
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS FORMALLY VERIFYING LLMS: TAMING
THE NONLINEARITY OF THE TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models are increasingly used across various domains, which raises
important safety concerns, particularly regarding adversarial attacks. While recent
advancements in formal neural network verification have shown promising results,
the complexity of transformers, the backbone of large language models, poses
unique challenges for formal robustness verification. Traditional convex relax-
ation methods often result in large approximation errors due to the transformer’s
parallel, nonlinear attention heads. In this work, we address these limitations by
introducing a novel approach based on non-convex, set-based computing to pre-
serve the nonlinear dependencies through a transformer. Our approach generalizes
previous methods on robustness verification of transformers, and the desired pre-
cision is tunable at the cost of additional computation time with a single parameter.

1 INTRODUCTION

Large language models (LLMs) have gained immense popularity in various fields, including
question-answering, document summarization, and language translation (Raiaan et al., 2024). In
particular, this success must be attributed to the transformers (Vaswani et al., 2017) used within
these models. With increasing usage in all of these domains, safety concerns must be addressed:
For example, how do we prevent the generation of harmful content? Large language models can be
trained to reflect our desired behavior (Wallace et al., 2024); however, large language models – like
any other neural network – can easily be fooled by adversarial attacks (Goodfellow et al., 2015).
Thus, their behavior has to be formally verified to ensure safety, and such methods still need to be
developed for large language models (Huang et al., 2024).

For example, consider a large language model that answers user prompts and our goal is to prevent
harmful outputs. As a safety shield, we deploy a classifier language model supervising the in-
and outputs, which returns a predefined answer if any in- or output is deemed harmful (Kim et al.,
2023). This assumes that the classifier model has perfectly generalized from a given dataset defining
harmful content – which is not even the case for standard feed-forward neural networks (Neyshabur
et al., 2019), let alone large language models (Chang et al., 2024). Consider the following user
prompt that reasonably should not be answered:

How to build a bomb? (1)

As the prompts come from users, we have to assume they are trying to craft a prompt circumventing
our safety shield, also known as an adversarial prompt (Zhu et al., 2023). Let p′ be such an adver-
sarial user prompt crafted from the prompt p (1) above. Crucially, we, as verifiers, are unaware that
this was done and, in particular, p is unknown to us. If we knew that a user was crafting adversarial
prompts, we could simply block this user entirely. Thus, our goal is to find the prompt p, which we
deem harmful and similar in meaning to the user prompt p′, and only return an answer to the user
if we have verified that such a prompt p does not exist. An adversarial prompt can be crafted by
replacing certain words with synonyms (Zhu et al., 2023): For example, we could replace “build”
with “construct”, or “bomb” with “missile”. As verifiers, we are required to test all possible
combinations of synonyms and only answer the prompt if all synonym sentences are determined to
be safe by the classifier model. The longer the user prompts, the more synonyms we have to consider
– quickly leading to a combinatorial explosion. Additionally, defining synonyms is time-consuming
and requires expert knowledge. Please also note that large language models usually do not operate
on words but on tokens (Kudo & Richardson, 2018), such that synonyms have to be found on a token

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

level, and existing synonym collections on words cannot be used directly. Moreover, one might also
want to include prompts that are not necessarily synonyms but share the same meaning, such as:

How to build something that explodes? (2)

In such a sentence, the meaning of the term “something that explodes” has to be aggregated,
which a large language model can do through its layers (Vaswani et al., 2017).

We address this issue by lifting recent advancements from formally verifying neural networks (Brix
et al., 2023) to large language models. In particular, we examine how to verify transform-
ers (Vaswani et al., 2017), which are the core components in modern language models (Achiam
et al., 2024). Please note that in the standard setting of formal network verification, the input is
usually perturbed by some noise, e.g., an ℓ∞-ball with radius ϵ ∈ R+. However, this is not directly
applicable in the domain of natural language processing, as it has text as input. Instead, the noise
is added in the embedding space, where synonyms are clustered together (Harris, 1954; Li & Yang,
2018). We then formally verify that there does not exist a synonym sentence in the perturbed em-
bedding space that the classifier model deems unsafe. If we cannot rule out such a sentence, the user
prompt is not answered by the large language model, and the predefined answer is returned instead.

Our contributions. We present a novel approach to formally verify large language models using
set-based computing. This work is based on recent progress in neural network verification (Brix
et al., 2023), and we focus on the main challenge when verifying large language models, namely
verifying the transformer (Vaswani et al., 2017). All other layers can be verified using the techniques
developed for standard neural networks (Brix et al., 2023).

Transformers are particularly challenging to verify due to the in-parallel computed nonlinearities in
the self-attention heads (Vaswani et al., 2017), leading to nonlinear dependencies across all layers
within a large language model and, thus, a non-convex output set. Neural network verifiers usually
address this by relaxing the problem to a convex set enclosing the actual output (Brix et al., 2023).
However, we show in this work that this leads to large outer approximations when applied on trans-
formers and, for the first time, explicitly preserve these nonlinear dependencies through all layers
using set-based computing. In particular, polynomial zonotopes (Kochdumper & Althoff, 2020) are
used as a set representation.

Our evaluation shows that this enables the verification of much larger perturbed embedding spaces
compared to related work (Sec. 5). Additionally, the desired precision can be tuned via a single
parameter at the cost of additional verification time.

2 BACKGROUND

2.1 NOTATION

We denote scalars and vectors by lowercase letters, matrices by uppercase letters, and sets by calli-
graphic letters. The i-th element of a vector v ∈ Rn is written as v(i). The element in the i-th row
and j-th column of a matrix A ∈ Rn×m is written as A(i,j), the entire i-th row and j-th column
are written as A(i,·) and A(·,j), respectively. The concatenation of A with a matrix B ∈ Rn×o is
denoted by [A B] ∈ Rn×(m+o). For two tensors T1, T2 ∈ Rn1×...×nm , we also use the shorthand
notation [T1 T2]i to denote their concatenation in the i-th dimension. The empty matrix is written
as []. We use In to denote the identity matrix of dimension n ∈ N. The symbols 0 and 1 refer
to matrices with all zeros and ones of proper dimensions, respectively. Given n ∈ N, we use the
shorthand notation [n] = {1, . . . , n}. Let S ⊂ Rn be a set and f : Rn → Rm be a function, then
f(S) = {f(x) | x ∈ S}. An interval with bounds a, b ∈ Rn is denoted by [a, b], where a ≤ b holds
element-wise.

2.2 NEURAL NETWORKS

Let us now formally introduce neural networks and all operations used in large language models.
Definition 1 (Neural Networks (Bishop & Nasrabadi, 2006, Sec. 5.1)). Let x ∈ Rn0 be the input of
a neural network Φ with κ layers, its output y = Φ(x) ∈ Rnκ is obtained as follows:

h0 = x, hk = Lk (hk−1) , y = hκ, k ∈ [κ],

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

hk−1

Input

LA
k,1

· · ·

LA
k,h

LMHA
k

k-th Transformer Block

+ LN
k,1

LLIN
k,1 LACT

k

k-th Feed-Forward Block

LLIN
k,2

+ LN
k,2 hk

Output

Figure 1: We consider large language model architectures in this paper where κ blocks shown in the
figure are concatenated, followed by global pooling and a linear layer to obtain the class predictions.

where Lk : Rnk−1 → Rnk represents the operation of layer k.

