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ABSTRACT

Extensive data availability has catalyzed the expansion of deep learning. Such advance-

ments include image classification, speech, and natural language processing. However, this

data-driven progress is often hindered by privacy restrictions preventing the public release

of specific datasets. For example, some vision datasets cannot be shared due to privacy

regulations, particularly those containing images depicting visually sensitive or disturbing

content. At the same time, it is imperative to deploy deep learning efficiently, specifically

Deep Neural Networks (DNNs), which are the core of deep learning. In this dissertation, we

focus on achieving efficiency by reducing the computational cost of DNNs in multiple ways.

This thesis first tackles the privacy concerns arising from deep learning. It introduces

a novel methodology that synthesizes and releases synthetic data, instead of private data.

Specifically, we propose Differentially Private Image Synthesis (DP-ImgSyn) for generating

and releasing synthetic images used for image classification tasks. These synthetic images

satisfy the following three properties: (1) they have DP guarantees, (2) they preserve the

utility of private images, ensuring that models trained using synthetic images result in com-

parable accuracy to those trained on private data, and (3) they are visually dissimilar from

private images. The DP-ImgSyn framework consists of the following steps: firstly, a teacher

model is trained on private images using a DP training algorithm. Subsequently, public

images are used for initializing synthetic images, which are optimized in order to be aligned

with the private dataset. This optimization leverages the teacher network’s batch normaliza-

tion layer statistics (mean, standard deviation) to inject information from the private dataset

into the synthetic images. Third, the synthetic images and their soft labels obtained from

the teacher model are released and can be employed for neural network training in image

classification tasks.

As a second direction, this thesis delves into achieving efficiency in deep learning. With

neural networks widely deployed for tackling diverse and complex problems, the resulting

models often become parameter-heavy, demanding substantial computational resources for

deployment. To address this challenge, we focus on quantizing the weights and the acti-

vations of DNNs. In more detail, we propose a method for compressing neural networks
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through layer-wise mixed-precision quantization. Determining the optimal bit widths for

each layer is a non-trivial task, given the fact that the search space is exponential. Thus, we

employ a Multi-Layer Perceptron (MLP) trained to determine the suitable bit-width for each

layer. The Kullback-Leibler (KL) divergence of softmax outputs between the quantized and

full precision networks is the metric used to gauge quantization quality. We experimentally

investigate the relationship between KL divergence and network size, noting that more ag-

gressive quantization correlates with higher divergence and vice versa. The MLP is trained

using the layer-wise bit widths as labels and their corresponding KL divergence as inputs. To

generate the training set, pairs of layer-wise bit widths and their respective KL divergence

values are obtained through Monte Carlo sampling of the search space. This approach aims

to reduce the computational cost of DNN deployment, while maintaining high classification

accuracy.

Additionally, we aim to enhance efficiency in machine learning by introducing a com-

putationally efficient method for action recognition on compressed videos. Rather than

decompressing videos for action recognition tasks, our approach performs action recognition

directly on the compressed videos. This is achieved by leveraging the modalities within the

compressed video format, specifically motion vectors, residuals, and intra-frames. To pro-

cess each modality, we deploy three neural networks. Our observations indicate a hierarchy

in convergence behavior: the network processing intra-frames tend to converge to a flatter

minimum than the network processing residuals, which, in turn, converge to a flatter mini-

mum than the motion vector network. This hierarchy motivates our strategy for knowledge

transfer among modalities to achieve flatter minima, generally associated with better gen-

eralization. Based on this insight, we propose Progressive Knowledge Distillation (PKD), a

technique that incrementally transfers knowledge across modalities. This method involves

attaching early exits, known as Internal Classifiers (ICs), to the three networks. PKD begins

by distilling knowledge from the motion vector network, then the residual network, and fi-

nally the intra-frame network, sequentially improving the accuracy of the ICs. Moreover, we

introduce Weighted Inference with Scaled Ensemble (WISE), which combines outputs from

the ICs using learned weights, thereby boosting accuracy during inference. The combination
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of PKD and WISE demonstrates significant improvements in efficiency and accuracy for

action recognition on compressed videos.

In summary, this dissertation contributes to advancing privacy preserving and efficient

machine learning algorithms. The proposed methodologies offer practical solutions for de-

ploying machine learning systems in real-world scenarios by addressing data privacy and

computational efficiency. Through innovative approaches to image synthesis, neural network

compression, and action recognition, this work aims to foster the development of robust and

scalable machine learning frameworks for diverse computer vision applications.
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1. INTRODUCTION

1.1 Challenges of Achieving Privacy in Machine Learning

In recent years, deep learning has driven major innovations across various fields, includ-

ing healthcare, finance, autonomous vehicles, and personalized recommendations. These

advances are due to deep learning models’ ability to extract patterns from large amounts of

data. However, this heavy reliance on data raises significant privacy concerns.

To address these privacy issues, various regulations have been established. For example,

the European Union General Data Protection Regulation (GDPR) [  1 ], the Health Insurance

Portability and Accountability Act (HIPAA) [  2 ], and the California Consumer Privacy Act

(CCPA) [  3 ] aim to protect personal data. They establish regulations that require organi-

zations to be transparent and accountable in their data processing practices. This poses

challenges when trying to apply machine learning using these data.

Specifically, the GDPR imposes rules on collecting, storing, and processing personal

data, requiring a careful balance between innovation and compliance. Similarly, HIPAA

protects sensitive patient health information, including electronic health records. CCPA

gives consumers rights over the data held by businesses, such as knowing what information

is collected and requesting its deletion.

Privacy and machine learning involve ethical, legal, and technical considerations. Ethi-

cally, the responsible use of personal data is essential, especially as machine learning algo-

rithms increasingly influence various aspects of society. Without adequate safeguards, the

use of personal data can raise concerns about fairness, transparency, and accountability.

Legally, privacy in machine learning is governed by complex regulations and compliance

requirements. Organizations need to adhere to principles of ethical data collection, purpose

limitation, and transparency in their data processing. The scope of regulations like the

GDPR extends these requirements to organizations outside the EU, complicating compliance

for multinational companies.

Technically, privacy in machine learning poses challenges related to data anonymization,

encryption, and secure computation. Traditional anonymization methods might not provide

sufficient protection, as adversaries can re-identify [  4 ], [  5 ] individuals using auxiliary infor-
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mation. Balancing data utility and privacy preservation requires innovative approaches, such

as federated learning [  6 ], [  7 ], differential privacy [  8 ], and homomorphic encryption [ 9 ], [  10 ].

Federated learning enables collaborative model training across distributed datasets with-

out centralized data aggregation, reducing privacy risks. Differential privacy adds noise to

query responses to protect sensitive information while preserving aggregate statistics. Ho-

momorphic encryption allows secure computation on encrypted data, enabling models to

operate without exposing raw data to unauthorized parties.

Given these challenges, synthetic data generation has emerged as a promising solution to

balance data utility and privacy protection. Synthetic data, generated through techniques

such as generative adversarial networks (GANs) [  11 ], variational autoencoders (VAEs) [  12 ],

and differential privacy [  8 ], try to have the utility of real-world data while preserving privacy.

However, synthetic data generation also has its limitations. Ensuring the utility of syn-

thetic data requires careful consideration. Ethical concerns should be addressed to prevent

unintended consequences or misuse.

Overall, privacy is an important aspect of developing and deploying machine learning

algorithms, especially with stringent regulatory requirements and growing privacy concerns.

Embracing privacy as a fundamental principle in machine learning ensures that the benefits

of data-driven decision-making are realized responsibly and ethically.

1.2 Challenges of Achieving Efficiency in Machine Learning

Efficiency in Machine Learning (ML) encompasses various aspects, including computa-

tional resources, memory usage, and model performance. As ML models become increasingly

complex, with neural networks featuring 100’s billions of parameters, achieving efficiency be-

comes paramount. This dissertation explores the challenges faced in achieving efficiency in

ML, focusing on two key aspects: parameter optimization and data processing. The discus-

sion is motivated by the need to address the computational demands of large neural networks

and the efficiency gains achievable through optimized data processing techniques.

Neural networks, particularly deep learning models, exhibit a high degree of complexity

due to their numerous parameters and layers. Each parameter contributes to the model’s
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ability to capture intricate patterns in the data, but it also increases computational overhead.

The sheer size of neural networks poses challenges in terms of memory requirements, train-

ing time, and inference speed. Additionally, the process of training these models involves

iterative optimization algorithms that require significant computational resources. Thus,

optimizing the parameters and reducing the computational complexity of neural networks

are essential steps in achieving efficiency.

To address the challenges posed by the large number of parameters in neural networks,

various optimization techniques have been proposed. One approach is weight quantization

[ 13 ], which involves reducing the precision of weight values to reduce memory usage and

computational complexity. By quantizing weights to lower bit precision, such as 8-bit or

even binary values, significant reductions in memory footprint and computational overhead

can be achieved. However, weight quantization must be performed carefully to minimize the

impact on model accuracy.

In addition to weight quantization, activation quantization [  13 ], [  14 ] is another strategy

for improving the efficiency of neural networks. Activation functions introduce non-linearity

into neural network architectures, but they also contribute to computational complexity.

By quantizing activation values, researchers can reduce the memory footprint and computa-

tional requirements of neural network inference. Techniques such as dynamic quantization

and uniform quantization have been proposed to quantize activation values effectively while

preserving model accuracy.

While quantization techniques offer promising avenues for improving efficiency in neural

networks, they are not without challenges. One challenge is balancing the trade-off between

model accuracy and quantization-induced error. Aggressive quantization may lead to sig-

nificant accuracy degradation, particularly in complex tasks such as image recognition or

natural language processing. Thus, researchers must carefully tune quantization parameters

to minimize the impact on model performance while maximizing efficiency gains.

Another aspect of efficiency in ML involves optimizing data processing pipelines to min-

imize computational overhead. Raw data, such as uncompressed videos, can be computa-

tionally intensive to process, requiring decompression before analysis. However, leveraging

directly compressed data can offer significant efficiency gains. Compressed video formats,
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such as H.264 or H.265, encode video data in a compressed format, reducing the amount of

data that needs to be processed during inference.

Directly using compressed video data in ML applications offers several advantages in

terms of efficiency. Firstly, it reduces the computational overhead associated with decom-

pression, allowing for faster processing and inference. Secondly, compressed data requires

less storage space, leading to lower memory requirements and reduced I/O overhead. Addi-

tionally, leveraging compressed data can facilitate real-time processing and analysis of video

streams, enabling applications such as video surveillance, video analytics, and live streaming.

While using compressed data offers efficiency gains, it also presents challenges and con-

siderations. One challenge is ensuring compatibility with ML models, as compressed data

may require specialized decoding techniques or preprocessing steps. Moreover, compressed

data may introduce artifacts or information loss, potentially impacting the performance of

ML algorithms. Thus, researchers must carefully evaluate the trade-offs between efficiency

and data quality when leveraging compressed data in ML applications.

Efficiency is a critical consideration in ML, particularly as models become increasingly

complex and train on large scale datasets. Addressing the challenges of parameter opti-

mization and data processing is essential for achieving efficiency gains in neural networks.

Techniques such as weight and activation quantization offer promising approaches for reduc-

ing computational complexity while preserving model accuracy. Similarly, leveraging directly

compressed data can improve efficiency by minimizing the computational overhead associ-

ated with data processing. Future research directions include exploring advanced quantiza-

tion techniques, optimizing data processing pipelines, and developing specialized hardware

accelerators to further enhance efficiency in ML applications. By addressing these challenges

and leveraging innovative solutions, we can unlock the full potential of ML while maximizing

efficiency and scalability.

1.3 Dissertation Contributions

We begin by highlighting the contributions of this dissertation, which focuses on both

privacy and efficiency in machine learning. For privacy, one aspect of this dissertation
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introduces a method for releasing synthetic data to protect privacy. By using synthetic data

instead of private data, individuals or organizations can maintain confidentiality while still

using data to train neural networks for various tasks. Our approach allows the integration

and use of data from different sources to build strong neural models.

Shifting our focus to efficiency in machine learning, we initially worked on improving

inference efficiency. This is achieved through neural model compression, where both weights

and activations are quantized to reduce accuracy loss. We introduce mixed precision quan-

tization, where different bit precisions are assigned to different layers of the network based

on their importance. Using a multi-layer perceptron (MLP), we dynamically allocate bit

widths across network layers. We also explore efficiency gains through action recognition on

compressed videos. In this case, classification tasks are performed directly on compressed

videos, removing the need for video decompression before model input. Additionally, our

framework includes early exits, allowing some video instances to be classified using only

certain compressed video modalities, further enhancing efficiency.

The following paragraphs explain the main findings of each effort in these areas.

1.3.1 Privacy Preserving Machine Learning

The proliferation of vast datasets has significantly advanced deep learning algorithms for

visual tasks. However, privacy concerns often render some visual datasets inaccessible. To

address this challenge, substituting real images with synthetic ones has become a common

approach. Generative Adversarial Networks (GANs) incorporating Differential Privacy (DP)

assurances are frequently used for this purpose. However, synthetic images produced by

GANs often closely resemble private ones, which can be problematic, especially when the

private data contains visually sensitive or disturbing content.

