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Abstract
We review frequency domain system identifica-
tion under finite samples and study its impli-
cations to time domain identification. We fo-
cus on an open loop setting where the exci-
tation input is periodic and consider the Em-
pirical Transfer Function Estimate (ETFE), i.e.,
we estimate the frequency response at certain
desired evenly-spaced frequencies from input-
output data. Under sub-Gaussian colored noise
and certain stability assumptions, we can estab-
lish finite-sample guarantees for the ETFE. The
estimates are concentrated around the true values
with an error rate of the order of Õ(

√
M/Ntot),

where Ntot is the total number of samples and
M is the number of desired frequencies. Given
the ETFE, we show that by tuning the number
of frequencies M , we can recover the time do-
main impulse responses of the system at a rate
of Õ(N

−1/3
tot ) for general irrational systems and

Õ(N
−1/2
tot ) for state-space systems.

1. Introduction
We study frequency domain identification, where the goal
is learning the frequency response of an unknown linear
system from input-output data. The problem has been stud-
ied extensively in the classical system identification lit-
erature (Ljung, 1999; Schoukens et al., 2004; Pintelon &
Schoukens, 2012). The estimation error guarantees (on its
distribution) are typically asymptotic, and, thus, are valid
when the number of samples grows to infinity.

Instead, here, we adopt a finite-sample point of view, in-
spired by the extensive work over the past years (Golden-
shluger, 1998; Faradonbeh et al., 2018; Simchowitz et al.,
2018; Oymak & Ozay, 2021; Sarkar et al., 2021; Tsiamis
& Pappas, 2019; Wagenmaker & Jamieson, 2020; Tu et al.,
2022; Ziemann & Tu, 2022; Ziemann et al., 2022). Since in
reality, all data are finite, such a shift of focus is necessary
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Switzerland. Correspondence to: Anastasios Tsiamis <atsi-
amis@ethz.ch>.

to obtain a more complete understanding of learning for
dynamics and control systems. Detailed related work and a
tutorial on the subject can be found in (Tsiamis et al., 2023;
Ziemann et al., 2023). With the exception of Wagenmaker
& Jamieson (2020), most of the aforementioned works deal
exclusively with identification in the time domain.

Frequency domain and time domain identification have
many similarities–ignoring initial conditions, transients,
or leakage effects, the two domains are equivalent
(Schoukens et al., 2004). Still, working in one domain may
offer some advantages over the other (Schoukens et al.,
2004). For example, the frequency domain approach al-
lows a unified treatment of discrete and continuous time
systems, simplifies the analysis of systems with delays, and
offers a more explicit way of designing the input excitation.

In this extended abstract, we first review the recent re-
sult of Tsiamis et al. (2024), where finite sample guaran-
tees are derived for the well-established Empirical Trans-
fer Function Estimate (ETFE) (Ljung, 1999) under open-
loop periodic excitation. The result states that under cer-
tain stability conditions, the ETFE error decays with a rate
of
√

M/Ntot, where Ntot is the total number of samples.
The parameter M is the number of selected frequencies
at which we estimate the frequency response (resolution).
Based on the ETFE, we can also recover the impulse re-
sponses of the system in the time domain by properly tun-
ing the number of selected frequencies M . We obtain a
slow rate of Õ(N

−1/3
tot ) for general irrational systems and a

faster rate of Õ(N
−1/2
tot ) for state-space (rational) systems.

Notation. For any vector x, let ∥x∥ denote the Euclidean
norm. For any matrix S, let ∥S∥op denote the operator
(spectral) norm. A universal constant is a constant that is
independent of the problem at hand, e.g., the system or the
algorithm. For any integer M , let [M ] ≜ 0, . . . ,M − 1.

2. Problem setting
Consider an unknown, linear, discrete-time, time-invariant
system of the form

yt = ȳt + vt,

ȳt = G(q)ut, G(q) ≜
∞∑
s=0

gsq
−s

,
(1)
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where t ∈ Z is the time, ut ∈ Rdu is the input, yt ∈ Rdy

is the output, q−s
ut = ut−s is the backward shift opera-

tor, and gt ∈ Rdy×du , t ≥ 0 is the impulse response. The
noiseless output ȳt is perturbed by some random noise pro-
cess vt ∈ Rdy .

