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Abstract

Large vision-language models (LVLMs) have recently achieved rapid progress,
sparking numerous studies to evaluate their multi-modal capabilities. However,
we dig into current evaluation works and identify two primary issues: 1) Visual
content is unnecessary for many samples. The answers can be directly inferred
from the questions and options, or the world knowledge embedded in LLMs. This
phenomenon is prevalent across current benchmarks. For instance, GeminiPro
achieves 42.7% on the MMMU benchmark without any visual input, and outper-
forms the random choice baseline across six benchmarks near 24% on average.
2) Unintentional data leakage exists in LLM and LVLM training. LLM and
LVLM could still answer some visual-necessary questions without visual content,
indicating the memorizing of these samples within large-scale training data. For
example, Sphinx-X-MoE gets 43.6% on MMMU without accessing images, sur-
passing its LLM backbone with 17.9%. Both problems lead to misjudgments of
actual multi-modal gains and potentially misguide the study of LVLM. To this end,
we present MMStar, an elite vision-indispensable multi-modal benchmark com-
prising 1,500 samples meticulously selected by humans. MMStar benchmarks 6
core capabilities and 18 detailed axes, aiming to evaluate LVLMs’ multi-modal
capacities with carefully balanced and purified samples. These samples are first
roughly selected from current benchmarks with an automated pipeline, human re-
view is then involved to ensure each curated sample exhibits visual dependency,
minimal data leakage, and requires advanced multi-modal capabilities. Moreover,
two metrics are developed to measure data leakage and actual performance gain
in multi-modal training. We evaluate 16 leading LVLMs on MMStar to assess
their multi-modal capabilities, and on 7 benchmarks with the proposed metrics to
investigate their data leakage and actual multi-modal gain.

1 Introduction

Encouraged by the rapid development of large language models (LLMs) [60, 4, 9, 10, 14, 1, 53],
integrating visual modality into LLMs to enhance models’ interactivity capabilities has witnessed
ever-changing advances in recent days [72, 33, 31, 12, 68, 2, 61, 39, 5, 13]. These large vision-
language models (LVLMs) showcase powerful visual perception and understanding capabilities,
enabling them to accept image inputs from users and engage in dialogues, thereby offering a more
enriched interactive experience. These achievements have further inspired the research community
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What is the shape of the round dirt 
circle?
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The shape of the circle is,
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#LLM-LVLMText Pairs：9/16 (56.3%)
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c d
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Figure 1: We highlight cases in existing multi-modal benchmarks where evaluation samples either lack visual
dependency or have unintentionally leaked into the training data of LLMs and LVLMs. (a) Some samples
can be answered by LLMs using only text-based world knowledge; (b) For some instances, the question itself
contains the answer, making images superfluous; (c) Some samples are leaked into LLMs’ training corpora
can be ”recalled” with the textual questions and answers directly; (d) Some samples indiscernible to LLMs but
solved by LVLMs without accessing images suggest leakage into LVLMs’ multi-modal training data.

to develop a variety of multi-modal benchmarks [27, 16, 34, 47, 63, 64, 37, 26, 38], constructed to
explore the powerful capabilities emerging from LVLMs and provide a comprehensive and objective
platform for quantitatively comparing the continually evolving models. Despite the race among
existing evaluation works to construct as many axes as possible to assess the capabilities of LVLMs,
we have identified two primary issues upon delving into existing evaluation samples and processes.

First, visual content is unnecessary for many samples. A qualified multi-modal evaluation sam-
ple should compel LVLMs to understand and reason with the visual content for correct answers.
Otherwise, the evaluation sample would degrade into assessing the textual capabilities of LLM
bases. Unfortunately, we have identified numerous samples across multiple popular benchmarks
[34, 27, 64, 38, 26] where answers can be correctly deduced without relying on visual content. As
shown in Figure 1 (a) and (b), some samples have answers directly included within the questions
(e.g., What is the shape of the round dirt circle?), while others can be effortlessly answered by
leveraging the rich world knowledge embedded within the LLM bases (e.g., What is the capital of
Nebraska?). As shown in Table 1, with a comprehensive quantitative analysis of 22 LLMs on 6
benchmarks, we observe this phenomenon is prevalent and serious. For example, more than 50%
questions of ScienceQA and near 30% questions of MMMU can be solved by most LLMs directly.
For the powerful LLM GeminiPro, it achieves 42.7% on the MMMU benchmark without any visual
input, and outperforms the random choice baseline across six benchmarks by near 24% on average.

Taking aside the inappropriate samples in evaluation, we also observed strange results that LLM
and LVLM could still answer some visual-necessary questions without visual content (Figure 1 (c)
and (d)). A plausible explanation for this could be the inadvertent memorization of these samples
during the large-scale training process, suggesting the presence of unintentional data leakage in
the training of LLM and LVLM. Through a detailed study of various LVLMs on 6 benchmarks, as
shown in Table 2, we find the unexpected leaking problem during the LVLM training is particularly
serious. For example, we find Yi-VL-34B gets 15.0% higher performance than its LLM backbone
on ScienceQA, Sphinx-X-MoE gets 43.6% on MMMU without accessing images, surpassing its
LLM backbone with 17.9%, even surpassing many leading LVLMs with accessing images.

The existence of inappropriate questions and data leaking would lead to misjudgments of actual
multi-modal performance gains and potentially misguide the study of LVLM. In pursuit of a more
accurate and comprehensive evaluation, we introduce the MMStar Benchmark. MMStar is a pre-
mier, vision-critical multi-modal benchmark that includes 1,500 challenging samples, each rigor-
ously validated by humans. It is structured to test 6 fundamental capabilities and 18 specific di-
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mensions, aiming to evaluate the multi-modal capacities of LVLMs with a carefully balanced and
purified selection of samples.

The MMStar is a new benchmark that “Stands on the shoulders of giants”. Samples are first roughly
selected from current benchmarks with an automated pipeline. In detail, we use eight powerful
LLMs as candidates inspectors for visual dependency and LLM leakage, including two closed-
source APIs (GPT4-Turbo [42], and GeminiPro [51]) and six leading open-source models (e.g.,
LLaMA-70B [53], Qwen-1.5-72B [1], and Mixtral-8x7B [23]). Samples that could be answered by
more than 2 of the 8 LLMs are excluded as they may exist leaking or visual-unnecessary problems.
Then we use 16 leading LVLMs (e.g., GPT4V [43], GeminiPro (Vision) [51], LLaVA series [31,
33]) to gauge the difficulty of the samples and split them to four levels. Ultimately, based on the
difficulty of the rough-filtered samples, strict manual review and selection are applied to curate
1,500 high-quality multimodal evaluation samples. As shown in Figure 3, these samples span 6
core multimodal capability dimensions and 18 detailed axes, aiming to probe LVLMs’ advanced
multimodal capabilities with a purified and high-quality set of samples. Moreover, we design the
multi-modal gain (MG) and multi-modal leakage (ML) metrics to probe LVLMs’ actual performance
gain and data leakage degrees derived from multi-modal training in a benchmark-specific manner.

We evaluate the accuracy, MG, and ML of 16 leading LVLMs on our MMStar benchmark, the high-
resolution version of GPT-4V ranks first with 57.1% accuracy, showcasing its superb multi-modal
capability. GPT-4V also gets the best MG and a small ML, indicating its effective multi-modal
training strategy and has less data leaking.

In a nutshell, our contributions are threefold:

• We delve into existing evaluation benchmarks and processes and identify two key issues: (1)
Visual content is unnecessary for many samples. (2) Unintentional data leakage exists in LLM
and LVLM training. Both lead to misjudgment of LVLM and may misguide the following study.

• We curate MMStar, an elite vision-indispensable multi-modal benchmark comprising 1,500 chal-
lenge samples meticulously selected by humans. MMStar covers samples from diverse tasks and
difficulties, aiming to evaluate the actual multi-modal capacities of LVLMs.

• Based on MMStar, we evaluate LVLMs with Accuracy and two newly proposed metrics: multi-
modal gain and multi-modal leakage. The high-resolution version of GPT-4V outperforms the 16
leading LLMs and ranks first.

2 Related Work

Large Vision-Language Models. As large language models (LLMs) [9, 53, 53, 60, 52, 42, 65, 44,
10] rapidly advance, a growing fraction of the research community is focusing on integrating visual
content into LLMs to build a powerful intelligent assistant with more interactive ways. Central to
these large vision-language models (LVLMs) are the seminal works in modality alignment within
the vision-language learning area [46, 21]. The foundation work CLIP [46] exemplifies the align-
ment of vision and language modalities through contrastive learning on extensive image-text pairs.
Built upon the CLIP image encoder which is somewhat aligned with the language modality, current
LVLMs typically utilize vast image-text pairs to connect the vision encoder and LLM, enabling LLM
to receive and understand visual content [72, 33, 31, 12, 45, 2, 48, 6, 39, 19, 5, 20, 71, 73, 24, 59, 70].
For example, MiniGPT4 [72] and LLaVA [33] directly connect the vision encoder and LLM with
QFormer [28] and MLP [50], showing proficiency in multi-modal dialogues. Subsequent works
have further enhanced LVLMs by improving the multi-modal instruction data [31, 61, 5, 54, 67, 25]
and designing novel modules [2, 30, 55, 36, 17, 13] for more sufficient modality alignment.