To mitigate this issue, we propose a novel framework called Differentially Private Image

Synthesis (DP-ImgSyn), which generates synthetic images suitable for image classification

tasks without relying on generative methods. The synthetic images generated by DP-ImgSyn

offer three key advantages: (1) they come with DP guarantees, (2) they preserve the utility
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of private images, ensuring that models trained on synthetic data achieve similar accuracy

to those trained on private data, and (3) they are visually distinct from private images.

DP-ImgSyn operates through the following steps: First, a teacher model is trained on

private images using a DP training algorithm. Second, public images serve as a starting

point for generating synthetic images, which are then optimized to align with the private

images. This optimization process leverages the batch normalization layer statistics (mean

and standard deviation) of the teacher network to incorporate information from the private

images into the synthetic ones. Finally, the synthetic images, along with their soft labels

obtained from the teacher model, are released for deployment in neural network training for

image classification tasks.

Experimental results across various image classification datasets demonstrate that our

framework outperforms generative techniques, achieving up to approximately a 20% increase

in image classification accuracy when employing similar DP training mechanisms.

1.3.2 Neural Network Compression via Layer-wise Quantization

We propose an innovative method for assigning layer-wise bit widths in a neural network

using a multi-layer perceptron (MLP). The Kullback-Leibler (KL) divergence of the softmax

outputs between the quantized network and the full precision network is utilized as a metric to

measure the quality of quantization. We investigate the relationship between KL divergence

and network size, and our experiments reveal that more aggressive quantization results in

higher divergence, while less aggressive quantization leads to lower divergence.

The MLP is trained using layer-wise bit widths as labels and their corresponding KL

divergence as input. The training set, which consists of pairs of layer-wise bit widths and

their associated KL divergence, is gathered using Monte Carlo sampling of the exponential

search space. To ensure the MLP learns to predict bit widths that minimize network size,

we introduce a penalty term in the loss function.

Our results show that the bit-width predictions from the trained MLP lead to a reduced

network size without compromising accuracy, achieving better or comparable results to state-

of-the-art methods with less computational overhead. Specifically, our method achieves up
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to 6x, 4x, and 4x compression on VGG16, ResNet50, and GoogLeNet, respectively, with no

loss in accuracy compared to the original full precision pre-trained models on the ImageNet

dataset.

1.3.3 Efficient Action Recognition on Compressed Videos

Compressed video action recognition classifies video samples by utilizing the different

modalities present in compressed videos, such as motion vectors, residuals, and intra-frames.

To achieve this, we deploy three neural networks, each specialized in processing one modal-

ity. Our observations show that the network processing intra-frames converge to a flatter

minimum compared to the network processing residuals, which in turn converge to a flatter

minimum than the motion vector network. This convergence hierarchy guides our knowledge

transfer strategy among modalities to achieve flatter minima, which are generally linked to

better generalization.

With this understanding, we introduce Progressive Knowledge Distillation (PKD), a tech-

nique that incrementally transfers knowledge across the modalities. This method involves

attaching early exits, known as Internal Classifiers (ICs), to the three networks. PKD starts

by distilling knowledge from the motion vector network, then moves to the residual network,

and finally to the intra-frame network, sequentially enhancing IC accuracy. Furthermore, we

propose Weighted Inference with Scaled Ensemble (WISE), which combines outputs from

the ICs using learned weights, thereby boosting accuracy during inference.

Our experiments demonstrate the effectiveness of training the ICs with PKD compared

to standard cross-entropy-based training, showing IC accuracy improvements of up to 5.87%

and 11.42% on the UCF-101 and HMDB-51 datasets, respectively. Additionally, WISE

improves accuracy by up to 4.28% and 9.30% on UCF-101 and HMDB-51, respectively.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter  2 details the related back-

ground on privacy and efficient machine learning. Chapter  3 proposes a technique for achiev-

ing privacy in machine learning by releasing a synthetic dataset instead of a private dataset.
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Chapter  4 discusses our novel method for compressing neural networks via mixed-precision

quantization. Chapter  5 describes our proposed framework for action recognition on com-

pressed videos. Finally, Chapter  6 concludes this dissertation and points out future research

directions that stem from this dissertation.
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2. BACKGROUND

This chapter provides some background on Deep Neural Networks (DNN), Differential Pri-

vacy (DP), Batch Normalization Layer Statistics, and Neural Network Quantization schemes.

2.1 Neural Networks

A typical DNN consists of interconnected nodes called neurons, which in turn are orga-

nized into layers [  15 ]. These layers process input data and transform them into meaningful

output. The structure of a neural network usually consists of an input layer, one or more

hidden layers, and an output layer [  16 ]. The input layer of a neural network receives data

from the user. This data could be anything from numerical values representing pixels in

an image to textual information in the form of words or sentences. Each neuron in the

input layer corresponds to one feature or input variable. Next, hidden layers are the most

significant part of the DNNs [ 17 ]. These layers perform complex computations on the input

data, transforming it into representations that the network can use to make predictions.

Each neuron in a hidden layer is connected to every neuron in the previous layer and has

an associated weight and bias. Finally, the output layer of a neural network produces the

final result or prediction, based on the processed input data. The number of neurons in the

output layer depends on the problem being solved. For example, in a binary classification

task [  18 ] (e.g., cat vs. dog), there would be one neuron in the output layer, whereas, in a

multi-class classification task [  19 ] (e.g., recognizing handwritten digits [  20 ]), there would be

multiple neurons, each corresponding to a different class.

Neural networks learn through a process called training, where they adjust their param-

eters (weights and biases), based on the input data and the desired output. The algorithm

used for training neural networks is back-propagation, which is a form of supervised learning

[ 21 ]. Back-propagation [  22 ] is an iterative algorithm that allows neural networks to learn

and thus improve their performance over time. It works by calculating the gradient of a loss

function with respect to the network’s parameters, and then updating these parameters in

the backward pass of the gradient such that the loss is minimized. Gradient descent [ 23 ] is

a popular optimization algorithm used for back-propagation in order to update the weights
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and biases of a neural network. It works by iteratively adjusting the parameters in the

direction that minimizes the loss function.

The weights in neural networks represent the strength of connections between neurons.

During the training process, these weights are updated using gradient descent [  24 ] to min-

imize the difference between the network’s predictions and the targets. The weight update

rule in neural networks is based on the gradient of the loss function with respect to the

weights. This gradient indicates how much the loss should change if we want to make a

small adjustment to the weights. By moving the weights in the opposite direction of the

gradient, we can minimize the loss and improve the network’s performance. The learning

rate is a hyperparameter that determines the size of the steps taken during gradient descent

[ 25 ]. Choosing the right learning rate is important for the convergence of the optimization

process. If the learning rate is too small, the training process might be slow, whereas if

it is too large, the algorithm may fail to converge [  26 ]. In practice, instead of computing

the gradient on the entire training dataset, we can use mini-batch gradient descent [ 27 ],

which computes the gradient on small batches of data. This approach helps to speed up the

training process and makes it more computationally efficient.

Neural networks consist of different types of layers, each used for a specific purpose in

the overall computation. Some common types of layers include Dense (Fully Connected)

Layers, Convolutional Layers, Recurrent Layers, and Pooling Layers. A dense layer is the

simplest type of layer in a neural network, where each neuron is connected to every neuron

in the previous layer [ 28 ]. This layer is used for general-purpose computation and is often

found in the hidden layers of the network. A convolutional layer is commonly used for image

processing tasks [  29 ]. It applies convolutional filters to the input data, extracting spatial

features such as edges, textures, and shapes. This layer helps the network learn hierarchical

representations of the input images. A recurrent layer is used for processing sequential data,

such as time series or natural language [  30 ]. It maintains an internal state that is updated

at each time step, allowing the network to capture the temporal dependencies in the data.

A pooling layer is used in order to reduce the spatial dimensions of the input data, making

the network more computationally efficient [  31 ]. Common pooling operations include max

pooling and average pooling, which extract the most important features from the input [  31 ],
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[ 32 ]. Overall, DNNs are powerful computational models that have revolutionized the field

of machine learning and artificial intelligence. By mimicking the structure and functioning

of the human brain, neural networks are capable of learning from data and making complex

predictions or classifications.

2.2 Differential Privacy

This section gives some background on the definition of Differential Privacy (DP). Differ-

ential Privacy (DP) was introduced by [ 8 ] and it is a framework for analyzing and quantifying

the privacy guarantees provided by data-processing algorithms. Differential privacy aims to

quantify an individual’s privacy when their data is used for the training of a model. Methods

that guarantee differential privacy limit the effect of including an individual’s data on the

outcome of the model, thus protecting the privacy of individuals in the dataset [  33 ].

There are three main principles: privacy protection, quantifiable privacy, and data utility.

Privacy protection implies that the primary goal of differential privacy is to protect the

sensitive information of individuals, while still allowing useful insights to be extracted from

the data. Quantifiable privacy means that it provides a quantitative measure of privacy loss,

allowing organizations and individuals to assess the level of privacy protection provided by a

particular algorithm or dataset. The data utility refers to the case of preserving differential

privacy, while it also aims to maintain the utility of the data for legitimate analysis and

decision-making purposes [  34 ].

At the core of differential privacy is the notion of a “privacy budget” or “privacy loss

parameter” denoted by ε. A randomized algorithm A is considered to be (ε, δ) differentially

private, if for all S ⊆ Range(A) and for all datasets x, y ∈ Domain(A) such that ‖x−y‖1≤ 1:

Pr [A(x) ∈ S] ≤ eε · Pr [A(y) ∈ S] + δ

In the case of deep learning, A is the training algorithm, and S is the subset of all possible

model parameters that can be output from the training process [  8 ].
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Next, we give a brief overview of the DP mechanisms used in the literature and the

challenges and limitations. One of the fundamental mechanisms used to achieve differential

privacy is the Laplace mechanism [  35 ]. It adds random noise drawn from a Laplace distri-

bution to the output of a query, thereby ensuring differential privacy and preserving data

utility. The exponential mechanism is another important tool regarding differential privacy

[ 36 ]. It selects outputs from a set of possible outcomes based on their “utility”. Then, it adds

noise proportional to the sensitivity of the utility function. While offering strong privacy

guarantees, achieving differential privacy often comes with a trade-off between privacy and

utility [ 37 ]. Adding noise to data can affect the accuracy of analysis and introduce errors,

especially in cases where precise results are required.

Overall, Differential privacy offers a rigorous framework for protecting individual privacy

and allows a meaningful analysis of sensitive data. By quantifying privacy guarantees and

providing mechanisms to achieve them, it has become a cornerstone of privacy-preserving

data analysis and holds great promise for guaranteeing privacy in a highly data-driven world.

2.3 Batch Normalization Layer Statistics

Batch Normalization (BN) [  38 ] was introduced as a technique to help train DNNs. One

challenge with deep neural networks (DNNs) is that their training involves sequentially

updating layers, beginning at the output and moving toward the input. This process relies on

estimating the error at the output of the DNN, which in turn assumes that the weights in the

preceding layers remain constant. DNNs are typically composed of multiple interconnected

layers. When we update the parameters of one layer, we usually assume that the parameters

of the other layers remain the same. In practice, though, we update all layers at the same

time. This implies that all the layers change during an update, making it difficult to get the

right target [  39 ].

For example, when we update the weights of the third layer, we expect the weights of

the fourth layer’s output to have a specific distribution. However, the expected distribution

might shift once the weights of the prior layer are modified. This means that the input

distribution for each layer changes during the model training as the parameters of earlier

29



layers are updated. Consequently, this poses challenges for training DNNs with particular

types of functions [ 40 ].

Furthermore, DNN training is challenging due to their sensitivity to the random weight

initialization. A contributing factor to this challenge is that the input distribution to deeper

layers in the network may alter after each mini-batch update of the weights. This results

in the learning algorithm trying to pursue a constantly shifting target. This phenomenon is

called Internal Covariate Shift [  38 ], [ 41 ]. BN helps alleviate this challenge by normalizing the

inputs for each layer during mini-batch processing. In this case, the DNN converges faster

and requires less number of training epochs.

Essentially, BN re-parameterizes the DNN as the DNN’s layer’s outputs are scaled. Nor-

malization is the process that re-scales the data to have zero mean and one standard devi-

ation. BN ensures that specific units remain normalized, a technique known as “whitening”

[ 42 ], [  43 ]. Whitening the layer’s inputs leads to fixed input distributions, mitigating the

internal covariate shift phenomenon. Normalizing the previous layer’s activations ensures

that the subsequent layer’s assumptions about the input’s distribution and range remain

consistent during weight updates. Moreover, BN can be considered a regularizer, leading to

a lower generalization error. Note that BN significantly improves the optimization perfor-

mance, particularly in CNNs and other DNNS with sigmoidal non-linearities.

Apart from tackling the internal covariate shift phenomenon, evidence suggests that

BN’s effectiveness may stem from its ability to smooth the optimization function during

network training [ 40 ]. Specifically, BN fundamentally impacts network training by making

the optimization landscape significantly smoother. This results in more predictive gradients,

enabling the use of a broader range of learning rates and facilitating DNN convergence [ 38 ],

[ 40 ], [  44 ], [  45 ].

During training, BN is applied by computing each input variable’s mean and standard

deviation in a layer for every mini-batch. Then, these statistics are used for the normal-

ization. Alternatively, maintaining a running average of the mean and standard deviation

across mini-batches is an option. However, it might lead to unstable training. Another ap-

proach could be to consider using moving averages for normalization during training. This

approach has been found to cause convergence problems. The common practice is to set the
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mean and standard deviation for the inputs to each layer using the average values of the

entire training dataset at the end of training.

