TOWARDS FORMALLY VERIFYING LLMS: TAMING THE NONLINEARITY OF THE TRANSFORMER

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

040

041

Paper under double-blind review

Abstract

Large language models are increasingly used across various domains, which raises important safety concerns, particularly regarding adversarial attacks. While recent advancements in formal neural network verification have shown promising results, the complexity of transformers, the backbone of large language models, poses unique challenges for formal robustness verification. Traditional convex relaxation methods often result in large approximation errors due to the transformer's parallel, nonlinear attention heads. In this work, we address these limitations by introducing a novel approach based on non-convex, set-based computing to preserve the nonlinear dependencies through a transformer. Our approach generalizes previous methods on robustness verification of transformers, and the desired precision is tunable at the cost of additional computation time with a single parameter.

023 1 INTRODUCTION

Large language models (LLMs) have gained immense popularity in various fields, including 025 question-answering, document summarization, and language translation (Raiaan et al., 2024). In 026 particular, this success must be attributed to the transformers (Vaswani et al., 2017) used within 027 these models. With increasing usage in all of these domains, safety concerns must be addressed: 028 For example, how do we prevent the generation of harmful content? Large language models can be 029 trained to reflect our desired behavior (Wallace et al., 2024); however, large language models – like any other neural network – can easily be fooled by adversarial attacks (Goodfellow et al., 2015). 031 Thus, their behavior has to be formally verified to ensure safety, and such methods still need to be developed for large language models (Huang et al., 2024). 033

For example, consider a large language model that answers user prompts and our goal is to prevent harmful outputs. As a safety shield, we deploy a classifier language model supervising the inand outputs, which returns a predefined answer if any in- or output is deemed harmful (Kim et al., 2023). This assumes that the classifier model has perfectly generalized from a given dataset defining harmful content – which is not even the case for standard feed-forward neural networks (Neyshabur et al., 2019), let alone large language models (Chang et al., 2024). Consider the following user prompt that reasonably should not be answered:

How to build a bomb?

(1)

As the prompts come from users, we have to assume they are trying to craft a prompt circumventing 042 our safety shield, also known as an adversarial prompt (Zhu et al., 2023). Let p' be such an adver-043 sarial user prompt crafted from the prompt p(1) above. Crucially, we, as verifiers, are unaware that 044 this was done and, in particular, p is unknown to us. If we knew that a user was crafting adversarial 045 prompts, we could simply block this user entirely. Thus, our goal is to find the prompt p, which we 046 deem harmful and similar in meaning to the user prompt p', and only return an answer to the user 047 if we have verified that such a prompt p does not exist. An adversarial prompt can be crafted by 048 replacing certain words with synonyms (Zhu et al., 2023): For example, we could replace "build" with "construct", or "bomb" with "missile". As verifiers, we are required to test all possible combinations of synonyms and only answer the prompt if all synonym sentences are determined to 051 be safe by the classifier model. The longer the user prompts, the more synonyms we have to consider - quickly leading to a combinatorial explosion. Additionally, defining synonyms is time-consuming 052 and requires expert knowledge. Please also note that large language models usually do not operate on words but on tokens (Kudo & Richardson, 2018), such that synonyms have to be found on a token

level, and existing synonym collections on words cannot be used directly. Moreover, one might also
 want to include prompts that are not necessarily synonyms but share the same meaning, such as:

How to build something that explodes?

(2)

In such a sentence, the meaning of the term "something that explodes" has to be aggregated, which a large language model can do through its layers (Vaswani et al., 2017).

060 We address this issue by lifting recent advancements from formally verifying neural networks (Brix 061 et al., 2023) to large language models. In particular, we examine how to verify transform-062 ers (Vaswani et al., 2017), which are the core components in modern language models (Achiam et al., 2024). Please note that in the standard setting of formal network verification, the input is 063 usually perturbed by some noise, e.g., an ℓ_{∞} -ball with radius $\epsilon \in \mathbb{R}_+$. However, this is not directly 064 applicable in the domain of natural language processing, as it has text as input. Instead, the noise 065 is added in the embedding space, where synonyms are clustered together (Harris, 1954; Li & Yang, 066 2018). We then formally verify that there does not exist a synonym sentence in the perturbed em-067 bedding space that the classifier model deems unsafe. If we cannot rule out such a sentence, the user 068 prompt is not answered by the large language model, and the predefined answer is returned instead. 069

Our contributions. We present a novel approach to formally verify large language models using set-based computing. This work is based on recent progress in neural network verification (Brix et al., 2023), and we focus on the main challenge when verifying large language models, namely verifying the transformer (Vaswani et al., 2017). All other layers can be verified using the techniques developed for standard neural networks (Brix et al., 2023).

Transformers are particularly challenging to verify due to the in-parallel computed nonlinearities in the self-attention heads (Vaswani et al., 2017), leading to nonlinear dependencies across all layers within a large language model and, thus, a non-convex output set. Neural network verifiers usually address this by relaxing the problem to a convex set enclosing the actual output (Brix et al., 2023). However, we show in this work that this leads to large outer approximations when applied on transformers and, for the first time, explicitly preserve these nonlinear dependencies through all layers using set-based computing. In particular, polynomial zonotopes (Kochdumper & Althoff, 2020) are used as a set representation.

Our evaluation shows that this enables the verification of much larger perturbed embedding spaces compared to related work (Sec. 5). Additionally, the desired precision can be tuned via a single parameter at the cost of additional verification time.

086 087

880

057

2 BACKGROUND

2.1 NOTATION

We denote scalars and vectors by lowercase letters, matrices by uppercase letters, and sets by calli-091 graphic letters. The *i*-th element of a vector $v \in \mathbb{R}^n$ is written as $v_{(i)}$. The element in the *i*-th row 092 and j-th column of a matrix $A \in \mathbb{R}^{n \times m}$ is written as $A_{(i,j)}$, the entire i-th row and j-th column 093 are written as $A_{(i,\cdot)}$ and $A_{(\cdot,j)}$, respectively. The concatenation of A with a matrix $B \in \mathbb{R}^{n \times o}$ is 094 denoted by $[A B] \in \mathbb{R}^{n \times (m+o)}$. For two tensors $T_1, T_2 \in \mathbb{R}^{n_1 \times \ldots \times n_m}$, we also use the shorthand 095 notation $[T_1 T_2]_i$ to denote their concatenation in the *i*-th dimension. The empty matrix is written 096 as []. We use I_n to denote the identity matrix of dimension $n \in \mathbb{N}$. The symbols 0 and 1 refer 097 to matrices with all zeros and ones of proper dimensions, respectively. Given $n \in \mathbb{N}$, we use the 098 shorthand notation $[n] = \{1, \ldots, n\}$. Let $\mathcal{S} \subset \mathbb{R}^n$ be a set and $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function, then 099 $f(\mathcal{S}) = \{f(x) \mid x \in \mathcal{S}\}$. An interval with bounds $a, b \in \mathbb{R}^n$ is denoted by [a, b], where $a \leq b$ holds 100 element-wise.

101

102 2.2 NEURAL NETWORKS

Let us now formally introduce neural networks and all operations used in large language models. **Definition 1** (Neural Networks (Bishop & Neurabadi 2006, Sec. 5.1)) Let $x \in \mathbb{R}^{n_0}$ be the input of

Definition 1 (Neural Networks (Bishop & Nasrabadi, 2006, Sec. 5.1)). Let $x \in \mathbb{R}^{n_0}$ be the input of a neural network Φ with κ layers, its output $y = \Phi(x) \in \mathbb{R}^{n_\kappa}$ is obtained as follows:

$$h_0 = x, \quad h_k = L_k(h_{k-1}), \quad y = h_\kappa, \qquad k \in [\kappa]$$

Figure 1: We consider large language model architectures in this paper where κ blocks shown in the figure are concatenated, followed by global pooling and a linear layer to obtain the class predictions.

where $L_k : \mathbb{R}^{n_{k-1}} \to \mathbb{R}^{n_k}$ represents the operation of layer k.

For example, a linear layer with $W_k \in \mathbb{R}^{n_k \times n_{k-1}}$, $b_k \in \mathbb{R}^{n_k}$ is computed by

$$L_{k}^{L}(h_{k-1}) = W_{k}h_{k-1} + b_{k-1} \in \mathbb{R}^{n_{k}}.$$
(3)

In this section, we focus on the layers used in large language models which are not used in standard neural networks (Fig. 1). We briefly list them next for easier reference when we propagate sets through them to verify the entire model. Let d_{model} denote the embedding dimension of our model for each of its t tokens. Given three matrices $Q \in \mathbb{R}^{t \times d_{QK}}, K \in \mathbb{R}^{t \times d_{QK}}, V \in \mathbb{R}^{t \times d_V}$, a single self-attention layer (Vaswani et al., 2017, Eq. 1) is computed by

$$L_k^{\mathcal{A}}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_{QK}}}\right) V \in \mathbb{R}^{t \times d_V},\tag{4}$$

where the softmax function is computed rowwise for a given vector $l \in \mathbb{R}^n$ as follows:

$$\operatorname{softmax}(l)_{(j)} = \frac{\exp l_{(j)}}{\sum_{i=1}^{n} \exp l_{(i)}} \in \mathbb{R}^{n}, \quad j \in [n].$$
(5)

In practice, multiple attention heads are computed in parallel, and the overall equation is given by

$$L_{k}^{\text{MHA}}(Q, K, V) = \begin{bmatrix} L_{k,1}^{\text{HA}}(Q, K, V) & \dots & L_{k,h}^{\text{HA}}(Q, K, V) \end{bmatrix}_{1} W_{k}^{A} \in \mathbb{R}^{t \times d_{\text{model}}},$$

with $L_{k,i}^{\text{HA}}(Q, K, V) = L_{k,i}^{A} \left(QW_{k,i}^{Q}, KW_{k,i}^{K}, VW_{k,i}^{V} \right), \quad i \in [h],$ (6)

with
$$L_{k,i}^{-1}(Q, K, V) = L_{k,i}^{-1}(QW_{k,i}, KW_{k,i}, VW_{k,i}), \quad i \in [n],$$

where $W_{i}^{Q}, W_{k,i}^{L} \in \mathbb{R}^{d_{\text{model}} \times d_{QK}}, W_{k,i}^{U} \in \mathbb{R}^{d_{\text{model}} \times d_{V}}$, and $W_{i}^{A} \in \mathbb{R}^{hd_{V} \times d_{\text{model}}}$ are learnal

147 where $W_{k,i}^Q, W_{k,i}^K \in \mathbb{R}^{d_{\text{model}} \times d_{QK}}, W_{k,i}^V \in \mathbb{R}^{d_{\text{model}} \times d_V}$, and $W_k^A \in \mathbb{R}^{hd_V \times d_{\text{model}}}$ are learnable pro-148 jection matrices for Q, K, V, and the aggregation of the attention heads, respectively. Similarly 149 to related work (Shi et al., 2020; Bonaert et al., 2021), we slightly modify the layer normaliza-150 tion (Lei Ba et al., 2016) used in transformers. Please visit appendix A for a detailed discussion on 151 this modification. Given bias and gain parameters $\beta, \gamma \in \mathbb{R}^{n_{k-1}}$, and an input $h_{k-1} \in \mathbb{R}^{n_{k-1}}$ with 152 mean $\bar{h}_{k-1} = 1/n_{k-1} \cdot h_{k-1}$, the modified layer normalization is given by

$$L_k^{\mathbf{N}}(h_{k-1}) = \gamma \odot \left(h_{k-1} - \bar{h}_{k-1}\right) + \beta, \tag{7}$$

where \odot denotes the Hadamard product. With that, we have introduced all special operations used in transformers.