Evaluations of LVLMs. To probe the true capabilities of the emerging LVLMs, the research com-
munity has developed many multi-modal benchmarks encompassing a wide range of evaluation axes
[34, 16, 47, 64, 49, 66, 27, 33, 29, 35, 63, 56, 58, 57]. Early single-task benchmarks, such as VQA
[18], MS-COCO [49], and OK-VQA [47], fail to holistically assess LVLMs’ general multi-modal
perception and reasoning capabilities. To address this issue, comprehensive multi-modal bench-
marks have been constructed [33, 27, 64, 16, 34, 8, 56]. For example, SEED [27] and MMBench
[34] cover 12 and 20 evaluation dimensions respectively, while MMMU [64] spans 30 college-
level subjects, providing some competitive arenas for a comprehensive comparison of cutting-edge
LVLMs. However, existing evaluations of LVLMs overlook some critical issues. On the one hand,
they do not guarantee that all evaluation samples cannot be correctly answered without the visual
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Table 1: Evaluation of various LLMs on six popular multi-modal benchmarks under 2-shot. We employ
a 2-shot inference strategy for evaluating all LLMs to reduce instances of refusal to answer and align the
answer formats. We report the results of 2 closed-source LLMs and 20 open-source LLMs with varying sizes
and architectures. The evaluated benchmarks include MMMU (MMMU-Val [64]), MMB (MMBench-EN-Dev
[34]), ScienceQA (ScienceQA-Test [38]), AI2D (AI2D-Test [26]), SEED (SEED-Image [27]), and MathVista
(MathVista-Mini [37]). The best results are highlighted in bold and underlined.

Model Strategy MMMU MMB ScienceQA AI2D SEED MathVista Avg.

Baseline

Random Choice - 22.1 0.0 24.2 23.8 24.3 17.9 18.7

Closed-source LLMs

GPT4-Turbo[42] 2-shot 42.0 15.5 67.5 61.3 26.8 25.6 39.8
GeminiPro[51] 2-shot 42.7 18.7 69.3 60.1 38.1 25.5 42.4

Open-source LLMs

Qwen1.5-1.8B[1] 2-shot 33.0 8.6 55.6 41.3 32.1 22.7 32.2
Phi2-2.7B[40] 2-shot 19.9 4.3 50.8 41.7 6.9 18.4 23.7
Yi-6B[62] 2-shot 32.9 16.0 64.6 51.5 36.7 24.5 37.7
LLaMA2-7B[53] 2-shot 25.9 7.7 57.9 42.8 32.8 22.8 31.7
Qwen-7B[1] 2-shot 30.6 15.0 63.0 50.0 32.6 21.0 35.4
Deepseek-7B[3] 2-shot 28.7 11.6 61.9 46.0 34.1 21.7 34.0
InternLM2-7B[52] 2-shot 33.6 11.4 63.6 52.1 34.4 20.4 35.9
Qwen1.5-7B[1] 2-shot 33.3 13.1 65.1 52.1 32.1 22.8 36.4
Vicuna-v1.5-7B[9] 2-shot 31.3 9.5 58.9 45.5 32.0 20.7 33.0
Baichuan2-7B[60] 2-shot 28.2 13.7 58.1 44.1 32.3 21.7 33.0
Mistral-7B[22] 2-shot 29.8 17.2 66.1 50.0 34.4 13.4 35.2
LLaMA2-13B[53] 2-shot 32.9 10.1 58.9 43.8 32.1 24.8 33.8
Vicuna-v1.5-13B[9] 2-shot 31.3 12.8 63.0 46.8 33.6 20.8 34.7
Baichuan2-13B[60] 2-shot 32.2 13.1 61.0 47.1 35.2 23.4 35.3
InternLM2-20B[52] 2-shot 35.6 17.4 66.4 55.9 30.4 20.8 37.8
Yi-34B[62] 2-shot 35.8 15.8 67.9 59.6 37.2 26.9 40.5
Mixtral-8x7B[23] 2-shot 35.1 17.3 66.3 55.1 35.8 22.7 38.7
Deepseek-67B[3] 2-shot 38.3 17.2 68.3 59.7 37.3 23.4 40.7
LLaMA2-70B[53] 2-shot 30.4 17.2 63.4 49.3 34.9 24.2 36.6
Qwen1.5-72B[1] 2-shot 42.4 21.1 70.1 60.9 40.7 26.3 43.6

content. On the other hand, current evaluations consistently adhere to the process of inferring on
given benchmarks and calculating scores for LVLMs, overlooking the possibility of data leakage
during multi-modal training. This oversight can lead to unfair comparisons and misjudgments of the
real gains in multi-modal capabilities brought by multi-modal training.

3 Two Overlooked Issues for Evaluating LVLMs

In this section, we delve into two commonly overlooked issues in current LVLM evaluation works.
Moreover, we present detailed experimental results to further substantiate our observations.

First issue: visual content is unnecessary for many evaluation samples. The key distinction
between evaluating LLMs and LVLMs lies in the necessity for LVLM evaluations to strictly ensure
that the correct answers can only be derived based on a thorough understanding of visual con-
tent. Without this, evaluating LVLMs’ multi-modal capabilities degrades to merely assessing their
LLM backbones’ uni-modal abilities. However, upon examining samples from some popular LVLM
benchmarks, we find many samples lack vital visual dependency and can yield correct answers even
without the image inputs! Through analysis of these failure samples, we categorize them into two
groups: (1) Answers can be directly obtained from the world knowledge embedded in LLMs, ow-
ing to the LLMs’ extensive pretraining on the large corpus of data. For example, as illustrated in
Figure 1(a), the question ”What is the capital of Nebraska?” already provides the key information
”Nebraska”, eliminating the need for extracting relevant location information from visual content. A
more appropriate question is ”What is the capital of the highlighted area in the image?” to emphasize
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the importance of visual understanding. (2) Answers are directly included in the textual questions.
As shown in Figure 1(b), LLMs can derive the correct answer ”circle” through simple reasoning
based on the question ”What is the shape of the round dirt circle?”.

10.3%

12.4%

46.2%

57.2%10.5%

20.0%

0% 10% 20% 30% 40% 50% 60%

MathVista

SEED

AI2D

ScienceQA

MMB-EN

MMMU

Hit Rate (%)
Figure 2: LLM hit rate across various benchmarks.

To quantitatively substantiate our findings, we
further experiment to gauge the proportion of
these two types of samples in existing bench-
marks. Specifically, we evaluate several bench-
marks with two closed-source LLMs (GPT4-
Turbo [42], and GeminiPro [51]) and six open-
source heavy LLMs (InternLM2-20B [52], Yi-
34B [62], Mixtral-8x7B [23], Deepseek-67B
[3], LLaMA2-70B [53], and Qwen1.5-72B [1]),
recording the hit count for each question. Here,
the ‘hit’ refers to the ability of an LLM to cor-
rectly answer the question without relying on visual input. We then calculate the percentage of
samples with a hit count of six or more (80%) against the total number of samples to determine the
abnormal hit rate for each benchmark. As depicted in Figure 2 , every benchmark shows a certain
degree of samples that visual contents are unnecessary, with ScienceQA [38] and AI2D [26] exhibit-
ing amazing abnormal hit rates of 57.2% and 46.2%, respectively. Based on our observations, most
multi-modal benchmarks have yet to fully assess the multi-modal capabilities of LVLMs.

Second issue: unintentional data leaking exists in LLM and LVLM training. Although the
community has the trend towards developing new multi-modal benchmarks to assess LVLMs’ ca-
pabilities from various dimensions, there is scant consideration for fairness and reliability during
evaluation. Training LLMs and LVLMs requires vast and diverse data, inevitably leading to the
leakage of evaluation samples. Such incidents are usually unintended, as it’s impractical to predict
which data will be used in future evaluation benchmarks during the preparation for training corpus.

Figure 1 (c) showcases an evaluation sample leaked by LLMs. Though the question requires an
understanding of image content, 16 out of 22 tested LLMs astonishingly provide the correct response
by ”recalling” their training data. To quantitatively support our observations, we evaluate 22 leading
LLMs across 6 popular benchmarks and report the 2-shot results in Table 1. Specifically, we find
the 2-shot evaluation strategy is more stable than the 0-shot (see results in Section A.8) to reduce
refusal for answering and align answer formats. Under the impact of vision-independent samples
and data leakage from LLMs, GeminiPro [51] and Qwen1.5-72B [1] achieve a remarkable average
accuracy of 42.4% and 43.6% under the 2-shot setting, outperforming random choice by 21.4% and
22.6%, respectively. Furthermore, Qwen1.5-72B achieves a score of 42.4% on MMMU [64], even
surpassing the performance of the majority of LVLMs with accessing images. This result serves as a
reminder: if we only consider the final accuracy on benchmarks when evaluating LVLMs, potential
data leakage from LLMs could lead to unfair comparisons.