It is worth mentioning that small mini-batch sizes lack a representative distribution of

examples from the training dataset. This implies that the normalized inputs can differ sig-

nificantly between training and inference, resulting in significant performance variations.

This issue can be mitigated using Batch Renormalization [  46 ], [ 47 ]. Batch Renormalization

stabilizes the mean and standard deviation estimates across mini-batches. Batch Renormal-

ization enhances BN by adding a per-dimension correction to ensure consistency between the

activations in the training and inference phases. Note that Batch Renormalization can be

implemented to the input variables of the first hidden layer or the activations from a hidden

layer for deeper layers [  48 ].

BN introduces two additional learnable parameters: a mean (Beta) and a standard de-

viation (Gamma) [  44 ]. These parameters are used to scale and shift the layers’ inputs.

Note that the model learns Beta and Gamma as part of the training process. It is worth

mentioning that the normalization of each layer input can alter the layer’s representational

capability. The learned Beta and Gamma parameters help restore this capability. Notably,

the back-propagation algorithm is modified to work with the transformed inputs, and the

error is utilized to update the new Beta and Gamma parameters learned by the model.

The normalization is performed to the layer’s inputs, which can be either the input

variables themselves or the output of the activation function from the previous layer [ 49 ].

Depending on the chosen activation function, the distribution of inputs to the layer might

not follow a Gaussian distribution [  50 ]. Therefore, it might be helpful to first sum and then

normalize the activations before they pass through the activation function in the preceding

layer [  51 ]. In these cases, the BN transform is added immediately before the non-linearity.

Although normalizing the layer’s inputs is an option, note that the layer’s inputs are typically

the output of another non-linearity, which means its distribution shape can change during

training. Thus, using the mean and standard deviation for normalization will not contribute

to mitigating the internal covariate shift phenomenon.
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2.4 Neural Network Quantization

Neural network quantization is a technique used to reduce the memory and computational

requirements of DNNs by representing their parameters and activations with lower precision

data types. In this section, we will explore the background of neural network quantization,

its key components, and the popular methods used in the quantization process. Additionally,

we will delve into the uniform quantization technique, its mathematical formulation, and its

practical application in optimizing DNNs for deployment on resource-constrained devices.

In the quantization process, a crucial component is the choice of the quantization func-

tion. This function maps real values represented in floating-point format to a lower precision

range, typically integer values. A popular choice for the quantization function is uniform

quantization, which divides the input range into uniformly spaced quantization levels. The

uniform quantization function is defined as follows [  52 ], [  53 ]:

Q =
⌊

r

s

⌋
− z (2.1)

where Q is the quantization operator, r is the real-valued input, s is the scale factor and

z is the zero-point. The b c operator is the floor operator that maps a real value to an

integer through a rounding operation. This method of quantization is known as uniform

quantization, as the resulting quantized values (quantization levels) are uniformly spaced.

The scaling factor s divides a given range of real values r into a number of partitions and it

is defined using the following formula:

s = β − α

2b − 1 (2.2)

where [α, β] denotes the clipping range, i.e. a bounded range that we are clipping the

real values to, and b is the quantization bit-width. Thus, to determine the scaling factor,

the clipping range [α, β] should be defined first. For the uniform asymmetric quantization

method, the clipping range is not symmetric with respect to the origin. A popular choice

for the clipping range is to use the minimum/maximum value of the signal (α = rmin and

β = rmax). For the uniform symmetric quantization scheme, the clipping range should be
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symmetric to the origin and therefore α = −β. A popular choice is based on the min/max

values of the signal: −α = β = max(|rmax|, |rmin|). In practice, per-tensor quantization

of weights and activations is applied, meaning that a single set of quantization parameters

is used per tensor. This approach simplifies the implementation and reduces the memory

overhead associated with storing multiple sets of quantization parameters.

2.5 Video Compression

Video compression aims to reduce the size of video files while preserving visual quality

and ensuring efficient transmission and storage [  54 ]. The motivation for video compression

comes from the fact that videos consist of vast amounts of data representing frames of images,

colors, motion, and audio. Without compression, video files would be prohibitively large,

making them cumbersome to store, transmit, and playback. Video compression addresses

this challenge by efficiently encoding video data to achieve a trade-off between file size and

quality [ 55 ].

Video compression removes redundant information from the video while keeping the es-

sential parts intact. There are two main types of compression: lossy [  56 ] and lossless [  57 ].

In lossy compression, some information is permanently discarded to reduce file size. This

can result in a slight loss of quality, but there is a significant reduction in file size. Popular

lossy compression standards include MPEG [ 58 ] and H.264 [ 59 ]. In lossless compression,

the video is compressed without losing any information. This method is used for applica-

tions that require to preservation of every detail, such as for professional video editing or

archival purposes [  60 ]. However, lossless compression doesn’t shrink file sizes as much as

lossy compression.

The common compression techniques are spatial compression, temporal compression,

transform coding, and entropy coding. Spatial compression focuses on reducing redundancy

within individual frames of the video. This is achieved through spatial prediction and trans-

forms coding [ 61 ]. Spatial prediction means that the predicting pixel values are based on

neighboring pixels to reduce the amount of information needed to represent each frame.

Transform coding converts pixel data into a frequency domain using transforms like the
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discrete cosine transform (DCT) [  62 ], which helps concentrate energy in fewer coefficients,

facilitating better compression.

Temporal compression exploits similarities between consecutive frames to reduce redun-

dancy across multiple frames. Techniques include Inter-frame Prediction [ 63 ] and Motion

Compensation [  64 ]. Inter-frame prediction refers to predicting the content of subsequent

frames based on previous frames, commonly used in video codecs, such as MPEG [  58 ] and

H.264 [  59 ]. Motion Compensation concerns estimating and compensating for motion between

frames to encode only the differences, significantly reducing redundancy.

Moreover, transform coding is a fundamental component of video compression, involving

transforming the spatial data into a frequency domain. Popular transforms include Dis-

crete Cosine Transform (DCT) [  62 ], [  65 ] and Wavelet Transform [  66 ], [  67 ]. DCT is used in

standards such as MPEG and H.264. DCT converts spatial data into frequency coefficients,

making it more amenable to compression. Wavelet transform [ 66 ] is an alternative to DCT,

wavelet transforms are used in newer compression standards like JPEG 2000 [  68 ] and H.265

[ 69 ] to achieve higher compression efficiency.

Entropy coding further compresses the transformed video data by assigning shorter codes

to more frequent patterns and longer codes to less common patterns [ 70 ]. Common entropy

coding techniques include Huffman Coding and Arithmetic Coding. Huffman coding [  71 ]

assigns variable-length codes to symbols based on their frequency of occurrence, with more

frequent symbols represented by shorter codes. Arithmetic coding is similar to Huffman cod-

ing but allows for a more efficient representation of probabilities, yielding higher compression

ratios [  72 ].

The compressed videos consist of intra-frames (I-frames) and Predictive frames (P-

frames). Intra-frames are standalone frames that contain complete image information [  73 ].

They are used as reference points for subsequent frames and provide a starting point for

decoding. Intra-frames are encoded independently using spatial compression techniques,

such as transform coding, without referencing other frames. Predictive frames, also called

P-frames or inter-frames, rely on previous frames for encoding [  74 ]. Instead of storing com-

plete image information, predictive frames only store the differences (motion vectors) between
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the current frame and the reference frame. These motion vectors indicate the direction and

magnitude of pixel movement between frames.

Motion vectors represent the movement of blocks of pixels between frames [  75 ]. They

are important for predicting the motion of objects in a video sequence. Motion estimation

algorithms analyze blocks of pixels in reference frames to find the best match for a block in

the current frame [  76 ], [  77 ]. The resulting motion vectors encode the direction and distance

of pixel movement, enabling efficient prediction of inter-frames. Residuals, also known as

prediction errors, represent the differences between the original pixel values and the predicted

values based on motion vectors [ 78 ]. After motion compensation, residuals capture the

remaining image details that cannot be accurately predicted.

Popular video compression standards are MPEG [ 79 ], H.264 (AVC) [ 59 ], and H.265

(HEVC) [  80 ]. Moving Picture Experts Group (MPEG) standards, including MPEG-2,

MPEG-4, and MPEG-H, have been essential in defining compression techniques for var-

ious multimedia applications. MPEG-2 revolutionized digital television and DVD video,

while MPEG-4 introduced advancements, like object-based coding and scalability. H.264,

also known as Advanced Video Coding (AVC), is widely adopted for high-definition video

compression, offering efficient compression with excellent visual quality. H.265, or High-

Efficiency Video Coding (HEVC), builds upon H.264 to achieve even higher compression

efficiency, enabling 4K and 8K video streaming and broadcasting.

Next, we will describe the compression and decompression process [  81 ]. Compression

steps:

• Frame Division: The input video stream is divided into keyframes (intra frames) and

predictive frames (inter frames).

• Intra-frame Compression: Each intra-frame is encoded independently using spatial

compression techniques like transform coding (e.g., DCT). The resulting coefficients

are quantized to reduce precision and are entropy encoded for compression.

• Inter-frame Compression: Predictive frames are encoded by estimating motion vectors

between the current frame and a reference frame. Motion-compensated prediction is
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performed using motion vectors, and residuals are calculated to capture the differences

between predicted and actual pixel values.

• Entropy Encoding: The quantized coefficients and residuals are further compressed

using entropy coding techniques such as Huffman coding or arithmetic coding to reduce

redundancy.

Decompression steps:

• Entropy Decoding: Compressed data is first decoded using the inverse of the entropy

coding technique applied during compression, reconstructing quantized coefficients and

residuals.

• Inverse Transform: Inverse transforms, such as the inverse discrete cosine transform

(IDCT), are applied to decode spatially compressed coefficients and reconstruct pixel

values.

• Motion Compensation: Motion vectors are used to predict pixel values in predictive

frames, and residuals are added to the predictions to reconstruct the original frame.

• Frame Assembly: Reconstructed frames are assembled in the correct order to recon-

struct the original video sequence.

Video compression is a complex yet indispensable process fundamental to modern multi-

media applications, facilitating efficient storage, transmission, and playback of video content.

Through the use of spatial and temporal compression techniques, along with the transforma-

tion and entropy coding methods, video compression standards such as MPEG, H.264, and

H.265 have revolutionized our interaction with video across diverse platforms and devices

[ 82 ], [ 83 ]. However, it is worth mentioning that the conventional approach of compressing

videos for transmission, followed by decompression for subsequent machine learning tasks

such as action recognition, entails a significant time and compute overhead. This prompts

the question: Is it feasible to directly perform machine learning tasks on compressed videos?

The research detailed in the forthcoming chapters unveils the potential for such an approach.
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3. DP-IMGSYN: DATASET ALIGNMENT FOR

OBFUSCATED, DIFFERENTIALLY PRIVATE IMAGE

SYNTHESIS

Deep Learning has benefited from large statistical data available to the broad community.

Large datasets in the domain of image classification [ 84 ], object recognition [  85 ], language

modeling [  86 ], and recommendation systems [  87 ] have helped these domains make significant

advances. However, there are cases in which data cannot be publicly released due to privacy

restrictions. To address this issue, several techniques have been proposed in literature which

can be categorized into: model release methods [ 88 ], and data release methods [ 89 ]. Model

release methods train a classifier on the private dataset (dataset with privacy restrictions)

and release the classifier with privacy guarantees. Data release methods release synthetic

data with privacy guarantees instead of private data.

Data release methods offer more flexibility than model release methods [  90 ]–[ 92 ]. When

releasing data, downstream users have the freedom to choose any model architecture, unlike

model release methods. Furthermore, they can combine data from different sources to build

better models. Also, in the presence of newly available data, they can retrain the model

on new and past data avoiding catastrophic forgetting [  93 ]. However, synthetic images

generated using existing data release techniques are visually similar to private images. This

poses significant challenges when the image content is visually sensitive and disturbing, for

example with certain medical image datasets, content moderation image datasets [  94 ], etc.

This leads us to the question: can we achieve the same learning as with private images using

visually dissimilar synthetic images? For example, can a neural network learn to classify

human faces when it is trained with synthetic images depicting places? In our work, we

show that such learning is achievable. Formally, we study the problem of releasing synthetic

data for image classification tasks that satisfy the following properties:

1. The synthetic image must provide (ε, δ)−Differential Privacy (DP) guarantees.

2. Retain the utility of the private images, i.e. a model trained using synthetic images

should result in similar classification accuracy as the model trained on private images.
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3. Be visually dissimilar to the private images. This is critical to protect the users from

viewing visually disturbing and sensitive content.

The visual dissimilarity between synthetic and private images is important for vision

data depicting visually disturbing and sensitive content. This requirement is not satisfied by

the existing approaches. In particular, existing approaches often use Generative Adversarial

Networks [ 95 ] with DP guarantees [  96 ]–[ 99 ] to generate synthetic images. While GAN-

generated synthetic images have DP guarantees and retain the utility of the private images,

they are visually similar to private images. Thus, they do not satisfy the third requirement

of visual dissimilarity. In addition to this, training a GAN can be challenging due to multiple

issues [  100 ] such as vanishing gradients [  100 ], mode collapse [  101 ]–[ 105 ], training instability

[ 102 ], and convergence failure [  106 ].