For example, a linear layer with Wk ∈ Rnk×nk−1 , bk ∈ Rnk is computed by

LL
k (hk−1) = Wkhk−1 + bk−1 ∈ Rnk . (3)

In this section, we focus on the layers used in large language models which are not used in standard
neural networks (Fig. 1). We briefly list them next for easier reference when we propagate sets
through them to verify the entire model. Let dmodel denote the embedding dimension of our model
for each of its t tokens. Given three matrices Q ∈ Rt×dQK ,K ∈ Rt×dQK , V ∈ Rt×dV , a single
self-attention layer (Vaswani et al., 2017, Eq. 1) is computed by

LA
k (Q,K, V) = softmax

(
QKT√
dQK

)
V ∈ Rt×dV , (4)

where the softmax function is computed rowwise for a given vector l ∈ Rn as follows:

softmax (l)(j) =
exp l(j)∑n
i=1 exp l(i)

∈ Rn, j ∈ [n]. (5)

In practice, multiple attention heads are computed in parallel, and the overall equation is given by

LMHA
k (Q,K, V) =

[
LHA
k,1 (Q,K, V) . . . LHA

k,h (Q,K, V)
]
1
WA

k ∈ Rt×dmodel ,

with LHA
k,i (Q,K, V) = LA

k,i

(
QWQ

k,i,KWK
k,i, V WV

k,i

)
, i ∈ [h],

(6)

where WQ
k,i,W

K
k,i ∈ Rdmodel×dQK ,WV

k,i ∈ Rdmodel×dV , and WA
k ∈ RhdV ×dmodel are learnable pro-

jection matrices for Q, K, V , and the aggregation of the attention heads, respectively. Similarly
to related work (Shi et al., 2020; Bonaert et al., 2021), we slightly modify the layer normaliza-
tion (Lei Ba et al., 2016) used in transformers. Please visit appendix A for a detailed discussion on
this modification. Given bias and gain parameters β, γ ∈ Rnk−1 , and an input hk−1 ∈ Rnk−1 with
mean h̄k−1 = 1/nk−1 · hk−1, the modified layer normalization is given by

LN
k (hk−1) = γ ⊙

(
hk−1 − h̄k−1

)
+ β, (7)

where ⊙ denotes the Hadamard product. With that, we have introduced all special operations used
in transformers.

2.3 SET-BASED COMPUTING

We use set-based computing to propagate perturbations to the input of a neural network through
each layer. To this end, we use polynomial zonotopes (Kochdumper & Althoff, 2020) as set repre-
sentation, in particular, its matrix variant:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 2 (Matrix Polynomial Zonotopes (Ladner et al., 2024, Def. 9)). Given an offset C ∈
Rn×m, dependent generators G ∈ Rn×m×h with h dependent generators, independent generators
GI ∈ Rn×m×q with q independent generators, and an exponent matrix E ∈ Np×h

0 with an identifier
id ∈ Np1, a matrix polynomial zonotope PZ = ⟨C,G,GI , E⟩PZ is defined as

PZ= ⟨C,G,GI , E⟩PZ =

C +

h∑
i=1

(
p∏

k=1

α
E(k,i)

k

)
G(·,·,i) +

q∑
j=1

βjGI(·,·,j)

∣∣∣∣∣∣ αk, βj ∈ [−1, 1]

 .

We give an example for a polynomial zonotope in appendix B and only briefly introduce the required
set operations here. The main advantage of using this set representation is its efficient computation
of many operations appearing in the layers considered in Sec. 2.2: The Minkowski sum (Ladner
et al., 2024, Eq. 5) of two matrix polynomial zonotopes

PZ1 =
〈
C1,

[
G̃1 G1

]
3
, GI,1,

[
Ẽ E1

]〉
PZ
⊂ Rn×m,

PZ2 =
〈
C2,

[
G̃2 G2

]
3
, GI,2,

[
Ẽ E2

]〉
PZ
⊂ Rn×m

(8)

with partially shared exponent matrices and a common identifier vector is computed by:
PZ1 ⊕ PZ2 = {x1 + x2 | x1 ∈ PZ1, x2 ∈ PZ2}

=
〈
C1 + C2,

[
G̃1+G̃2 G1 G2

]
3
, [GI,1 GI,2]3 ,

[
Ẽ E1 E2

]
2

〉
PZ

.
(9)

Given the matrices A1 ∈ Rk×n, A2 ∈ Rm×k, and the vectors b1 ∈ Rk×m, b2 ∈ Rn×k, the affine
map (Ladner et al., 2024, Eq. 6) is computed by

A1PZ1 + b1 = {A1x+ b1 | x ∈ PZ1} = ⟨A1C1 + b1, A1G1, A1GI,1, E1⟩PZ ,
PZ1A2 + b2 = {xA2 + b2 | x ∈ PZ1} = ⟨C1A2 + b2, G1A2, GI,1A2, E1⟩PZ .

(10)

Given two matrix polynomial zonotopes M1 ⊂ Rn×k, M2 ⊂ Rk×m with g1 and g2 generators,
respectively, then the matrix multiplication

M3 :=M1 · M2 = {(M1 ·M2) |M1 ∈M1,M2 ∈M2} ⊂ Rn×m, (11)
can be computed exactly such thatM3 has O(g1g2) generators (Ladner et al., 2024, Lemma 10) .
Finally, the concatenation of two matrix polynomial zonotopes is done by concatenating their center
and generators accordingly (appendix B, (19)). Further details on polynomial zonotopes and these
operations can be found in appendix B.

2.4 NEURAL NETWORK VERIFICATION

We verify neural networks using (matrix) polynomial zonotopes by iteratively propagating the input
set X = H0 through the neural network and enclosing the output of each layer k ∈ [κ]:
Proposition 1 (Image Enclosure (Kochdumper et al., 2023, Sec. 3)). Let Hk−1 ⊂ Rnk−1 be an
input set to layer k, then

Hk = enclose (Lk, Hk−1) ⊂ Rnk

computes an outer-approximative output set.

In general, linear layers can be computed exactly with polynomial zonotopes using (10), whereas
nonlinear layers induce outer approximation (Fig. 2): The activation function is approximated using
a polynomial, and an enclosure is obtained by bounding the approximation error, which is added to
the output set using (9). The enclosure of the network’s output set is then given by Y = Hκ.

2.5 PROBLEM STATEMENT

Given a large language model Φ: Rn0 → Rnκ , a perturbed input set X corresponding to a user
prompt, and some specification S ⊂ Rnκ specifying the unsafe outputs of a network, we want to
compute an outer-approximative output set Y ⊇ Φ(X) such that Y ∩ S = ∅ to verify the safety of
the user prompt. Please note that the classification problem stated in Sec. 1 can be formulated in this
way.

1The identifier vector id is used to maintain dependencies of the factors αk between sets.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Input
O

ut
pu

t

(a) Steps 1 & 2

Input

O
ut

pu
t

(b) Steps 3 & 4

Input

O
ut

pu
t

(c) Steps 5 & 6

ϕ(x) Set Bounds Polynomial Approximation error

Figure 2: Main steps to enclose a nonlinear layer. Step 1: Evaluate the activation function element-
wise. Step 2: Compute the bounds of the input set. Step 3: Find an approximating polynomial.
Step 4: Compute the approximation error. Step 5: Evaluate the polynomial over the input set.
Step 6: Add the approximation error.