158 2.3 SET-BASED COMPUTING

159

157

153 154

121

122 123

127 128

134 135 136

139 140 141

We use set-based computing to propagate perturbations to the input of a neural network through
 each layer. To this end, we use polynomial zonotopes (Kochdumper & Althoff, 2020) as set representation, in particular, its matrix variant:

171

172

173

179

181 182

183

188

189 190

195

196

200

201 202

203

208

Definition 2 (Matrix Polynomial Zonotopes (Ladner et al., 2024, Def. 9)). Given an offset $C \in \mathbb{R}^{n \times m}$, dependent generators $G \in \mathbb{R}^{n \times m \times h}$ with h dependent generators, independent generators $G_I \in \mathbb{R}^{n \times m \times q}$ with q independent generators, and an exponent matrix $E \in \mathbb{N}_0^{p \times h}$ with an identifier id $\in \mathbb{N}^{p_1}$, a matrix polynomial zonotope $\mathcal{PZ} = \langle C, G, G_I, E \rangle_{PZ}$ is defined as

$$\mathcal{PZ} = \langle C, G, G_I, E \rangle_{PZ} = \left\{ C + \sum_{i=1}^h \left(\prod_{k=1}^p \alpha_k^{E_{(k,i)}} \right) G_{(\cdot,\cdot,i)} + \sum_{j=1}^q \beta_j G_{I(\cdot,\cdot,j)} \middle| \alpha_k, \beta_j \in [-1,1] \right\}.$$

We give an example for a polynomial zonotope in appendix B and only briefly introduce the required set operations here. The main advantage of using this set representation is its efficient computation of many operations appearing in the layers considered in Sec. 2.2: The Minkowski sum (Ladner et al., 2024, Eq. 5) of two matrix polynomial zonotopes

$$\mathcal{PZ}_{1} = \left\langle C_{1}, \left[\widetilde{G}_{1} \ G_{1}\right]_{3}, G_{I,1}, \left[\widetilde{E} \ E_{1}\right] \right\rangle_{PZ} \subset \mathbb{R}^{n \times m},$$

$$\mathcal{PZ}_{2} = \left\langle C_{2}, \left[\widetilde{G}_{2} \ G_{2}\right]_{3}, G_{I,2}, \left[\widetilde{E} \ E_{2}\right] \right\rangle_{PZ} \subset \mathbb{R}^{n \times m}$$
(8)

with partially shared exponent matrices and a common identifier vector is computed by:

$$\mathcal{PZ}_{1} \oplus \mathcal{PZ}_{2} = \{x_{1} + x_{2} \mid x_{1} \in \mathcal{PZ}_{1}, x_{2} \in \mathcal{PZ}_{2}\} \\ = \left\langle C_{1} + C_{2}, \begin{bmatrix} \tilde{G}_{1} + \tilde{G}_{2} & G_{1} & G_{2} \end{bmatrix}_{3}, \begin{bmatrix} G_{I,1} & G_{I,2} \end{bmatrix}_{3}, \begin{bmatrix} \tilde{E} & E_{1} & E_{2} \end{bmatrix}_{2} \right\rangle_{PZ}.$$
⁽⁹⁾

Given the matrices $A_1 \in \mathbb{R}^{k \times n}$, $A_2 \in \mathbb{R}^{m \times k}$, and the vectors $b_1 \in \mathbb{R}^{k \times m}$, $b_2 \in \mathbb{R}^{n \times k}$, the affine map (Ladner et al., 2024, Eq. 6) is computed by

$$A_{1}\mathcal{P}\mathcal{Z}_{1} + b_{1} = \{A_{1}x + b_{1} \mid x \in \mathcal{P}\mathcal{Z}_{1}\} = \langle A_{1}C_{1} + b_{1}, A_{1}G_{1}, A_{1}G_{I,1}, E_{1} \rangle_{PZ},$$

$$\mathcal{P}\mathcal{Z}_{1}A_{2} + b_{2} = \{xA_{2} + b_{2} \mid x \in \mathcal{P}\mathcal{Z}_{1}\} = \langle C_{1}A_{2} + b_{2}, G_{1}A_{2}, G_{I,1}A_{2}, E_{1} \rangle_{PZ}.$$
 (10)

Given two matrix polynomial zonotopes $\mathcal{M}_1 \subset \mathbb{R}^{n \times k}$, $\mathcal{M}_2 \subset \mathbb{R}^{k \times m}$ with g_1 and g_2 generators, respectively, then the matrix multiplication

$$\mathcal{M}_3 \coloneqq \mathcal{M}_1 \cdot \mathcal{M}_2 = \{ (M_1 \cdot M_2) \mid M_1 \in \mathcal{M}_1, M_2 \in \mathcal{M}_2 \} \subset \mathbb{R}^{n \times m}, \tag{11}$$

can be computed exactly such that \mathcal{M}_3 has $\mathcal{O}(g_1g_2)$ generators (Ladner et al., 2024, Lemma 10). Finally, the concatenation of two matrix polynomial zonotopes is done by concatenating their center and generators accordingly (appendix B, (19)). Further details on polynomial zonotopes and these operations can be found in appendix B.

2.4 NEURAL NETWORK VERIFICATION

We verify neural networks using (matrix) polynomial zonotopes by iteratively propagating the input set $\mathcal{X} = \mathcal{H}_0$ through the neural network and enclosing the output of each layer $k \in [\kappa]$:

Proposition 1 (Image Enclosure (Kochdumper et al., 2023, Sec. 3)). Let $\mathcal{H}_{k-1} \subset \mathbb{R}^{n_{k-1}}$ be an input set to layer k, then

$$\mathcal{H}_k = ext{enclose}\left(L_k, \, \mathcal{H}_{k-1}\right) \subset \mathbb{R}^{n_k}$$

computes an outer-approximative output set.

In general, linear layers can be computed exactly with polynomial zonotopes using (10), whereas nonlinear layers induce outer approximation (Fig. 2): The activation function is approximated using a polynomial, and an enclosure is obtained by bounding the approximation error, which is added to the output set using (9). The enclosure of the network's output set is then given by $\mathcal{Y} = \mathcal{H}_{\kappa}$.

209 2.5 PROBLEM STATEMENT

Given a large language model $\Phi : \mathbb{R}^{n_0} \to \mathbb{R}^{n_\kappa}$, a perturbed input set \mathcal{X} corresponding to a user prompt, and some specification $\mathcal{S} \subset \mathbb{R}^{n_\kappa}$ specifying the unsafe outputs of a network, we want to compute an outer-approximative output set $\mathcal{Y} \supseteq \Phi(\mathcal{X})$ such that $\mathcal{Y} \cap \mathcal{S} = \emptyset$ to verify the safety of the user prompt. Please note that the classification problem stated in Sec. 1 can be formulated in this way.

¹The identifier vector id is used to maintain dependencies of the factors α_k between sets.

Figure 2: Main steps to enclose a nonlinear layer. Step 1: Evaluate the activation function elementwise. Step 2: Compute the bounds of the input set. Step 3: Find an approximating polynomial. Step 4: Compute the approximation error. Step 5: Evaluate the polynomial over the input set. Step 6: Add the approximation error.

3 NON-CONVEX DEPENDENCY-PRESERVING LLM VERIFICATION

We now present our novel approach to enclose the output of a large language model using polynomial zonotopes. An overview of the considered model is given in Fig. 1. We start with the smallest and simplest layers and incrementally add complexity by stacking these layers together. Please follow Sec. 2.2 along with this section for the exact equations and the required adaptations made here if the inputs are sets: Most layers only apply operations that can be computed efficiently using polynomial zonotopes (Sec. 2.3).

3.1 OUTPUT ENCLOSURE OF A LAYER NORMALIZATION LAYER

The modified layer normalization in (7) can be computed exactly without additional outer approximation. Please visit appendix A for a discussion on how to enclose the original equation of the layer normalization.

Lemma 1 (Enclosure Layer Normalization). *Given an input set* $\mathcal{H}_{k-1} \subset \mathbb{R}^{n_{k-1}}$, the output set of a layer normalization layer (7) is given by

$$L_k^N(\mathcal{H}_{k-1}) = \operatorname{diag}(\gamma) \cdot (\mathcal{H}_{k-1} \oplus (-1/n_{k-1} \cdot \mathcal{H}_{k-1})) + \beta.$$

Proof. See appendix C.

3.2 OUTPUT ENCLOSURE OF THE SOFTMAX FUNCTION

The softmax layer is a standard layer in many network architectures. However, it often is the last layer of a network, and its enclosure can be omitted during verification, as one is usually only interested in the largest dimension, which can already be determined prior to the softmax layer. Unfortunately, this cannot be done for transformers, as it is applied internally. Analogously to Bonaert et al. (2021), we reformulate the computation of the softmax function (5) for numeric stability and to ease the enclosure using sets:

softmax
$$(l)_{(j)} = \frac{\exp l_{(j)}}{\sum_{i=1}^{n} \exp l_{(i)}} = \frac{1}{\sum_{i=1}^{n} \exp l_{(i)} - l_{(j)}}, \quad j \in [n].$$
 (12)

Then, we can obtain an output enclosure of the softmax function by enclosing the exponential and the inverse function:

Lemma 2 (Enclosure Softmax). *Given an input set* $\mathcal{L} \subset \mathbb{R}^n$, the output set of the softmax function (12) is enclosed by

softmax $(\mathcal{L})_{(i)} \subseteq$ enclose $(x \mapsto 1/x, \mathbf{1} \cdot \text{enclose} (\exp, \mathcal{L}_{(i)} \oplus -\mathcal{L}_{(j)})), j \in [n].$

The output set has n more generators than the input set.

270 *Proof.* See appendix C.

277

278

289 290 291

295 296

297

305 306 307

310 311

313

Please note that the inverse function is only defined for positive inputs, which can, e.g., be ensured
through the enclosure of exp using (Singh et al., 2018, Thm. 3.2). Computing good convex bounds
has extensively been discussed in the literature (Bonaert et al., 2021; Wei et al., 2023), and we defer
to their works for details on how to improve the bound computation. We found that, in practice, our
method works well as long as the dependencies between dimensions are sufficiently well preserved.

