bojchevski and Stephan Giinnemann. Certifiable robustness to graph perturbations. In
Advances in Neural Information Processing Systems, volume 32, 2019.

Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise cer-
tification of transformers. In Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, pp. 466—481, 2021.

Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verifi-
cation of neural networks competition (VNN-COMP 2023): Summary and results. arXiv preprint
arXiv:2312.16760, 2023.

Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish,
exploit: Red teaming language models from scratch. arXiv preprint arXiv:2306.09442, 2023.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, pp. 1-45, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop-
agation for neural networks using bernstein polynomial interval arithmetic. In Proceedings of
the 26th ACM International Conference on Hybrid Systems: Computation and Control, pp. 1-11,
2023.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar-
tin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpreta-
tion. In IEEE Symposium on Security and Privacy, pp. 3—18, 2018.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

Z. S. Harris. Distributional structure, 1954.

Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refine-
ment and adversarial search. In European Conference on Artificial Intelligence, volume 325, pp.
2513-2520, 2020.

Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem,
Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language
models through the lens of verification and validation. Artificial Intelligence Review, 57(7):175,
2024.

11

Under review as a conference paper at ICLR 2025

Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Interval analysis. 2001.

Hongwei Jin, Zhan Shi, Venkata J. S. A. Peruri, and Xinhua Zhang. Certified robustness of graph
convolution networks for graph classification under topological attacks. In Advances in Neural
Information Processing Systems, volume 33, pp. 8463—-8474, 2020.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An effi-
cient SMT solver for verifying deep neural networks. In International Conference on Computer
Aided Verification, pp. 97-117, 2017.

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zelji¢, David L. Dill, Mykel J. Kochenderfer,
and Clark Barret. The Marabou framework for verification and analysis of deep neural networks.
In International Conference on Computer Aided Verification, pp. 443-452, 2019.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. Transformers in vision: A survey. ACM Computing Surveys, 54(10s):1-41, 2022.

Jinhwa Kim, Ali Derakhshan, and Ian G. Harris. Robust safety classifier for large language models:
Adversarial prompt shield. arXiv preprint arXiv:2311.00172, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Niklas Kochdumper and Matthias Althoff. Sparse polynomial zonotopes: A novel set representation
for reachability analysis. In IEEE Transactions on Automatic Control, pp. 4043-4058, 2020.

Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stanley Bak. Open- and closed-loop
neural network verification using polynomial zonotopes. In NASA Formal Methods Symposium,
pp. 16-36, 2023.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 2018.

Tobias Ladner and Matthias Althoff. Automatic abstraction refinement in neural network verification
using sensitivity analysis. In Proceedings of the 26th ACM International Conference on Hybrid
Systems: Computation and Control, pp. 1-13, 2023.

Tobias Ladner and Matthias Althoff. Exponent relaxation of polynomial zonotopes and its applica-
tions in formal neural network verification. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 21304-21311, 2024.

Tobias Ladner, Michael Eichelbeck, and Matthias Althoff. Formal verification of graph convo-
lutional networks with uncertain node features and uncertain graph structure. arXiv preprint
arXiv:2404.15065, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Yang Li and Tao Yang. Word embedding for understanding natural language: a survey. Guide to big
data applications, pp. 83—104, 2018.

Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran, and Taylor T. Johnson. NNV 2.0: The
neural network verification tool. In International Conference on Computer Aided Verification, pp.
397-412, 2023.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards
understanding the role of over-parametrization in generalization of neural networks. In Interna-
tional Conference on Learning Representations, 2019.

Joshua Ortiz, Alyssa Vellucci, Justin Koeln, and Justin Ruths. Hybrid zonotopes exactly represent
ReLU neural networks. In 62nd IEEE Conference on Decision and Control (CDC), pp. 5351—
5357. 1IEEE, 2023.

12

Under review as a conference paper at ICLR 2025

Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema, Nur Mohammad
Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ahmad, Mohammed Eunus Ali, and
Sami Azam. A review on large language models: Architectures, applications, taxonomies, open
issues and challenges. IEEE Access, 2024.

Marco Silzer and Martin Lange. Fundamental limits in formal verification of message-passing
neural networks. In International Conference on Learning Representations, 2023.

Zhouxing Shi, Huan Zhang, Kai Wei Chang, Minlie Huang, and Cho Jui Hsieh. Robustness verifi-
cation for transformers. In International Conference on Learning Representations, 2020.