Assumption 2.1 (Noise). The noise process vt is filtered
sub-Gaussian white noise, that is,

vt = H(q)et, H(q) ≜
∞∑
s=0

hsq
−s

, (2)

where ht ∈ Rdy×de are the unknown filter coefficients. Let
et ∈ Rde be i.i.d. zero mean, with covariance Eete⊤t =
σ2
eIde

, and K2-sub-Gaussian for some K > 0.

The noise model can capture general process noise, includ-
ing measurement noise–see for example Section 4.1. We
assume throughout that the input is bounded, which reflects
practical physical constraints.

Assumption 2.2 (Input Bound). All inputs are bounded

∥ut∥ ≤ Du, for all t ∈ Z

for some Du > 0 independent of t.

To guarantee a well-defined estimation problem, we con-
sider the following stability conditions.

Assumption 2.3 (Strict Stability). The input-output im-
pulse response is strictly stable (Ljung, 1999), that is,

∥G∥⋆ ≜
∞∑
t=0

t∥gt∥op < ∞. (3)

The auto-correlation function of the noise Rt ≜ Evsv⊤s−t

is also strictly stable

∥R∥⋆ ≜
∞∑
t=0

t∥Rt∥op < ∞. (4)

Strict stability guarantees that the derivative of the fre-
quency response ∂G(ejω)/∂ω is uniformly bounded over
all frequencies. This, in turn, implies that the response
G(ejω) is Lipschitz. Strict stability along with Assump-
tion 2.2 guarantees that the transient phenomena have a
limited effect on the estimation procedure.

We start all identification experiments at time t = 0.
Hence, the initial conditions are determined by all past sig-
nals u−1, u−2, . . . and e−1, e−2, . . . , which are nonzero in
general, and unknown.

2.1. Empirical Transfer Function Estimate

The goal of frequency domain identification is to estimate
the frequency response G(ejω), given input-output data.

We assume access to du experiments of length N , that is,
data (u

(i)
0 , y

(i)
0 , . . . , u

(i)
N−1, y

(i)
N−1), for i = 1, . . . , du. This

brings the total number of samples to Ntot ≜ duN . We
assume that the trajectories are statistically independent.

Given any signal z = {zt}t∈[N ], let

Zk ≜ FN
k (z) ≜

1√
N

N−1∑
t=0

zte
−j 2πk

N t, k ∈ [N ]

denote its N -point Discrete Fourier Transform (DFT), eval-
uated at k. Let Y (i)

k , U
(i)
k be the N -point DFTs of y(i)t and

u
(i)
t respectively for the i−th experiment, i = 1, . . . , du.

Let Yk ∈ Cdy×du , Uk ∈ Cdu×du denote the stacked DFTs
for all experiments

Yk ≜
[
Y

(1)
k · · · Y

(du)
k

]
, Uk ≜

[
U

(1)
k · · · U

(du)
k

]
. (5)

Then, an estimate of G(ejω) at frequency ωk = 2πk/N ,
for k = 0, . . . , N − 1, can be obtained using the ETFE

Ĝk ≜ YkU
−1
k , (6)

provided that Uk is invertible; the estimate is undefined if
not. Since the number of frequencies N scales with the
number of data, it is generally impossible to estimate the
responses at all frequencies consistently (without assum-
ing structure) (Ljung, 1999). Instead, we can learn the
responses at a smaller frequency set. Given a frequency-
resolution parameter M < N , we focus on estimating
G(ejω) at ω = 2πℓ/M , for ℓ ∈ [M ].

2.2. Excitation Method

Since we only need to estimate the frequency responses at
2πℓ/M , ℓ ∈ [M ], it is sufficient to excite the system at only
these frequencies (Ljung, 1999). Assuming that M divides
N , it is sufficient for the DFT Uk of the input to be non-zero
at only 2πk/N = 2πℓ/M or k = ℓN/M . The latter condi-
tion is satisfied if and only if the excitation input is periodic
with a period equal to M . We also need invertibility of Uk

at k = ℓN/M . We assume the following.