In Figure 1 (d) and Section A.5, we showcase some examples where original LLMs fail, but LVLMs
without accessing images succeed. Despite these questions requiring image content for accurate
answers, the LVLMs without accessing images are capable of correctly answering these questions
which stump original LLMs. To further support our hypotheses of data leakage during LVLMs’
multi-modal training, we conduct an intriguing experiment. We remove the images for LVLMs and
only utilize questions and options for evaluation, with results reported in Table 2. We compare
the gains of LVLMs set to receive only text inputs (LVLM-text) against their corresponding LLM
bases (LLM) to quantitatively assess the degree of data leakage in LVLMs’ multi-modal training. As
shown in Table 2, most LVLMs exhibit varying degrees of data leakage during multi-modal training.
For example, the LLMs of Sphinx-X-8x7B [17] and Monkey-Chat [30], show a respective average
performance gain of 14.1% and 14.2% compared to their original LLMs.

Drawing from our observations, we posit that the issue of data leakage in multi-modal datasets is a
significant concern that warrants attention. Addressing this issue is essential to ensuring that model
performance is measured by their genuine ability to integrate and interpret multimodal data, rather
than by their tendency to memorize specific samples within the dataset. Establishing a robust and
reliable benchmark to minimize data leakage would thus serve as a foundational step in advancing
research within the field of multimodal language models, paving the way for more meaningful and
accurate evaluations of their performance and potential.
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Table 2: Evaluation of various LVLMs on six popular multi-modal benchmarks. For the ”strategy” column,
”LLM” refers to evaluating using the corresponding LLM base of the LVLM, while ”LVLM-text” denotes
evaluating LVLMs without accessing images. We employ the 0-shot inference strategy for LLMs to align
the evaluation protocols of LVLMs. We only report the results of 2 closed-source LVLMs and 8 open-source
LVLMs due to space limits. For the entire LVLMs’ results, please refer to the appendix. The highest results of
the LVLM-text setting across the models are highlighted in bold and underlined.

Model Param. Strategy MMMU MMB ScienceQA AI2D SEED MathVista Avg.

Baseline

Random Choice - - 22.1 0.0 24.2 23.8 24.3 17.9 18.7

Closed-source LVLMs and corresponding LLM bases

- LLM 41.2 12.2 64.3 59.7 10.1 24.2 35.3
- LVLM-text 45.1 17.6 68.2 62.5 28.4 25.4 41.2GPT4V[43]

(GPT4-Turbo[42])
- LVLM 53.6 69.6 81.4 75.3 71.6 44.7 66.0
- LLM 42.9 18.4 68.9 59.2 35.5 23.3 41.4
- LVLM-text 39.4 16.7 66.3 54.5 27.9 24.5 38.2

GeminiPro (Vision)[51]
(GeminiPro[51])

- LVLM 44.4 68.1 80.6 68.0 64.3 36.0 60.2

Open-source LVLMs and corresponding LLM bases

LLM 20.0 7.2 47.1 38.7 26.4 22.0 26.9
LVLM-text 30.0 21.0 62.3 51.9 37.2 23.5 37.7

TinyLLaVA[69]
(Phi2-2.7B[40])

3B
LVLM 36.0 66.9 69.1 62.4 70.1 28.9 55.6
LLM 29.9 10.3 58.9 42.5 32.6 22.0 32.7
LVLM-text 29.9 19.5 64.1 48.7 37.5 20.3 36.7

LLaVA-1.5[31]
(Vicuna-v1.5-7B[9])

7B
LVLM 34.4 65.0 68.7 55.6 65.6 23.6 52.2
LLM 32.8 8.9 64.0 48.3 31.9 18.9 34.1
LVLM-text 34.2 26.2 71.9 63.3 38.1 29.4 43.9

InternLM2-XC2[13]
(InternLM2-7B[52])

7B
LVLM 41.7 79.6 96.7 81.4 74.9 57.4 72.0
LLM 19.8 8.4 52.7 42.6 7.6 20.5 25.3
LVLM-text 32.4 15.6 71.1 56.8 36.1 25.0 39.5

Monkey-Chat[30]
(Qwen-7B[1])

10B
LVLM 37.1 71.0 82.4 68.5 69.1 34.0 60.4
LLM 29.9 10.3 58.9 42.5 32.6 22.0 32.7
LVLM-text 30.1 15.5 54.6 52.5 36.7 25.0 35.7

CogVLM-Chat[55]
(Vicuna-v1.5-7B[9])

17B
LVLM 34.2 63.4 66.3 63.3 68.7 34.7 55.1
LLM 37.1 10.5 53.6 57.3 37.3 21.7 36.3
LVLM-text 37.3 23.2 68.6 59.9 41.0 22.7 42.1

Yi-VL[62]
(Yi-34B[62])

34B
LVLM 43.2 71.5 75.3 65.9 68.1 25.6 58.3
LLM 37.6 20.1 69.4 60.2 35.0 17.9 40.0
LVLM-text 41.7 23.9 70.3 65.0 40.5 24.0 44.2InternVL-Chat-v1.2[7]

(NH2-Yi-34B[41])
40B

LVLM 49.1 82.4 82.5 78.5 75.4 47.7 69.3
LLM 25.7 8.6 57.2 48.7 13.5 23.4 29.5
LVLM-text 43.6 20.5 68.4 61.1 39.9 28.4 43.7

Sphinx-X-MoE[17]
(Mixtral-8x7B[23])

57B
LVLM 44.8 69.2 72.2 65.0 71.1 38.1 60.1

4 MMStar

4.1 Data Curation Process

Criteria for data curation. The evaluation samples for constructing the MMStar benchmark should
meet three fundamental criteria: 1) Visual dependency. The collected samples can be correctly an-
swered only based on understanding the visual content; 2) Minimal data leakage. The collected
samples should minimize the risk of unintentional inclusion in LLMs’ training corpus, or be effec-
tively transformed from uni-modal to multi-modal formats to prevent LLMs from ”recalling” the
correct answers; 3) Requiring advanced multi-modal capabilities for resolution. In addition to
ensuring fairness and reliability by adhering to the above criteria, we also aim for samples to cover
various difficulty levels. We expect to comprehensively capture LVLMs’ multi-modal capabilities
with succinct high-quality samples.

Data filter. We first choose two benchmarks [34, 27] focused on natural images and four centered
on scientific and technical knowledge [64, 38, 26, 37] for our sample collection. We then develop
an automated pipeline to preliminarily filter out samples that do not meet the first two criteria.
Specifically, we employ two closed-source LLMs [51, 42] and six open-source LLMs [1, 52, 62,
3, 23, 53] sizing 20B or larger to serve as inspectors. These open-source LLMs are applied with a
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Figure 3: Details of MMStar benchmark. (a) Statics of the data sources during the data curation process.
After applying the coarse filter process and manual review, we narrow down from a total of 22,401 samples to
11,607 candidate samples and finally select 1,500 high-quality samples to construct our MMStar benchmark.
(b) We display 6 core capabilities in the inner ring, with 18 detailed axes presented in the outer ring. The middle
ring showcases the number of samples for each detailed dimension.

2-shot in-context inference strategy to minimize response refusals and ensure consistency in answer
formatting. Following this, we evaluate the sample pool with these LLM inspectors, documenting
the hit frequency for each evaluation sample. Finally, we only retain those samples with hit counts of
two or fewer hits, indicating that around 75% of LLM inspectors fail to provide the correct answer.
As illustrated in Figure 3 (a), following this initial coarse filtering, our sample pool was reduced
from 22,401 to 11,607.

Manual review. After the coarse filtering with LLM inspectors, we further employ three experts to
conduct the manual review process to ensure: 1) each sample’s answer should be based on the un-
derstanding of visual content; 2) selected samples should cover a comprehensive range of capability
assessment dimensions; 3) most samples should require LVLMs to possess advanced multi-modal
abilities for resolution. To expedite the manual selection of samples with varying difficulty levels
for LVLMs, we tally the hit counts of all 16 LVLMs on the coarsely filtered samples and split them
into four difficulty categories: easy (12-16, 148 examples), moderate (8-11, 189 examples), hard
(4-7, 631 examples), and tough (0-3, 532 examples). Finally, after considering both the diversity of
capability dimensions and difficulty levels, we manually curated 1,500 high-quality samples from
the coarsely filtered set. Figure 3 (a) showcases the detailed composition of data sources for our final
selection of samples. In Section A.3, we provide details on how the manual review step aggressively
reduces the MMStar benchmark from 11,607 samples to 1,500 samples.