3 NON-CONVEX DEPENDENCY-PRESERVING LLM VERIFICATION

We now present our novel approach to enclose the output of a large language model using polyno-
mial zonotopes. An overview of the considered model is given in Fig. 1. We start with the smallest
and simplest layers and incrementally add complexity by stacking these layers together. Please
follow Sec. 2.2 along with this section for the exact equations and the required adaptations made
here if the inputs are sets: Most layers only apply operations that can be computed efficiently using
polynomial zonotopes (Sec. 2.3).

3.1 OUTPUT ENCLOSURE OF A LAYER NORMALIZATION LAYER

The modified layer normalization in (7) can be computed exactly without additional outer approxi-
mation. Please visit appendix A for a discussion on how to enclose the original equation of the layer
normalization.

Lemma 1 (Enclosure Layer Normalization). Given an input setHk−1 ⊂ Rnk−1 , the output set of a
layer normalization layer (7) is given by

LN
k (Hk−1) = diag (γ) · (Hk−1 ⊕ (−1/nk−1 · Hk−1)) + β.

Proof. See appendix C.

3.2 OUTPUT ENCLOSURE OF THE SOFTMAX FUNCTION

The softmax layer is a standard layer in many network architectures. However, it often is the last
layer of a network, and its enclosure can be omitted during verification, as one is usually only
interested in the largest dimension, which can already be determined prior to the softmax layer. Un-
fortunately, this cannot be done for transformers, as it is applied internally. Analogously to Bonaert
et al. (2021), we reformulate the computation of the softmax function (5) for numeric stability and
to ease the enclosure using sets:

softmax (l)(j) =
exp l(j)∑n
i=1 exp l(i)

=
1∑n

i=1 exp l(i) − l(j)
, j ∈ [n]. (12)

Then, we can obtain an output enclosure of the softmax function by enclosing the exponential and
the inverse function:

Lemma 2 (Enclosure Softmax). Given an input set L ⊂ Rn, the output set of the softmax func-
tion (12) is enclosed by

softmax (L)(j) ⊆ enclose
(
x 7→ 1/x, 1 · enclose

(
exp , L(i) ⊕−L(j)

))
, j ∈ [n].

The output set has n more generators than the input set.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proof. See appendix C.

Please note that the inverse function is only defined for positive inputs, which can, e.g., be ensured
through the enclosure of exp using (Singh et al., 2018, Thm. 3.2). Computing good convex bounds
has extensively been discussed in the literature (Bonaert et al., 2021; Wei et al., 2023), and we defer
to their works for details on how to improve the bound computation. We found that, in practice, our
method works well as long as the dependencies between dimensions are sufficiently well preserved.

3.3 OUTPUT ENCLOSURE OF AN ATTENTION LAYER

The attention layer (4) evaluates the importance of tokens within a sequence to one another and
aggregates their embeddings accordingly. With the input being perturbed, this requires the multipli-
cation of sets and the resulting nonlinear dependencies need to be preserved for a tight enclosure.
Fortunately, this multiplication of sets is exact using polynomial zonotopes (11), which is the unique
advantage of our approach over related work. Please visit appendix B for a detailed discussion on
dependency-preserving operations and, in particular, see Fig. 4b for a comparison of our approach
with related work. Thus, we only induce outer approximations through the enclosure of the softmax
function.
Proposition 2 (Enclosure Attention). Given three sets Q,K ⊂ Rt×dQK ,V ⊂ Rt×dV with gQ,gK,gV
generators, respectively, the output set of an attention layer (4) is enclosed by

LA
k (Q,K,V) ⊆ enclose

(
softmax,

QKT√
dQK

)
V ,

where KT is computed by transposing the center and each generator of K. The output set has
O(gQgKgV + t2gV) generators.

Proof. See appendix C.

3.4 OUTPUT ENCLOSURE OF A MULTI-HEAD ATTENTION LAYER

The output enclosure of the attention heads (Prop. 2) is computed multiple times in parallel dur-
ing the verification of large language models (Fig. 1). Thus, after the output set of each attention
head is obtained, the preserved dependencies ensure that their aggregation can be computed without
inducing additional outer approximations:
Proposition 3 (Enclosure Multi-Head Attention). Given three sets Q,K,V ⊂ Rt×dmodel with
gQ, gK, gV generators, respectively, the output set of a multi-head attention layer (6) is enclosed
by

LMHA
k (Q,K,V) ⊆ [Hk,1 . . . Hk,h]1 W

A
k ,

withHk,i = enclose

(
LA
k,i, QW

Q
k,i,KW

K
k,i,VWV

k,i

)
, i ∈ [h].

The output set has O(gQgKgV + ht2gV) generators.

Proof. See appendix C.

3.5 OUTPUT ENCLOSURE OF A LARGE LANGUAGE MODEL

After all enclosures of special layers appearing in a large language model are defined (Fig. 1), we can
put everything together and compute an enclosure of the output set of the entire model. In this work,
we consider a classifier model, as described in Sec. 1. Alg. 1 provides the pseudocode to verify the
classifier model having κ transformer blocks with h attention heads each, linear and normalization
layers in between, and a global pooling layer at the end to obtain the final classification. Please note
that our approach is general and can also be used for other architectures, as the enclosures do not
rely on a specific concatenation of the layers.

Alg. 1 requires a set X ⊂ Rt×dmodel as input; however, large language models have text as input. The
text is split into t tokens and each token is mapped into an embedding space of dimension dmodel.
Thus, the input to the model is then given by

x ∈ Rt×dmodel . (13)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Enclosing the Output of a Large Language Model
Require: Large language model Φ and input set X . ▷ Initialize input set (14)

1: H0 ← X
2: for k ∈ [κ] do ▷ Iterate over transformers
3: for i ∈ [h] do ▷ Iterate over attention heads
4: Ĥk,i ← enclose

(
LA
k,i, Hk−1W

Q
k,i,Hk−1W

K
k,i,Hk−1W

V
k,i

)
▷ Attention head (Prop. 2)

5: end for
6: Ĥk ←

[
Ĥk,1 . . . Ĥk,h

]
1
WA

k ▷ Aggregate attention heads (Prop. 3)

7: Hk ← LN
k,1

(
Hk−1 ⊕ H̃k

)
▷ Residual connection (9) and normalization (Lemma 1)

8: H̃k ← LLIN
k,2

(
LACT
k

(
LLIN
k,1

(
Hk

)))
▷ Regular neural network layers (Prop. 1)

9: Hk ← LN
k,2

(
Hk−1 ⊕ H̃k

)
▷ Residual connection (9) and normalization (Lemma 1)

10: end for
11: Y ← LLIN

κ+1

(
LGP
κ+1 (Hκ)

)
▷ Global Average Pooling (10) + Linear (3)

12: return Output set Y ⊇ Φ(X)

To also enclose synonyms of the input text, we construct an ℓ∞-ball with radius ϵ ∈ R+ around x
as follows:

X =
〈
x, [G1,1 G1,2 . . . G1,dmodel G2,1 . . . Gt,dmodel]3 , [], It·dmodel

〉
PZ
⊂ Rt×dmodel ,

with Gi,j(k,l) =

{
ϵ if i = k and j = l,
0 otherwise, i, k ∈ [t], j, l ∈ [dmodel],

(14)

Thus, the overall generator matrix G ∈ Rt×dmodel×(t·dmodel) has gX = (t · dmodel) generators with
(initially) no dependencies between each other, as the exponent matrix is an identity matrix (Def. 2).
This constructs a hypercube representing the ℓ∞-ball around x, which is transformed to more com-
plex sets within a large language model, particularly within the attention layer (Fig. 4b).