Zhouxing Shi, Qirui Jin, Zico Kolter, Suman Jana, Cho-Jui Hsieh, and Huan Zhang. Neural network
verification with branch-and-bound for general nonlinearities. arXiv preprint arXiv:2405.21063,
2024.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Piischel, and Martin Vechev. Fast and
effective robustness certification. Advances in Neural Information Processing Systems, 31, 2018.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. An abstract domain for cer-
tifying neural networks. In Proceedings of the ACM on Programming Languages, volume 3, pp.
1-30, 2019.

Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu, Qihui Zhang, Chujie Gao, Yixin Huang, Wen-
han Lyu, Yixuan Zhang, Xiner Li, et al. Trustllm: Trustworthiness in large language models.
arXiv preprint arXiv:2401.05561, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel. The
instruction hierarchy: Training LLMs to prioritize privileged instructions. arXiv preprint
arXiv:2404.13208, 2024.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. Advances in Neural Information Processing Systems, 34:29909-29921,
2021.

Yixuan Wang, Weichao Zhou, Jiameng Fan, Zhilu Wang, Jiajun Li, Xin Chen, Chao Huang, Wen-
chao Li, and Qi Zhu. Polar-express: Efficient and precise formal reachability analysis of neural-
network controlled systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2023.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does 1lm safety training
fail? Advances in Neural Information Processing Systems, 36, 2024.

Dennis Wei, Haoze Wu, Min Wu, Pin-Yu Chen, Clark Barrett, and Eitan Farchi. Convex bounds on
the softmax function with applications to robustness verification. In International Conference on
Artificial Intelligence and Statistics, pp. 6853-6878, 2023.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. arXiv preprint arXiv:2011.13824, 2020.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural net-
work robustness certification with general activation functions. In Advances in Neural Information
Processing Systems, volume 31, 2018.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification, 2016.

13

Under review as a conference paper at ICLR 2025

Yunruo Zhang, Lujia Shen, Shanqing Guo, and Shouling Ji. Galileo: General linear relaxation
framework for tightening robustness certification of transformers. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 21797-21805, 2024.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
Ye, Yue Zhang, Neil Zhengiang Gong, et al. Promptbench: Towards evaluating the robustness of
large language models on adversarial prompts. arXiv preprint arXiv:2306.04528, 2023.

Daniel Ziigner and Stephan Giinnemann. Certifiable robustness and robust training for graph con-
volutional networks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 246-256, 2019.

14

Under review as a conference paper at ICLR 2025

Appendix
The appendix is structured as follows:

* A discussion about the modified layer normalization is given in appendix [A]

* A more detailed explanation of (matrix) polynomial zonotopes and dependency preserva-
tion is given in appendix B}

* All proofs are given in appendix [C]

* Finally, we list all hyperparameters of the considered models and provide additional exper-
iments in appendix

A LAYER NORMALIZATION DISCUSSION

We use a modified equation of the layer normalization in our models (7). The original equa-
tion (Lei Ba et al.l 2016) is given by

LEN (hk—1> = g © (hk—l - Bk—l) + B (15)

with the only difference being the division by the standard deviation o € R of the input hj_1.
This change was proposed by (Shi et al., [2020, Appendix E) to ease verification and was also used
by Bonaert et al.|(2021). The issue with the division by the standard deviation is that as the input is
a set Hy_1, also the standard deviation is a set containing the standard deviation for each point in
Hjy.—1. Thus, the division by o in (T3) is in general very outer-approximative, which heavily reduces
the verifiability. The argument for the modified layer normalization (7)) is that it does not penalize
the accuracy of the obtained model (Shi et al., |2020, Tab. 5) but greatly increases the verifiability.
We want to stress that designing network architectures with formal verification in mind is a motion
we strongly support. However, it appears that even a model without any normalization has a similar
accuracy in their evaluation, which raises the question of whether layer normalization is necessary
at all. Thus, the influence of this modification must be further investigated, especially for larger
models. If the original layer normalization (I3)) turns out to be beneficial, a similar technique as the
one described for the softmax layer (Lemma [2) can be applied, as a division by a set also appears
there.