4.2 Core Capabilities

We select and consolidate the dimensions used for assessing LVLMs’ multi-modal capabilities in
existing benchmarks and identify six core capabilities along with eighteen detailed axes. In Figure 3
(b), we provide statistics for each core capability and their detailed axes on the MMStar benchmark.
More detailed definitions of each capability are provided in Section A.2.
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Table 3: Evaluation of various LVLMs on MMStar. We report the results of 2 closed-source LVLMs and
14 open-source LVLMs with varying sizes and architectures. We report the detailed results of the CP (coarse
perception), FP (fine-grained perception), IR(instance reasoning), LR (logical reasoning), ST (science & tech-
nology), and MA (mathematics) core capabilities. The best results are highlighted in bold and underlined.
The worst results of multi-modal gain (MG) and multi-modal leakage (ML) metrics are in italic red.

Model LLM Param. CP FP IR LR ST MA Avg. MG↑ ML↓

Baselines

Random Choice - - 23.7 24.5 25.3 24.3 24.8 25.1 24.6 - -

Closed-source LVLMs

GeminiPro-Vision[51] GeminiPro[51] - 51.6 28.8 50.8 46.0 28.4 50.0 42.6 27.4 0.0
GPT4V (low)[43] GPT4-Turbo[42] - 62.0 32.8 55.2 48.0 33.6 44.8 46.1 32.6 1.3
GPT4V (high)[43] GPT4-Turbo[42] - 76.6 51.4 66.6 55.8 42.6 49.8 57.1 43.6 1.3

Open-source LVLMs

TinyLLaVA[69] Phi2-2.7B[40] 3B 60.4 31.6 50.8 30.4 18.0 24.8 36.0 16.4 7.6
Yi-VL[62] Yi-6B[62] 6B 58.0 33.6 46.4 34.8 20.4 34.0 37.9 15.6 0.0
LLaVA-1.5[31] Vicuna-v1.5-7B[9] 7B 58.8 24.0 38.8 24.0 13.6 22.8 30.3 10.7 0.0
ShareGPT4V[5] Vicuna-v1.5-7B[9] 7B 58.8 28.0 45.6 24.4 17.2 24.0 33.0 11.9 0.0
InternLM-XC2[13] InternLM2-7B[52] 7B 70.8 48.8 65.2 56.4 42.0 49.2 55.4 28.1 7.5
Deepseek-VL[36] Deepseek-7B[3] 8B 64.0 30.8 49.2 36.4 21.6 20.4 37.1 15.7 0.0
Qwen-VL-Chat[2] Qwen-7B[1] 10B 59.6 32.0 50.8 29.2 22.0 31.6 37.5 23.9 0.0
Monkey-Chat[30] Qwen-7B[1] 10B 57.6 36.4 51.6 33.2 26.4 24.4 38.3 13.5 17.6
LLaVA-1.5[31] Vicuna-v1.5-13B[9] 13B 58.8 28.0 41.6 24.4 18.4 25.6 32.8 13.9 0.0
CogVLM-Chat[55] Vicuna-v1.5-7B[9] 17B 66.8 36.8 49.2 31.2 23.6 11.6 36.5 14.9 0.0
Yi-VL[62] Yi-34B[62] 34B 53.2 31.2 52.0 32.4 12.4 35.2 36.1 18.8 0.0
LLaVA-Next[32] NH2-Yi-34B[41] 34B 66.4 52.0 62.4 46.0 32.4 53.6 52.1 29.4 2.4
InternVL-Chat-V1.2[7] NH2-Yi-34B[41] 40B 67.6 43.2 61.2 47.2 24.0 19.2 43.7 32.6 0.0
Sphinx-X-MOE[17] Mixtral-8x7B[23] 57B 58.4 40.8 47.6 35.2 19.2 32.0 38.9 14.8 1.0

4.3 Multi-modal Gain/Leakage

Given our observation of the potential for inadvertent leakage of some evaluation samples during
the multi-modal training process, the vanilla evaluation approach struggles to reveal LVLMs’ actual
performance gains derived from multi-modal training and fails to enable fair comparison with other
competitors. Therefore, we propose two novel metrics to separately assess the degree of data leakage
and actual performance gain from the multi-modal training process.

To calculate the multi-modal gain (MG) metric for a given LVLM on a particular benchmark, we
need to compute the scores of the same LVLM with and without visual inputs, separately denoted
as Swv and Sov . Then the MG metric can be derived from the following formulation:

MG = Swv − Sov. (1)

To calculate the multi-modal leakage (ML) metric, we need to compute the extra score of the given
LVLM’s LLM base (without any multi-modal training), denoted as St. Then the ML metric is
formulated as follows:

ML = max(0, Sov − St). (2)

5 Experiments

In this section, we conduct a systematic analysis of the proposed MMStar benchmark along with the
MG/ML metrics. These analyses encompass various LLMs and LVLMs, and also involve numer-
ous existing benchmarks when examining MG/ML metrics. We choose VLMEvalKit [15] as our
codebase. Please see details about experimental setups in Section A.1.
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5.1 Results Analysis of MMStar

In this section, we present a comprehensive comparison of various LLMs and LVLMs performed on
our MMStar benchmark and summarize our key observations in the following parts.
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Figure 4: LLMs perform close to random guessing
(the dashed line) on MMStar.

Observation from LLMs. We comprehensively
evaluate 2 closed-source LLMs and 20 open-
source LLMs of varying sizes and architectures
on the MMStar benchmark and report the results
in Figure 4 and Table 5. Encouragingly, the per-
formance of these LLMs is almost indistinguish-
able from random choice, effectively validating
that the evaluation samples of our MMStar ex-
hibit significant visual dependency and minimal
data leakage from LLMs. Notably, the smallest
model, Qwen1.5-1.8B, achieves the best score.
We conjecture this is due to it suffering the least
stringent safety restrictions, thereby reducing in-
stances of refusal to answer. Moreover, among
the six core capabilities of MMStar, science &
technology (ST) prove to be the most challenging dimension for LLMs. The best score on ST is
only 23.2%, significantly lower than the best scores of around 30% in other dimensions. We spec-
ulate this may be that samples within the ST dimension have the least degree of data leakage from
LLMs’ training data.

Observation from LVLMs. We evaluate 2 closed-source and 14 open-source LVLMs on our MM-
Star, with the results reported in Table 3. As shown in the table, GPT4V[43] with a high-resolution
setting can achieve the best average score of 57.1% among all LVLMs. Increasing the resolution
and number of image tokens can boost the average score from 46.1% to 57.1% for GPT4V, of-
fering a positive signal to the research community. Among the open-source LVLMs, InternLM-
Xcomposer2 [13] achieves an impressive score of 55.4%. LLaVA-Next [32] even surpasses GPT4V
and GeminiPro-Vision [51] in the mathematics (MA) core capability. Notably, no LVLMs managed
to reach a passing average score (i.e. 60%) in the core capabilities of fine-grained perception (FP),
logical reasoning (LR), science & Technology (ST), and mathematics (MA), highlighting these di-
mensions as particularly challenging for existing LVLMs. Moreover, TinyLLaVA [69], despite its
modest 3B scale, outperformed some competitors of 7B and even 13B surprisingly, underscoring
the potential of smaller-scale LVLMs.

5.2 Analysis of Multi-modal Gain (MG) and Multi-modal Leakage (ML)

Analysis from the model perspective. In Table 4, we illustrate the MG/ML (Multi-modal
Gain/Multi-modal Leakage) metrics for each LVLM across each benchmark and provide an aver-
age MG/ML metric across all benchmarks in the final column. For closed-source LVLMs, GPT4V
demonstrates notable performance gains attributed to its multi-modal training, while GeminiPro-
Vision shows lesser data leakage during multi-modal training. This suggests that GPT4V may have
utilized a broader range of multi-modal training data compared to GeminiPro-Vision. Among the
open-source LVLMs, InternLM-XComposer2 achieves the highest average multi-modal gain of 28.1
across all benchmarks, whereas LLaVA-1.5-7B records the lowest at 14.8. This outcome is reason-
able given that LLaVA-1.5-7B employed the least amount of multi-modal training data among these
open-source LVLMs. Despite LLaVA-1.5-7B having the lowest average multi-modal gain, it ex-
hibits minimal multi-modal leakage. Additionally, models like Monkey-Chat, Sphinx-X-MoE, and
Deepseek-VL display higher degrees of multi-modal leakage, highlighting the need for the commu-
nity to consider this factor for fair comparisons.

Analysis from the benchmark perspective. In the final row of Table 4, we list the average multi-
modal gain and multi-modal leakage for existing LVLMs across all benchmarks for analysis. MM-
Bench registers the highest average multi-modal gain at 50.1, indicating a significant overlap be-
tween the domains covered by existing LVLMs’ training data and MMBench. Conversely, MMMU
exhibits the lowest average multi-modal gain at 5.8, suggesting a lesser degree of overlap between
the domains of existing LVLMs’ training corpora and those included in MMMU. Additionally, MM-
Star, as expected, has the lowest degree of multi-modal leakage at 1.9. This provides a comprehen-
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Table 4: Evaluation of various LVLMs on 7 Benchmarks with multi-modal gain (MG) and multi-modal
leakage (ML) metrics. We report the results of 2 closed-source LVLMs and 14 open-source LVLMs with
varying sizes and architectures. The bottom row represents the average across models for the same benchmark,
while the rightmost column shows the average across benchmarks for the same LVLM. The best results are
highlighted in bold and underlined. The worst results of MG and ML metrics are in italic red.