Please note that we use the same set Hk−1 for the query, key, and value in the attention layer
(Alg. 1, line 4), which allows us to simplify the number of generators derived in Prop. 2. Further,
we reasonably assume that t, dmodel, h≪ gX . Thus,

Lemma 3. The number of generators ofHk, k ∈ [κ], in Alg. 1 is O(g3kX).

Proof. See appendix C.

Reducing the number of generators. Although the number of transformer blocks κ is typically
small, the direct computation of the output set Y = Hκ quickly becomes intractable. Thus, we want
to limit the number of generators to gmax ∈ R+ by applying an order reduction method (Kochdumper
& Althoff, 2020, Sec. II-E): The rapid growth stems from the matrix-set multiplications (11) within
the attention layer (4), where the center and each generator of one set is multiplied with the cen-
ter and each generator of the other set. The multiplications of the generators result in higher-order
terms (see second example in appendix B), enabling the exact enclosure of the multiplication; how-
ever, many of these higher-order terms contribute only a little to the overall set and can be outer-
approximated by an interval without losing much precision (Kochdumper & Althoff, 2020, Sec. II-
B). Thus, we introduce a parameter ρlim ∈ R+ limiting the number of generators of the higher-order
terms relative to the dimension of the resulting set. We do not apply an order reduction on the lin-
ear terms resulting from the multiplication of the centers with each generator, respectively, as their
dependencies between attention heads have to be kept for a tight enclosure. Please note that setting
the error order ρlim = 1 results in an interval hull of all higher-order terms, which corresponds to the
approach in related work (Bonaert et al., 2021, Sec. 5.1); therefore, our approach is a direct gener-
alization of their approach. Additionally, we apply an additional order reduction after each residual
connection (Fig. 1) such that the total number of generators does not exceed gmax ∈ R+. Thus,
we keep the nonlinear dependencies as long as possible and only apply relaxations when necessary.
Similar deferred relaxation techniques have also shown to be beneficial in other non-convex verifi-
cation approaches on standard neural networks (Wei et al., 2023; Ladner & Althoff, 2023; Fatnassi
et al., 2023).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 1 (Enclosure of Large Language Models). Given a large language model Φ and an input
set X (14) with gX generators, Alg. 1 computes an output set Y satisfying the problem statement
stated in Sec. 2.5. The computational complexity is bounded by O (thdV dmodel gmaxκ).

Proof. See appendix C.

4 EXPERIMENTAL RESULTS

We evaluate our approach on four large language models Mi, i ∈ [4], trained from scratch for binary
classification. All hyperparameters and additional experiments are given in appendix D. The first
two models are trained on the medial safety dataset (Abercrombie & Rieser, 2022), and the last two
models are trained on the Yelp dataset (Zhang et al., 2016), We implemented our approach into the
Matlab toolbox CORA (Althoff, 2015). All computations were performed in a docker container on
an Intel® Core™ Gen. 11 i7-11800H CPU @2.30GHz with 64GB memory.

4.1 ON SYNONYM SENTENCE ENUMERATION AND FORMAL VERIFICATION

Let us first compare how our approach scales with the number of synonyms captured by the em-
bedding space compared to enumerating all synonym sentences. Fig. 3a shows that enumerating
all synonym sentences quickly becomes computationally infeasible, while our approach can capture
synonym sentences in a single verification query and guarantees safety in a few seconds. Please note
that reasonable sentences have many more synonyms as exemplary shown in Tab. 1: This sentence
from the medical safety dataset has 96 synonym words with more than 2 billion synonym sentences.

4.2 VERIFICATION RESULTS ON LARGE LANGUAGE MODELS

Let us now evaluate our verification approach and compare it to a state-of-the-art transformer veri-
fication approach based on zonotopes ((Bonaert et al., 2021)) and naive interval bound propagation
((Jaulin et al., 2001)). We show the tighter enclosure of a single attention head in Fig. 3b, which
has to be attributed to the ability to compute the multiplication of two polynomial zonotopes ex-
actly (11) at the cost of additional verification time. Further details on this unique advantage are
given in appendix B.

This tighter enclosure allows us to verify the safety of much larger perturbed embedding spaces. We
present the averaged results of 20 sentences with up to 27 tokens of each dataset, respectively, in
Tab. 2. For each sentence, we perform a binary search to determine the largest input set that is still
verifiable with each approach, respectively, where we normalize the verified volume of the zonotope
baseline to 1. Our approach allows adaptively increasing the parameter ρlim to compute tighter
enclosures and thus larger verified perturbed embedding spaces at the cost of additional computation
time. Please note that setting ρlim = 1 corresponds to the zontope approach and no nonlinear

Table 1: Synonyms contained in a perturbed embedding space for a verified example sentence.
Token #Synonyms Synonyms
dull 14 heavy, flat, uncomfortable, . . .
chest 4 body, heart, . . .
pain 1 ache
when 1 whenever
bending 16 turning, leaning, bowing, . . .
in 6 at, into, within, . . .
certain 12 specific, chosen, fixed, . . .
directions 10 position, ways, angle, . . .
and 1 besides
when 1 whenever
breathing 4 air, oxygen, . . .
.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5 10 15
0

5

10

15

20

Number of word synonyms

V
er

ifi
ca

tio
n

tim
e

[s
]

(a)

−0.3 −0.2 −0.1 0

−0.1

−0.05

0

hk(1,1)

h
k
(1

,2
)

(b)

Enumeration Zonotope (Bonaert et al., 2021) Polynomial zonotope (ours)

Figure 3: (a) Comparison of the time needed to verify all synonym sentences by enumerating them
and a single verification query using our approach. (b) Enclosure comparison of a single attention
head (4) with ρlim =∞.

Table 2: Comparison of verified embedding space with interval bound propagation (IBP), zono-
topes (Z, Bonaert et al. (2021)), and polynomial zonotopes (PZ, ours).

Model 1 Model 3
Verified Volume Time [s] Verified Volume Time [s]

Approach Mean Max. Mean Max.

IBP 0.00 0.00 0.02 0.00 0.00 0.02
Z (baseline) 1.00 1.00 6.90 1.00 1.00 5.97

PZ (ρlim = 2) 1, 874.07 29, 723.35 201.71 17, 432.27 331, 146.39 170.71
PZ (ρlim = 5) 2,993.96 46,621.47 283.55 80,593.07 1,531,038.79 228.33

dependencies are captured anymore. Further details on this tradeoff are given in appendix D on two
more models.