3.3 OUTPUT ENCLOSURE OF AN ATTENTION LAYER

The attention layer (4) evaluates the importance of tokens within a sequence to one another and aggregates their embeddings accordingly. With the input being perturbed, this requires the multiplication of sets and the resulting nonlinear dependencies need to be preserved for a tight enclosure. Fortunately, this multiplication of sets is exact using polynomial zonotopes (11), which is the unique advantage of our approach over related work. Please visit appendix B for a detailed discussion on dependency-preserving operations and, in particular, see Fig. 4b for a comparison of our approach with related work. Thus, we only induce outer approximations through the enclosure of the softmax function.

Proposition 2 (Enclosure Attention). *Given three sets* $Q, \mathcal{K} \subset \mathbb{R}^{t \times d_{QK}}, \mathcal{V} \subset \mathbb{R}^{t \times d_V}$ with $g_Q, g_{\mathcal{K}}, g_{\mathcal{V}}$ generators, respectively, the output set of an attention layer (4) is enclosed by

 $L_k^A\left(\mathcal{Q},\mathcal{K},\mathcal{V}
ight)\subseteq extsf{enclose}\left(extsf{softmax},\ rac{\mathcal{Q}\mathcal{K}^T}{\sqrt{d_{QK}}}
ight)\mathcal{V},$

where \mathcal{K}^T is computed by transposing the center and each generator of \mathcal{K} . The output set has $\mathcal{O}(g_{\mathcal{Q}\mathcal{G}\mathcal{K}\mathcal{G}\mathcal{V}} + t^2 g_{\mathcal{V}})$ generators.

Proof. See appendix C.

3.4 OUTPUT ENCLOSURE OF A MULTI-HEAD ATTENTION LAYER

The output enclosure of the attention heads (Prop. 2) is computed multiple times in parallel during the verification of large language models (Fig. 1). Thus, after the output set of each attention head is obtained, the preserved dependencies ensure that their aggregation can be computed without inducing additional outer approximations:

Proposition 3 (Enclosure Multi-Head Attention). Given three sets $Q, \mathcal{K}, \mathcal{V} \subset \mathbb{R}^{t \times d_{\text{model}}}$ with $g_Q, g_{\mathcal{K}}, g_{\mathcal{V}}$ generators, respectively, the output set of a multi-head attention layer (6) is enclosed by

$$\begin{split} L_k^{M\!H\!A}\left(\mathcal{Q},\mathcal{K},\mathcal{V}\right) &\subseteq \begin{bmatrix} \mathcal{H}_{k,1} & \dots & \mathcal{H}_{k,h} \end{bmatrix}_1 W_k^A,\\ with \ \mathcal{H}_{k,i} &= \texttt{enclose}\left(L_{k,i}^A, \ \mathcal{Q}W_{k,i}^Q, \mathcal{K}W_{k,i}^K, \mathcal{V}W_{k,i}^V\right), \quad i \in [h]. \end{split}$$

The output set has $\mathcal{O}(g_{\mathcal{Q}}g_{\mathcal{K}}g_{\mathcal{V}} + ht^2g_{\mathcal{V}})$ generators.

Proof. See appendix C.

312 3.5 OUTPUT ENCLOSURE OF A LARGE LANGUAGE MODEL

After all enclosures of special layers appearing in a large language model are defined (Fig. 1), we can put everything together and compute an enclosure of the output set of the entire model. In this work, we consider a classifier model, as described in Sec. 1. Alg. 1 provides the pseudocode to verify the classifier model having κ transformer blocks with *h* attention heads each, linear and normalization layers in between, and a global pooling layer at the end to obtain the final classification. Please note that our approach is general and can also be used for other architectures, as the enclosures do not rely on a specific concatenation of the layers.

Alg. 1 requires a set $\mathcal{X} \subset \mathbb{R}^{t \times d_{\text{model}}}$ as input; however, large language models have text as input. The text is split into t tokens and each token is mapped into an embedding space of dimension d_{model} . Thus, the input to the model is then given by

$$x \in \mathbb{R}^{t \times d_{\text{model}}}.$$
(13)

343

324

326

327

Algorithm 1 Enclosing the Output of a Large Language Model 325 **Require:** Large language model Φ and input set \mathcal{X} . \triangleright Initialize input set (14) 1: $\mathcal{H}_0 \leftarrow \mathcal{X}$ 2: for $k \in [\kappa]$ do ▷ Iterate over transformers 328 3: for $i \in [h]$ do ▷ Iterate over attention heads $\widehat{\mathcal{H}}_{k,i} \leftarrow \operatorname{enclose} \left(L_{k,i}^{\mathrm{A}}, \mathcal{H}_{k-1} W_{k,i}^{Q}, \mathcal{H}_{k-1} W_{k,i}^{K}, \mathcal{H}_{k-1} W_{k,i}^{V} \right) \triangleright \operatorname{Attention head} (\operatorname{Prop. 2})$ 4: 5: $\widehat{\mathcal{H}}_{k} \leftarrow \begin{bmatrix} \widehat{\mathcal{H}}_{k,1} & \dots & \widehat{\mathcal{H}}_{k,h} \end{bmatrix}_{1} W_{k}^{A}$ ▷ Aggregate attention heads (Prop. 3) 6: $\overline{\mathcal{H}}_{k} \leftarrow L_{k,1}^{\mathrm{N}} \left(\mathcal{H}_{k-1} \oplus \widetilde{\mathcal{H}}_{k}
ight)^{^{\mathrm{T}}}$ 7: ▷ Residual connection (9) and normalization (Lemma 1) $\widetilde{\mathcal{H}}_{k} \leftarrow L_{k,2}^{\mathrm{LIN}} \left(L_{k}^{\mathrm{ACT}} \left(L_{k,1}^{\mathrm{LIN}} \left(\overline{\mathcal{H}}_{k} \right) \right) \right)$ 8: \triangleright Regular neural network layers (Prop. 1) $\mathcal{H}_k \leftarrow L_{k,2}^{\mathsf{N}} \left(\mathcal{H}_{k-1} \oplus \widetilde{\mathcal{H}}_k \right)$ 9: ▷ Residual connection (9) and normalization (Lemma 1) 10: end for 11: $\mathcal{Y} \leftarrow L_{\kappa+1}^{\text{LIN}} \left(L_{\kappa+1}^{\text{GP}} \left(\mathcal{H}_{\kappa} \right) \right)$ \triangleright Global Average Pooling (10) + Linear (3) 12: return Output set $\mathcal{Y} \supset \Phi(\mathcal{X})$

To also enclose synonyms of the input text, we construct an ℓ_{∞} -ball with radius $\epsilon \in \mathbb{R}_+$ around x as follows:

$$\mathcal{X} = \left\langle x, \begin{bmatrix} G_{1,1} & G_{1,2} & \dots & G_{1,d_{\text{model}}} \\ G_{2,1} & \dots & G_{t,d_{\text{model}}} \end{bmatrix}_3, \begin{bmatrix} \end{bmatrix}, I_{t \cdot d_{\text{model}}} \right\rangle_{PZ} \subset \mathbb{R}^{t \times d_{\text{model}}},$$
with $G_{i,j(k,l)} = \begin{cases} \epsilon & \text{if } i = k \text{ and } j = l, \\ 0 & \text{otherwise,} \end{cases}$, $i, k \in [t], j, l \in [d_{\text{model}}],$

$$(14)$$

348 Thus, the overall generator matrix $G \in \mathbb{R}^{t \times d_{\text{model}} \times (t \cdot d_{\text{model}})}$ has $g_{\mathcal{X}} = (t \cdot d_{\text{model}})$ generators with 349 (initially) no dependencies between each other, as the exponent matrix is an identity matrix (Def. 2). 350 This constructs a hypercube representing the ℓ_{∞} -ball around x, which is transformed to more com-351 plex sets within a large language model, particularly within the attention layer (Fig. 4b).

352 Please note that we use the same set \mathcal{H}_{k-1} for the query, key, and value in the attention layer 353 (Alg. 1, line 4), which allows us to simplify the number of generators derived in Prop. 2. Further, 354 we reasonably assume that $t, d_{\text{model}}, h \ll g_{\mathcal{X}}$. Thus, 355

Lemma 3. The number of generators of \mathcal{H}_k , $k \in [\kappa]$, in Alg. 1 is $\mathcal{O}(g_{\mathcal{X}}^{3^k})$. 356

357 Proof. See appendix C. 358

359 **Reducing the number of generators.** Although the number of transformer blocks κ is typically 360 small, the direct computation of the output set $\mathcal{Y} = \mathcal{H}_{\kappa}$ quickly becomes intractable. Thus, we want 361 to limit the number of generators to $g_{max} \in \mathbb{R}_+$ by applying an order reduction method (Kochdumper 362 & Althoff, 2020, Sec. II-E): The rapid growth stems from the matrix-set multiplications (11) within the attention layer (4), where the center and each generator of one set is multiplied with the center and each generator of the other set. The multiplications of the generators result in higher-order 364 terms (see second example in appendix B), enabling the exact enclosure of the multiplication; how-365 ever, many of these higher-order terms contribute only a little to the overall set and can be outer-366 approximated by an interval without losing much precision (Kochdumper & Althoff, 2020, Sec. II-367 B). Thus, we introduce a parameter $\rho_{\text{lim}} \in \mathbb{R}_+$ limiting the number of generators of the higher-order 368 terms relative to the dimension of the resulting set. We do not apply an order reduction on the lin-369 ear terms resulting from the multiplication of the centers with each generator, respectively, as their 370 dependencies between attention heads have to be kept for a tight enclosure. Please note that setting 371 the error order $\rho_{\rm lim} = 1$ results in an interval hull of all higher-order terms, which corresponds to the 372 approach in related work (Bonaert et al., 2021, Sec. 5.1); therefore, our approach is a direct gener-373 alization of their approach. Additionally, we apply an additional order reduction after each residual 374 connection (Fig. 1) such that the total number of generators does not exceed $g_{max} \in \mathbb{R}_+$. Thus, 375 we keep the nonlinear dependencies as long as possible and only apply relaxations when necessary. Similar deferred relaxation techniques have also shown to be beneficial in other non-convex verifi-376 cation approaches on standard neural networks (Wei et al., 2023; Ladner & Althoff, 2023; Fatnassi 377 et al., 2023).

Theorem 1 (Enclosure of Large Language Models). Given a large language model Φ and an input set \mathcal{X} (14) with $g_{\mathcal{X}}$ generators, Alg. 1 computes an output set \mathcal{Y} satisfying the problem statement stated in Sec. 2.5. The computational complexity is bounded by \mathcal{O} (thd_Vd_{model} $g_{max}\kappa$).