To address these issues, we propose a non-generative (or discriminative) approach for

releasing synthetic images. Our proposed framework, Differentially Private Image Synthesis

(DP-ImgSyn) [  107 ], trains a teacher model on the private (sensitive) dataset using a DP

training algorithm, such as DP-SGD [  88 ]. Next, a public dataset is selected for distillation

[ 108 ]. This dataset is used to distill the sensitive dataset. During distillation, we observe

that misalignment between the public-private datasets can result in significant performance

degradation. To address dataset misalignment, we propose an alignment technique on the

public dataset to improve the performance of our framework. Finally, we obtain soft labels

using the teacher model and the aligned public dataset. The soft label is the teacher model

output (logits) after applying the softmax function. The aligned public dataset (synthetic

images) and the corresponding DP-teacher model generated soft labels, are released for

training neural networks on image classification tasks. A detailed explanation of the intuition

behind our method is provided in Section  3.1 .

The synthetic images generated by DP-ImgSyn satisfy (1) privacy: the synthetic images

have (ε, δ)−DP guarantees because the teacher model is trained with DP guarantees, (2)

utility: this is experimentally verified in Section  3.4 . A model trained on the synthetic

CelebA-Hair dataset [ 109 ], [  110 ] achieves ≈ 99.5% the performance of a model trained with

DP on the CelebA-Hair dataset, (3) the synthetic images are visually dissimilar to the private
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Figure 3.1. Visualization of the private images (CelebA-Hair), public im-
ages (Places365), and the DP-ImgSyn generated images (synthetic images).
DP-ImgSyn synthesized images are visually dissimilar to private images. DP-
ImgSyn is initialized with Places365 (public images/dataset). The public im-
ages and the batch statistics of a DP model (trained on the private images)
are the inputs to DP-ImgSyn. DP-ImgSyn outputs synthetic images. A model
trained on the synthetic images achieves ≈ 99.5% the performance of a model
trained with DP on the CelebA-Hair dataset (private images). Figure  3.6 in
the Section  3.4.7 contains more visualizations of other datasets.

images. This is observed in Figure  3.1 , which visualizes the private dataset (CelebA-Hair),

the synthetic images generated by DP-ImgSyn (synthetic images), and the public dataset

used for initialization [  111 ]. Further, we experimentally evaluate the synthetic images in

terms of classification accuracy on MNIST, FashionMNIST, CelebA-Hair, CelebA-Gender,

CIFAR10, and ImageNette datasets. We observe that DP-ImgSyn reduces the public-private

distribution misalignment. This alignment improves performance up to ≈ 17% on highly

misaligned public-private dataset pairs. Moreover, our method achieves significantly better

accuracy (up to ≈ 20%) than state-of-the-art generative methods using a similar DP training

algorithm. Note that, the proposed technique is not a new DP mechanism. It is a new
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approach for releasing visually dissimilar images, leveraging dataset alignment to obfuscate

sensitive data in public datasets.

Overall, our contributions are summarized as follows:

• We propose DP-ImgSyn, a non-generative image synthesis framework that gener-

ates a DP-guaranteed dataset for public release. The synthetic images: (1) are DP-

guaranteed, (2) have similar utility to the private images, and (3) are visually dissimilar

to private images.

• The DP-ImgSyn framework leverages the teacher model’s batch normalization layer

statistics to address the distribution misalignment between private and public datasets.

• We show the effectiveness of DP-ImgSyn in image classification tasks on various vi-

sion datasets. We also show that DP-ImgSyn performs better than state-of-the-art

generative methods when using a similar DP training algorithm.

The rest of the chapter is organized as follows: Section  3.1 explains how DP-ImgSyn

works and gives the motivation for its use. Section  3.2 gives a brief overview of the related

work. Section  3.3 describes the methodology and the steps for DP-ImgSyn. Next, Section

 3.4 experimentally evaluates our proposal, and finally, Section  3.5 concludes the chapter.

3.1 DP-ImgSyn: Why and How?

Why? We would like to emphasize that DP-ImgSyn shows that it is possible to learn

to classify a dataset that looks very different from the training dataset. Note, that upon

synthetic image release, it is up to the user to determine how to use them. Below, we provide

examples showing why visual dissimilarity is important in certain classes of applications:

Defense Operational Security (OPSEC) Developing systems for the detection of

classified military assets (e.g., a new stealth aircraft) presents significant OPSEC challenges.

Typically, only the team directly involved in the asset’s development (e.g., the aircraft engi-

neers) possesses the necessary security clearances. To develop a detection system, traditional

data-sharing methods would necessitate granting security clearances to additional engineers

or declassifying sensitive imagery, both of which introduce security risks [  112 ]. DP-ImgSyn
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Figure 3.2. (a) Illustrates a cartoon version of the decision boundary of the
teacher model and how public images (gray) sample the latent space. (b)
Shows the transfer of the decision boundary of the teacher model in (a) to the
student model using public images to sample the latent space. The student
in (b) learns a decision boundary that is different from the teacher leading to
poor knowledge transfer. (c) Shows the effect of optimization/perturbation
of the public images with DP-ImgSyn. With DP-ImgSyn the latent space is
sampled more effectively. Finally, (d) illustrates the transfer of the decision
boundary of the teacher model to the student model, using synthetic images
generated by DP-ImgSyn to sample the latent space.

offers a potential mitigation strategy by using synthetic images that are visually obfuscated

to protect classified elements while still enabling the development of effective detection mod-

els.

Medical datasets are bound by strict privacy regulations (HIPAA [  113 ], PIPEDA [ 114 ],

and GDPR [  115 ]). While differential privacy (DP) offers robust guarantees, certain datasets

may not be suitable for release due to the sensitivity of the body regions depicted [  116 ],

[ 117 ]. DP-ImgSyn can facilitate the use of such datasets by generating synthetic images

that preserve the essential medical information for model training but visually obscuring

identifiable details.

Content Moderation DP-ImgSyn potentially addresses privacy and ethical concerns

with content moderation by enabling the generation of visually dissimilar synthetic datasets

for model training, safeguarding individuals in the original data and mitigating exposure of

human moderators to such content [  118 ]. Other applications include automated parental

control and movie age rating systems [  119 ].
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How? The proposed DP-ImgSyn method aims to learn/transfer the decision boundaries

between the teacher and the student model. This is done by sampling the latent space of

the teacher model using the public images and having the student model match the decision

boundary of the teacher using soft labels. This implies that latent space sampling needs to

be effective. The challenge is that public images may not effectively sample the latent space.

Thus, our proposed optimization perturbs the public images such that the latent space can

be effectively sampled. This leads to better knowledge transfer between the teacher and the

student model. Figure  3.2 (a) illustrates a cartoon version of the decision boundary of the

teacher model and how a public dataset (gray) samples the latent space. Figure  3.2 (b) shows

the transfer of the decision boundary of the teacher model in  3.2 (a) to the student model

using the public images to sample the latent space. We see that the student in  3.2 (b) learns

a decision boundary different from the teacher leading to poor knowledge transfer. Figure  3.2 

(c) shows the effect of optimization of the public images with DP-ImgSyn. With DP-ImgSyn

the latent space is sampled more effectively. Finally, Figure  3.2 (d) illustrates the transfer

of the decision boundary of the teacher model to the student model, using synthetic images

generated by DP-ImgSyn to sample the latent space. The experimental results in Section

 3.4 are in line with the DP-ImgSyn intuition. For visualizations on deep neural networks

refer to Section  3.4.13 .

3.2 Related Work

We consider generating visually dissimilar synthetic images with DP guarantees. While,

semi-private learning [  120 ], [  121 ] might seem related to our work, there are fundamental

differences. We briefly discuss these differences here. Semi-private learning leverages public

data to improve the privacy bounds when learning from private data. Specifically, the private

models parameters are updated with public data to improve privacy guarantees and privacy-

utility trade-offs. In our work, public data is used for image synthesis and not during the

training of the DP neural network. Hence, we do not compare DP-ImgSyn with semi-private

learning techniques. Next, we present generative techniques for model and data release.
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Regarding generative techniques, they leverage GANs or other generative models by

sharing DP-trained models, embeddings, or generating images for releasing datasets while

maintaining privacy. Multiple research articles [  96 ]–[ 98 ] have proposed training GANs with

DP for image synthesis using DP-SGD [  88 ] under various contexts and domains. The au-

thors of GS-WGAN [  122 ] adopt Wasserstein GAN [  103 ] and propose using Wasserstein-1

loss for training. They show that such an approach can distort gradient information more

precisely; thus GS-WGANs generate more informative samples. The authors of DataLens

[ 123 ] leverage GANs to reduce the gradient noise using gradient compression. In a similar

direction, to improve information capture from the gradient, the authors of DPGEN [ 124 ]

deploy an energy-guided network. Note that, DPGEN [  124 ] privacy guarantees are compro-

mised due to conceptual errors, as reported in [ 125 ]. They train on synthetic data to indicate

the direction of the actual data distribution via the Langevin Markov chain Monte Carlo

sampling method. However, since all of these techniques rely on GANs, they are susceptible

to training instability of GANs. To address the issues with GAN-based methods, the authors

of DP-MERF [  126 ] synthesize images by taking advantage of random feature representations

of kernel mean embeddings, while the authors of P3GM [ 127 ] use a variant of the private

variational autoencoder.

So far, we have discussed generative DP techniques; next, we discuss discriminative DP

techniques. Private Aggregation of Teacher Ensembles [  89 ], [  128 ] divides the training data

into disjoint sets and assigns them to multiple classifiers (teachers). The teachers are queried

with either public or GAN-generated images to obtain the corresponding soft labels [ 110 ],

[ 129 ]. The student network is trained using public or GAN-generated images and their soft

labels using knowledge transfer [  108 ]. To maintain the privacy of multiple teacher models,

the soft labels of all the teachers are aggregated, and noise is added before they are released

for training the student. When PATE employs a GAN for image generation, it encounters

the challenges mentioned above related to GANs. When utilizing public images, it struggles

to address situations where public and private images are not aligned. Thus, to address

the challenges of generative and discriminative data release techniques, we propose a new

framework, DP-ImgSyn, for synthetic data release.
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Figure 3.3. Overview of DP-ImgSyn: (1) Train a teacher model using a
DP-training scheme. Capture the batch statistics of the model on the pri-
vate dataset using the proposed DP guaranteed technique. (2) Perform the
proposed public dataset alignment to obtain a better-aligned synthetic public
dataset. Note that, the public image is optimized (updated), while the pa-
rameters of the model stay constant. (3) Generate soft labels. The synthetic
images and their soft labels can be publicly released.

3.3 DP-ImgSyn: Differentially Private Image Synthesis

This section introduces our approach’s specifics, as Figure  3.3 illustrates. Our method

consists of three steps: 1) train a teacher model with a DP training algorithm on the private

images, 2) perform optimization on the public dataset to align it to the private dataset and

3) generate soft labels for the aligned synthetic public dataset. Finally, the synthetic images

and their corresponding soft labels are publicly released to train a student network.
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3.3.1 DP Teacher Model Training

The first step of our method involves training the teacher model utilizing a DP training

algorithm. Note that the teacher model is not trained with standard SGD but uses a DP

training algorithm to ensure privacy. We select Differentially Private-Stochastic Gradient

Descent [  88 ] as the DP training algorithm. DP-SGD trains a neural network with (ε, δ)-DP

guarantee. Similar to standard SGD, the algorithm converges in multiple training steps. At

each training step t, DP-SGD computes the gradient gt(x) of the loss function with respect

to the model parameters for a training image x. Then, it clips each gradient vector g to have

a maximum l2 norm of C. That is, the gradient vector g is replaced by g/max(1, ‖g‖2/C).

The clipping ensures that if ‖g‖2≤ C then g is preserved, whereas if ‖g‖2> C, it gets scaled

down to be of norm C. Thus, the contribution of each data point to the batch gradient is

bound by a constant C. Noise is added to the gradient gt(x) +N (0, σ2C2I) and the descent

step θt+1 = θt − ηtgt is performed, with ηt learning rate. After T iterations, it outputs the

(εtrain, δ)-DP teacher model.

The next step’s synthesis (a.k.a dataset alignment) requires the teacher model’s batch

statistics. These are obtained from the batch norm layer of the teacher model. However,

batch norm layers cannot be used for DP training. This is because the batch norm computes

the mean over multiple training data points. Thus, per sample gradient cannot be obtained

during training. This implies that the gradient norm cannot be bound, so we cannot provide

a DP guarantee. To address this issue, we propose the following DP-guaranteed approach

to obtain batch statistics. First, we use group norm layers instead of batch norm layers.

Next, we train the teacher model using the previously described DP-SGD. Once trained, we

capture the input to all group norm layers, ign. We clip the input ign to have a maximum l2

norm of C and add noise, îgn = ign +N (0, σ2C2I). The noisy input îgn is used to calculate

the batch statistics of the private set. This process has the same DP guarantee as the

Gaussian Mechanism [ 130 ] since it uses the Gaussian DP mechanism described in [  130 ].

Note that obtaining the batch statistics this way consumes some of the privacy budget

allocated for training. Thus, when we report our results, the privacy budget ε is for the

combined training and statistics capture process. To be more specific the reported budget
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ε = composition(εtrain, εbatch−stats). We use the accountant implementation from [  131 ] to

calculate the upper bounds on privacy. To ensure correctness, we also verify the upper

bounds on privacy using both Opacus [ 132 ] and [  131 ]’s implementation.