5 RELATED WORK

This work continuous the progressive effort to formally verify neural networks in recent years (Brix
et al., 2023): As neural networks are vulnerable to adversarial attacks (Goodfellow et al., 2015), for-
mally verifying them against input perturbations is of immense importance in safety-critical scenar-
ios. Neural network verifiers can generally be categorized into optimization-based verifiers Zhang
et al. (2018); Katz et al. (2019); Henriksen & Lomuscio (2020); Singh et al. (2019) and approaches
using set-based computing Gehr et al. (2018); Singh et al. (2018); Lopez et al. (2023); Kochdumper
et al. (2023). Early approaches focused on computing the exact output set of neural networks with
ReLU activations, which has been shown to be NP-hard (Katz et al., 2017). Convex relaxations of
the problem (Singh et al., 2018; Xu et al., 2020) and efficient branch-and-bound techniques (Wang
et al., 2021) have shown to achieve impressive verification results (Brix et al., 2023). Recently,
non-convex relaxations have also shown to be effective in this field of research (Kochdumper et al.,
2023; Wang et al., 2023; Ladner & Althoff, 2023; Fatnassi et al., 2023; Ortiz et al., 2023).

While the robustness of large language models against adversarial prompts has been investi-
gated (Sun et al., 2024, Sec. 9), research on the non-existence of such prompts using formal ver-
ification is limited and, as in this work, only perturbations to the embedding space of the input of
large language models (Vaswani et al., 2017) are considered: As with standard neural networks, Shi
et al. (2020) use linear bounds to verify the robustness with at most two perturbed words. This work
has been extended to the zonotope domain (Bonaert et al., 2021), enabling the verification of longer
sentences with all words being perturbed. Other works also investigated finding better bounds of the
softmax function within transformers (Wei et al., 2023; Shi et al., 2024). Recently, the importance of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

carrying dependencies between each attention head and dimension has been stressed (Zhang et al.,
2024); however, they also apply convex relaxations in each step and thus lose precision at each
nonlinearity.

We also consider the problem of formally verifying graph neural networks (Sälzer & Lange, 2023)
as closely related, as many of the operations within these networks (Kipf & Welling, 2017) also
appear in large language models (Vaswani et al., 2017). Thus, progress in either domain also pro-
pels progress in the other. In graph neural networks, approaches consider problems with perturbed
input (Zügner & Günnemann, 2019) and also perturbed graph structure (Bojchevski & Günnemann,
2019; Jin et al., 2020; Ladner et al., 2024).

6 LIMITATIONS

Our work relies on the implicit assumption that words with similar meanings have similar word
embeddings and are thus captured by constructing an ℓ∞-ball around the embedding of a given
word. While literature (Harris, 1954; Li & Yang, 2018) and our experiments suggest that this holds,
we cannot guarantee that we capture all synonyms. More advanced perturbations might also be
beneficial to capture more synonyms, e.g., by considering the superpositions of features in word
embeddings (?). It might also be necessary to add further perturbations after the model aggregated
meanings of multiple words through each attention block (Vaswani et al., 2017, Appendix). For
example, by adding perturbations after each transformer block (Alg. 1, lines 2 to 10)), one might
capture the example sentence (2) as a synonym of (1). Furthermore, our approach does not output
the original harmful prompt to the adversarial user prompt (Sec. 1). We can only say that there
might exist an area in the embedding space, which might contain a harmful prompt. Additionally,
this unsafe area might also not correspond to an actual synonym sentence as it is sparsely populated.
However, we would rather want to be safe than output harmful content.

Our approach continues the progressive efforts to formally verify large language models (Shi et al.,
2020; Bonaert et al., 2021). However, all methods are not yet applicable to modern-size large lan-
guage models (Achiam et al., 2024), where both high precision and low verification time are desir-
able. Our approach is a generalization of Bonaert et al. (2021) based on zonotopes, where a balance
between precision and speed is adaptively struck via the parameter ρlim. Please note that the total
number of generators gmax also limits the precision. Order reduction methods are more challenging
for polynomial zonotopes than for zonotopes due to the additional complexity in the set represen-
tation. Recently, an approach was made addressing this underexplored problem (Ladner & Althoff,
2024), and any improvement on this relatively new set representation also propels our approach.

It is also worth noting that we only verify the robustness of large language models against adversarial
prompts to fool classifier models; however, other model architectures and safety constraints are also
worth considering, e.g., jailbreaks (Wei et al., 2024; Casper et al., 2023), to prevent outputting false
claims or exposing private data. We defer to (Sun et al., 2024, Ch. 7) for a more detailed discussion
on the safety aspects of large language models.

Please note that transformers are also used in other domains, e.g., computer vision (Bhojanapalli
et al., 2021; Khan et al., 2022), and our verification approach can also be applied there as our
enclosures are defined per layer and do not rely on a specific model.

7 CONCLUSION

We present a novel approach to tightly enclose the output set of a large language model given a
perturbed input. This tight enclosure is realized using non-convex set-based computing based on
polynomial zonotopes, which allows one to efficiently preserve nonlinear dependencies. This preser-
vation of dependencies is particularly important for the verification of large language models, as the
transformers used within large language models repeatedly compute complex nonlinear functions in
parallel. The desired precision can be tuned with a single parameter at the cost of additional com-
putation time. These advantages of our approach are demonstrated by rigorous theoretical analysis
and experiments, where we can verify much larger embedding spaces than approaches developed
in related work. We believe this work is a significant step towards improving these models’ formal
safety.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Gavin Abercrombie and Verena Rieser. Risk-graded safety for jandling medical queries in conver-
sational AI. In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 12th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pp. 234–243, 2022.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, and et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2024.

Matthias Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification
for Continuous and Hybrid Systems, pp. 120–151, 2015.

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and An-
dreas Veit. Understanding robustness of transformers for image classification. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 10231–10241, 2021.

Christopher M. Bishop and Nasser M. Nasrabadi. Pattern recognition and machine learning, vol-
ume 4. 2006.

Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In
Advances in Neural Information Processing Systems, volume 32, 2019.

Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise cer-
tification of transformers. In Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, pp. 466–481, 2021.

Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verifi-
cation of neural networks competition (VNN-COMP 2023): Summary and results. arXiv preprint
arXiv:2312.16760, 2023.

Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish,
exploit: Red teaming language models from scratch. arXiv preprint arXiv:2306.09442, 2023.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, pp. 1–45, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop-
agation for neural networks using bernstein polynomial interval arithmetic. In Proceedings of
the 26th ACM International Conference on Hybrid Systems: Computation and Control, pp. 1–11,
2023.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar-
tin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpreta-
tion. In IEEE Symposium on Security and Privacy, pp. 3–18, 2018.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

Z. S. Harris. Distributional structure, 1954.

Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refine-
ment and adversarial search. In European Conference on Artificial Intelligence, volume 325, pp.
2513–2520, 2020.

Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem,
Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language
models through the lens of verification and validation. Artificial Intelligence Review, 57(7):175,
2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter. Interval analysis. 2001.

Hongwei Jin, Zhan Shi, Venkata J. S. A. Peruri, and Xinhua Zhang. Certified robustness of graph
convolution networks for graph classification under topological attacks. In Advances in Neural
Information Processing Systems, volume 33, pp. 8463–8474, 2020.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An effi-
cient SMT solver for verifying deep neural networks. In International Conference on Computer
Aided Verification, pp. 97–117, 2017.

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J. Kochenderfer,
and Clark Barret. The Marabou framework for verification and analysis of deep neural networks.
In International Conference on Computer Aided Verification, pp. 443–452, 2019.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. Transformers in vision: A survey. ACM Computing Surveys, 54(10s):1–41, 2022.