Proof. See appendix C.

4 EXPERIMENTAL RESULTS

We evaluate our approach on four large language models M_i , $i \in [4]$, trained from scratch for binary classification. All hyperparameters and additional experiments are given in appendix D. The first two models are trained on the medial safety dataset (Abercrombie & Rieser, 2022), and the last two models are trained on the Yelp dataset (Zhang et al., 2016), We implemented our approach into the Matlab toolbox CORA (Althoff, 2015). All computations were performed in a docker container on an Intel® CoreTM Gen. 11 i7-11800H CPU @2.30GHz with 64GB memory.

381

382

384

385 386

387

388

389

390

4.1 ON SYNONYM SENTENCE ENUMERATION AND FORMAL VERIFICATION

Let us first compare how our approach scales with the number of synonyms captured by the embedding space compared to enumerating all synonym sentences. Fig. 3a shows that enumerating all synonym sentences quickly becomes computationally infeasible, while our approach can capture synonym sentences in a single verification query and guarantees safety in a few seconds. Please note that reasonable sentences have many more synonyms as exemplary shown in Tab. 1: This sentence from the medical safety dataset has 96 synonym words with more than 2 billion synonym sentences.

401 402

403

4.2 VERIFICATION RESULTS ON LARGE LANGUAGE MODELS

Let us now evaluate our verification approach and compare it to a state-of-the-art transformer verification approach based on zonotopes ((Bonaert et al., 2021)) and naive interval bound propagation ((Jaulin et al., 2001)). We show the tighter enclosure of a single attention head in Fig. 3b, which has to be attributed to the ability to compute the multiplication of two polynomial zonotopes exactly (11) at the cost of additional verification time. Further details on this unique advantage are given in appendix B.

This tighter enclosure allows us to verify the safety of much larger perturbed embedding spaces. We present the averaged results of 20 sentences with up to 27 tokens of each dataset, respectively, in Tab. 2. For each sentence, we perform a binary search to determine the largest input set that is still verifiable with each approach, respectively, where we normalize the verified volume of the zonotope baseline to 1. Our approach allows adaptively increasing the parameter ρ_{lim} to compute tighter enclosures and thus larger verified perturbed embedding spaces at the cost of additional computation time. Please note that setting $\rho_{\text{lim}} = 1$ corresponds to the zontope approach and no nonlinear

416 417 418

Table 1: Synonyms contained in a perturbed embedding space for a verified example sentence.

Token	#Synonyms	Synonyms
dull	14	heavy, flat, uncomfortable,
chest	4	body, heart,
pain	1	ache
when	1	whenever
bending	16	turning, leaning, bowing,
in	6	at, into, within,
certain	12	specific, chosen, fixed,
directions	10	position, ways, angle,
and	1	besides
when	1	whenever
breathing	4	air, oxygen,
	•••	•••

Figure 3: (a) Comparison of the time needed to verify all synonym sentences by enumerating them and a single verification query using our approach. (b) Enclosure comparison of a single attention head (4) with $\rho_{\text{lim}} = \infty$.

Table 2: Comparison of verified embedding space with interval bound propagation (IBP), zono-topes (Z, Bonaert et al. (2021)), and polynomial zonotopes (PZ, ours).

	Model 1			Model 3			
	Verified Volume		Time [s]	Verifie	ed Volume	Time [s]	
Approach	Mean	Max.		Mean	Max.		
IBP	0.00	0.00	0.02	0.00	0.00	0.02	
Z (baseline)	1.00	1.00	6.90	1.00	1.00	5.97	
$PZ(\rho_{lim}=2)$	1,874.07	29,723.35	201.71	17,432.27	331, 146.39	170.71	
$\mathrm{PZ}\left(\rho_{\mathrm{lim}}=5\right)$	2,993.96	46 , 621.47	283.55	80, 593.07	1,531,038.79	228.33	

dependencies are captured anymore. Further details on this tradeoff are given in appendix D on two more models.

5 RELATED WORK

This work continuous the progressive effort to formally verify neural networks in recent years (Brix et al., 2023): As neural networks are vulnerable to adversarial attacks (Goodfellow et al., 2015), for-mally verifying them against input perturbations is of immense importance in safety-critical scenar-ios. Neural network verifiers can generally be categorized into optimization-based verifiers Zhang et al. (2018); Katz et al. (2019); Henriksen & Lomuscio (2020); Singh et al. (2019) and approaches using set-based computing Gehr et al. (2018); Singh et al. (2018); Lopez et al. (2023); Kochdumper et al. (2023). Early approaches focused on computing the exact output set of neural networks with ReLU activations, which has been shown to be NP-hard (Katz et al., 2017). Convex relaxations of the problem (Singh et al., 2018; Xu et al., 2020) and efficient branch-and-bound techniques (Wang et al., 2021) have shown to achieve impressive verification results (Brix et al., 2023). Recently, non-convex relaxations have also shown to be effective in this field of research (Kochdumper et al., 2023; Wang et al., 2023; Ladner & Althoff, 2023; Fatnassi et al., 2023; Ortiz et al., 2023).

While the robustness of large language models against adversarial prompts has been investigated (Sun et al., 2024, Sec. 9), research on the non-existence of such prompts using formal verification is limited and, as in this work, only perturbations to the embedding space of the input of large language models (Vaswani et al., 2017) are considered: As with standard neural networks, Shi et al. (2020) use linear bounds to verify the robustness with at most two perturbed words. This work has been extended to the zonotope domain (Bonaert et al., 2021), enabling the verification of longer sentences with all words being perturbed. Other works also investigated finding better bounds of the softmax function within transformers (Wei et al., 2023; Shi et al., 2024). Recently, the importance of

carrying dependencies between each attention head and dimension has been stressed (Zhang et al., 2024); however, they also apply convex relaxations in each step and thus lose precision at each nonlinearity.

We also consider the problem of formally verifying graph neural networks (Sälzer & Lange, 2023) as closely related, as many of the operations within these networks (Kipf & Welling, 2017) also appear in large language models (Vaswani et al., 2017). Thus, progress in either domain also propels progress in the other. In graph neural networks, approaches consider problems with perturbed input (Zügner & Günnemann, 2019) and also perturbed graph structure (Bojchevski & Günnemann, 2019; Jin et al., 2020; Ladner et al., 2024).

495 496

497 498

6 LIMITATIONS

Our work relies on the implicit assumption that words with similar meanings have similar word 499 embeddings and are thus captured by constructing an ℓ_∞ -ball around the embedding of a given 500 word. While literature (Harris, 1954; Li & Yang, 2018) and our experiments suggest that this holds, 501 we cannot guarantee that we capture all synonyms. More advanced perturbations might also be 502 beneficial to capture more synonyms, e.g., by considering the superpositions of features in word 503 embeddings (?). It might also be necessary to add further perturbations after the model aggregated 504 meanings of multiple words through each attention block (Vaswani et al., 2017, Appendix). For 505 example, by adding perturbations after each transformer block (Alg. 1, lines 2 to 10)), one might 506 capture the example sentence (2) as a synonym of (1). Furthermore, our approach does not output 507 the original harmful prompt to the adversarial user prompt (Sec. 1). We can only say that there might exist an area in the embedding space, which might contain a harmful prompt. Additionally, 508 this unsafe area might also not correspond to an actual synonym sentence as it is sparsely populated. 509 However, we would rather want to be safe than output harmful content. 510

511 Our approach continues the progressive efforts to formally verify large language models (Shi et al., 512 2020; Bonaert et al., 2021). However, all methods are not yet applicable to modern-size large lan-513 guage models (Achiam et al., 2024), where both high precision and low verification time are desir-514 able. Our approach is a generalization of Bonaert et al. (2021) based on zonotopes, where a balance 515 between precision and speed is adaptively struck via the parameter $\rho_{\rm lim}$. Please note that the total number of generators g_{max} also limits the precision. Order reduction methods are more challenging 516 for polynomial zonotopes than for zonotopes due to the additional complexity in the set represen-517 tation. Recently, an approach was made addressing this underexplored problem (Ladner & Althoff, 518 2024), and any improvement on this relatively new set representation also propels our approach. 519

It is also worth noting that we only verify the robustness of large language models against adversarial
prompts to fool classifier models; however, other model architectures and safety constraints are also
worth considering, e.g., jailbreaks (Wei et al., 2024; Casper et al., 2023), to prevent outputting false
claims or exposing private data. We defer to (Sun et al., 2024, Ch. 7) for a more detailed discussion
on the safety aspects of large language models.

Please note that transformers are also used in other domains, e.g., computer vision (Bhojanapalli
et al., 2021; Khan et al., 2022), and our verification approach can also be applied there as our
enclosures are defined per layer and do not rely on a specific model.

528 529

7 CONCLUSION

530 531

We present a novel approach to tightly enclose the output set of a large language model given a 532 perturbed input. This tight enclosure is realized using non-convex set-based computing based on 533 polynomial zonotopes, which allows one to efficiently preserve nonlinear dependencies. This preser-534 vation of dependencies is particularly important for the verification of large language models, as the 535 transformers used within large language models repeatedly compute complex nonlinear functions in 536 parallel. The desired precision can be tuned with a single parameter at the cost of additional com-537 putation time. These advantages of our approach are demonstrated by rigorous theoretical analysis and experiments, where we can verify much larger embedding spaces than approaches developed 538 in related work. We believe this work is a significant step towards improving these models' formal safety.