MMMU MMB ScienceQA AI2D SEED MathVista MMStar Avg.
Model Param.

MG↑ ML↓ MG↑ ML↓ MG↑ ML↓ MG↑ ML↓ MG↑ ML↓ MG↑ ML↓ MG↑ ML↓ MG↑ ML↓

Closed-source LVLMs

GPT4V[43] - 8.5 3.9 52.0 5.4 13.2 3.9 12.8 2.8 43.2 18.3 19.3 1.2 32.6 1.3 25.9 5.3
GeminiPro-Vision[51] - 5.0 0.0 51.4 0.0 14.3 0.0 13.5 0.0 36.4 0.0 11.5 1.2 27.4 0.0 22.8 0.2

Open-source LVLMs

TinyLLaVA[69] 3B 6.0 10.0 45.9 13.8 6.8 15.2 10.5 13.2 32.9 10.8 5.4 1.5 16.4 7.6 17.7 10.3
Yi-VL[62] 6B 5.3 7.4 45.6 14.1 5.1 9.4 3.9 16.6 29.2 10.9 3.8 3.0 15.6 0.0 15.5 8.8
LLaVA-1.5[31] 7B 4.5 0.0 45.5 9.2 4.6 5.2 6.9 6.2 28.1 4.9 3.3 0.0 10.7 0.0 14.8 3.6
ShareGPT4V[5] 7B 3.5 1.8 49.1 10.1 4.2 6.3 8.5 6.9 31.7 5.1 3.0 0.7 11.9 0.0 16.0 4.4
InternLM-XC2[13] 7B 7.5 1.4 53.4 17.3 24.8 7.9 18.1 15.0 36.8 6.2 28.0 10.5 28.1 7.5 28.1 9.4
Deepseek-VL[36] 8B 3.2 10.6 49.6 15.5 14.3 10.8 11.6 14.9 33.7 23.1 11.4 3.3 15.7 0.0 19.9 11.2
Qwen-VL-Chat[2] 10B 10.0 4.2 49.6 0.3 11.0 4.0 12.3 6.4 44.5 11.9 11.4 0.3 23.9 0.0 23.2 3.9
Monkey-Chat[30] 10B 4.7 12.6 55.4 7.2 11.3 18.4 11.7 14.2 33.0 28.5 9.0 4.5 13.5 11.1 19.8 13.8
LLaVA-1.5[31] 13B 9.6 0.0 47.2 9.8 5.7 7.0 8.6 7.2 31.1 10.7 5.3 1.5 13.9 0.0 17.3 5.2
CogVLM-Chat[55] 17B 4.1 0.2 47.9 5.2 11.7 0.0 10.8 10.0 32.0 4.1 9.7 3.0 14.9 0.0 18.7 3.2
Yi-VL[62] 34B 5.9 0.2 48.3 12.7 6.7 15.0 6.0 2.6 27.1 3.7 2.9 1.0 18.8 0.0 16.5 5.0
LLaVA-Next[32] 34B 6.6 2.8 54.7 4.8 11.2 1.5 12.8 5.6 34.1 6.7 16.5 4.3 29.4 2.4 23.6 4.0
InternVL-Chat-v1.2[7] 40B 7.4 4.1 58.5 3.8 12.2 0.9 13.5 4.8 34.9 5.5 23.7 6.1 32.6 0.0 26.1 3.6
Sphinx-X-MoE[17] 57B 1.2 17.9 48.7 11.9 3.8 11.2 3.9 12.4 31.2 26.4 9.7 5.0 14.8 1.0 16.2 12.3

Avg. across models - 5.8 4.9 50.1 8.9 10.0 7.4 10.3 8.7 33.7 11.1 10.8 3.0 20.0 1.9 - -

sive and fair arena for comparing existing LVLMs. Moreover, we believe evaluating existing LVLMs
to derive average ML metrics can also be helpful to the following works in examining newly devel-
oped multi-modal benchmarks.

6 Conclusion

In this work, we dig into current evaluation works for large vision-language models (LVLMs) and
identify two primary issues: 1) visual content is unnecessary for many samples, and 2) uninten-
tional data leakage exists in LLM and LVLM training. To address these issues, we develop an elite
vision-dependent multi-modal benchmark named MMStar and propose two metrics to measure the
data leakage and actual performance gain in LVLMs’ multi-modal training. MMStar undergoes the
manual review of each sample, covering 6 core capabilities and 18 detailed axes for an in-depth
evaluation of LVLMs’ multimodal capabilities. In our evaluation of 16 diverse LVLMs on MM-
Star, even the best model scores under 60 on average. We also analyze the MG and ML metrics
across 6 multimodal benchmarks and MMStar, providing valuable insights for the community on
gathering multimodal training data and crafting new benchmarks. In the future, we plan to expand
MMStar into a larger, online test set and explore dynamic evaluation methods to maintain sample
visual dependency and reduce accidental data leakage into LLM’s and LVLM’s training corpora.
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A Appendix

In the supplementary material, we provide more results and analysis and summarize them as follows:

• In Section A.1, we detail the experimental setups.
• In Section A.2, we provide a detailed explanation of our MMStar benchmark, which en-

compasses definitions of six core capabilities and eighteen detailed axes.
• In Section A.3, we provide the details about the manual check process to aggressively

reduce the MMStar benchmark from 11,607 to 1,500 samples.
• In Section A.4, we present the comprehensive performance of 22 LLMs across various

dimensions on our MMStar benchmark.
• In Section A.5, we present statistics about the data leaked from the existing public multi-

modal benchmarks to selected LVLMs’ training corpus, along with some specific examples.
• In Section A.6, we showcase additional samples from existing benchmarks that either lack

visual dependency or have been leaked into the training corpora of LLMs or LVLMs.
• In Section A.7, we showcase some samples in MMStar of each detailed axe.
• In Section A.8, we provide detailed performance results of 22 LLMs across 6 public multi-

modal benchmarks under the 0-shot evaluation strategy. Moreover, we place the complete
performance of 16 LVLMs with/without accessing images across these multi-modal bench-
marks.

• In Section A.9, we discuss the limitation and future work.

A.1 Experimental Setups

Evaluation models. 1) Baseline: We utilize random choice to serve as the baseline, which randomly
selects an option as the answer. 2) Large Language Models: We prepare two closed-source LLMs,
GPT4 [42] and GeminiPro [51], and 20 popular open-source LLMs sizing from 1.8B to 72B for
text-only evaluation, such as Qwen series [1], LLaMA2 series [53], Phi2 [40], Vicuna series [9],
Deepseek series [3], InternLM2 series [52], Baichuan2 series [60], Yi series [62], Mistral series
[22, 23]. Additionally, all the open-source LLMs we used are their Chat versions. and 3) Large
Vision-Language Models: We prepare two closed-source LVLMs, GPT4V [43] and GeminiPro
(Vision) [51], and 14 popular open-source LVLMs sizing from 3B to 57B, such as TinyLLaVA-
3B [69], Yi-VL series [62], Qwen-VL-Chat [2], LLaVA-1.5 series [31], LLaVA-Next-34B [32],
CogVLM-Chat-17B [55], InternVL-Chat-v1.2 [7], Sphinx-X-8x7B [17].

Implementation details. For evaluating LLMs on existing benchmarks, we employ both 0-shot and
2-shot strategies and will specify which is utilized when reporting results. For evaluating LLMs
on MMStar, the 0-shot strategy yields poor scores, making comparisons difficult. Therefore, we
exclusively utilize the 2-shot strategy to decrease the frequency of refusal to answer. Moreover, All
LVLMs are evaluated utilizing the 0-shot strategy across all benchmarks to ensure a fair comparison.
When evaluating LVLMs under the ‘LVLM-text’ setting (i.e. answer without the image), most
LVLMs work well by simply removing the image tokens from their default input tokens. However,
GeminiPro-Vision [51] and CogVLM-Chat [55] require the replacement of the original images with
pure grey images to bypass image content input and operate correctly. Given that all questions are
ensured to be converted into a multiple-choice format, we develop some heuristic matching rules to
calculate accuracy, avoiding the cumbersome process of re-invoking GPT4 for answer extraction.
Moreover, all experiments in this study are conducted within the same codebase modified from
VLMEvalKit [11], and utilize NVIDIA A100 GPUs for non-API-based evaluation.

A.2 Definitions of Core Capabilities and Detailed Axes

The core capabilities consist of two perception-related dimensions, Coarse Perception (CP) and
Fine-grained Perception (FP), two reasoning-related dimensions, Instance Reasoning (IR) and Logi-
cal Reasoning (LR), and two knowledge-related dimensions, Science & Technology (ST) and Math-
ematics (MA). We detail the complete definitions as follows:

Coarse Perception (CP). This core dimension refers to the capability to understand and interpret
the overarching characteristics and themes of an image without delving into the finer details. It
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encompasses a broad, holistic view of the visual content, enabling the identification of 1) image
style & quality; 2) image scene & topic; and 3) image emotion.