Jinhwa Kim, Ali Derakhshan, and Ian G. Harris. Robust safety classifier for large language models:
Adversarial prompt shield. arXiv preprint arXiv:2311.00172, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Niklas Kochdumper and Matthias Althoff. Sparse polynomial zonotopes: A novel set representation
for reachability analysis. In IEEE Transactions on Automatic Control, pp. 4043–4058, 2020.

Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stanley Bak. Open- and closed-loop
neural network verification using polynomial zonotopes. In NASA Formal Methods Symposium,
pp. 16–36, 2023.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 2018.

Tobias Ladner and Matthias Althoff. Automatic abstraction refinement in neural network verification
using sensitivity analysis. In Proceedings of the 26th ACM International Conference on Hybrid
Systems: Computation and Control, pp. 1–13, 2023.

Tobias Ladner and Matthias Althoff. Exponent relaxation of polynomial zonotopes and its applica-
tions in formal neural network verification. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 21304–21311, 2024.

Tobias Ladner, Michael Eichelbeck, and Matthias Althoff. Formal verification of graph convo-
lutional networks with uncertain node features and uncertain graph structure. arXiv preprint
arXiv:2404.15065, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Yang Li and Tao Yang. Word embedding for understanding natural language: a survey. Guide to big
data applications, pp. 83–104, 2018.

Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran, and Taylor T. Johnson. NNV 2.0: The
neural network verification tool. In International Conference on Computer Aided Verification, pp.
397–412, 2023.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards
understanding the role of over-parametrization in generalization of neural networks. In Interna-
tional Conference on Learning Representations, 2019.

Joshua Ortiz, Alyssa Vellucci, Justin Koeln, and Justin Ruths. Hybrid zonotopes exactly represent
ReLU neural networks. In 62nd IEEE Conference on Decision and Control (CDC), pp. 5351–
5357. IEEE, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema, Nur Mohammad
Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ahmad, Mohammed Eunus Ali, and
Sami Azam. A review on large language models: Architectures, applications, taxonomies, open
issues and challenges. IEEE Access, 2024.

Marco Sälzer and Martin Lange. Fundamental limits in formal verification of message-passing
neural networks. In International Conference on Learning Representations, 2023.

Zhouxing Shi, Huan Zhang, Kai Wei Chang, Minlie Huang, and Cho Jui Hsieh. Robustness verifi-
cation for transformers. In International Conference on Learning Representations, 2020.

Zhouxing Shi, Qirui Jin, Zico Kolter, Suman Jana, Cho-Jui Hsieh, and Huan Zhang. Neural network
verification with branch-and-bound for general nonlinearities. arXiv preprint arXiv:2405.21063,
2024.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast and
effective robustness certification. Advances in Neural Information Processing Systems, 31, 2018.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for cer-
tifying neural networks. In Proceedings of the ACM on Programming Languages, volume 3, pp.
1–30, 2019.

Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu, Qihui Zhang, Chujie Gao, Yixin Huang, Wen-
han Lyu, Yixuan Zhang, Xiner Li, et al. Trustllm: Trustworthiness in large language models.
arXiv preprint arXiv:2401.05561, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel. The
instruction hierarchy: Training LLMs to prioritize privileged instructions. arXiv preprint
arXiv:2404.13208, 2024.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. Advances in Neural Information Processing Systems, 34:29909–29921,
2021.

Yixuan Wang, Weichao Zhou, Jiameng Fan, Zhilu Wang, Jiajun Li, Xin Chen, Chao Huang, Wen-
chao Li, and Qi Zhu. Polar-express: Efficient and precise formal reachability analysis of neural-
network controlled systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2023.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training
fail? Advances in Neural Information Processing Systems, 36, 2024.

Dennis Wei, Haoze Wu, Min Wu, Pin-Yu Chen, Clark Barrett, and Eitan Farchi. Convex bounds on
the softmax function with applications to robustness verification. In International Conference on
Artificial Intelligence and Statistics, pp. 6853–6878, 2023.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. arXiv preprint arXiv:2011.13824, 2020.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural net-
work robustness certification with general activation functions. In Advances in Neural Information
Processing Systems, volume 31, 2018.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yunruo Zhang, Lujia Shen, Shanqing Guo, and Shouling Ji. Galileo: General linear relaxation
framework for tightening robustness certification of transformers. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 21797–21805, 2024.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
Ye, Yue Zhang, Neil Zhenqiang Gong, et al. Promptbench: Towards evaluating the robustness of
large language models on adversarial prompts. arXiv preprint arXiv:2306.04528, 2023.

Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph con-
volutional networks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 246–256, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix
The appendix is structured as follows:

• A discussion about the modified layer normalization is given in appendix A.

• A more detailed explanation of (matrix) polynomial zonotopes and dependency preserva-
tion is given in appendix B.

• All proofs are given in appendix C.

• Finally, we list all hyperparameters of the considered models and provide additional exper-
iments in appendix D.

A LAYER NORMALIZATION DISCUSSION

We use a modified equation of the layer normalization in our models (7). The original equa-
tion (Lei Ba et al., 2016) is given by

LLN
k (hk−1) =

γ

σ
⊙
(
hk−1 − h̄k−1

)
+ β (15)

with the only difference being the division by the standard deviation σ ∈ R of the input hk−1.
This change was proposed by (Shi et al., 2020, Appendix E) to ease verification and was also used
by Bonaert et al. (2021). The issue with the division by the standard deviation is that as the input is
a set Hk−1, also the standard deviation is a set containing the standard deviation for each point in
Hk−1. Thus, the division by σ in (15) is in general very outer-approximative, which heavily reduces
the verifiability. The argument for the modified layer normalization (7) is that it does not penalize
the accuracy of the obtained model (Shi et al., 2020, Tab. 5) but greatly increases the verifiability.
We want to stress that designing network architectures with formal verification in mind is a motion
we strongly support. However, it appears that even a model without any normalization has a similar
accuracy in their evaluation, which raises the question of whether layer normalization is necessary
at all. Thus, the influence of this modification must be further investigated, especially for larger
models. If the original layer normalization (15) turns out to be beneficial, a similar technique as the
one described for the softmax layer (Lemma 2) can be applied, as a division by a set also appears
there.

B ON POLYNOMIAL ZONOTOPES

Polynomial zonotopes are effectively a compact representation of a polynomial in high-dimensional
space. Let us recall the definition of a matrix polynomial zonotope:

Definition 2 (Matrix Polynomial Zonotopes (Ladner et al., 2024, Def. 9)). Given an offset C ∈
Rn×m, dependent generators G ∈ Rn×m×h with h dependent generators, independent generators
GI ∈ Rn×m×q with q independent generators, and an exponent matrix E ∈ Np×h

0 with an identifier
id ∈ Np2, a matrix polynomial zonotope PZ = ⟨C,G,GI , E⟩PZ is defined as

PZ= ⟨C,G,GI , E⟩PZ =

C +

h∑
i=1

(
p∏

k=1

α
E(k,i)

k

)
G(·,·,i) +

q∑
j=1

βjGI(·,·,j)

∣∣∣∣∣∣ αk, βj ∈ [−1, 1]

 .