B ON POLYNOMIAL ZONOTOPES

Polynomial zonotopes are effectively a compact representation of a polynomial in high-dimensional
space. Let us recall the definition of a matrix polynomial zonotope:

Definition 2 (Matrix Polynomial Zonotopes (Ladner et al., [2024] Def. 9)). Given an offset C' €
R"™*™ dependent generators G € R™ ™ *" with h dependent generators, independent generators
G € R"*™*% with q independent generators, and an exponent matrix E € Nf *M \vith an identifier
id e N’ﬂ a matrix polynomial zonotope PZ = (C,G,G1, E) p,, is defined as

h P q
PZ2=(C.G,G1,E)p, ={C+ Y _ <H af“’”) Gy + Y BiGr(g) | o B5 € [-1,1]
i=1 \k=1 j=1

We chose to use the matrix variant over the regular one (Kochdumper & Althoff] |2020), as trans-
formers mainly operate on matrices and not on vectors. In this section, we only use regular polyno-
mial zonotopes for easier notation, where the center and each generator is in R™ rather than R"™*™.
Any properties derived in this section also hold for the matrix variant. Let us construct a simple
one-dimensional polynomial zonotope describing the interval [—1, 1]:

PZ=(0,1,[],1)p, ={0+aj 1|1 €[-1,1]} =[-1,1]. (16)

’The identifier vector id is used to maintain dependencies of the factors oy, between sets.

15

Under review as a conference paper at ICLR 2025

(@) ()
T 20
1 [|
10 |- N
5 0.5 1 5
O [|
O [.
| | | | | _10 | |
-1 -0.5 0 0.5 1 —10 0 10 20
T(1) T(1)
—PZ —7I S=Z=PZ — 2%(Bonaertetallp02l) —F -7z (Ours)

Figure 4: Visualization of preserved dependencies using polynomial zonotopes in appendix [B}
a) Between individual sets and b) a comparison of our approach with the state-of-the-art transformer
verification approach.

Computing PZ? = {22 | 2 € PZ} would then simply be:
P2 =(0,1,[1,2)p, ={0+ai 1]y €[-1,1]} =[0,1]. (17)

One advantage of polynomial zonotopes is that they can carry nonlinear dependencies and thus
represent non-convex sets. The Cartesian product of these two sets is:

)= (i) o o), =gl et et [

More formally, given two polynomial zonotopes PZ; = <01, [51 G1],Gr 1, [E E1]> and
PZ

PZ, = <02, [62 Ga], G2, [E E2]>PZ with partially shared exponent matrices and a common

o € [—1,1]}. (18)

identifier vector, their Cartesian product (Kochdumper et al., 2023, Eq. 7) is computed by

PZy x P2y = [ﬁg] = {[ij

_/fa] [Gi Gi 0 Grap O ~
()8 S el (% e m)

1 € PZq, x5 € PZQ}
(19)

where a common identifier vector intuitively means that both sets use the same oy, in Def. 2] If
the identifier vector is not identical, the exponent matrices of both sets have to be extended ac-
cordingly (Kochdumper & Althoff, 2020, Prop. 1). Both PZ = PZ x Pz? (T8) and the set
7 := [-1,1] x [0, 1], where those dependencies are not considered, are shown in Fig. . Clearly,
the preserved dependencies allow us to compute the considered operations without inducing any
outer approximation. Thus, PZ C 7 holds. Analogous reasoning also holds for the computation of
the Minkowski sum (9).

Another crucial operation when verifying large language models is the multiplication of two sets,
as as this operation is executed throughout the entire model once the inputs are uncertain, e.g.,
within one attention head @). To illustrate the advantage of polynomial zonotopes over zonotopes
as was used in related work (Bonaert et al., [2021}), which work identically except they do not have
an exponent matrix to store the nonlinear dependencies, consider the following set:

I R N

16

Under review as a conference paper at ICLR 2025

The multiplications of two high-dimensional sets is generally referred to as the quadratic
map (Kochdumper & Althoff, 2020, Def. 6). We consider a special case here and want to com-

pute:
& ={ {fﬁn}
Y@

Using the method to compute precise bounds from (Bonaert et al., 2021, Thm. 5) on zonotopes, we

obtain
2. /|5 4 —4 3 0
2= (-l 708,

On the other hand, using polynomial zonotopes (Kochdumper & Althoff] 2020, Prop. 12) results in

_» A4 -4 1 1 -2 10201
Pz :Z<M’L 4011 2}7”?{0 10 2 J>pé (23)

Fe 3} @1)

-~ —2 ~.
without inducing any outer approximation. Thus, S> = PZ C Z2 holds. As shown in Fig. E}, the
outer approximation using zonotopes can be quite significant — even for this toy example, let alone
when applied multiple times within a large language model. In particular, the last three generators of

P22 are outer-approximated with interval bounds in 22 (Bonaert et al., 2021, Thm. 5). However,
these three generators are required to capture the non-convexity of the output set and this non-
convexity is thus lost using the interval bounds. The matrix multiplications on sets stated in (TT]) are
computed analogously using the quadratic map, and thus have the same issues if the dependencies
are not preserved.

C PROOFS

We include all proofs from the main body in this section in the order of appearance.