540 REFERENCES 541

 Gavin Abercrombie and Verena Rieser. Risk-graded safety for jandling medical queries in conversational AI. In <i>Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 234–243, 2022.</i> Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, and et al. GPT-4 technical report. <i>arXiv preprint arXiv:2303.08774</i>, 2024. Matthias Althoff. An introduction to CORA 2015. In <i>Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems</i>, pp. 120–151, 2015. Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and Andreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i>, pp. 10231–10241, 2021. Christopher M. Bishop and Nasser M. Nasrabadi. <i>Pattern recognition and machine learning</i>, volume 4: 2006. Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Processing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitro, Maximilian Baader, and Martin Vechev. Fast and precise certification of ransformers. In <i>Proceedings of the 21d ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, explort: Red learning language model	341	
 sational AI. In <i>Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association</i> <i>for Computational Linguistics and the 12th International Joint Conference on Natural Language</i> <i>Processing (Volume 2: Short Papers)</i>, pp. 234–243, 2022. Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- man, Digo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, and et al. GPT-4 technical report. <i>arXiv preprint</i> <i>arXiv:2303.08774</i>, 2024. Matthias Althoff. An introduction to CORA 2015. In <i>Proc. of the Workshop on Applied Verification</i> <i>for Continuous and Hybrid Systems</i>, pp. 120–151, 2015. Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and An- dreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of</i> <i>the IEEE/CVF International Conference on Computer Vision</i>, pp. 10231–10241, 2021. Christopher M, Bishop and Nasser M. Nasrabadi. <i>Pattern recognition and machine learning</i>, vol- ume 4, 2006. Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Processing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise cer- tification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verifi- cation of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint</i> <i>arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfiel-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2300.0042</i>, 2023.	542	Gavin Abercrombie and Verena Rieser. Risk-graded safety for jandling medical queries in conver-
 for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 234–243, 2022. Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Attenschmidt, Sam Attman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, and et al. GPT-4 technical report. <i>arXiv preprint arXiv:2303.08774</i>, 2024. Matthias Althoff. An introduction to CORA 2015. In <i>Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems</i>, pp. 120–151, 2015. Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and Andreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i>, pp. 10231–10241, 2021. Christopher M, Bishop and Nasser M. Nasrabadi. <i>Pattern recognition and machine learning</i>, volume 4. 2006. Alekandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Bris, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of reural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cumsing Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-tr	543	sational AI. In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association
 Processing (Volume 2: Short Papers), pp. 234–243, 2022. Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Ahneschnidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, and et al. GPT-4 technical report. <i>arXiv preprint arXiv:2303.08774</i>, 2024. Matthias Althoff. An introduction to CORA 2015. In <i>Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems</i>, pp. 120–151, 2015. Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and Andreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i>, pp. 10231–10241, 2021. Christopher M, Bishop and Nasser M. Nasrabadi. <i>Pattern recognition and machine learning</i>, volume 4. 2006. Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Proceesing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise certification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2316.09442</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaije Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intellig</i>	544	for Computational Linguistics and the 12th International Joint Conference on Natural Language
 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkai, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, and et al. GPT-4 technical report. <i>arXiv preprint arXiv:2303.08774</i>, 2024. Matthias Althoff. An introduction to CORA 2015. In <i>Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems</i>, pp. 120–151, 2015. Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and Andreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i>, pp. 10231–10241, 2021. Christopher M. Bishop and Nasser M. Nasrabadi. <i>Pattern recognition and machine learning</i>, volume 4, 2006. Aleksandar Bojehevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Verification of neural networks competition (VNN-COMP 2023): Summary and results. arXiv preprint arXiv:2312.16760, 2023.</i> Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert:	545	Processing (Volume 2: Short Papers), pp. 234–243, 2022.
 Joson Reman, Doron Robert, Joneson Jones, Jamar, Lanase, Handyu, Horak, Ja, Boron Robert, Jamar, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, and et al. GPT-4 technical report. <i>arXiv preprint arXiv:2303.08774</i>, 2024. Matthias Althoff. An introduction to CORA 2015. In <i>Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems</i>, pp. 120–151, 2015. Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and Andreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i>, pp. 10231–10241, 2021. Christopher M. Bishop and Nasser M. Nastabadi. <i>Pattern recognition and machine learning</i>, volume 4, 2006. Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2310.20760</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Juan Mu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polyn	546	Josh Achiam Steven Adler Sandhini Agarwal Lama Ahmad Ilge Akkaya Florencia Leoni Ale-
 Babuschkin, Suchir Balaji, Valerie Balcom, and et al. GPT-4 technical report. <i>arXiv preprint arXiv:230.08774</i>, 2024. Matthias Althoff. An introduction to CORA 2015. In <i>Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems</i>, pp. 120–151, 2015. Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and Andreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i>, pp. 10231–10241, 2021. Christopher M. Bishop and Nasser M. Nastabadi. <i>Pattern recognition and machine learning</i>, volume 4. 2006. Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Processing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise certification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Yuan Wu, Saytems: Computation of Large language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-m: Tight bound propagation for neural networks using be	547	man Diogo Almeida Janko Altenschmidt Sam Altman Shyamal Anadkat Red Avila Joor
 arXiv:2303.08774, 2024. Matthias Althoff. An introduction to CORA 2015. In <i>Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems</i>, pp. 120–151, 2015. Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and Andrea Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i>, pp. 10231–10241, 2021. Christopher M. Bishop and Nasser M. Nastabadi. <i>Pattern recognition and machine learning</i>, volume 4. 2006. Aleksandar Bojchevski and Stephan Günnemann. Certiffable robustness to graph perturbations. In <i>Advances in Neural Information Proceesing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise certification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yinpeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kajjie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45. 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using ber	548	Babuschkin, Suchir Balaii, Valerie Balcom, and et al. GPT-4 technical report. <i>arXiv preprint</i>
 Matthias Althoff. An introduction to CORA 2015. In <i>Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems</i>, pp. 120–151, 2015. Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and Andreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i>, pp. 10231–10241, 2021. Christopher M. Bishop and Nasser M. Nasrabadi. <i>Pattern recognition and machine learning</i>, volume 4. 2006. Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Processing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise certification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound proprogagiton for neural networks using bermstein polynomial interval arintime	549	arXiv:2303.08774, 2024.
 Matthias Attholt. An introduction to CORA 2015. In <i>Proc. of the Workshop on Applied Verification for Continuous and Hybrid Systems</i>, pp. 120–151, 2015. Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and Andreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i>, pp. 10231–10241, 2021. Christopher M. Bishop and Nasser M. Nasrabadi. <i>Pattern recognition and machine learning</i>, volume 4, 2006. Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Processing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise certification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red tearning language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmeti	550	
 <i>for Continuous and riyoria Systems</i>, pp. 120–131, 2013. Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and Andreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i>, pp. 10231–10241, 2021. Christopher M. Bishop and Nasser M. Nasrabadi. <i>Pattern recognition and machine learning</i>, volume 4. 2006. Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Processing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise certification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmetic. In <i>Procee</i>	551	Matthias Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification
 Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and Andreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i>, pp. 10231-10241, 2021. Christopher M. Bishop and Nasser M. Nasrabadi. <i>Pattern recognition and machine learning</i>, volume 4. 2006. Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Proceessing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise certification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana	552	jor Continuous and Hybrid Systems, pp. 120–151, 2015.
 dreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of</i> <i>the IEEE/CVF International Conference on Computer Vision</i>, pp. 10231–10241, 2021. Christopher M, Bishop and Nasser M. Nasrabadi. <i>Pattern recognition and machine learning</i>, vol- ume 4. 2006. Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Processing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise cer- tification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference</i> <i>on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verifi- cation of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint</i> <i>arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red tearning language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM</i> <i>Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop- agation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of</i> <i>the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar- tin Vechev. A12:	553	Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and An-
 Christopher M. Bishop and Nasser M. Nasrabadi. <i>Pattern recognition and machine learning</i>, volume 4. 2006. Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Processing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise certification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. A12: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954.<td>554</td><td>dreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of</i> the <i>IEEE/CVF International Conference on Computer Vision</i>, pp. 10231–10241, 2021.</td>	554	dreas Veit. Understanding robustness of transformers for image classification. In <i>Proceedings of</i> the <i>IEEE/CVF International Conference on Computer Vision</i> , pp. 10231–10241, 2021.
 Christopher M. Bishop and Nasser M. Nasrabadi. <i>Pattern recognition and machine learning</i>, volume 4. 2006. Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Processing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise certification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. A12: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy	555	
 Aleksandar Bojchevski and Stephan Günnemann. Certifiable robustness to graph perturbations. In <i>Advances in Neural Information Processing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise cer- tification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference</i> <i>on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verifi- cation of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint</i> <i>arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM</i> <i>Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop- agation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar- tin Vechev. A12: Safety and robustness certification of neural networks with abstract interpreta- tion. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representatio</i>	556 557	Christopher M. Bishop and Nasser M. Nasrabadi. <i>Pattern recognition and machine learning</i> , volume 4. 2006.
 Adexandar Bojchevski and stephan Gunnemain. Certuitable robustless to graph perturbations. In <i>Advances in Neural Information Processing Systems</i>, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise cer- tification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference</i> <i>on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verifi- cation of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint</i> <i>arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM</i> <i>Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop- agation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar- tin Vechev. A12: Safety and robustness certification of neural networks with abstract interpreta- tion. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representation</i>	558	Alabara dan Dajaharahi and Stanhan Günnamana, Gartifahla nahurtura ta anah marturkatiang. In
 Fardinest in Vedral Information Processing systems, volume 32, 2019. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vedrev. Fast and precise certification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. A12: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio	559	Advances in Neural Information Processing Systems, volume 32, 2010
 Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise certification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. A12: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adver	560	Auvances in Neurai Information 1 rocessing Systems, volume 52, 2019.
 tification of transformers. In <i>Proceedings of the 42nd ACM SIGPLAN International Conference</i> on <i>Programming Language Design and Implementation</i>, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint</i> <i>arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM</i> <i>Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop- agation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar- tin Vechev. A12: Safety and robustness certification of neural networks with abstract interpreta- tion. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refine- ment and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp.	561	Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise cer-
 on Programming Language Design and Implementation, pp. 466–481, 2021. Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. A12: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, S	562	tification of transformers. In Proceedings of the 42nd ACM SIGPLAN International Conference
 Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verification of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. A12: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	563	on Programming Language Design and Implementation, pp. 466–481, 2021.
 Cation of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint</i> <i>arXiv:2312.16760</i>, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM</i> <i>Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop- agation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of</i> <i>the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar- tin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpreta- tion. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refine- ment and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation.	564	Christopher Brix Stapley Bak Changliu Liu and Taylor T Johnson The fourth international verifi-
 arXiv:2312.16760, 2023. Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. arXiv preprint arXiv:2306.09442, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM <i>Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop- agation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar- tin Vechev. A12: Safety and robustness certification of neural networks with abstract interpreta- tion. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refine- ment and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	565	cation of neural networks competition (VNN-COMP 2023): Summary and results. <i>arXiv preprint</i>
 Stephen Casper, Jason Lin, Joe Kwon, Gatlen Culp, and Dylan Hadfield-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop- agation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar- tin Vechev. A12: Safety and robustness certification of neural networks with abstract interpreta- tion. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refine- ment and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	566	arXiv:2312.16760, 2023.
 Stephen Casper, Jason Lin, Joe Kwon, Gatten Culp, and Dylan Hadneld-Menell. Explore, establish, exploit: Red teaming language models from scratch. <i>arXiv preprint arXiv:2306.09442</i>, 2023. Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop- agation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar- tin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpreta- tion. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refine- ment and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	567	
 Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	568	Stephen Casper, Jason Lin, Joe Kwon, Gatien Cuip, and Dylan Hadfield-Menell. Explore, establish,
 Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM</i> <i>Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop- agation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of</i> <i>the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar- tin Vechev. A12: Safety and robustness certification of neural networks with abstract interpreta- tion. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refine- ment and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	569	exploit. Red teaming language models from scratch. <i>urxiv preprint urxiv.2500.09442</i> , 2025.
 Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. <i>ACM Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	570	Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
 <i>Transactions on Intelligent Systems and Technology</i>, pp. 1–45, 2024. Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop- agation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of</i> <i>the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar- tin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpreta- tion. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refine- ment and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	571	Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
 Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. <i>arXiv preprint arXiv:1810.04805</i>, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop- agation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of</i> <i>the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar- tin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpreta- tion. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refine- ment and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	572	<i>Transactions on Intelligent Systems and Technology</i> , pp. 1–45, 2024.
 arXiv preprint arXiv:1810.04805, 2018. Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	573	Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
 Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	574	arXiv preprint arXiv:1810.04805, 2018.
 Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound propagation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	575	
 agation for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control</i>, pp. 1–11, 2023. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	576	Wael Fatnassi, Haitham Khedr, Valen Yamamoto, and Yasser Shoukry. Bern-nn: Tight bound prop-
 <i>Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpretation. In IEEE Symposium on Security and Privacy, pp. 3–18, 2018.</i> Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	5//	again for neural networks using bernstein polynomial interval arithmetic. In <i>Proceedings of</i> the 26th ACM International Conference on Hybrid Systems: Computation and Control pp. 1, 11
 Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	578	2007 ACM International Conference on Hybrid Systems. Computation and Control, pp. 1–11, 2023
 Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	579	2025.
 tin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpretation. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	00U	Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar-
 tion. In <i>IEEE Symposium on Security and Privacy</i>, pp. 3–18, 2018. Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	100	tin Vechev. AI2: Safety and robustness certification of neural networks with abstract interpreta-
 Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	502	tion. In <i>IEEE Symposium on Security and Privacy</i> , pp. 3–18, 2018.
 examples. In <i>International Conference on Learning Representations</i>, 2015. Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	503	Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 Z. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	504	examples. In International Conference on Learning Representations, 2015.
 2. S. Harris. Distributional structure, 1954. Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	586	7 S. Herris Distributional structure 1054
 Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	587	Z. S. Harris. Distributional structure, 1954.
 ment and adversarial search. In <i>European Conference on Artificial Intelligence</i>, volume 325, pp. 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	588	Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refine-
 2513–2520, 2020. Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	589	ment and adversarial search. In European Conference on Artificial Intelligence, volume 325, pp.
 Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	590	2513–2520, 2020.
 Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language models through the lens of verification and validation. <i>Artificial Intelligence Review</i>, 57(7):175, 2024. 	591	Xiaowei Huang, Wenije Ruan, Wei Huang, Gaoije Jin, Yi Dong, Changshun Wu, Saddek Bensalem
593 models through the lens of verification and validation. <i>Artificial Intelligence Review</i> , 57(7):175, 2024.	592	Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness of large language
2024.	593	models through the lens of verification and validation. Artificial Intelligence Review, 57(7):175,
	'	2024.