We chose to use the matrix variant over the regular one (Kochdumper & Althoff, 2020), as trans-
formers mainly operate on matrices and not on vectors. In this section, we only use regular polyno-
mial zonotopes for easier notation, where the center and each generator is in Rn rather than Rn×m.
Any properties derived in this section also hold for the matrix variant. Let us construct a simple
one-dimensional polynomial zonotope describing the interval [−1, 1]:

PZ = ⟨0, 1, [], 1⟩PZ =
{
0 + α1

1 · 1
∣∣ α1 ∈ [−1, 1]

}
= [−1, 1]. (16)

2The identifier vector id is used to maintain dependencies of the factors αk between sets.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

−1 −0.5 0 0.5 1

0

0.5

1

x(1)

x
(2

)

(a)

−10 0 10 20
−10

0

10

20

x(1)

x
(2

)

(b)

PZ I Ŝ = Ẑ = P̂Z Ẑ2 (Bonaert et al., 2021) Ŝ2 = P̂Z
2

(Ours)

Figure 4: Visualization of preserved dependencies using polynomial zonotopes in appendix B:
a) Between individual sets and b) a comparison of our approach with the state-of-the-art transformer
verification approach.

Computing PZ2 = {x2 | x ∈ PZ} would then simply be:

PZ2 = ⟨0, 1, [], 2⟩PZ =
{
0 + α2

1 · 1
∣∣ α1 ∈ [−1, 1]

}
= [0, 1]. (17)

One advantage of polynomial zonotopes is that they can carry nonlinear dependencies and thus
represent non-convex sets. The Cartesian product of these two sets is:[
PZ
PZ2

]
=

〈[
0
0

]
,

[
1 0
0 1

]
, [], [1 2]

〉
PZ

=

{[
0
0

]
+ α1

1 ·
[
1
0

]
+ α2

1 ·
[
0
1

] ∣∣∣∣ α1 ∈ [−1, 1]
}
. (18)

More formally, given two polynomial zonotopes PZ1 =
〈
c1, [G̃1 G1], GI,1, [Ẽ E1]

〉
PZ

and

PZ2 =
〈
c2, [G̃2 G2], GI,2, [Ẽ E2]

〉
PZ

with partially shared exponent matrices and a common
identifier vector, their Cartesian product (Kochdumper et al., 2023, Eq. 7) is computed by

PZ1 × PZ2 =

[
PZ1

PZ2

]
=

{[
x1

x2

] ∣∣∣∣ x1 ∈ PZ1, x2 ∈ PZ2

}
=

〈[
c1
c2

]
,

[
G̃1 G1 0

G̃2 0 G2

]
,

[
GI,1 0
0 GI,2

]
,
[
Ẽ E1 E2

]〉
PZ

,

(19)

where a common identifier vector intuitively means that both sets use the same αk in Def. 2. If
the identifier vector is not identical, the exponent matrices of both sets have to be extended ac-
cordingly (Kochdumper & Althoff, 2020, Prop. 1). Both PZ := PZ × PZ2 (18) and the set
I := [−1, 1] × [0, 1], where those dependencies are not considered, are shown in Fig. 4a. Clearly,
the preserved dependencies allow us to compute the considered operations without inducing any
outer approximation. Thus, PZ ⊂ I holds. Analogous reasoning also holds for the computation of
the Minkowski sum (9).

Another crucial operation when verifying large language models is the multiplication of two sets,
as as this operation is executed throughout the entire model once the inputs are uncertain, e.g.,
within one attention head (4). To illustrate the advantage of polynomial zonotopes over zonotopes
as was used in related work (Bonaert et al., 2021), which work identically except they do not have
an exponent matrix to store the nonlinear dependencies, consider the following set:

Ŝ = Ẑ :=

〈[
2
2

]
,

[
1 −1
1 1

]〉
Z

=

〈[
2
2

]
,

[
1 −1
1 1

]
, [],

[
1 0
0 1

]〉
PZ

=: P̂Z. (20)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The multiplications of two high-dimensional sets is generally referred to as the quadratic
map (Kochdumper & Althoff, 2020, Def. 6). We consider a special case here and want to com-
pute:

Ŝ2 :=

{[
x̂2
(1)

x̂2
(2)

] ∣∣∣∣ x̂ ∈ Ŝ} . (21)

Using the method to compute precise bounds from (Bonaert et al., 2021, Thm. 5) on zonotopes, we
obtain

Ẑ2 :=

〈[
5
5

]
,

[
4 −4 3 0
4 4 0 3

]〉
Z

. (22)

On the other hand, using polynomial zonotopes (Kochdumper & Althoff, 2020, Prop. 12) results in

P̂Z
2
:=

〈[
4
4

]
,

[
4 −4 1 1 −2
4 4 1 1 2

]
, [],

[
1 0 2 0 1
0 1 0 2 1

]〉
PZ

, (23)

without inducing any outer approximation. Thus, Ŝ2 = P̂Z
2
⊂ Ẑ2 holds. As shown in Fig. 4b, the

outer approximation using zonotopes can be quite significant – even for this toy example, let alone
when applied multiple times within a large language model. In particular, the last three generators of

P̂Z
2

are outer-approximated with interval bounds in Ẑ2 (Bonaert et al., 2021, Thm. 5). However,
these three generators are required to capture the non-convexity of the output set and this non-
convexity is thus lost using the interval bounds. The matrix multiplications on sets stated in (11) are
computed analogously using the quadratic map, and thus have the same issues if the dependencies
are not preserved.

C PROOFS

We include all proofs from the main body in this section in the order of appearance.
Lemma 1 (Enclosure Layer Normalization). Given an input setHk−1 ⊂ Rnk−1 , the output set of a
layer normalization layer (7) is given by

LN
k (Hk−1) = diag (γ) · (Hk−1 ⊕ (−1/nk−1 · Hk−1)) + β.

Proof. The exact computation follows directly from (10) and (9).
Lemma 2 (Enclosure Softmax). Given an input set L ⊂ Rn, the output set of the softmax func-
tion (12) is enclosed by

softmax (L)(j) ⊆ enclose
(
x 7→ 1/x, 1 · enclose

(
exp , L(i) ⊕−L(j)

))
, j ∈ [n].

The output set has n more generators than the input set.

Proof. The enclosure follows directly from Prop. 1 and (10). While each enclosure operation adds
n generators to the set for each approximation error of the n dimensions, these are aligned and can
be summed up, resulting in n generators.
Proposition 2 (Enclosure Attention). Given three sets Q,K ⊂ Rt×dQK ,V ⊂ Rt×dV with gQ,gK,gV
generators, respectively, the output set of an attention layer (4) is enclosed by

LA
k (Q,K,V) ⊆ enclose

(
softmax,

QKT√
dQK

)
V ,

where KT is computed by transposing the center and each generator of K. The output set has
O(gQgKgV + t2gV) generators.

Proof. The statement follows directly from (11), (10), Lemma 2, and (19). The number of gen-
erators also follows from (11) and the multiple applications of Lemma 2 on the softmax function,
which is applied for each of the t rows individually, each having t entries. Thus, the term gQgKgV
corresponds to the set approximating the output and t2gV corresponds to the approximation error
of this layer. Please note that for a tight enclosure, it is crucial that the dependencies of the sets
obtained by the rowwise application of the softmax function are preserved while stacking them back
together using the Cartesian product, as described in appendix B, (19).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proposition 3 (Enclosure Multi-Head Attention). Given three sets Q,K,V ⊂ Rt×dmodel with
gQ, gK, gV generators, respectively, the output set of a multi-head attention layer (6) is enclosed
by

LMHA
k (Q,K,V) ⊆ [Hk,1 . . . Hk,h]1 W

A
k ,

withHk,i = enclose

(
LA
k,i, QW

Q
k,i,KW

K
k,i,VWV

k,i

)
, i ∈ [h].