3.3.2 DP Image Synthesis

Image synthesis (a.k.a dataset alignment) optimizes the public dataset to align with the

private dataset to ensure that the synthesized (or aligned) images will have good distillation

performance. To perform image synthesis, we collect the layer-wise batch statistics of the

private dataset using the DP-guaranteed technique described in Section  3.3.1 . The batch

statistics consists of the mean µ = [µ1, · · · , µL] and the variance σ = [σ1, · · · , σL] from the

all the L layers of the teacher model M. Let x̂ denote a batch of synthetic images and xP

denote a batch of data sampled from a public dataset Dp. Algorithm  1 summarizes the DP

image synthesis process. We initialize x̂ with xP , this corresponds to Line  1 in Algorithm

 1 . For each data point in x̂, we assign a target label y (Line  2 in Algorithm  1 ). The target

labels are uniformly distributed over all the classes, and the assignment is such that we have

the same number of images for each class. This step of generating the labels is independent

of the private dataset to ensure privacy.

The next step is to perform k iterations of optimization corresponding to Lines  3 -  7 .

These k iterations optimize x̂ to align with the private set. Each iteration consists of a

forward pass of x̂ through the DP-trained teacher model M (Line  4 in Algorithm  1 ). The

forward pass is used to obtain the layer-wise batch statistics for x̂, (µ(x̂), σ(x̂)). The batch

statistics and the generated label y are used to calculate the loss described in Equation  3.5 

(Line  5 in Algorithm  1 ). The gradient of the loss R with respect to x̂ (∇x̂R) is calculated

using back-propagation and is used to update the image x̂ (Lines  6 -  7 in Algorithm  1 ). At

the end of k update steps, we have synthesized one batch of aligned images x̂. Since the

teacher model is DP-trained, and the private dataset batch statistics are obtained with a

DP guarantee, image synthesis is also DP-guaranteed.

The loss used to guide the optimization is critical. The total loss Rtotal consists of the

following terms: feature loss Rfeature, classification loss Rclassif , total variance loss Rtv and
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Algorithm 1: DP Image Synthesis
Input: DP-trained teacher model M; k number of optimization iterations;

synthesis learning rate γsyn; batch statistics µ, σ for the private set; batch of
public images xP

Output: x̂, one batch of aligned synthetic images
1 x̂← xP

2 y ← Target labels for batch x̂, uniformly distributed over all the classes
3 for i = 1, 2, ..., k do
4 µ(x̂), σ(x̂)←M(x̂)
5 R← Rtotal(x̂, y, µ, σ, µ(x̂), σ(x̂)) ; // Compute the loss from Equation  3.5 

6 ∇x̂R← Backward pass
7 Update x̂← x̂− γsyn∇x̂R
8 return x̂

l2 norm loss Rl2 . The sum of total variance loss Rtv and the l2 norm loss Rl2 are referred

to as prior loss. Next, we define each of these losses. The feature loss Rfeature computes the

distance between the batch statistics of the private dataset and the synthetic set x̂ and is

given by the following equation:

Rfeature(µ, σ, µ(x̂), σ(x̂)) =
L∑

l=1
‖µl(x̂)− µl‖2

2 + ‖σl(x̂)− σl)‖2
2 (3.1)

Where x̂ is the synthesized-aligned image, µl(x̂) and σl(x̂) are the batch-wise mean and

variance estimates of feature maps corresponding to the lth layer when x̂ is fed to M, and

µl and σl are the lth layer batch statistics obtained from the private dataset described in

Section  3.3.1 . The classification loss Rclassif is the cross-entropy loss between the teacher

output and the target label y and is defined as:

Rclassif (x̂, y) = L(pM(x̂), y) (3.2)

where L is the cross-entropy loss, pM(x̂) is the output of the teacher model M when

x̂ is fed as input, and y is the target label. The total variance loss Rtv ensures no sharp
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transitions in the synthetic image and restricts the adjacent pixels to have similar values. It

is defined as:

Rtv(x̂) =
∑
i,j

((x̂i,j+1 − x̂i,j)2 + (x̂i+1,j − x̂i,j)2) 1
2 (3.3)

The l2 norm loss is employed to encourage the image range to remain within a target

interval rather than diverging. The l2 norm loss Rl2 for the x̂ is defined as:

Rl2(x̂) = ‖x̂‖2
2 (3.4)

The total loss is the sum of the aforementioned losses:

Rtotal(x̂, y, µ, σ) = αfRfeature(x̂, µ, σ) + αcRclassif (x̂, y) + αtvRtv(x̂) + αl2Rl2(x̂) (3.5)

Each loss term is multiplied by a corresponding scaling factor αf , αc, αtv, αl2 . The teacher

model is not updated during back-propagation, and only x̂ is optimized. After k iterations,

we obtain the synthetic DP images x̂.

3.3.3 DP Image Release

After synthesizing the images, we obtain their corresponding soft labels. The synthetic

images are fed to the DP-trained teacher model M, and the corresponding soft labels ŷ =

pM(x̂) are recorded. Because the teacher model is trained with DP-SGD, querying the

teacher to obtain the soft labels does not impose privacy risk. The synthetic images x̂,

along with their soft labels ŷ, are publicly released. The student model S is trained on the

synthetic images x̂ and their corresponding soft labels ŷ using KL-divergence:

min
θ

∑
x∈X s

KL(ŷ, pS(x̂)/T ) (3.6)
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KL refers to the Kullback-Leibler divergence, pS(x̂) is the output (soft labels) of the

student model when the synthetic image x̂ is given as input. T is a scaling temperature

value. The synthetic images and their corresponding soft labels are publicly released and

can be used to train any neural network. Note that, after synthetic image generation, the

public images xP are no longer needed. Thus, the public images will not be needed during

the network training, as the network is trained using synthetic images only.

3.4 Experimental Evaluation

3.4.1 Experimental Setup

To evaluate our proposal, we use the same vision datasets as previous works; specifi-

cally, we use MNIST [  20 ], FashionMNIST [  133 ], CIFAR-10 [  134 ], ImageNette [ 135 ], CelebA-

Hair [ 109 ], [  110 ], CelebA-Gender [  109 ], [  110 ], TinyImageNet [  136 ], Places365 [  111 ], LSUN

[ 137 ], and Textures [  138 ]. Table  3.1 summarizes the statistics for the aforementioned vision

datasets. We report the train and test size, the resolution of the images, and the number of

classes in each dataset.

We use the following network architectures: ResNet18 [  139 ], ResNet34 [  139 ], VGG11

[ 140 ], MobileNetV2 [  141 ], and ShuffleNetV2 [ 142 ]. All the models were trained till con-

vergence or privacy budget exhaustion. The detailed hyperparameter settings for image

synthesis and model training, computational resources, and dataset statistics are reported

in Section  3.4.14 . We perform the experiments described in the following sections to evalu-

ate our proposal thoroughly. The models are trained on the synthetic images generated by

DP-ImgSyn (training set) and evaluated on the test set of the private dataset (testing set).

3.4.2 Number of Optimization Iterations k

This section studies the effect of the number of optimization iterations on image synthesis

and performance.

Experiment. We train a ResNet34 till convergence on the private dataset CIFAR-10.

Next, we perform the alignment optimization detailed in Section  3.3.2 for various numbers

of iterations (i.e., k in DP-ImgSyn Algorithm  1 ) ranging from 0-100. For the alignment, we
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Table 3.1. Dataset statistics, training, and test set sizes for the datasets used.

Dataset Train Set Size Test Set Size Resolution Number of Classes
MNIST 60,000 10,000 28x28 10

FashionMNIST 60,000 10,000 28x28 10
CIFAR-10 50,000 10,000 32x32 10
Imagenette 10,000 5,000 224x224 10

CelebA-Hair 162,770 19,962 64x64 3
CelebA-Gender 162,770 19,962 64x64 2
TinyImageNet 100,000 10,000 32x32 200

Places365 1,803,460 10,000 32x32 365
LSUN 9,895,373 303,304 64x64 10

Textures 5,640 1,880 224x224 47

use TinyImageNet as the public dataset. The DP-ImgSyn generated dataset is used to train

a ResNet18 student model. The student model accuracy and losses versus the number of

optimization iterations k are reported. We use privacy budget ε =∞ to isolate all variables.

The results are visualized in Figure  3.4 .

Results. Figure  3.4a illustrates the accuracy of the student model and the total loss

Rtotal versus the number of optimization iterations k. This is visualized with two y-axes:

the left axis for accuracy and the right axis for the total loss Rtotal. Note that the student

model accuracy peaks around k = 20 iterations. Continuing the optimization by increasing

k reduces student model performance. The plot in Figure  3.4b explains the reason for this

behavior. Figure  3.4b plots the accuracy of the student model and the total variance loss

Rtv versus the number of optimization iterations k. This is visualized with two y-axes, left

for accuracy and the right for total variance loss Rtv. The loss Rtv expresses the image prior.

The image prior ensures no sharp transitions in the synthetic image. It is used in literature

[ 143 ]–[ 146 ] as a proxy for how natural synthesized images are. This plot suggests that the

images become more artificial or synthesized as we optimize past a certain threshold. It is

observed that around 20 iterations, the Rtv loss starts increasing, and the accuracy starts

decreasing.
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(a) Accuracy and Rtotal versus k. (b) Accuracy and Rtv versus k.

Figure 3.4. Plots for student model accuracy, total loss Rtotal and total
variance loss Rtv versus the number of optimization iterations k. The left axis
is for accuracy, and the right is for loss Rtotal and Rtv, respectively. Results
suggest early stopping is necessary to optimize accuracy. For this plot, DP-
ImgSyn is initialized with the TinyImageNet dataset, and the ResNet34 is the
teacher model.

Table 3.2. Accuracy for ResNet18 DP-teacher model with ε ∈ {1, 10} for
MNIST, FashionMNIST, CelebA-Hair, and CelebA-Gender.

MNIST FashionMNIST CelebA-Hair CelebA-Gender
ε = 1 86.87% 76.27% 79.95% 91.02%
ε = 10 96.30% 81.88% 81.74% 92.35%

Conclusion. Minimizing Rtotal does not guarantee optimal image prior (∼ Rtv). How-

ever, Rtv significantly impacts student model accuracy. Thus, early stopping is necessary to

optimize student model performance.

3.4.3 Privacy and Performance

We evaluate the performance of DP-ImgSyn with 0 iterations and k iterations on various

vision datasets as public and private datasets.

Experiment. First, we select a private dataset. We train a teacher ResNet18 model

on the private dataset using DP-SGD and capture batch statistics as described in Section

 3.3.1 . This results in a ResNet18 teacher model with batch statistics having a privacy
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budget of ε. Next, we select a public dataset and generate the synthetic dataset described

in Sections  3.3.2 and  3.3.3 . A student ResNet18 model is trained on the synthesized dataset

with various public datasets as initialization. We report the accuracy results for privacy

budgets ε ∈ {1, 10} on MNIST, FashionMNIST, CelebA-Hair, and CelebA-Gender as private

datasets. We select public datasets whose size is the same or exceeds the size of the private

dataset. This ensures that the synthesized dataset has the same size as the private dataset.

When the public dataset is larger than the private set, we randomly sample from the public

set to obtain a subset of the same size as the private set. This public subset is used for the

synthesis. The number of classes of the public dataset is not required to be the same as

the private set, because we use the soft labels of the teacher model. Note that, there is no

one-to-one correspondence between public and private set images. Section  3.4.10 reports an

ablation study of the various loss terms.

Results. Table  3.2 reports the accuracy of the ResNet18 DP-teacher model trained on

various datasets. Table  3.3 summarizes the accuracy results for MNIST, FashionMNIST,

CelebA-Hair, and CelebA-Gender as private datasets and TinyImageNet, Places365, Fash-

ionMNIST, MNIST, and LSUN as public datasets. Table  3.3 reports the performance of the

student model when performing 0 iterations, reported as DP-ImgSyn(0). The student model

is trained on the DP-ImgSyn generated images and the test set is the private test set. We

report the performance with early stopping at kexp iterations as DP-ImgSyn(kexp) and the

optimal iterations to stop as kopt.

Conclusion. From Table  3.3 , we observe that, on average, when the private datasets are

aligned over various public datasets, DP-ImgSyn(k) performs similar to DP-ImgSyn(0). For

some datasets, we observe kopt = 0, i.e., the proposed alignment process does not improve

performance much. However, when the datasets are misaligned, like in the case of FashionM-

NIST and MNIST, we see DP-ImgSyn(k) performs significantly better (≈17% improvement

in student model accuracy, for FashionMNIST private dataset with MNIST public dataset

initialization for ε ∈ {1, 10}). Moreover, in Table  3.3 we see that for each private dataset,

we use multiple public datasets as initialization and they result in similar accuracy. Thus,

the impact of the domain gap (accuracy) between public and private images is minimal. For

more details about the interference of the private and public images refer to Section  3.4.11 .
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Table 3.3. Comparative Table with ε ∈ {1, 10} for MNIST, FashionMNIST,
CelebA-Hair, and CelebA-Gender as private datasets using TinyImageNet,
Places365, FashionMNIST, MNIST, and LSUN as public datasets. Results
are mean ± std over three different seeds. The models are trained on the
synthetic images generated by DP-ImgSyn (training set) and evaluated on the
test set of the private dataset (testing set).