Fine-grained Perception (FP). This core dimension represents a sophisticated level of image under-
standing that focuses on the detailed and nuanced aspects of visual content. It involves a deep dive
into the specifics of images: 1) attribute & celebrity recognition; 2) object location; and 3) object
counting. This core dimension unveils the subtle intricacies that coarse perception might overlook.

Instance Reasoning (IR). It encapsulates a set of advanced cognitive capabilities focused on un-
derstanding and interpreting individual and collective object attributes and interrelations within an
image. This process goes beyond mere recognition, delving into the analytical assessment of 1)
single-instance attribute reasoning; 2) cross-instance attribute comparison; and 3) cross-instance re-
lation reasoning. It is a critical component for systems requiring a deep semantic understanding of
visual content, enabling nuanced interaction with and response to complex visual content.

Logical Reasoning (LR). This core dimension encompasses a sophisticated framework of cogni-
tive processes designed to interpret, deduce, and infer conclusions from visual content through a
structured approach to logic and reasoning. This multi-faceted capability marries the intuitive un-
derstanding of visual content with the structured rigor of logical deduction, enabling: 1) diagram
reasoning; 2) code & sequence reasoning; and 3) common reasoning.

Science & Technology (ST). It consists of a comprehensive framework for the application and
integration of knowledge across a broad spectrum of science and technology. This domain combines
the theoretical underpinnings and practical applications of various fields: 1) natural science; 2)
engineering; and 3) geography & earth science.

Mathematics (MA). Math is a foundational pillar of logical and analytical reasoning and encom-
passes a broad spectrum of capabilities essential for understanding, applying, and interpreting quan-
titative and spatial information. We primarily consider three aspects for evaluating LVLMs’ logical
thinking prowess: 1) numeric commonsense & calculation; 2) geometry; and 3) statistical analysis.

A.3 Details of Manual Check

After roughly filtering the original data pool with 8 advanced LLMs, resulting in 11,607 candidate
samples, we initiate a rigorous manual review phase. First, we establish 6 core evaluation dimen-
sions and 18 detailed axes by integrating the evaluation dimensions from existing benchmarks. Next,
we use 16 LVLMs to infer and count the number of hits for each sample. Furthermore, we design
a UI interface listing the current sample’s image, options, answer, sample source, hit count, and the
18 detailed axes. The samples are arranged in ascending order based on the number of hits. The
formal manual selection and benchmark construction process is as follows:

Preliminary Classification: Three experts are each responsible for two core capability dimensions
(i.e., 6 detailed axes). They need to review all candidate samples and select and correctly classify
the samples belonging to their respective dimensions. The samples selected must retain their visual
dependency. Statistical Analysis: After the preliminary classification, we consider the numerical
balance between dimensions and the difficulty level of the samples. Samples under the ”coarse
perception” dimension approach 4,000, while those under ”logical reasoning” are fewer than 700.
In terms of difficulty distribution, there are 4,555 easy (i.e., number of hits between 12 and 16)
samples but only 2,758 tough (i.e., number of hits between 0 and 3) ones. Given these premises, a
lot of repetitive simple samples, such as those merely asking for the color of an object in the image,
are not what we desire.

Initial Benchmark: After considering both the numerical balance and difficulty level of the sam-
ples, we set the total sample number of the benchmark at 1,500, with each core capability dimension
containing 250 samples. Then, we assign each expert two core capability dimensions, instructing
them to prioritize sample difficulty when selecting 250 samples per dimension.

Cross-Validation: To minimize personal bias, we arrange for each expert to review the dimensions
handled by the other two experts after the initial benchmark is constructed. Samples with issues are
replaced by correct samples of the same difficulty level from the candidate pool. Moreover, we also
provide the number of samples with consensus before and after the cross-validation step in the man-
ual review process for MMStar in the table below. Only samples that all three experts unanimously
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agree upon are retained; otherwise, they are replaced with samples of the same difficulty level from
the candidate pool.

A.4 Performance Comparison of Various LLMs on MMStar

Table 5: LLMs failed to solve problems in MMStar and performed close to random guessing, visual con-
tent is necessary to solve MMStar. We evaluate various LLMs on MMStar with the 2-shot inference strategy.
We report the results of 2 closed-source LLMs and 20 open-source LLMs with varying sizes and architectures.
We report the detailed results of the CP (coarse perception), FP (fine-grained perception), IR(instance reason-
ing), LR (logical reasoning), ST (science & technology), and MA (mathematics) core capabilities. The best
results are highlighted in bold and underlined.

Model CP FP IR LR ST MA Avg.

Baselines

Random Choice 23.7 24.5 25.3 24.3 24.8 25.1 24.6

Closed-source LLMs

GPT4-Turbo[42] 2.4 4.0 9.6 18.0 13.6 25.6 12.2
Gemini-Pro[51] 16.8 13.6 20.4 24.4 19.6 28.8 20.6

Open-source LLMs

Qwen1.5-1.8B[1] 28.4 28.4 25.6 23.2 23.2 29.6 26.4
Phi2-2.7B[40] 11.2 11.2 15.2 10.8 11.6 12.0 12.0
Yi-6B-Chat[62] 23.6 19.2 28.4 25.2 12.4 29.6 23.1
LLaMA2-7B[53] 28.0 30.4 26.0 18.0 18.8 21.6 23.8
Qwen-7B[1] 11.6 5.6 12.8 5.6 7.2 0.4 7.2
Deepseek-7B[3] 26.8 16.0 28.4 21.6 23.2 25.6 23.6
InternLM2-7B[52] 22.0 14.8 22.0 21.6 15.2 23.2 19.8
Qwen1.5-7B[1] 15.6 8.0 9.2 9.2 15.2 9.2 11.1
Vicuna-v1.5-7B[9] 22.0 27.6 29.6 26.4 18.0 24.4 24.7
Baichuan2-7B[60] 20.8 18.4 27.6 18.8 18.8 21.2 20.9
Mistral-7B[22] 20.0 23.6 24.4 23.6 20.0 27.2 23.1
LLaMA2-13B[53] 23.6 23.6 28.0 21.2 16.4 10.4 20.5
Vicuna-v1.5-13B[9] 32.8 24.0 28.8 17.6 22.0 14.4 23.3
Baichuan2-13B[60] 26.4 18.0 28.0 20.4 21.2 25.6 23.3
InternLM2-20B[52] 18.2 17.8 22.6 23.8 17.8 13.4 18.9
Yi-34B[62] 20.4 18.0 24.0 24.0 14.4 30.8 21.9
Mixtral-8x7B[23] 24.4 17.6 19.2 28.0 16.0 33.6 23.1
Deepseek-67B[3] 29.2 22.4 18.4 26.0 20.4 22.4 23.1
LLaMA2-70B[53] 22.4 20.0 19.6 14.4 7.2 9.6 15.5
Qwen1.5-72B[1] 21.6 16.0 21.2 14.0 17.2 27.2 19.5
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A.5 Multi-modal Leakage in Existing Multi-modal Benchmarks

LLM

LVLMText

What is show in the above
diagram?

Options:
A: food
B: tobacco
C: Animal cell
D: Plant cell

AI2DTest: question-99201
#LLM-LVLMText Pairs：11/16 (68.8%)

Where is the ocean view in the living room?

Options:
A: To the left of the sofa
B: Behind thesofa
C: To the right of the sofa
D: In front ofthe sofa.

SEED-Benchimage: question-92857
#LLM-LVLMText Pairs：13/16 (81.3%)

✅

✅

Which letter marks ancient Egypt?

Options:
A: B
B: C
C: D
D: A

ScienceQATest: question-1938
#LLM-LVLMText Pairs：10/16 (62.5%)

✅

What organ appears abnormal in
this radiograph? <image 1>

Options:
A: Stomach
B: Liver
C: Gallbladder
D: Duodenum

✅

MMMUVal: question-3765
#LLM-LVLMText Pairs：9/16 (56.3%)

Hint: Please answer the question requiring
an integer answer and provide the final
value,e.g, 1, 2, 3, at the end.
Question: What is the ratio of the number of
procedures to register a business in 2004 to
that in 2007?
Answer: 1

MathVista: question-917
#LLM-LVLMText Pairs：8/16 (50.0%)

✅

What is the color of the small block that is
the same material as the big brown thing?

Options:
A: gray
B: blue
C: yellow
D: cyan
MMBenchDev: question-605
#LLM-LVLMText Pairs：10/16 (62.5%)

✅

😭
I can‘t see the image, so I can’t get
the correct answer.