The output set has O(gQgKgV + ht2gV) generators.

Proof. The concatenation [. . .]
1

is computed using the Cartesian product (19), the remainder follows
from Prop. 2 and (10). The number of generators follows directly from the enclosure of the h
attention heads (Prop. 2), where only the approximation error is treated independently during the
concatenation (19). Thus, the term gQgKgV again corresponds to the set approximating the output
and ht2gV corresponds to the approximation error of this layer.

Lemma 3. The number of generators ofHk, k ∈ [κ], in Alg. 1 is O(g3kX).

Proof. We show this proof by induction:
Induction base k = 0: H0 = X . The statement follows trivially as O(g30X) = O(gX).
Induction hypothesis: Let the statement now hold for an arbitrary k ∈ [κ].
Induction step k + 1: Let Hk+1 have O(gHk+1

) generators. Please not that the regular layers
in line 8 add at most one generator per neuron due to the activation layer (Prop. 1), which are
t · dmodel ∈ O(gHk+1

). Thus, as the normalization layer is exact (Lemma 1) and the sets added the
residual connections essentially share the same exponent matrix (9), also H̃k+1, Hk+1 and Ĥk+1

have O(gHk+1
) generators, respectively. Then, using Prop. 3 and the assumption t, dmodel, h≪ gX ,

we can derive that Hk has to have O(3
√
gHk+1

) generators. From our induction hypothesis, we

also know that Hk has O(g3kX) generators. Thus, Hk+1 has O((g3kX)3) = O(g3k·3X) = O(g3(k+1)

X)
generators, which proves the statement.
Theorem 1 (Enclosure of Large Language Models). Given a large language model Φ and an input
set X (14) with gX generators, Alg. 1 computes an output set Y satisfying the problem statement
stated in Sec. 2.5. The computational complexity is bounded by O (thdV dmodel gmaxκ).

Proof. The computation of Y is sound, as each step in Alg. 1 is outer-approximative (Lemma 1,
Prop. 2, Prop. 3, (10), and (9)). The number of generators of all sets is bounded by gmax. The
overall computational complexity then follows from the largest matrix multiplication on the largest
sets (10), which is given by aggregation of the attention heads given in line 6:

t× hdV︸ ︷︷ ︸
Dimensions of concatenated Hk,i

× hdV × dmodel︸ ︷︷ ︸
Dimensios of aggregation matrix WA

κ

.

This matrix multiplication is applied to each generator (10), which are bounded by gmax. As this
bound can already be reached in any of the κ transformer blocks, this computation is done at most
κ times. Thus. the final computational complexity is given by O(thdV dmodel · gmax · κ).

D ADDITIONAL EXPERIMENTS

In this section, we state further experiments and give all details about the dataset and our models. The
medical safety dataset (Abercrombie & Rieser, 2022) is a small written English dataset consisting
of risk-graded medical and non-medical queries that we split in 2, 187 training, 365 validation, and
365 test samples. We collapse the risk-levels into one class to enable binary text classification.
The Yelp dataset (Zhang et al., 2016) consists of review texts, where we partition the dataset into
40, 000/20, 000 training, 4, 000/2, 000 validation, and 1, 600/800 testing samples, respectively. We
train both datasets for binary classification referring to the labels as positive and negative. The
positive label in the medical safety dataset refers to a valid medical query, while it refers to a positive
review in the Yelp dataset. We use a BERT tokenizer (Devlin, 2018) to compute the mapping from
the textual input to token identifier that we pass then to our model. Tab. 3 summarizes the used
hyperparameters. All computations were performed in a docker container on an Intel® Core™ Gen.
11 i7-11800H CPU @2.30GHz with 64GB memory.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 3: Hyperparameters for considered models.
Name Variable Model 1 Model 2 Model 3 Model 4
Dataset - Medical Medical Yelp Yelp
Max. #tokens/sentence during verification t 21 21 27 27
Embedding dimension of model dmodel 8 8 8 8
Number of transformer blocks κ 2 1 2 1
Number of attention heads h 2 1 2 1
Embedding dimension for query and key matrices dQK 4 8 4 4
Embedding dimension for value matrix dV 4 8 4 4
Maximum number of generators (order reduction) gmax 1000 4000 1000 4000

Table 4: Comparison of verified embedding space with interval bound propagation (IBP), zono-
topes (Z, Bonaert et al. (2021)), and polynomial zonotopes (PZ, ours).

Model 2 Model 4
Verified Volume Time [s] Verified Volume Time [s]

Approach Mean Max. Mean Max.

IBP 0.00 0.00 0.01 0.00 0.00 0.01
Z (baseline) 1.00 1.00 0.76 1.00 1.00 0.54

PZ (ρlim = 2) 1.77 3.50 5.80 2.29 4.23 4.70
PZ (ρlim = 5) 2.16 3.83 11.16 3.51 9.61 9.26
PZ (ρlim = 10) 2.37 4.53 14.23 4.13 12.63 11.59
PZ (ρlim = 20) 2.66 5.35 18.67 5.35 20.34 14.53
PZ (ρlim = 50) 3.20 7.47 27.56 8.00 37.46 21.35
PZ (ρlim = 100) 4.09 11.33 36.94 11.62 64.37 29.50
PZ (ρlim = 200) 10.76 42.64 32.21 55.90 452.41 28.88
PZ (ρlim = 500) 18.60 89.44 31.13 123.62 1, 406.54 26.36
PZ (ρlim = 1000) 28.79 158.75 31.16 137.41 1,606.65 26.83

Finally, we state the verification results on the second model of each dataset. For these models,
we show the influence of the parameter ρlim on the verified volume of the embedding space and
the verification time in Tab. 4. As ρlim increases, the verified volume increases as well at the cost of
additional computation time. This can be done until the order reduction due to the maximum number
of generators gmax counteracts this advantage; thus, the outer-approximation induced by this order
reduction becomes larger than the benefit of computing more precise enclosures. The parameter
gmax is determined by the memory constraints of the machine running the verification. We decided
to show the mean and maximum verified volume instead of the standard deviation as this data is
not normally distributed on this datasets with varying sentence lengths, and thus this statistic does
not have a meaningful interpretation. Please note that setting ρlim = 1 corresponds the approach
where no nonlinear dependencies are preserved as all higher-order terms are outer-approximated by
an interval. Thus, we can always fall back to the approach by Bonaert et al. (2021) and our approach
is thus at least as good as theirs.

19

	Introduction
	Background
	Notation
	Neural Networks
	Set-Based Computing
	Neural Network Verification
	Problem Statement

	Non-Convex Dependency-Preserving LLM Verification
	Output Enclosure of a Layer Normalization Layer
	Output Enclosure of the Softmax Function
	Output Enclosure of an Attention Layer
	Output Enclosure of a Multi-Head Attention Layer
	Output Enclosure of a Large Language Model

	Experimental Results
	On Synonym Sentence Enumeration and Formal Verification
	Verification Results on Large Language Models

	Related Work
	Limitations
	Conclusion
	Layer Normalization Discussion
	On Polynomial Zonotopes
	Proofs
	Additional Experiments