594 595	Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter. Interval analysis. 2001.						
596	Hongwei Jin, Zhan Shi, Venkata J, S, A, Peruri, and Xinhua Zhang. Certified robustness of graph						
597	convolution networks for graph classification under topological attacks. In Advances in Neural						
598	Information Processing Systems, volume 33, pp. 8463–8474, 2020.						
599							
600	Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An effi-						
601	Aided Verification pp 97–117 2017						
602	naca tergicanon, pp. 97-117, 2017.						
603	Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth						
604	Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J. Kochenderfer,						
605	and Clark Barret. The Marabou framework for verification and analysis of deep neural networks. In International Conference on Computer Aided Verification, pp. 443–452, 2019						
606	In International Conference on Computer Aldea verification, pp. 445–452, 2019.						
607	Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and						
608	Mubarak Shah. Transformers in vision: A survey. ACM Computing Surveys, 54(10s):1-41, 2022.						
609	Jinhwa Kim Ali Derakhshan and Jan G Harris Robust safety classifier for large language models:						
610	Adversarial prompt shield. arXiv preprint arXiv:2311.00172, 2023.						
611							
612	Thomas N. Kipt and Max Welling. Semi-supervised classification with graph convolutional net- works. In International Conference on Learning Representations, 2017						
61/	works. In International Conference on Learning Representations, 2017.						
615	Niklas Kochdumper and Matthias Althoff. Sparse polynomial zonotopes: A novel set representation						
616	for reachability analysis. In IEEE Transactions on Automatic Control, pp. 4043–4058, 2020.						
617	Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stapley Bak. Open- and closed-loop						
618	neural network verification using polynomial zonotopes. In NASA Formal Methods Symposium,						
619	рр. 16–36, 2023.						
620	Taky Kuda and Jahn Dishandson Sontanoonissa, A simple and language independent subward						
621	tokenizer and detokenizer for neural text processing <i>Conference on Empirical Methods in Natural</i>						
622	Language Processing: System Demonstrations, 2018.						
623							
624	Tobias Ladner and Matthias Althoff. Automatic abstraction refinement in neural network verification using constituity analysis. In Proceedings of the 26th ACM International Conference on Hybrid						
625	Systems: Computation and Control pp. 1–13, 2023						
626	Systems: Computation and Control, pp. 1–15, 2020.						
628	Tobias Ladner and Matthias Althoff. Exponent relaxation of polynomial zonotopes and its applica-						
629	tions in formal neural network verification. In <i>Proceedings of the AAAI Conference on Artificial</i>						
630	<i>Intemgence</i> , volume 58, pp. 21504–21511, 2024.						
631	Tobias Ladner, Michael Eichelbeck, and Matthias Althoff. Formal verification of graph convo-						
632	lutional networks with uncertain node features and uncertain graph structure. <i>arXiv preprint</i>						
633	arXiv:2404.15065, 2024.						
634	Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint						
635	arXiv:1607.06450, 2016.						
636	Vang Li and Tao Vang, Word embedding for understanding natural languages a survey. Cuide to hig						
637	data applications, pp. 83–104, 2018.						
638							
639	Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran, and Taylor T. Johnson. NNV 2.0: The						
640	neural network verification tool. In International Conference on Computer Aided Verification, pp. 307, 412, 2023						
041 640	J71 - +12, 2023.						
642	Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards						
644	understanding the role of over-parametrization in generalization of neural networks. In Interna-						
645	tional Conference on Learning Representations, 2019.						
646	Joshua Ortiz, Alyssa Vellucci, Justin Koeln, and Justin Ruths. Hybrid zonotopes exactly represent						
647	ReLU neural networks. In 62nd IEEE Conference on Decision and Control (CDC), pp. 5351–5357. IEEE, 2023.						

648 Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema, Nur Mohammad 649 Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ahmad, Mohammed Eunus Ali, and 650 Sami Azam. A review on large language models: Architectures, applications, taxonomies, open 651 issues and challenges. IEEE Access, 2024. 652 Marco Sälzer and Martin Lange. Fundamental limits in formal verification of message-passing 653 neural networks. In International Conference on Learning Representations, 2023. 654 655 Zhouxing Shi, Huan Zhang, Kai Wei Chang, Minlie Huang, and Cho Jui Hsieh. Robustness verifi-656 cation for transformers. In International Conference on Learning Representations, 2020. 657 658 Zhouxing Shi, Qirui Jin, Zico Kolter, Suman Jana, Cho-Jui Hsieh, and Huan Zhang. Neural network 659 verification with branch-and-bound for general nonlinearities. arXiv preprint arXiv:2405.21063, 660 2024.661 Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast and 662 effective robustness certification. Advances in Neural Information Processing Systems, 31, 2018. 663 664 Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for cer-665 tifying neural networks. In Proceedings of the ACM on Programming Languages, volume 3, pp. 666 1-30, 2019.667 Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu, Qihui Zhang, Chujie Gao, Yixin Huang, Wen-668 han Lyu, Yixuan Zhang, Xiner Li, et al. Trustllm: Trustworthiness in large language models. 669 arXiv preprint arXiv:2401.05561, 2024. 670 671 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, 672 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-673 tion Processing Systems, 2017. 674 675 Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel. The instruction hierarchy: Training LLMs to prioritize privileged instructions. arXiv preprint 676 arXiv:2404.13208, 2024. 677 678 Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter. 679 Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network 680 robustness verification. Advances in Neural Information Processing Systems, 34:29909–29921, 681 2021. 682 Yixuan Wang, Weichao Zhou, Jiameng Fan, Zhilu Wang, Jiajun Li, Xin Chen, Chao Huang, Wen-683 chao Li, and Qi Zhu. Polar-express: Efficient and precise formal reachability analysis of neural-684 network controlled systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits 685 and Systems, 2023. 686 687 Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training 688 fail? Advances in Neural Information Processing Systems, 36, 2024. 689 690 Dennis Wei, Haoze Wu, Min Wu, Pin-Yu Chen, Clark Barrett, and Eitan Farchi. Convex bounds on 691 the softmax function with applications to robustness verification. In International Conference on 692 Artificial Intelligence and Statistics, pp. 6853–6878, 2023. 693 Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast 694 and complete: Enabling complete neural network verification with rapid and massively parallel 695 incomplete verifiers. arXiv preprint arXiv:2011.13824, 2020. 696 697 Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network robustness certification with general activation functions. In Advances in Neural Information 699 Processing Systems, volume 31, 2018. 700 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-701 sification, 2016.

702 703 704	Yunruo Zhang, Lujia Shen, Shanqing Guo, and Shouling Ji. Galileo: General linear relaxation framework for tightening robustness certification of transformers. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , pp. 21797–21805, 2024.
705 706 707	Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei Ye, Yue Zhang, Neil Zhenqiang Gong, et al. Promptbench: Towards evaluating the robustness of
708	large language models on adversarial prompts. arXiv preprint arXiv:2306.04528, 2023.
709	Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph con-
710	volutional networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discourse & Data Mining on 246 256 2010
710	Knowledge Discovery & Data Mining, pp. 240–250, 2019.
712	
714	
715	
716	
717	
718	
719	
720	
721	
722	
723	
724	
725	
726	
727	
728	
729	
731	
732	
733	
734	
735	
736	
737	
738	
739	
740	
741	
742	
743	
744	
745	
740	
748	
749	
750	
751	
752	
753	
754	
755	

Appendix

The appendix is structured as follows:

- A discussion about the modified layer normalization is given in appendix A.
- A more detailed explanation of (matrix) polynomial zonotopes and dependency preservation is given in appendix B.
- All proofs are given in appendix C.
- Finally, we list all hyperparameters of the considered models and provide additional experiments in appendix D.