Assumption 2.4 (Excitation). Let the input signals be pe-
riodic with period M such that u(i)

t+M = u
(i)
t , for t ≥ 0 and

every experiment i = 1, . . . , du. Assume that M divides N
with Np ≜ N/M . Consider one period of the input signals
and let the respective M -point DFTs be

Ũ
(i)
ℓ = FM

ℓ (u(i)) =
1√
M

M−1∑
t=0

u
(i)
t e−

2πℓ
M t, i = 1, . . . , du

for ℓ ∈ [M ], with respective stacked DFTs

Ũℓ ≜
[
Ũ

(1)
ℓ · · · Ũ

(du)
ℓ

]
.
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Assume that for all ℓ ∈ [M ] the stacked DFTs satisfy

σ2
u,ℓIdu

⪯ ŨℓŨ
∗
ℓ , (7)

for some 0 < σ2
u,ℓ such that

∑M−1
ℓ=0 σ2

u,ℓ ≤ MD2
u, where

Du is the input upper bound of Assumption 2.2.

Such assumptions are standard when dealing with experi-
ment design in the frequency domain. For example, As-
sumption 2.4 is satisfied by design (with uniform σ2

u,ℓ

across ℓ ∈ [M ] − {0}) when pseudorandom binary se-
quence (PRBS) signals are used and we excite one input
at a time (Ljung, 1999, Ch. 13).

3. Finite-sample guarantees for the ETFE
In this section, we review the main result of (Tsiamis et al.,
2024). Following the convention of (5), we define the
stacked DFTs of the noises and the noiseless outputs as

Vk ≜
[
V

(1)
k · · · V

(du)
k

]
, Ȳk ≜

[
Ȳ

(1)
k · · · Ȳ

(du)
k

]
Then, for every frequency ωk = 2πk/N we have

Yk = Ȳk + Vk = G(ejωk)Uk + Tk,N + Vk, (8)

where Tk,N = Ȳk −G(ejωk)Uk accounts for transient and
time-aliasing phenomena since the DFT of {ȳ(i)t }N−1

t=0 is
different from {G(ejωk)U

(i)
k }N−1

k=0 for finite N . This tran-
siet error term persists even in the absence of stochastic
noise but vanishes as N grows to infinity.

The estimation error is equal to

Ĝk −G(ejωk) = Tk,NU−1
k + VkU

−1
k , (9)

where the input matrix Uk is invertible, and we only look
at the frequencies k = ℓNp, ℓ ∈ [M ]. Let Φv,N (k) ≜

EV (i)
k (V

(i)
k )∗ be the aliased power spectrum of the process

vt at frequency k, where due to independence, the exper-
iment index i does not affect the definition. Define the
signal-to-noise ratio (SNR) at k = ℓNp, ℓ ∈ [M ] as

SNRk,N ≜
σu,ℓ√

∥Φv,N (k)∥op
, (10)

where ∥Φv,N (k)∥op is interpreted as the matrix norm for
fixed k. We obtain the following finite-sample guarantees.
Theorem 3.1 (ETFE). Consider the ETFE (6) and fix a
failure probability δ > 0. Under Assumptions 2.1-2.4, with
probability at least 1− δ for all k = ℓNp, ℓ ∈ [M ]

∥G(ejωk)− Ĝk∥op ≤ 2∥G∥⋆Du

√
M

σu,ℓN
(11)

+

√
M√
N

SNR−1
k,N

(√
dy + c

K2

σ2
e

√
du + logM/δ

)
where c is a universal constant, ∥G∥⋆ is defined in (3), and
Du is the maximum input norm.

The first term of the right-hand side captures the transient
error Tk,NU−1

k and is bounded using strict stability, input
boundedness, and the properties of DFT. The second one
captures the error VkU

−1
k due to stochastic noise and is

bounded based on the Hanson-Wright inequality (Hanson
& Wright, 1971; Vershynin, 2018). Assumption 2.4 guar-
antees that the input matrix Uk is invertible. The full proof
can be found in (Tsiamis et al., 2024).