Private Dataset ε Public Dataset DP-ImgSyn(0) DP-ImgSyn(kexp) kexp kopt

MNIST

ε = 1
TinyImageNet 85.83 ± 0.13 85.98 ± 0.06 10 10

Places365 85.00 ± 0.30 86.01 ± 0.22 10 10
FashionMNIST 85.56 ± 0.32 86.24 ± 0.03 10 10

ε = 10
TinyImageNet 92.97 ± 0.65 94.03 ± 0.64 10 10

Places365 92.63 ± 0.23 93.74 ± 0.18 10 10
FashionMNIST 93.61 ± 0.37 93.90 ± 0.30 10 10

FashionMNIST

ε = 1
TinyImageNet 74.99 ± 0.21 74.93 ± 0.02 1 0

Places365 75.08 ± 0.15 74.94 ± 0.20 1 0
MNIST 51.58 ± 2.28 68.38 ± 0.34 10 10

ε = 10
TinyImageNet 79.04 ± 0.04 78.71 ± 0.20 1 0

Places365 78.73 ± 0.14 78.80 ± 0.05 1 1
MNIST 54.78 ± 1.15 71.51 ± 1.49 10 10

CelebA-Hair
ε = 1 LSUN 79.89 ± 0.08 79.42 ± 0.14 1 0

Places365 79.91 ± 0.08 79.50 ± 0.15 1 0

ε = 10 LSUN 81.31 ± 0.04 79.28 ± 0.20 1 0
Places365 81.33 ± 0.12 78.73 ± 0.44 1 0

CelebA-Gender
ε = 1 LSUN 89.91 ± 0.15 89.17 ± 0.26 1 0

Places365 90.06 ± 0.05 89.03 ± 0.19 1 0

ε = 10 LSUN 90.99 ± 0.16 89.90 ± 0.26 1 0
Places365 91.22 ± 0.04 89.27 ± 0.99 1 0

3.4.4 Comparison with other Techniques

Experiment. This section compares our proposal with previous approaches: DP-GAN

[ 96 ], DP-MERF [ 126 ], P3GM [ 127 ], DataLens [ 123 ] and G-PATE [  129 ]. For a fair comparison,

we compare with techniques that use similar DP-training schemes (i.e., variants of DP-

SGD). Note, that we exclude comparison with DPGEN [  124 ] because privacy guarantees

are compromised due to errors as reported in [  125 ]. The results for other techniques are

the best accuracy results reported in prior publications. For our results, we report our

best performance results from Table  3.3 . Specifically, for ε = 1, we use as public dataset
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Table 3.4. Comparison Table with state-of-the-art techniques for ε ∈ {1, 10}
for MNIST, FashionMNIST, CelebA-Hair, and CelebA-Gender. Results for
DP-ImgSyn are mean over three different seeds. The best-performing frame-
work is highlighted in bold, and the second-best is underlined. DP-GAN refers
to [ 96 ], DP-MERF refers to [  126 ], P3GM refers to [  127 ], DataLens refers to
[ 123 ] and G-PATE refers to [  110 ].

Dataset ε DP-GAN DP-MERF P3GM DataLens G-PATE DP-ImgSyn (ours)

MNIST 1 40.36% 63.67% 73.69% 71.23% 58.80% 86.24%
10 80.11% 67.38% 79.81% 80.88% 80.92% 94.03%

FashionMNIST 1 10.53% 58.62% 72.23% 64.78% 58.12% 75.08%
10 60.98% 61.62% 74.80% 70.61% 69.34% 79.04%

CelebA-Hair 1 34.47% 44.13% 45.32% 60.61% 49.85% 79.91%
10 39.20% 52.25% 44.89% 62.24% 62.17% 81.33%

CelebA-Gender 1 53.30% 59.36% 56.73% 69.96% 67.02% 90.06%
10 52.11% 60.82% 58.84% 72.87% 68.97% 91.22%

initialization FashionMNIST, MNIST, Places, and Places for the private datasets MNIST,

FashionMNIST, CelebA-Hair, and CelebA-Gender, respectively. For ε = 10, we use as

public dataset initialization TinyImageNet, TinyImageNet, LSUN, and Places for the private

datasets MNIST, FashionMNIST, CelebA-Hair, and CelebA-Gender, respectively. Regarding

DP-ImgSyn initialization, we could consider the use of GAN-generated images to initialize

the DP-ImgSyn. However, doing this would violate the property of visual dissimilarity

between the synthetic and the private images, since GAN-generated images are visually

similar to the private images. Therefore, we only consider the use of public images and noise

(see Section  3.4.10 provides for a more thorough discussion on noise) for the DP-ImgSyn

initialization.

Results. Table  3.4 compares the performance of the proposed technique with state-of-

the-art techniques.

Conclusion. We observe that our proposed method significantly outperforms generative

techniques that use similar DP training schemes (up to ≈ 20%, for both CelebA-Hair and

CelebA-Gender for ε = 1).
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Table 3.5. Comparison Table with state-of-the-art techniques for ε = 0.2 for
MNIST and FashionMNIST and TinyImageNet as the public dataset initial-
ization. Results for DP-ImgSyn are mean over three different seeds. DP-GAN
refers to [ 96 ], DP-MERF refers to [  126 ], P3GM refers to [  127 ], DataLens refers
to [  123 ] and G-PATE refers to [  110 ].

DP-GAN DP-MERF P3GM DataLens G-PATE DP-ImgSyn (Our)
MNIST 11.04% 62.61% 8.20% 23.44% 22.30% 77.37%

FashionMNIST 10.21% 52.61% 12.80% 22.26% 18.74% 70.63%

Table 3.6. Comparison Table with state-of-the-art techniques using FID score
(lower is better) for CelebA dataset with Places365 (A) and LSUN (B) as
public datasets for DP-ImgSyn.

Methods DP-GAN DP-MERF P3GM DataLens G-PATE DP-ImgSyn (ours)
ε 104 104 104 10 10 10

FID ↓ 403.94 327.24 435.60 320.84 305.92 188.62 (A), 194.88 (B)

3.4.5 Comparison With SOTA under Strong Privacy Guarantees

In this section, we present experiments with MNIST and FashionMNIST as private

datasets with an epsilon value of 0.2 and TinyImageNet as the public dataset initializa-

tion. Table  3.5 summarizes the comparison results. Our method demonstrates better ac-

curacy than the best-performing SOTA (DP-MERF) by 14.76% on MNIST and 18.02% on

FashionMNIST.

3.4.6 Image Quality

In this section, we use Frechet Inception Distance (FID) [ 147 ] to measure image quality

which is common practice in literature [  123 ]. FID score is calculated based on the feature

representations extracted from an ImageNet pre-trained deep neural network (Inception-

v3 model). However, the FID score is not recommended as a metric for grayscale images

(MNIST, FashionMNIST) because it involves a network pre-trained on RGB images. This

affects the evaluation and the resulting evaluation is not meaningful, as explained in [ 123 ].

55



Figure 3.5. Comparing Private Dataset (left), DP-ImgSyn generated images
for ε = 10, δ = 10−5 with Places365 as the public dataset initialization (center)
and DP-GAN [  96 ] generated images, ε = 100, δ = 10−5 (right).

Thus we report the results only on the CelebA dataset. Moreover, we compare private dataset

images, DP-ImgSyn generated images, and DP-GAN [ 96 ] generated images in Figure  3.5 .

Experiment. We evaluate DP-ImgSyn generated images using the FID score and com-

pare with prior works.

Results. Table  3.6 compares the FID score of the generated images from various prior

works when using CelebA as the private dataset. When using DP-ImgSyn we initialize it

with Places365 (reported as A) and LSUN (reported as B) as the public dataset.

Conclusion. Our proposal achieves a low FID score (lower is better) and outperforms

state-of-the-art works.

3.4.7 Visualizations

Figure  3.6 provides illustrations for MNIST, FashionMNIST, and CelebA Gender as

private images, the DP-ImgSyn generated images and the corresponding public images and

Gaussian Noise that were used as initialization for DP-ImgSyn.

3.4.8 Beyond Generative Methods

This section presents results on higher resolution (224 x 224) and more varied datasets

with which generative techniques often have difficulty.
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Figure 3.6. We visualize the private, synthetic, and public images (from
left to right) for: (first row) MNIST as private dataset with TinyImageNet
as public dataset (on TinyImageNet we apply grayscale image transformation
because MNIST images are grayscale), (second row) FashionMNIST as private
dataset with TinyImageNet as public dataset (on TinyImageNet we apply
grayscale image transformation because FashionMNIST images are grayscale),
(third row) CelebA Gender as private dataset with Places365 as public dataset,
(fourth row) MNIST as private dataset with Gaussian Noise with zero mean
and one standard deviation as initialization.

Experiment. We consider ImageNette and CIFAR-10 as private datasets and we use

the proposed DP-ImgSyn technique. For ImageNette, we use a resolution of 224 × 224 with ε

= 105, initialized with Textures as public dataset; for CIFAR-10, we select ε = 10, initialized

with TinyImageNet as public dataset. Note that generative methods do not report results

on these datasets.

Results. A ResNet18 student model trained on the DP-ImgSyn generated dataset for

ImageNette (224 × 224) achieved 39.38% accuracy on the test set, while the teacher model

achieves 43.26% accuracy. Similarly, for CIFAR-10, a ResNet18 student trained on DP-

ImgSyn generated dataset achieved 45.66% accuracy on the test set, while the teacher

model achieves 42.95% accuracy.
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Table 3.7. Comparative Table with ε ∈ {1, 10} for MNIST, and CelebA-
Gender as private datasets using TinyImageNet, Places365, FashionMNIST,
and LSUN and Places365 as public datasets respectively. Results are mean ±
standard deviation over three different seeds. The models are trained on the
synthetic images generated by DP-ImgSyn (training set) using a ResNet18 as
the teacher model. The student model architecture is VGG11, MobileNetV2,
ShuffleNetV2, and ResNet18. The student models are evaluated on the test
set of the private dataset (testing set).

Student Model Architecture
Private Dataset ε Public Dataset VGG11 MobileNetV2 ShuffleNetV2 ResNet18

MNIST

ε = 1
TinyImageNet 85.56 ± 0.28 84.34 ± 0.70 85.15 ± 0.16 85.98 ± 0.06

Places365 85.65 ± 0.48 84.02 ± 0.33 85.28 ± 0.22 86.01 ± 0.22
FashionMNIST 86.37 ± 0.42 84.95 ± 0.28 85.91 ± 0.06 86.24 ± 0.03

ε = 10
TinyImageNet 94.57 ± 0.25 92.08 ± 0.62 94.04 ± 0.09 94.03 ± 0.64

Places365 93.91 ± 0.26 91.75 ± 0.74 93.22 ± 0.24 93.74 ± 0.18
FashionMNIST 94.70 ± 0.18 92.66 ± 0.95 92.91 ± 0.91 93.90 ± 0.30

CelebA-Gender
ε = 1 LSUN 88.32 ± 0.32 88.31 ± 0.30 89.44 ± 0.17 89.17 ± 0.26

Places365 88.61 ± 0.38 88.49 ± 0.14 89.16 ± 0.44 89.03 ± 0.19

ε = 10 LSUN 89.36 ± 0.55 88.85 ± 0.25 89.54 ± 0.28 89.90 ± 0.26
Places365 89.40 ± 0.50 87.85 ± 0.26 89.02 ± 0.02 89.27 ± 0.99

Conclusion. The ImageNette results suggest that DP-ImgSyn is not limited by the im-

age resolution, unlike existing generative techniques. ImageNette and CIFAR-10 results in-

dicate that the DP-ImgSyn technique is better suited to more complex and higher-resolution

datasets when compared to generative techniques.

3.4.9 Generalization to Other Network Architectures

This section presents results with various network architectures for the student network

to evaluate whether our released dataset can be used to train any network architecture.

Experiment. We use DP-ImgSyn to generate the synthetic images using a ResNet18

as the teacher model. The student model architecture is VGG11 [  140 ], MobileNetV2 [  141 ],

ShuffleNetV2 [  142 ], and ResNet18 [  139 ]. For ε = 1, 10 we use MNIST and CelebA Gender as

the private dataset initialized with TinyImageNet, Places365, FashionMNIST, and LSUN,

Places365 respectively.
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Results. Table  3.7 summarizes the results across the various student architectures.

We observe that the accuracy is similar across the architectures (VGG11, MobileNetV2,

ShuffleNetV2), and similar to ResNet18 which has the same architecture as the teacher

model.

Conclusion. The outcome of this experiment is that the synthetic images can be used

to train any student network architecture. Thus, DP-ImgSyn is not restricted by the teacher

model architecture.

3.4.10 Loss Term Ablation Study

In this section, we evaluate the effect of each loss term on the accuracy of the model:

Rfeature, Rclassif , Rtv, and Rl2 . The loss term ablation study is summarized in Table  3.8 .