Lemma 1 (Enclosure Layer Normalization). Given an input set Hj,_1 C R™ =1, the output set of a
layer normalization layer (/) is given by

Ly (Hy—1) = diag (7) - (Hr—1 & (=Ynir - Hi1)) + B

Proof. The exact computation follows directly from (T0) and (9). O
Lemma 2 (Enclosure Softmax). Given an input set L C R", the output set of the softmax func-
tion is enclosed by

softmax (£) ;) € enclose (2 + 1z, 1 enclose (exp, L D —L(j)). Jj € [n].

The output set has n more generators than the input set.

Proof. The enclosure follows directly from Prop. [[]and (I0). While each enclosure operation adds
n generators to the set for each approximation error of the n dimensions, these are aligned and can
be summed up, resulting in n generators. O

Proposition 2 (Enclosure Attention). Given three sets Q,K C R 9ex Y < RV with go,gic,gy
generators, respectively, the output set of an attention layer {@) is enclosed by

T
L4 (Q,K,V) C enclose (Softmax, oK > V,

\/dQK

where KT is computed by transposing the center and each generator of K. The output set has
O(gogrgy + t2 gy) generators.

Proof. The statement follows directly from (T1), (I0), Lemma 2] and (I9). The number of gen-
erators also follows from (TI) and the multiple applications of Lemma [2] on the softmax function,
which is applied for each of the ¢ rows individually, each having ¢ entries. Thus, the term gogx gy
corresponds to the set approximating the output and ¢2gy, corresponds to the approximation error
of this layer. Please note that for a tight enclosure, it is crucial that the dependencies of the sets
obtained by the rowwise application of the softmax function are preserved while stacking them back
together using the Cartesian product, as described in appendix [B] (19). [

17

Under review as a conference paper at ICLR 2025

Proposition 3 (Enclosure Multi-Head Attention). Given three sets Q,KC,V C Rt*dmd yith
9o, gk, gy generators, respectively, the output set of a multi-head attention layer (0)) is enclosed

by
LYHA (Q K, V) C [Hia .. Hinl, Wi
with Hy.; = enclose (Lf;, QW2 KWL VWY,), i€ [h].
The output set has O(gogicgy + ht?gy) generators.

Proof. The concatenation |[. . .], is computed using the Cartesian product (T9), the remainder follows
from Prop. 2] and (I0). The number of generators follows directly from the enclosure of the h
attention heads (Prop. [2), where only the approximation error is treated independently during the
concatenation (T9). Thus, the term gogx gy again corresponds to the set approximating the output
and ht2gy corresponds to the approximation error of this layer. [

Lemma 3. The number of generators of Hy, k € k], in Alg. is O(g}k).

Proof. We show this proof by induction:

Induction base k = 0: Ho = X. The statement follows trivially as (’)(ggco) = O(gx).

Induction hypothesis: Let the statement now hold for an arbitrary &k € [k].

Induction step k + 1: Let Hyy1 have O(gy;,,,) generators. Please not that the regular layers
in line [§] add at most one generator per neuron due to the activation layer (Prop. [I), which are
t - dmodel € O(g3,,,)- Thus, as the normalization layer is exact (Lemma and the sets added the

residual connections essentially share the same exponent matrix @]) also Hy1, ﬁkﬂ and Hy41
have O(g3,) generators, respectively. Then, using Prop. (3| and the assumption ¢, dmodet, b < gx»
we can derive that H;, has to have O(¢/gx,_) generators. From our induction hypothesis, we

also know that H, has O(gf’:) generators. Thus, Hx41 has 0((g§f)3) = 0(9/3,:'3) = O(g%ékH))
generators, which proves the statement. O

Theorem 1 (Enclosure of Large Language Models). Given a large language model ® and an input
set X with gx generators, Alg. |l| computes an output set) satisfying the problem statement
stated in Sec. The computational complexity is bounded by O (thdy dmodel Gmax)-

Proof. The computation of) is sound, as each step in Alg. [I]is outer-approximative (Lemma [T}
Prop. 2} Prop. 3l (10D, and (@)). The number of generators of all sets is bounded by gmax. The
overall computational complexity then follows from the largest matrix multiplication on the largest
sets (I0), which is given by aggregation of the attention heads given in line [6}

t X hdy X hdy X dmodel
——— —_———

Dimensions of concatenated H,, ;, Dimensios of aggregation matrix W;:‘
)

This matrix multiplication is applied to each generator (I0), which are bounded by gmax. As this
bound can already be reached in any of the x transformer blocks, this computation is done at most
k times. Thus. the final computational complexity is given by O(thdy dmodel * gmax * K)- O