LAYER NORMALIZATION DISCUSSION А

We use a modified equation of the layer normalization in our models (7). The original equation (Lei Ba et al., 2016) is given by 772

$$L_k^{\rm LN}(h_{k-1}) = \frac{\gamma}{\sigma} \odot \left(h_{k-1} - \bar{h}_{k-1} \right) + \beta \tag{15}$$

775 with the only difference being the division by the standard deviation $\sigma \in \mathbb{R}$ of the input h_{k-1} . 776 This change was proposed by (Shi et al., 2020, Appendix E) to ease verification and was also used 777 by Bonaert et al. (2021). The issue with the division by the standard deviation is that as the input is 778 a set \mathcal{H}_{k-1} , also the standard deviation is a set containing the standard deviation for each point in 779 \mathcal{H}_{k-1} . Thus, the division by σ in (15) is in general very outer-approximative, which heavily reduces the verifiability. The argument for the modified layer normalization (7) is that it does not penalize the accuracy of the obtained model (Shi et al., 2020, Tab. 5) but greatly increases the verifiability. 781 We want to stress that designing network architectures with formal verification in mind is a motion 782 we strongly support. However, it appears that even a model without any normalization has a similar 783 accuracy in their evaluation, which raises the question of whether layer normalization is necessary 784 at all. Thus, the influence of this modification must be further investigated, especially for larger 785 models. If the original layer normalization (15) turns out to be beneficial, a similar technique as the 786 one described for the softmax layer (Lemma 2) can be applied, as a division by a set also appears 787 there.

788 789

790 791

794

795

796

804

805

806

807 808 809

756

758

759 760

761

762

763

764 765

766

767 768

769 770

771

773 774

ON POLYNOMIAL ZONOTOPES В

Polynomial zonotopes are effectively a compact representation of a polynomial in high-dimensional 792 space. Let us recall the definition of a matrix polynomial zonotope: 793

Definition 2 (Matrix Polynomial Zonotopes (Ladner et al., 2024, Def. 9)). Given an offset $C \in$ $\mathbb{R}^{n \times m}$, dependent generators $G \in \mathbb{R}^{n \times m \times h}$ with h dependent generators, independent generators $G_I \in \mathbb{R}^{n \times m \times q}$ with q independent generators, and an exponent matrix $E \in \mathbb{N}_0^{p \times h}$ with an identifier id $\in \mathbb{N}^{p^2}$, a matrix polynomial zonotope $\mathcal{PZ} = \langle C, G, G_I, E \rangle_{PZ}$ is defined as

$$\mathcal{PZ} = \langle C, G, G_I, E \rangle_{PZ} = \left\{ C + \sum_{i=1}^h \left(\prod_{k=1}^p \alpha_k^{E_{(k,i)}} \right) G_{(\cdot,\cdot,i)} + \sum_{j=1}^q \beta_j G_{I(\cdot,\cdot,j)} \middle| \alpha_k, \beta_j \in [-1,1] \right\}.$$

We chose to use the matrix variant over the regular one (Kochdumper & Althoff, 2020), as transformers mainly operate on matrices and not on vectors. In this section, we only use regular polynomial zonotopes for easier notation, where the center and each generator is in \mathbb{R}^n rather than $\mathbb{R}^{n \times m}$. Any properties derived in this section also hold for the matrix variant. Let us construct a simple one-dimensional polynomial zonotope describing the interval [-1, 1]:

$$\mathcal{PZ} = \langle 0, 1, [], 1 \rangle_{PZ} = \left\{ 0 + \alpha_1^1 \cdot 1 \mid \alpha_1 \in [-1, 1] \right\} = [-1, 1].$$
(16)

²The identifier vector id is used to maintain dependencies of the factors α_k between sets.

Figure 4: Visualization of preserved dependencies using polynomial zonotopes in appendix B: a) Between individual sets and b) a comparison of our approach with the state-of-the-art transformer verification approach.

Computing $\mathcal{PZ}^2 = \{x^2 \mid x \in \mathcal{PZ}\}$ would then simply be:

$$\mathcal{PZ}^{2} = \langle 0, 1, [], 2 \rangle_{PZ} = \left\{ 0 + \alpha_{1}^{2} \cdot 1 \mid \alpha_{1} \in [-1, 1] \right\} = [0, 1].$$
(17)

One advantage of polynomial zonotopes is that they can carry nonlinear dependencies and thus represent non-convex sets. The Cartesian product of these two sets is:

$$\begin{bmatrix} \mathcal{PZ} \\ \mathcal{PZ}^2 \end{bmatrix} = \left\langle \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1, [1 \ 2] \right\rangle_{PZ} = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \alpha_1^1 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_1^2 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} \middle| \alpha_1 \in [-1, 1] \right\}.$$
(18)

More formally, given two polynomial zonotopes $\mathcal{PZ}_1 = \left\langle c_1, [\widetilde{G}_1 \ G_1], G_{I,1}, [\widetilde{E} \ E_1] \right\rangle_{PZ}$ and $\mathcal{PZ}_2 = \left\langle c_2, [\widetilde{G}_2 \ G_2], G_{I,2}, [\widetilde{E} \ E_2] \right\rangle_{PZ}$ with partially shared exponent matrices and a common identifier vector, their Cartesian product (Kochdumper et al., 2023, Eq. 7) is computed by

$$\mathcal{P}\mathcal{Z}_{1} \times \mathcal{P}\mathcal{Z}_{2} = \begin{bmatrix} \mathcal{P}\mathcal{Z}_{1} \\ \mathcal{P}\mathcal{Z}_{2} \end{bmatrix} = \left\{ \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \middle| x_{1} \in \mathcal{P}\mathcal{Z}_{1}, x_{2} \in \mathcal{P}\mathcal{Z}_{2} \right\}$$

$$= \left\langle \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix}, \begin{bmatrix} \widetilde{G}_{1} & G_{1} & \mathbf{0} \\ \widetilde{G}_{2} & \mathbf{0} & G_{2} \end{bmatrix}, \begin{bmatrix} G_{I,1} & \mathbf{0} \\ \mathbf{0} & G_{I,2} \end{bmatrix}, \begin{bmatrix} \widetilde{E} & E_{1} & E_{2} \end{bmatrix} \right\rangle_{PZ},$$
(19)

where a common identifier vector intuitively means that both sets use the same α_k in Def. 2. If the identifier vector is not identical, the exponent matrices of both sets have to be extended accordingly (Kochdumper & Althoff, 2020, Prop. 1). Both $\overline{\mathcal{PZ}} := \mathcal{PZ} \times \mathcal{PZ}^2$ (18) and the set $\overline{\mathcal{I}} := [-1, 1] \times [0, 1]$, where those dependencies are not considered, are shown in Fig. 4a. Clearly, the preserved dependencies allow us to compute the considered operations without inducing any outer approximation. Thus, $\overline{\mathcal{PZ}} \subset \overline{\mathcal{I}}$ holds. Analogous reasoning also holds for the computation of the Minkowski sum (9).

Another crucial operation when verifying large language models is the multiplication of two sets, as as this operation is executed throughout the entire model once the inputs are uncertain, e.g., within one attention head (4). To illustrate the advantage of polynomial zonotopes over zonotopes as was used in related work (Bonaert et al., 2021), which work identically except they do not have an exponent matrix to store the nonlinear dependencies, consider the following set:

_ .

862 863

828

829

830 831

836

841 842

843

$$\widehat{\mathcal{S}} = \widehat{\mathcal{Z}} := \left\langle \begin{bmatrix} 2\\2 \end{bmatrix}, \begin{bmatrix} 1 & -1\\1 & 1 \end{bmatrix} \right\rangle_{Z} = \left\langle \begin{bmatrix} 2\\2 \end{bmatrix}, \begin{bmatrix} 1 & -1\\1 & 1 \end{bmatrix}, \begin{bmatrix} 1\\0 & 1 \end{bmatrix} \right\rangle_{PZ} =: \widehat{\mathcal{PZ}}.$$
(20)

The multiplications of two high-dimensional sets is generally referred to as the quadratic map (Kochdumper & Althoff, 2020, Def. 6). We consider a special case here and want to com-866 pute: 867

$$\widehat{\mathcal{S}}^2 \coloneqq \left\{ \begin{bmatrix} \widehat{x}_{(1)}^2 \\ \widehat{x}_{(2)}^2 \end{bmatrix} \middle| \widehat{x} \in \widehat{\mathcal{S}} \right\}.$$
(21)

Using the method to compute precise bounds from (Bonaert et al., 2021, Thm. 5) on zonotopes, we obtain

$$\widehat{\mathcal{Z}}^{2} := \left\langle \begin{bmatrix} 5\\5 \end{bmatrix}, \begin{bmatrix} 4 & -4 & 3 & 0\\ 4 & 4 & 0 & 3 \end{bmatrix} \right\rangle_{Z}^{\cdot}$$
(22)

On the other hand, using polynomial zonotopes (Kochdumper & Althoff, 2020, Prop. 12) results in

$$\widehat{\mathcal{PZ}}^{2} \coloneqq \left\langle \begin{bmatrix} 4\\4 \end{bmatrix}, \begin{bmatrix} 4 & -4 & 1 & 1 & -2\\4 & 4 & 1 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 1\\9 & 1 & 0 & 2 & 0 & 1\\0 & 1 & 0 & 2 & 1 \end{bmatrix} \right\rangle_{PZ}^{,}$$
(23)

without inducing any outer approximation. Thus, $\widehat{S}^2 = \widehat{\mathcal{PZ}}^2 \subset \widehat{\mathcal{Z}}^2$ holds. As shown in Fig. 4b, the 878 outer approximation using zonotopes can be quite significant – even for this toy example, let alone 879 when applied multiple times within a large language model. In particular, the last three generators of 880 $\widehat{\mathcal{PZ}}^2$ are outer-approximated with interval bounds in $\widehat{\mathcal{Z}}^2$ (Bonaert et al., 2021, Thm. 5). However, 881 these three generators are required to capture the non-convexity of the output set and this non-882 convexity is thus lost using the interval bounds. The matrix multiplications on sets stated in (11) are 883 computed analogously using the quadratic map, and thus have the same issues if the dependencies 884 are not preserved. 885

С PROOFS

868 869

870

871

872 873

886 887

888

889 890

891

892

893 894

895

896

897

898 899

900 901

903

906 907 908 We include all proofs from the main body in this section in the order of appearance.

Lemma 1 (Enclosure Layer Normalization). Given an input set $\mathcal{H}_{k-1} \subset \mathbb{R}^{n_{k-1}}$, the output set of a layer normalization layer (7) is given by

$$L_k^N(\mathcal{H}_{k-1}) = \operatorname{diag}\left(\gamma\right) \cdot \left(\mathcal{H}_{k-1} \oplus \left(-\frac{1}{n_{k-1}} \cdot \mathcal{H}_{k-1}\right)\right) + \beta.$$

Proof. The exact computation follows directly from (10) and (9).

Lemma 2 (Enclosure Softmax). Given an input set $\mathcal{L} \subset \mathbb{R}^n$, the output set of the softmax function (12) is enclosed by

softmax $(\mathcal{L})_{(j)} \subseteq \operatorname{enclose} \left(x \mapsto \frac{1}{x}, 1 \cdot \operatorname{enclose} \left(\exp, \mathcal{L}_{(i)} \oplus -\mathcal{L}_{(j)} \right) \right), \quad j \in [n].$

The output set has n more generators than the input set.