Recall that the total number of samples is equal to Ntot =
duN . As we increase the number of samples Ntot while
keeping M constant, the former term decays at a faster rate
of 1/Ntot compared to the latter’s 1/

√
Ntot. Hence, the

non-asymptotic rate is of the order of

O

( √
M√
Ntot

√
du
(√

du + logM/δ +
√
dy
))

.

The rate is similar to the ones for non-asymptotic paramet-
ric identification in time-domain (Ziemann et al., 2023); the
optimal rate in that line of work is typically of the order

√
d

for some d scaling with the number of unknown parame-
ters. Here, we have a similar scaling of

√
M(

√
du +

√
dy)

times an additional
√
du dimensional dependence. This is

an artifact of imposing a strict input norm bound in As-
sumption 2.2. If we allow σu, Du to scale with

√
du (as

is the case for white-noise inputs in the time-domain (Zie-
mann et al., 2023)), we can remove this extra term.

A benefit of frequency-domain identification is that it pro-
vides specialized guarantees for every frequency of interest
by breaking down the SNR into SNRs for every frequency.
This offers direct insights on which frequencies to focus on
and how to design the excitation inputs.

4. Application to time domain identification
We can recover the impulse responses or Markov parame-
ters gt, t ∈ [M ] of the system, using the frequency domain
estimates ĜℓNp , ℓ ∈ [M ] (McKelvey & Akçay, 1994). It is
sufficient to take the inverse DFT (non-normalized version)

ĝt ≜
1

M

M−1∑
ℓ=0

ĜℓNp
ej

2πℓ
M t, t ∈ [M ]. (12)

Note that using a finite frequency grid inevitably introduces
time-aliasing. Under perfect knowledge of the frequency
responses, the inverse DFT gives us

g̃t ≜
1

M

M−1∑
ℓ=0

G(ej
2πℓ
M t)ej

2πk
N t, t ∈ [M ], (13)

where the responses g̃t are the time-aliased responses. Us-
ing standard properties of DFT, we can rewrite

g̃t = gt +

∞∑
τ=1

gt+τM , t ∈ [M ], (14)
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which justifies the term time-aliased

We can use the tail sum of the impulse response norms

Cg
M ≜

∞∑
t=M

∥gt∥op (15)

to control the time-aliasing error. Invoking the triangle in-
equality, we immediately obtain the following result.

Theorem 4.1 (Discrete-Time Impulse Response). Recall
the notation of Theorem 3.1. Fix a failure probability δ >
0. Under Assumptions 2.1-2.4, with probability at least 1−
δ uniformly for all t ∈ [M ]

∥gt − ĝt∥op ≤ 2∥G∥⋆Du

√
M

σuN
+ Cg

M (16)

+

√
M√
N

SNR−1
N

(√
dy + c

K2

σ2
e

√
du + logM/δ

)
where c is a universal constant and

SNR−1
N ≜

1

M

∑
ℓ∈[M ]

SNR−1
ℓNp,N

, σ−1
u ≜

1

M

∑
ℓ∈[M ]

σ−1
u,ℓ

are the average SNR and excitations among the frequencies
of interest.

The rate is similar to the one of Theorem 3.1 with two
notable differences. First, we have the additional time-
aliasing error, which decays with the tail sum Cg

M . Second,
since the inverse DFT averages the frequency responses
over all frequencies, the bound depends on the average-case
excitation.

Under Assumption 2.3, the time-aliasing error approaches
zero with a rate at least M−1 as the number of frequencies
M grows. In particular, we have

∥gt − g̃t∥op ≤ Cg
M ≤ ∥G∥⋆M−1.

In this case, we can balance the aliasing term M−1 and
the dominant estimation term M1/2N−1/2 by selecting
M = Θ(N−1/3). This gives us a rate of the order of
Õ(N−1/3). This slow rate agrees with the result of (Gold-
enshluger, 1998) for strictly stable systems and is common
in non-prametric settings (Tsybakov, 2008).