We present the results for MNIST as the private set with epsilon=10 when using TinyIma-

geNet, Places365, and FashionMNIST as public datasets using three different seeds. To get

further insight, we also present results when using Gaussian Noise with mean 0 and standard

deviation 1 as initialization for the synthetic images. We make the following observations:

1) from the Gaussian Noise results we see that the feature loss that uses the batch nor-

malization statistics significantly affects the accuracy (≈ 26% accuracy drop when feature

loss was excluded in the synthesis loss). 2) when all the loss terms were used this led to a

lower standard deviation between the seeds and thus more stability between the runs. The

significant effect of the feature loss can be attributed to the value of the scaling coefficient

associated with it.

3.4.11 Interference of the features between Public and Private Images

In this section, we quantify the interference of the public image features on the student

model test accuracy. To evaluate this, we perform the following experiment: we initialize

the synthetic images with Gaussian noise and then perform DP-ImgSyn, using MNIST as

the private dataset and epsilon equal to 10. This will set the lower bound on the interference

that the public dataset has on the optimization since the starting images are random. We

evaluate the accuracy of the student model trained on the synthetic images initialized with
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Table 3.8. Ablation study on the loss terms for MNIST as the private dataset,
ε = 10, and TinyImageNet, Places365, FashionMNIST, and Gaussian Noise as
initialization.

Rfeature Rclassif Rtv Rl2 TinyImageNet Places365 FashionMNIST Gaussian Noise
3 7 7 7 94.30 ± 0.25 93.74 ± 0.13 94.02 ± 0.09 90.07 ± 1.59
3 3 7 7 94.31 ± 0.09 93.73 ± 0.24 94.19 ± 0.25 89.42 ± 2.36
3 3 3 7 94.34 ± 0.31 93.74 ± 0.17 93.94 ± 0.28 89.82 ± 1.00
3 3 3 3 94.03 ± 0.64 93.74 ± 0.18 93.90 ± 0.30 88.53 ± 0.33
7 3 3 3 93.03 ± 0.63 93.32 ± 0.30 91.70 ± 2.24 63.48 ± 13.62

Table 3.9. The interference of the features of the public images on the private
images. The private dataset is MNIST, ε = 10. The results for the datasets
marked with * are from Table  3.3 , and are included in this table as a reference
for comparison with the Gaussian Noise.

Private Dataset ε Initialization DP-ImgSyn(0) DP-ImgSyn(k)

MNIST ε = 10

Gaussian Noise 30.12 ± 5.08 90.55 ± 1.67
TinyImageNet* 92.97 ± 0.65 94.03 ± 0.64

Places365* 92.63 ± 0.23 93.74 ± 0.18
FashionMNIST* 93.61 ± 0.37 93.90 ± 0.30

Gaussian noise (Table  3.9 ). We observe that the accuracy drops about 3.4% for the DP-

ImgSyn with Gaussian noise initialization compared to best-performing public images. Even

though there is interference from the public set, this effect is minimal compared to the

effect of DP-ImgSyn. Without DP-ImgSyn, the student model trained using Gaussian noise

achieves 30.12% accuracy on MNIST while with DP-ImgSyn it achieves 90.55% (Table  3.9 ).

3.4.12 Gaussian Noise Initialization with Low-pass Filtering

In this section, we present the results when Gaussian noise is used as initialization with

MNIST as the private dataset and ε = 10, and then we apply low pass filtering implemented

as a Gaussian blur [  148 ]. The results for various kernel sizes are summarized in Table  3.10 .

Notably, low pass filtering improves the accuracy of the Gaussian noise initialization by

up to 1.07% (results for kernel size 3). However, it is still lower (≈ 2.4%) than the best-
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Table 3.10. Gaussian Noise with low-pass filtering as initialization with
MNIST as the private dataset and ε = 10. The low pass filtering is imple-
mented as a Gaussian blur [  148 ] for various kernel sizes.

Low-pass Filtering
Without Low
Pass Filtering Kernel Size = 3 Kernel Size = 7 Kernel Size = 11 Kernel Size = 15

90.55 ± 1.67 91.62± 1.35 90.82 ± 0.96 91.10 ± 0.41 91.18 ± 1.23

performing public dataset initialization. Therefore, random noise can as initialization when

public images are unavailable, yielding satisfactory performance albeit with some accuracy

degradation.

3.4.13 Visualizations of ImgSyn Using a Real Example

In this section, we present a real example of Figure  3.2 . In Figure  3.7 we show how ImgSyn

can better sample the latent space and improve the decision boundary of the student model.

For this experiment, we generated 2D data by sampling from a Uniform distribution in the

range [0, 1]. The labels were set to 0 or 1 based on the cubic y = −1.4x3 + 0.9x12 + 0.34.

That is the cubic formed the decision boundary, if y > 0 label = 1 and vice versa. The cubic

was chosen to have a non-linear decision boundary. Since the data is 2D we can visualize

the decision boundary in the input space. The top left in Figure  3.7 shows the training data,

the two classes shown in green (class 1) and orange (class 2). The teacher model was trained

on this classification problem. Please note no DP was used during training since we want

to demonstrate ImgSyn. The network confidence is visualized as a heatmap. Blue is high

confidence that the sample is in class 1 and yellow is high confidence that the sample is in

class 2. The top right shows the same visualization for the student model when applying

vanilla knowledge distillation (KD) between the teacher and the student model. It shows the

decision boundary at the end of training and the data (illustrated in red) that was used for

performing knowledge distillation. For this example, we used two Gaussian clusters centered

at (0.25, 0.25), (0.75, 0.75) with a deviation of 0.25 as the dataset to perform knowledge
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Figure 3.7. Example visualizing deep neural networks decision boundary
when using ImgSyn and not using ImgSyn, a data-driven version of Figure
 3.2 : (a) visualization of the teacher decision boundary, and the training data
belonging to two classes. The two classes are shown in green (class 1) and
orange (class 2). The teacher network confidence is visualized as a heatmap.
Blue illustrates high confidence that the sample is in class 1 and yellow is high
confidence that the sample is in class 2, (b) visualization of the decision bound-
ary for the student model when applying vanilla KD between the teacher and
the student model, and the Gaussian data used for the vanilla KD (visualized
in red) this is analogous to public data, (c) visualization of the teacher decision
boundary and the ImgSyn generated data (magenta). The ImgSyn data are
generated after applying our ImgSyn on the Gaussian data (illustrated in red
color in image (b)) to align it with the source distribution, (d) visualization
of the decision boundary of the student model trained on ImgSyn data, and
the ImgSyn data (magenta) used for training the student model. The decision
boundary of the student model trained on ImgSyn data has a better match to
the teacher model than the student trained with on Gaussian data.

distillation from the teacher to the student. Vanilla KD is not able to transfer the decision

boundary well from the teacher to the student. The bottom left shows the data after applying
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our ImgSyn on the same Gaussian dataset to align it with the source distribution, and the

teacher decision boundary when passing the ImgSyn generated data. We see how the points

move closer into the range of [0, 1] to match the source distribution and on the bottom right

we show the result of training a student model on the ImgSyn data. The decision boundary

of the student model trained on ImgSyn data has a better match to the teacher model than

the student trained with vanilla KD on Gaussian data.

3.4.14 Training Hyper-parameters

DP-ImgSyn implementation uses the Pytorch [ 149 ] framework, and the experiments were

conducted on NVIDIA GeForce GTX 1080 Ti with 11 GB of memory with the Ubuntu

operating system.

DP Teacher Model Hyper-parameters. For the DP statistics capture for the teacher

model (Section  3.3.1 ), we used the hyper-parameters reported in Table  3.11 . The ε denotes

the privacy budget, ηtr is the number of training epochs, Ωtr is the batch size used for DP-

SGD training, γtr is learning rate used for training, C denotes the maximum norm limit

for the gradient vector g (g/max(1, ‖g‖2/C)), σ controls the amount of noise added to g

(g +N (0, σ2C2I)), ηbn is the number of epochs used for capturing batch statistics, and Ωbn

is the batch size used for capturing batch statistics in Table  3.11 . The accuracy results of

the corresponding teacher models are reported in Table  3.2 .

DP Image Synthesis Hyper-parameters. For the DP Image Synthesis (described in

Section  3.3.2 , and Algorithm  1 ), we use the Adam optimizer [  150 ] with synthesis learning

rate γsyn = 0.1, betas β1 = 0.5, β2 = 0.99. For MNIST and FashionMNIST, we use a batch

size of 80; for CelebA-Hair and CelebA-Gender, we use a batch size of 60. Table  3.3 reports

the number of optimization iterations for each dataset and privacy budget.

The total loss optimized during image synthesis is the summation of the following losses:

Rfeature, Rclassif , Rtv, and Rl2 (Equation  3.5 ). The scaling coefficients corresponding to each

of these losses are denoted as αf , αc, αtv, and αl2 , respectively. Table  3.12 reports the values

of the scaling coefficients used in our simulations. Furthermore, we perform an ablation

study on the scaling coefficients that control the total loss on MNIST as the private dataset
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Table 3.11. Hyper-parameters used for DP training and batch statistics
capture experiments on the vision datasets: MNIST, FashionMNIST, CelebA-
Hair, CelebA-Gender, CIFAR-10, and ImageNette. The ε denotes the privacy
budget, ηtr is the number of training epochs, Ωtr is the batch size used for
DP-SGD training, γtr is learning rate used for training, C denotes the maxi-
mum norm limit for the gradient vector g (g/max(1, ‖g‖2/C)), σ controls the
amount of noise added to g, ηbn is the number of epochs used for capturing
batch statistics, and Ωbn is the batch size used for capturing batch statistics
Dataset ε ηtr Ωtr γtr C σ ηbn Ωbn

MNIST 1 4 128 0.01 1.0 0.8 2 64
10 14 128 0.01 1.0 0.5 2 64

FashionMNIST 1 30 50 0.01 1.2 1 2 64
10 20 128 0.01 1.2 0.5 2 64

CelebA Hair 1 18 128 0.001 1.0 0.8 5 128
10 22 128 0.001 1.0 0.45 3 128

CelebA Gender 1 18 128 0.001 1.0 0.8 4 128
10 22 128 0.001 1.0 0.5 4 128

CIFAR-10 10 12 128 0.001 1.0 0.5 5 128
ImageNette 105 57 8 0.001 1.0 0.3 3 8

for epsilon 10, and TinyImageNet as the public dataset initialization. Specifically, we search

the values for each loss scaling factor while keeping the remaining scaling factors constant.

Table  3.13 summarizes our results. We observe that our method is robust to the scaling factor

hyper-parameter selections. Then, we repeated the experiment using the same setup (MNIST

as the private dataset with epsilon set to 10), but with Gaussian noise as initialization. The

findings in Table  3.13 consistently affirm our earlier observation, highlighting the robustness

of our method to different scaling factor hyper-parameter selections.

Student Model Training on DP-ImgSyn Synthetic Images Hyper-parameters.

We use Stochastic Gradient Descent (SGD) optimizer [  151 ] with a learning rate η = 0.1,

momentum 0.9, and weight decay 1e-4 for training a student model on the synthetic images.
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Table 3.12. Values of scaling coefficients for the loss terms Rfeature, Rclassif ,
Rtv, and Rl2 in Equation  3.5 : αf , αc, αtv, and αl2 .

αf αc αtv αl2

10 1 2.5e-5 3e-8

Table 3.13. Ablation study on the scaling coefficients αf , αc, αtv, and αl2 for
MNIST as the private dataset, ε = 10, and TinyImageNet and Gaussian Noise
as the public dataset initialization.

Loss Dataset Hyperparameter Value and Accuracy

Rfeature

αf = 0.1 αf = 1.0 αf = 10.0
TinyImageNet 93.99 ± 0.30 94.56 ± 0.15 94.03 ± 0.64
Gaussian Noise 89.55 ± 0.92 90.30 ± 1.43 88.53 ± 0.33

Rclassif

αc = 0.01 αc = 1.0 αc = 10.0
TinyImageNet 94.42 ± 0.31 94.03 ± 0.64 94.49 ± 0.04
Gaussian Noise 90.99 ± 0.86 88.53 ± 0.33 90.81 ± 0.83

Rtv

αtv = 2e-5 αtv = 0.01 αtv = 10.0
TinyImageNet 94.03 ± 0.64 94.27 ± 0.42 94.32 ± 0.12
Gaussian Noise 88.53 ± 0.33 89.63 ± 1.90 89.81 ± 2.16

Rl2

αl2 = 3e-8 αl2 = 0.0001 αl2 = 0.01
TinyImageNet 94.03 ± 0.64 94.45 ± 0.10 94.53 ± 0.16
Gaussian Noise 88.53 ± 0.33 90.93 ± 1.33 89.87 ± 1.01

We use the multi-step learning rate scheduler with γ = 0.1 and milestones at 120, 150, and

180 epochs. We train the models for 200 epochs with 256 as batch size. The temperature

value from equation  3.6 in our simulations is T = 100 for MNIST and FashionMNIST and

T = 10 for CelebA-Hair and CelebA-Gender.