Proof. The enclosure follows directly from Prop. 1 and (10). While each enclosure operation adds 902 n generators to the set for each approximation error of the n dimensions, these are aligned and can be summed up, resulting in n generators.

Proposition 2 (Enclosure Attention). *Given three sets* $Q, \mathcal{K} \subset \mathbb{R}^{t \times d_{QK}}, \mathcal{V} \subset \mathbb{R}^{t \times d_V}$ with $g_Q, g_\mathcal{K}, g_\mathcal{V}$ 904 905 generators, respectively, the output set of an attention layer (4) is enclosed by

$$L_k^A(\mathcal{Q}, \mathcal{K}, \mathcal{V}) \subseteq \operatorname{enclose}\left(\operatorname{softmax}, \frac{\mathcal{Q}\mathcal{K}^T}{\sqrt{d_{QK}}}\right)\mathcal{V},$$

909 where \mathcal{K}^T is computed by transposing the center and each generator of \mathcal{K} . The output set has 910 $\mathcal{O}(g_{\mathcal{Q}}g_{\mathcal{K}}g_{\mathcal{V}}+t^2g_{\mathcal{V}})$ generators. 911

912 *Proof.* The statement follows directly from (11), (10), Lemma 2, and (19). The number of gen-913 erators also follows from (11) and the multiple applications of Lemma 2 on the softmax function, 914 which is applied for each of the t rows individually, each having t entries. Thus, the term $q_{\mathcal{O}}q_{\mathcal{K}}q_{\mathcal{V}}$ 915 corresponds to the set approximating the output and $t^2q_{\mathcal{V}}$ corresponds to the approximation error of this layer. Please note that for a tight enclosure, it is crucial that the dependencies of the sets 916 obtained by the rowwise application of the softmax function are preserved while stacking them back 917 together using the Cartesian product, as described in appendix B, (19).

Proposition 3 (Enclosure Multi-Head Attention). Given three sets $Q, \mathcal{K}, \mathcal{V} \subset \mathbb{R}^{t \times d_{\text{model}}}$ with $g_Q, g_{\mathcal{K}}, g_{\mathcal{V}}$ generators, respectively, the output set of a multi-head attention layer (6) is enclosed by

924

925 926

933

$$L_{k}^{MHA}\left(\mathcal{Q},\mathcal{K},\mathcal{V}\right)\subseteq\left[\mathcal{H}_{k,1}\quad\ldots\quad\mathcal{H}_{k,h}\right]_{1}W_{k}^{A},$$

with
$$\mathcal{H}_{k,i} = \text{enclose}\left(L_{k,i}^{A}, \mathcal{Q}W_{k,i}^{Q}, \mathcal{K}W_{k,i}^{K}, \mathcal{V}W_{k,i}^{V}\right), i \in [h].$$

The output set has $\mathcal{O}(g_{\mathcal{Q}}g_{\mathcal{K}}g_{\mathcal{V}} + ht^2g_{\mathcal{V}})$ generators.

Proof. The concatenation $[\dots]_1$ is computed using the Cartesian product (19), the remainder follows from Prop. 2 and (10). The number of generators follows directly from the enclosure of the *h* attention heads (Prop. 2), where only the approximation error is treated independently during the concatenation (19). Thus, the term $g_{\mathcal{Q}}g_{\mathcal{K}}g_{\mathcal{V}}$ again corresponds to the set approximating the output and $ht^2g_{\mathcal{V}}$ corresponds to the approximation error of this layer.

1932 Lemma 3. The number of generators of \mathcal{H}_k , $k \in [\kappa]$, in Alg. 1 is $\mathcal{O}(g_{\mathcal{X}}^{3^k})$.

934 *Proof.* We show this proof by induction:

Induction base k = 0: $\mathcal{H}_0 = \mathcal{X}$. The statement follows trivially as $\mathcal{O}(g_{\mathcal{X}}^{3^0}) = \mathcal{O}(g_{\mathcal{X}})$. Induction hypothesis: Let the statement now hold for an arbitrary $k \in [\kappa]$.

Induction step k + 1: Let \mathcal{H}_{k+1} have $\mathcal{O}(g_{\mathcal{H}_{k+1}})$ generators. Please not that the regular layers in line 8 add at most one generator per neuron due to the activation layer (Prop. 1), which are $t \cdot d_{\text{model}} \in \mathcal{O}(g_{\mathcal{H}_{k+1}})$. Thus, as the normalization layer is exact (Lemma 1) and the sets added the residual connections essentially share the same exponent matrix (9), also \mathcal{H}_{k+1} , \mathcal{H}_{k+1} and \mathcal{H}_{k+1} have $\mathcal{O}(g_{\mathcal{H}_{k+1}})$ generators, respectively. Then, using Prop. 3 and the assumption $t, d_{\text{model}}, h \ll g_{\mathcal{X}}$, we can derive that \mathcal{H}_k has to have $\mathcal{O}(\sqrt[3]{g_{\mathcal{H}_{k+1}}})$ generators. From our induction hypothesis, we also know that \mathcal{H}_k has $\mathcal{O}(g_{\mathcal{X}}^{3^k})$ generators. Thus, \mathcal{H}_{k+1} has $\mathcal{O}((g_{\mathcal{X}}^{3^k})^3) = \mathcal{O}(g_{\mathcal{X}}^{3^{k+3}}) = \mathcal{O}(g_{\mathcal{X}}^{3^{(k+1)}})$ generators, which proves the statement.

Theorem 1 (Enclosure of Large Language Models). Given a large language model Φ and an input set \mathcal{X} (14) with $g_{\mathcal{X}}$ generators, Alg. 1 computes an output set \mathcal{Y} satisfying the problem statement stated in Sec. 2.5. The computational complexity is bounded by \mathcal{O} (th $d_V d_{\text{model}} g_{\text{max}} \kappa$).

Proof. The computation of \mathcal{Y} is sound, as each step in Alg. 1 is outer-approximative (Lemma 1, Prop. 2, Prop. 3, (10), and (9)). The number of generators of all sets is bounded by g_{max} . The overall computational complexity then follows from the largest matrix multiplication on the largest sets (10), which is given by aggregation of the attention heads given in line 6:

 $\underbrace{t\times hd_V}_{\text{Dimensions of concatenated }\mathcal{H}_{k,i}}\times \underbrace{hd_V\times d_{\text{model}}}_{\text{Dimensions of aggregation matrix }W^A_\kappa}.$

This matrix multiplication is applied to each generator (10), which are bounded by g_{max} . As this bound can already be reached in any of the κ transformer blocks, this computation is done at most κ times. Thus, the final computational complexity is given by $\mathcal{O}(thd_V d_{\text{model}} \cdot g_{\text{max}} \cdot \kappa)$.

961

956

948

949

950

951

952

953 954 955

D ADDITIONAL EXPERIMENTS

In this section, we state further experiments and give all details about the dataset and our models. The 962 medical safety dataset (Abercrombie & Rieser, 2022) is a small written English dataset consisting 963 of risk-graded medical and non-medical queries that we split in 2, 187 training, 365 validation, and 964 365 test samples. We collapse the risk-levels into one class to enable binary text classification. 965 The Yelp dataset (Zhang et al., 2016) consists of review texts, where we partition the dataset into 966 40,000/20,000 training, 4,000/2,000 validation, and 1,600/800 testing samples, respectively. We 967 train both datasets for binary classification referring to the labels as positive and negative. The 968 positive label in the medical safety dataset refers to a valid medical query, while it refers to a positive 969 review in the Yelp dataset. We use a BERT tokenizer (Devlin, 2018) to compute the mapping from the textual input to token identifier that we pass then to our model. Tab. 3 summarizes the used 970 hyperparameters. All computations were performed in a docker container on an Intel® Core[™] Gen. 971 11 i7-11800H CPU @2.30GHz with 64GB memory.

973	Table 3: Hyperparameters for considered models.							
974	Name	Variable	Model 1	Model 2	Model 3	Model 4		
975	Dataset	-	Medical	Medical	Yelp	Yelp		
976	Max. #tokens/sentence during verification	t	21	21	27	27		
977	Embedding dimension of model	d_{model}	8	8	8	8		
078	Number of transformer blocks	κ	2	1	2	1		
570	Number of attention heads	h	2	1	2	1		
979	Embedding dimension for query and key matrices	d_{QK}	4	8	4	4		
980	Embedding dimension for value matrix	d_V	4	8	4	4		
981	Maximum number of generators (order reduction)	g_{\max}	1000	4000	1000	4000		

Table 4: Comparison of verified embedding space with interval bound propagation (IBP), zonotopes (Z, Bonaert et al. (2021)), and polynomial zonotopes (PZ, ours).

		Model 2	Model 2 Model 4			
	Verified Volume		Time [s]	Verifie	Verified Volume	
Approach	Mean	Max.		Mean	Max.	
IBP	0.00	0.00	0.01	0.00	0.00	0.01
Z (baseline)	1.00	1.00	0.76	1.00	1.00	0.54
$PZ \left(\rho_{\lim} = 2 \right)$	1.77	3.50	5.80	2.29	4.23	4.70
PZ ($\rho_{\text{lim}} = 5$)	2.16	3.83	11.16	3.51	9.61	9.26
$PZ (\rho_{lim} = 10)$	2.37	4.53	14.23	4.13	12.63	11.59
$PZ (\rho_{lim} = 20)$	2.66	5.35	18.67	5.35	20.34	14.53
$PZ (\rho_{lim} = 50)$	3.20	7.47	27.56	8.00	37.46	21.35
$PZ (\rho_{lim} = 100)$	4.09	11.33	36.94	11.62	64.37	29.50
$PZ (\rho_{lim} = 200)$	10.76	42.64	32.21	55.90	452.41	28.88
$PZ (\rho_{lim} = 500)$	18.60	89.44	31.13	123.62	1,406.54	26.36
$PZ (\rho_{lim} = 1000)$	28.79	158.75	31.16	137.41	1,606.65	26.83

Finally, we state the verification results on the second model of each dataset. For these models, we show the influence of the parameter $\rho_{\rm lim}$ on the verified volume of the embedding space and the verification time in Tab. 4. As ρ_{lim} increases, the verified volume increases as well at the cost of additional computation time. This can be done until the order reduction due to the maximum number of generators g_{max} counteracts this advantage; thus, the outer-approximation induced by this order reduction becomes larger than the benefit of computing more precise enclosures. The parameter g_{max} is determined by the memory constraints of the machine running the verification. We decided to show the mean and maximum verified volume instead of the standard deviation as this data is not normally distributed on this datasets with varying sentence lengths, and thus this statistic does not have a meaningful interpretation. Please note that setting $\rho_{\text{lim}} = 1$ corresponds the approach where no nonlinear dependencies are preserved as all higher-order terms are outer-approximated by an interval. Thus, we can always fall back to the approach by Bonaert et al. (2021) and our approach is thus at least as good as theirs.