I can‘t see the image either, but I
appear to have seen the question
before, so I can get the correct answer.😀
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Figure 5: Illustration of data leakage during LVLMs’ multi-modal training processes. We showcase sam-
ples that LLMs cannot answer correctly but LVLMs without accessing images (LVLM-text) can. Each LLM-
LVLMtext pair represents an LLM and its corresponding LVLM without accessing images, totaling 16 pairs.
The chart in the center tallies the number of samples in existing benchmarks hit by more than half of the LLM-
LVLMtext pairs, underscoring the issue of data leakage during the multi-modal training process.
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A.6 More Failure Examples in Existing Multi-modal Benchmarks

The outermost layer of earth is known as:

A: Outer core
B: Crust
C: Mantle
D: Inner core

AI2DTest: question-67600
#Correct LLMs：22/22 (100%)

Refer to the figure <image1>, which term refers to a play that deals with tragic
events?

A: Tragedy
B: Comedy
C: Drama
D: Plot

MMMUVal: question-7091
#Correct LLMs：22/22 (100%)

How do sea otters use their pockets?

A: They store the food they catch in their pockets.
B: They keep their babies safe inside their pockets.
C: nan
D:nan

MMBenchDev: question-397
#Correct LLMs：22/22 (100%)

What is the primary purpose of the bathroom?

A: Cooking
B: Sleeping
C: Exercising
D: Bathing

SEED-Benchimage:
question-69157 #Correct LLMs：22/22 (100%)

Select the reptile below.

A: sea otter
B: tortoise
C: nan
D: nan

ScienceQATest: question-315
#Correct LLMs：22/22 (100%)

Answer: B

Answer: A

Answer: A

Answer: D

Answer: B

Figure 6: We highlight cases in existing benchmarks where evaluation samples lack the visual necessary.
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Which historical development contributed most to the formation of the society
associated with the image?

A: The Atlantic slave trade
B: The flow of refugees caused by the Seven Years' War
C: The segregation of races imposed by British colonial authorities
D: The migratory patterns encouraged by the arrival of smallpox from Europe

AI2DTest: question-26302

#Correct LLMs：22/22 (100%)

What is the main focus of the image?

A: Three white adirondack chairs on a stone patio
B: A house with a garden in front
C: Flowers in a garden
D: A garden with a pillow

MMMUVal: 
question-6935

#Correct LLMs：22/22 (100%)

In the food web pictured,which image is prey?

A: Fox
B: Buzzard
C: Mouse
D: Dragonfly

MMBenchDev: 
question-150

#Correct LLMs：22/22 (100%)

Based on the image, what does the man's attire and posture suggest about his 
professional role?

A: The man's attire suggests that he might have a professional occupation 
that calls for a more formal appearance
B: The man's attire suggests that he works in a creative industry
C: The man's attire suggests that he is attending a casual event
D: The man's attire suggests that he is a professional athlete.

SEED-Benchimage: question-3083

#Correct LLMs：19/22 (86.4%)

what time is shown? it is twelve (_).

A: half
B: quarter
C: o'clock
D: quarter to
E: quarter past

MathVista: question-623
#Correct LLMs：19/22 (86.4%)

Answer: A

Answer: A

Answer: C

Answer: A

Answer: C

Figure 7: We highlight cases in existing benchmarks where evaluation samples are leaked into LLMs’ training
data.
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What is the central focus of the image?

A: Picnic table under the tree
B: Tree in the middle of the grassy field
C: Small building in the field of trees
D: Small house in the grassy field

AI2DTest: question-285400

#LLM-LVLMText Pairs：12/16 (75.0%)

What can Samir and Derek trade to each get what they want?

A: Samir can trade his tomatoes for Derek's carrots
B: Derek can trade his broccoli for Samir's oranges.
C: Derek can trade his almonds for Samir's tomatoes.
D: Samir can trade his tomatoes for Derek's broccoli.

#LLM-LVLMText Pairs：11/16 (68.8%)

The diagram above is of what?

A: Ear
B: Brain
C: Mouth
D: Head

#LLM-LVLMText Pairs：11/16 (68.8%)

What color is the woman's dress in the image?

A: Red
B: Green
C: Black
D: Blue

SEED-Benchimage:
question-61583 #LLM-LVLMText Pairs：13/16 (81.3%)

What is the center of symmetry of this function?

(A) (0, 0)
(B) (-1, 0)
(C) (2, 0)

MathVista: question-762
#LLM-LVLMText Pairs：13/16 (81.3%)

Answer: B

Answer: D

Answer: D

Answer: C

Answer: A

ScienceQATest: question-1224

SEED-Benchimage: question-1677

Figure 8: We highlight cases in existing benchmarks where evaluation samples are leaked into LVLMs’ multi-
modal training data.
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A.7 More Examples in MMStar

What is the predominant color in the 
image? 
A: White, B: Red, 
C: Blue, D: Silver

Coarse Perception

image scene and topic image emotion image style & quality

Which mood does this image convey?
A: Cozy, B: Anxious, 
C: Happy, D: Angry

Which category does this image 
belong to? 
A: oil painting, B: sketch,
C: digital art, D: photo

✓✓
✓

Where is the Christmas tree located in the 
image?
A: It is on the left-hand side of the image,
B: It is on the right-hand side of the image,
C: It is in the center of the image, 
D: It is not in the image

Fine-grained Perception

localization recognition object counting

What is the main color of the shirt the 
woman is wearing?
A: White, B: Blue, 
C: Pink, D: Black

How many people are present in 
the image?
A: One, B: Three,
C: Two, D: Four✓✓✓

What's the profession of the people 
in this picture?
A: mason, B: plumber, 
C: pilot, D: police

Instance Reasoning

single-instance reasoning cross-instance attribute reasoning cross-instance relation reasoning

Which image is the brightest one? 
A: upper left, B: upper right, 
C: down left, D: down right

What is the relation between the arrow 
and the curve sign? 
A: The arrow is pointing away from the 
curve sign, 
B: The arrow is pointing to the curve sign, 
C: The arrow and the curve sign are 
unrelated, 
D: The arrow and the curve sign are 
overlapping

✓✓
✓

Figure 9: More examples in MMStar
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Subtract all yellow metallic balls.
Subtract all small yellow shiny
things. How many objects are left?
A: 4, B: 5, 
C: 6, D: 8

Logical Reasoning

common reasoning diagram reasoning code & sequence reasoning

How many years have value less
than 10%?
A: 0, B: 1,
C: 2, D: 5

Which Python code can generate the content of 
the image? 
A: count = 0 while (count < 10): print 'The count 
is:', count count = count + 1 print "Good bye!", 
B: count = 0 while (count < 9): print 'The count 
is:', count count = count + 1 print "Good bye!", 
C: count = 1 while (count < 9): print 'The count 
is:', count count = count + 1 print "Good bye!", 
D: count = 0 while (count < 9): print 'The count 
is:', count count = count + 2 print "Good bye!"

✓✓
✓

what is label e in diagram? 
A: nucleus, B: chloroplast, 
C: cell wall, D: cell sap vacuole

Science & Technology

biology & chemistry & physics geography & earth science & agriculture electronics & energy & mechanical eng.

Which ocean is highlighted? 
A: the Indian Ocean, 
B: the Atlantic Ocean, 
C: the Pacific Ocean, 
D: the Southern Ocean

Which schedule is an equivalent serial
schedule for the precendence graph in <image
1>? A: T3 -> T1 -> T2,
B: T2 -> T1 -> T3,
C: T1 -> T2 -> T3,
D: There are no serial schedules for the graph.✓

✓
✓

As shown in the figure, the straight 
line a ∥ b, the point B is on the 
straight line b, and AB ⊥ BC, ∠2 = 
65.0, then the degree of ∠1 is () 
A 65° B 25°
C 35° D 45°

Mathematics

geometry statistical reasoning numeric commonsense and calculation

What was the real return on the stock 
market in 1932? 
A: -14.33%, B: -23.72%, 
C: 0.45%, D: 56.52%

Colton wants to buy 1+3/10
kilograms of English muffins. How
much will he spend? (Unit: $)
A 10.4 B 5.2
C 0 D 1
✓✓✓

Figure 10: More examples in MMStar
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A.8 More Results on Public Multi-modal Benchmarks

Table 6: Evaluation of various LLMs on six popular multi-modal benchmarks. We employ a 0-shot in-
ference strategy for evaluating all LLMs. We report the results of 2 closed-source LLMs and 20 open-source
LLMs with varying sizes and architectures. The evaluated benchmarks include MMMU (MMMU-Val [64]),
MMB (MMBench-EN-Dev [34]), ScienceQA (ScienceQA-Test [38]), AI2D (AI2D-Test [26]), SEED (SEED-
Image [27]), and MathVista (MathVista-Mini [37]). The best results are highlighted in bold and underlined.

Model Strategy MMMU MMB ScienceQA AI2D SEED MathVista Avg.