D ADDITIONAL EXPERIMENTS

In this section, we state further experiments and give all details about the dataset and our models. The
medical safety dataset (Abercrombie & Rieser, [2022) is a small written English dataset consisting
of risk-graded medical and non-medical queries that we split in 2, 187 training, 365 validation, and
365 test samples. We collapse the risk-levels into one class to enable binary text classification.
The Yelp dataset (Zhang et al., 2016)) consists of review texts, where we partition the dataset into
40,000/20, 000 training, 4,000/2, 000 validation, and 1, 600/800 testing samples, respectively. We
train both datasets for binary classification referring to the labels as positive and negative. The
positive label in the medical safety dataset refers to a valid medical query, while it refers to a positive
review in the Yelp dataset. We use a BERT tokenizer (Devlin, 2018) to compute the mapping from
the textual input to token identifier that we pass then to our model. Tab. [3] summarizes the used
hyperparameters. All computations were performed in a docker container on an Intel® Core™ Gen.
11i7-11800H CPU @2.30GHz with 64GB memory.

18

Under review as a conference paper at ICLR 2025

Table 3: Hyperparameters for considered models.

Name Variable Modell Model2 Model3 Model 4
Dataset - Medical ~Medical Yelp Yelp
Max. #tokens/sentence during verification t 21 21 27 27
Embedding dimension of model Aimodel 8 8 8 8
Number of transformer blocks K 2 1 2 1
Number of attention heads h 2 1 2 1
Embedding dimension for query and key matrices dgx 4 8 4 4
Embedding dimension for value matrix dy 4 8 4 4
Maximum number of generators (order reduction) gmax 1000 4000 1000 4000

Table 4: Comparison of verified embedding space with interval bound propagation (IBP), zono-
topes (Z,[Bonaert et al.|(2021))), and polynomial zonotopes (PZ, ours).

Model 2 Model 4
Verified Volume Time [s] Verified Volume Time [s]

Approach Mean Max. Mean Max.
IBP 0.00 0.00 0.01 0.00 0.00 0.01
Z (baseline) 1.00 1.00 0.76 1.00 1.00 0.54
PZ (piim = 2) 1.77 3.50 5.80 2.29 4.23 4.70
PZ (piim = 5) 2.16 3.83 11.16 3.51 9.61 9.26
PZ (piim = 10) 2.37 4.53 14.23 4.13 12.63 11.59
PZ (piim = 20) 2.66 5.35 18.67 5.35 20.34 14.53
PZ (piim = 50) 3.20 7.47 27.56 8.00 37.46 21.35
PZ (piim = 100) 4.09 11.33 36.94 11.62 64.37 29.50
PZ (piim = 200) 10.76 42.64 32.21 55.90 452.41 28.88
PZ (piim = 500) 18.60 89.44 31.13 | 123.62 1,406.54 26.36
PZ (pim = 1000) | 28.79 158.75 31.16 | 137.41 1,606.65 26.83

Finally, we state the verification results on the second model of each dataset. For these models,
we show the influence of the parameter pji, on the verified volume of the embedding space and
the verification time in Tab.[d] As pyn, increases, the verified volume increases as well at the cost of
additional computation time. This can be done until the order reduction due to the maximum number
of generators gn,x counteracts this advantage; thus, the outer-approximation induced by this order
reduction becomes larger than the benefit of computing more precise enclosures. The parameter
Jmax 18 determined by the memory constraints of the machine running the verification. We decided
to show the mean and maximum verified volume instead of the standard deviation as this data is
not normally distributed on this datasets with varying sentence lengths, and thus this statistic does
not have a meaningful interpretation. Please note that setting p;i, = 1 corresponds the approach
where no nonlinear dependencies are preserved as all higher-order terms are outer-approximated by
an interval. Thus, we can always fall back to the approach by|Bonaert et al.|(202 1)) and our approach
is thus at least as good as theirs.

19

	Introduction
	Background
	Notation
	Neural Networks
	Set-Based Computing
	Neural Network Verification
	Problem Statement

	Non-Convex Dependency-Preserving LLM Verification
	Output Enclosure of a Layer Normalization Layer
	Output Enclosure of the Softmax Function
	Output Enclosure of an Attention Layer
	Output Enclosure of a Multi-Head Attention Layer
	Output Enclosure of a Large Language Model

	Experimental Results
	On Synonym Sentence Enumeration and Formal Verification
	Verification Results on Large Language Models

	Related Work
	Limitations
	Conclusion
	Layer Normalization Discussion
	On Polynomial Zonotopes
	Proofs
	Additional Experiments