4.1. State-space models

In certain settings, where the decay rate of the impulse re-
sponses is faster, the above rate can be improved. For ex-
ample, a special case is estimating Finite Impulse Response
(FIR) models. In this case, we have Cg

M = 0 if we picked
M > n, where n is the order of the FIR. More generally,
we can obtain faster rates for stable state-space (rational)

models (Chen et al., 1993), Consider a linear system in
state-space form

xt+1 = Axt +But +H1et

yt = Cxt +Dut +H2et,
(17)

where A ∈ Rdx×dx , B ∈ Rdx×du , C ∈ Rdy×du , D ∈
Rdu×du are the state parameters with dx the state dimen-
sion, while H1 ∈ Rdx×de , H2 ∈ Rdy×de determine the
noise second-order statistics. Hence, we have

g0 = D, gt = CAt−1B, t ≥ 1,

with frequency response

G(ejω) = D + C(ejωI −A)−1B.

The definition of the noise impulse and frequency re-
sponses is similar.

In the case of state-space systems, Assumption 2.3 is equiv-
alent to exponential stability. Namely, the matrix A has all
eigenvalues inside the unit circle or

∥At∥op ≤ cAρ
t, t ≥ 0 (18)

for some cA > 0, 0 < ρ < 1. As a result, the time-
aliasing error decays much faster, i.e., exponentially fast
with M . In this case, we can balance ρM and M1/2N−1/2

by selecting M = Θ(logN). This gives us a faster rate
of Õ(N−1/2), which reflects typical rates for parametric
problems (Ziemann et al., 2023; Oymak & Ozay, 2021).

Corollary 4.2 (State-Space). Consider system (17). Let
Assumptions 2.1-2.4 hold. Select M = β logN with
β ≥ (− log ρ)−1, where ρ is defined in (18). Fix a fail-
ure probability δ > 0. Then, with probability at least 1− δ
uniformly for all t ∈ [M ]

∥gt − ĝt∥op ≤ 2∥G∥⋆Du

√
M

σuN
+

cA
N(1− ρ)

(19)

+

√
M√
N

SNR−1
N

(√
dy + c

K2

σ2
e

√
du + logM/δ

)

The condition on β is sufficient to guarantee that the time-
aliasing term decays faster than N−1/2. The result of
Corollary 4.2 could be combined with a realization proce-
dure, e.g., the Ho-Kalman one (Oymak & Ozay, 2021), to
obtain guarantees for recovering the state space parameters.

5. Future work
An interesting direction is studying (9) from the perspective
of non-parametric least squares (Wainwright, 2019; Zie-
mann et al., 2022). Another interesting direction is study-
ing continuous time frequency domain identification.
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A. Supplementary material
For completeness, we include the definition of sub-
Gaussian random vectors.

Definition A.1. A random vector e ∈ Rde is K2-sub-
Gaussian if and only if for any ξ ∈ Rde

E exp
(
ξ⊤et

)
≤ exp

(
K2∥ξ∥2

2

)
. (20)

Proof of Theorem 4.1

By the triangle inequality

∥ĝt − gt∥op ≤ ∥ĝt − g̃t∥op + ∥g̃t − gt∥op.

For the second term, by (14), we have

∥g̃t − gt∥op ≤
∞∑
τ=1

∥gt+τM∥op ≤ Cg
M .

Note that (14) follows from the properties of DFT–
see (McKelvey & Akçay, 1994).

For the first term, we have,

∥ĝt − g̃t∥op ≤ 1

M

M−1∑
ℓ=0

∥G(ej
2πℓ
M t)− ĜNpℓ∥op|ej

2πk
N t|

≤ 1

M

M−1∑
ℓ=0

∥G(ej
2πℓ
M t)− ĜNpℓ∥op (21)

The proof follows by invoking Theorem 3.1. ■

Proof of Corollary 4.2

Under the condition

M ≥ (− log ρ)−1 logN

it follows that
ρM ≤ N−1.

This, in turn, implies

Cg
M ≤ cA

1

N(1− ρ)

The result follows immediately from Theorem 4.1.
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