Baselines

Random Choice - 22.1 0.0 24.2 23.8 24.3 17.9 18.7

Closed-source LLMs

GPT4-Turbo[42] 0-shot 41.2 12.2 64.3 59.7 10.1 24.2 35.3
GeminiPro[51] 0-shot 42.9 18.4 68.9 59.2 35.5 23.3 41.4

Open-source LLMs

Qwen1.5-1.8B[1] 0-shot 29.0 10.0 54.3 37.9 28.9 20.4 30.1
Phi2-2.7B[40] 0-shot 20.0 7.2 47.1 38.7 26.4 22.0 26.9
Yi-6B[62] 0-shot 25.7 9.5 58.1 39.1 27.4 21.2 30.2
LLaMA2-7B[53] 0-shot 23.6 11.5 56.8 43.5 31.7 24.1 31.9
Qwen-7B[1] 0-shot 19.8 8.4 52.7 42.6 7.6 20.5 25.3
Deepseek-7B[3] 0-shot 21.6 8.4 56.3 38.1 13.4 20.6 26.4
InternLM2-7B[52] 0-shot 32.8 8.9 64.0 48.3 31.9 18.9 34.1
Qwen1.5-7B[1] 0-shot 25.0 11.4 62.3 49.4 19.4 19.9 31.2
Vicuna-v1.5-7B[9] 0-shot 29.9 10.3 58.9 42.5 32.6 22.0 32.7
Baichuan2-7B[60] 0-shot 25.7 10.5 52.7 44.0 29.2 20.8 30.5
Mistral-7B[22] 0-shot 30.0 13.2 63.4 48.5 34.3 22.6 35.3
LLaMA2-13B[53] 0-shot 24.4 10.1 59.1 45.0 33.6 23.8 32.7
Vicuna-v1.5-13B[9] 0-shot 28.3 11.6 59.5 45.0 26.3 19.6 31.7
Baichuan2-13B[60] 0-shot 22.1 4.7 51.1 32.8 25.4 20.3 26.1
InternLM2-20B[52] 0-shot 32.2 15.9 63.8 55.7 26.0 21.3 35.8
Yi-34B[62] 0-shot 37.1 10.5 53.6 57.3 37.3 21.7 36.3
Mixtral-8x7B[23] 0-shot 25.7 8.6 57.2 48.7 13.5 23.4 29.5
Deepseek-67B[3] 0-shot 30.9 14.8 64.3 57.5 17.1 23.2 34.6
LLaMA2-70B[53] 0-shot 28.9 12.3 62.2 48.6 34.3 25.2 35.3
Qwen1.5-72B[1] 0-shot 21.4 10.1 57.5 44.2 8.8 19.5 26.9
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Table 7: Evaluation of various LVLMs on six popular multi-modal benchmarks. For the ”strategy” column,
”LLM” refers to evaluating using the corresponding LLM base of the LVLM, while ”LVLM-text” denotes
evaluating LVLMs without accessing images. We employ the 0-shot inference strategy for LLMs to align the
evaluation protocols of LVLMs. The highest results of the LVLM-text setting across the models are highlighted
in bold and underlined.

Model Param. Strategy MMMU MMB ScienceQA AI2D SEED MathVista Avg.

Baseline

Random Choice - - 22.1 0.0 24.2 23.8 24.3 17.9 18.7

Closed-source LVLMs and corresponding LLM bases

LLM 41.2 12.2 64.3 59.7 10.1 24.2 35.3
LVLM-text 45.1 17.6 68.2 62.5 28.4 25.4 41.2GPT4V[43]

(GPT4-Turbo[42])
-

LVLM 53.6 69.6 81.4 75.3 71.6 44.7 66.0
LLM 42.9 18.4 68.9 59.2 35.5 23.3 41.4
LVLM-text 39.4 16.7 66.3 54.5 27.9 24.5 38.2

GeminiPro-Vision[51]
(GeminiPro[51])

-
LVLM 44.4 68.1 80.6 68.0 64.3 36.0 60.2

Open-source LVLMs and corresponding LLM bases

LLM 20.0 7.2 47.1 38.7 26.4 22.0 26.9
LVLM-text 30.0 21.0 62.3 51.9 37.2 23.5 37.7

TinyLLaVA[69]
(Phi2-2.7B[40])

3B
LVLM 36.0 66.9 69.1 62.4 70.1 28.9 55.6
LLM 25.7 9.5 58.1 39.1 27.4 21.2 30.2
LVLM-text 33.1 23.6 67.5 55.7 38.3 24.2 40.4

Yi-VL[62]
(Yi-6B[62])

6B
LVLM 38.4 69.2 72.6 59.6 67.5 28.0 55.9
LLM 29.9 10.3 58.9 42.5 32.6 22.0 32.7
LVLM-text 29.9 19.5 64.1 48.7 37.5 20.3 36.7

LLaVA-1.5[31]
(Vicuna-v1.5-7B[9])

7B
LVLM 34.4 65.0 68.7 55.6 65.6 23.6 52.2
LLM 29.9 10.3 58.9 42.5 32.6 22.0 32.7
LVLM-text 31.7 20.4 65.2 49.4 37.7 22.7 37.9

ShareGPT4V[5]
(Vicuna-v1.5-7B[9])

7B
LVLM 35.2 69.5 69.4 57.9 69.4 25.7 54.5
LLM 32.8 8.9 64.0 48.3 31.9 18.9 34.1
LVLM-text 34.2 26.2 71.9 63.3 38.1 29.4 43.9

InternLM2-XC2[13]
(InternLM2-7B[52])

7B
LVLM 41.7 79.6 96.7 81.4 74.9 57.4 72.0
LLM 19.8 8.4 52.7 42.6 7.6 20.5 25.3
LVLM-text 24.0 8.7 56.7 49.0 19.5 20.8 29.8

Qwen-VL-Chat[2]
(Qwen-7B[1])

8B
LVLM 34.0 58.3 67.7 61.3 64.0 32.2 52.9
LLM 21.6 8.4 56.3 38.1 13.4 20.6 26.4
LVLM-text 32.2 23.9 67.1 53.0 36.5 23.9 39.4

Deepseek-VL[36]
(Deepseek-7B[3])

8B
LVLM 35.4 73.5 81.4 64.6 70.2 35.3 60.1
LLM 19.8 8.4 52.7 42.6 7.6 20.5 25.3
LVLM-text 32.4 15.6 71.1 56.8 36.1 25.0 39.5

Monkey-Chat[30]
(Qwen-7B[1])

10B
LVLM 37.1 71.0 82.4 68.5 69.1 34.0 60.4
LLM 28.3 11.6 59.5 45.0 26.3 19.6 31.7
LVLM-text 26.0 21.4 66.5 52.2 37.0 21.1 37.4

LLaVA-1.5[31]
(Vicuna-v1.5-13B[9])

13B
LVLM 35.6 68.6 72.2 60.8 68.1 26.4 55.3
LLM 29.9 10.3 58.9 42.5 32.6 22.0 32.7
LVLM-text 30.1 15.5 54.6 52.5 36.7 25.0 35.7

CogVLM-Chat[55]
(Vicuna-v1.5-7B[9])

17B
LVLM 34.2 63.4 66.3 63.3 68.7 34.7 55.1
LLM 37.1 10.5 53.6 57.3 37.3 21.7 36.3
LVLM-text 37.3 23.2 68.6 59.9 41.0 22.7 42.1

Yi-VL[62]
(Yi-34B[62])

34B
LVLM 43.2 71.5 75.3 65.9 68.1 25.6 58.3
LLM 37.6 20.1 69.4 60.2 35.0 17.9 37.2
LVLM-text 40.4 24.9 70.9 65.8 41.7 22.2 44.3

LLaVA-Next[32]
(NH2-Yi-34B[41])

34B
LVLM 47.0 79.6 82.1 78.6 75.8 38.7 67.0
LLM 37.6 20.1 69.4 60.2 35.0 17.9 40.0
LVLM-text 41.7 23.9 70.3 65.0 40.5 24.0 44.2InternVL-Chat-v1.2[7]

(NH2-Yi-34B[41])
40B

LVLM 49.1 82.4 82.5 78.5 75.4 47.7 69.3
LLM 25.7 8.6 57.2 48.7 13.5 23.4 29.5
LVLM-text 43.6 20.5 68.4 61.1 39.9 28.4 43.7

Sphinx-X-MoE[17]
(Mixtral-8x7B[23])

57B
LVLM 44.8 69.2 72.2 65.0 71.1 38.1 60.1
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A.9 Limitations

While we have expended significant effort to filter out evaluation samples that are visually dependent
and have not been leaked into the training corpora of existing LLMs and LVLMs for our MMStar
benchmark, it is challenging to ensure that these samples will not be inadvertently included in the
expanded training materials of future LLMs and LVLMs. Although the metrics we proposed, such
as multi-modal gain and multi-modal leakage, can reflect this issue to some extent, a test set without
provided answers is still needed to further assess the actual multi-modal capabilities of existing
LVLMs. We plan to construct a new set of visual-dependent test samples for MMStar-Test in our
future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide clear claims in the abstract and introduction sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section A.9.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This work does not involve any theoretical assumptions or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See them in Section 3, Section 5, and Section A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: N/A
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section A.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: Compute resource constraints.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section A.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: With checked.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section A.9
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: The data used in this work are from previous public benchmarks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [No]
Justification: The data used in this work are from previous public benchmarks.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
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Answer: [Yes]
Justification: See Section A.9, and the data used in this work are from previous public
benchmarks.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve research with Human Subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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