DP-ImgSyn Label Generation Implementation. We provide the PyTorch code

that we use for generating the targets for DP-ImgSyn, given the number of classes and batch

size. Since the label generation algorithm is independent of the data, there is no privacy

leakage.

def gene ra t e_ labe l s ( num_classes , batch_size ) :
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x = torch . arange ( num_classes )

t a r g e t s = torch . squeeze (x . r epeat (1 , int ( batch_size /num_classes ) ) )

return t a r g e t s

3.5 Summary

Deep neural networks are state-of-the-art solutions for various tasks in multiple domains,

but they require a significant amount of data for training. However, certain data cannot be

publicly released due to privacy restrictions. In this chapter, We present a discriminative

approach (DP-ImgSyn) for releasing synthetic images that have DP guarantees, maintain

the utility of the private images, and are visually dissimilar to the private images. The

proposed framework leverages dataset alignment to obfuscate private sensitive images in

public images. This alignment/synthesis process improves the performance of even highly

misaligned public-private dataset pairs. We observe ≈ 17% improvement in the performance

of highly misaligned datasets. Also, we show that the non-generative DP-ImgSyn approach

significantly outperforms (up to ≈ 20% improvement in classification accuracy) generative

techniques using similar DP-training schemes. Further, we present results on higher reso-

lution (224 x 224) and more varied datasets with which generative techniques often have

difficulty. Our findings suggest discriminative (a.k.a non-generative) approaches might bet-

ter suit synthetic dataset release. However, further research is needed to identify the limits

of discriminative and generative techniques.
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4. NEURAL NETWORK COMPRESSION VIA

MIXED-PRECISION QUANTIZATION

Deep Neural Networks are state-of-the-art solutions for solving a plethora of complex tasks,

varying from image classification, object detection, and voice recognition tasks to communi-

cation and networking applications [  152 ], [  153 ]. These networks require tremendous compu-

tational resources, which might not always be available in resource-constrained devices, to

achieve competitive performance on these tasks. A promising solution is the quantization

of the weights of the network. This process trains or converts a full-precision network into

limited precision while trying to maintain performance.

There exist a great number of works in literature that train a neural network from scratch

with limited precision and achieve high compression rates [  154 ]–[ 156 ]. However, training

in discrete space is challenging, and the convergence is slow [ 157 ]. To address this issue,

emerging works convert a full precision network into its quantized version [  157 ], [ 158 ]. Such

techniques are commonly referred to as post-training quantization. Selecting the precision

for each layer is a non-trivial problem as the search space is exponential in size. For a network

with L layers and m possible bit-width choices for each layer, we have mL possible choices.

Many prior works that avoid the exponential search problem have suggested heuristics to

allocate the mixed-precision bit-widths or use a proxy to formulate a solvable optimization

problem [  159 ], which adds extra computational overhead. Such methods deploy Bayesian

optimization [ 160 ], evolutionary search algorithms, [ 161 ], [  162 ] calculation of the layer-wise

quantization error [ 159 ] and adversarial noise computation [  158 ]. We provide more details

for the methods mentioned above in section  4.1 . Our work belongs in the post-training

quantization category that uses different bit precision across the network’s layers and reduces

the computational overhead by using a multi-layer perceptron (MLP) model for determining

the mixed-precision bit widths.

We study the impact of weight quantization on the performance of neural networks. We

observe that more aggressive quantization leads to higher divergence between the output

of the full precision and the quantized network, and vice versa. Based on this observation,

we propose a novel approach to mixed-precision bit-width allocation using a Multi-Layer-
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(a) Collection of the Training Set for the MLP (b) MLP Training
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(for the j-th training sample) 
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Divergence

Figure 4.1. Illustration of the proposed framework: (a) the collection of the
training set for the MLP. Each layer of the network is quantized with different
precision bi, i = 1, .., L, where L is the number of layers in the network. The
KL-divergence Ω between the softmax output of the original full precision and
the quantized model is computed. This process is repeated S times to collect
the entire dataset for the MLP. (b) The MLP is trained using the collected
dataset. The input to the MLP is the KL-divergence Ωj and the output is the
bit-width across the layers of the network, for each of the training samples j,
j = 1,..., S. The MLP has L output neurons, which is equal to the number of
layers of the network intended to be quantized.

Perceptron (MLP) model trained using the Kullback-Leibler (KL) divergence between the

softmax output of the full precision and the quantized network [  163 ]. The KL divergence is

used as a metric to determine the performance divergence between the two networks. The

network intended to be compressed is quantized with multiple mixed-precision bit-width

configurations determined using Monte Carlo sampling of the search space. For each sam-

ple, the KL divergence at the output is computed. Pairs of the bit-widths (vector) and

the KL-divergence are collected, and they constitute the training set for the MLP. The

MLP is trained to predict the bit-width configuration (output), given as input the desired
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KL-divergence. Since multiple bit-width configurations exist for a given KL-divergence, we

introduce a network size penalty to the MLP loss to ensure the network learns to predict

configurations leading to the smallest network size. Figure  4.1 illustrates the proposed frame-

work. We evaluate our framework on the ImageNet dataset [  84 ], which is a highly complex

dataset for image classification problems, using three different deep neural network architec-

tures, namely VGG16 [ 140 ], ResNet50 [  139 ] and GoogLeNet [  164 ]. The experimental results

indicate that our method achieves 8x network compression with at most a 0.7% accuracy

drop across all the evaluated network architectures.

The rest of this chapter is organized as follows: the related works are summarized in

Section  4.1 . Section  4.2 presents the impact of quantization on the network and describes

the implementation details of the proposed framework: training set collection for the MLP,

MLP training, and bit-width allocation across the layers of the network. Section  4.3 reports

the experimental evaluation of the proposed method, compares it with state-of-the-art works,

and analyzes the computational overhead. Finally, section  4.4 concludes the chapter.

4.1 Related Work

In the domain of network quantization, there exist two main approaches [  165 ]: Quan-

tization - Aware - Training (QAT) and Post-Training Quantization (PTQ). QAT refers to

the case of either training a network from scratch with limited precision or fine-tuning for

a few epochs with limited precision after network quantization. PTQ refers to the case of

quantizing a pre-trained full precision network without retraining it. Note, that methods

included in the PTQ category can be data-free or may require a small calibration set, which

is readily available [  165 ]. It is worth mentioning that, both QAT and PTQ categories can

include methods that allocate mixed-precision weights across the layers of the network. As

far as QAT is concerned, there is a plethora of works that trains highly compressed networks

[ 156 ], [  160 ], [  166 ]–[ 170 ]. In [ 169 ], the authors model the quantization problem as a discrete

constrained optimization problem which is solved using the Alternating Direction Method

of Multipliers (ADMM) during training. [ 168 ] proposes incremental weight partitioning into

two groups, group-wise quantization and retraining. Authors in [ 167 ] introduces a quanti-
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zation method to reduce this loss by learning a symmetric code book for particular weight

subgroups. Furthermore, [ 166 ] proposes a quantization scheme that allows inference to be

carried out using integer-only arithmetic. In [  156 ] the authors suggest a method that uses

low bit-width gradients along with quantized weights and activations during training. Au-

thors in [  160 ] start with a pre-trained full-precision network, deploy Bayesian optimization

to allocate the bit precision across the layers of the network, and then fine-tune the network

with limited precision for a few epochs. An example of extremely compressed networks are

the binary and ternary networks [  154 ], [  155 ], [  171 ]–[ 173 ]. However, as mentioned earlier,

QAT leads to slow network convergence, and optimization is more difficult in the discrete

space [ 157 ]. Moreover, the fine-tuning step after quantization can be impractical in many

real scenarios, where there is no time to retrain the network after quantization, as the net-

work needs to be deployed immediately [  174 ]. For example, in online learning the network

needs to be trained on new data and then deployed immediately.

The second approach (PTQ), including our work, has emerged to address the above chal-

lenges. Authors in [  157 ], [  175 ] suggest quantizing the network using equal bit-width across

all the layers by using the signal-to-quantization-noise-ratio (SQNR) and the floating and

fixed point error probability, respectively. This approach avoids searching the exponential

solution space, however, results in sub-optimal bit-width allocation as each layer might have

a different impact on the network’s performance. Thus, researchers have suggested using

mixed-precision quantization across the layers of the network. These works commonly pro-

pose using a proxy to formulate a solvable optimization problem for bit-width allocation.

In [  161 ], [ 162 ], the authors use an evolutionary algorithm-based method to allocate the bit

widths. Authors in [ 159 ] formulate an optimization problem based on layer-wise quantiza-

tion errors and they solve it using Lagrangian multipliers. The work in [  158 ] suggests the

use of adversarial noise to formulate the optimization problem which is solved by using the

Karush-Kuhn-Tucker (KKT) conditions. Further, research has emerged [ 176 ] that special-

izes in the quantization policy for the different hardware architectures. Different from [  176 ],

our work does not assume the underlying hardware. Note, that our proposal belongs to the

data-free PTQ techniques with mixed-precision allocation across the network’s layers. Table

 4.1 lists and summarizes the different methods discussed in this section.
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Table 4.1. Summary of the related work methods.
Method’s Name Method’s Main Distinctive Characteristic

QAT

TBSQ[ 169 ] Alternating Direction Method of Multipliers
INQ[ 168 ] Weight Partition and Group-wise Quantization
SYQ[ 167 ] Learning of a Symmetric Code-book
IAOI[ 166 ] Integer-only Arithmetic

DoReFa[ 156 ] Low Bit-width Gradients during training
CLIP-Q[ 160 ] Bayesian Optimization
BWN[ 154 ] Binary Network
BC[ 155 ] Binary Network

BNN[ 173 ] Binary Network
TWN[ 171 ] Ternary Network
FGQ[ 172 ] Ternary Network

PTQ

AGNP[ 157 ] Floating and Fixed Point Error Probability
FPQ[ 175 ] SQNR
EMQ[ 161 ] Evolutionary Search Algorithm
EvoQ[ 162 ] Evolutionary Search Algorithm
OBA[ 159 ] Lagrange Multipliers
AQ[ 158 ] KKT conditions

HAQ[ 176 ] Hardware-based Quantization Policy

Related to network quantization, in the domain of network compression, there are tech-

niques like pruning, that can be applied after or before quantization to compress the network

further. These techniques are orthogonal to our proposal and the other post-training tech-

niques and can be implemented on top of them for further network compression. For instance,

Han et al. [  177 ] suggest pruning and Huffman coding after quantization. Generally, pruning

works [ 178 ]–[ 181 ] propose the removal of network weights based on some metric (for example

the absolute values of the weights, etc.). In this way, the size of the network can be reduced

and the network can be more easily deployed in resource-constrained scenarios.
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4.2 Multi-Layer Perceptron for Layer-wise Bit-width allocation

4.2.1 Challenges of Quantization

The bit-width allocation across the layers of the network affects its performance and

size. When a quantized network is presented with an input it results in errors or deviations

from a full precision network. This is a result of errors from quantization accumulating at

each layer and reflecting in the output of the network. Different bit-width combinations

lead to different impacts on performance and size. Since the search space of all the possible

combinations of bit-widths is exponential, finding the optimal solution is non-trivial. The

problem is further complicated because two different bit-width combinations may result in

similar deviations (many-to-one mapping) in network performance.

Addressing the challenge of quantifying deviations can be done in two ways either by

combining layer-wise errors into a single metric or by using a cumulative error metric at the

network output. We capture the cumulative impact of the different bit-width combinations

on the network’s output through our proposed method. Further, the proposed method

accounts for the many-to-one problem. If two bit-width combinations have the same impact

on the network’s performance, our method selects the bit-width with the smallest network

size, and it is verified experimentally in section  4.3.2 .

4.2.2 Multi-Layer Perceptron

In this section, we present a novel technique to allocate a layer-wise mixed-precision

bit-width for quantizing a deep neural network. The proposed method uses a Multi-Layer-

Perceptron (MLP) where the input to the MLP is the KL-divergence between the softmax

output of the full precision and the quantized network and the output is the bit-width

configuration for the compressed network. Our methodology consists of three main steps:

sampling the search space to create a custom training set for the MLP, MLP model training,

and prediction of the bit-width configuration for the compressed network.
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4.2.3 Notation

Let M be a full precision L layered deep neural net, let θ symbolize the parameters of

a trained full precision network, and θ̃ the parameters of a quantized network. The input

(image) to the network M is symbolized as x.

4.2.4 Training Set Collection for the MLP

This section describes how the training set for the MLP is collected. Let S be the size

of the training set T for the MLP. Each sample in the training set T is a tuple of input

and label. The label is a bit-width configuration Bj and the input is the corresponding

KL-divergence Ωj between the full precision network and quantized network whose bit-width

configuration is Bj, where j denotes in jth sample in T .

The bit-width configuration Bj = (bij) is a vector of size L where i ∈ {1, .., L}, j ∈ {1, .., S}

and L is the number of layers of the network M . Each element bij ∈ Bj represents the bit-

width for the corresponding layer of the network M . The bit-width configuration Bj is

sampled from the search space using a Monte Carlo sampling with an additional constraint

of bij ∈ [bmin, bmax]. If bij is extremely low i.e. bij < bmin, this leads to high KL-divergence

for most samples in T . Similarly, high bij i.e. bij > bmax results in negligible KL-divergence.

Therefore, bmin and bmax are parameters that are determined experimentally for each network.

This is done by quantizing all the layers with the same bit-width and evaluating the inference

accuracy. The values of bmin and bmax are chosen such that bmin is the maximum bit-width

that leads to an accuracy drop of 50% or greater when compared to the full precision network

and bmax is chosen such that it is the minimum bit-width that maintains the accuracy of

the full precision network. Note, that a straightforward selection for bmax could be the

precision of the original pre-trained model (i.e. bmax = 32 bits). However, the network can

be quantized to 16 bits or sometimes lower bit widths, depending on the model, without

accuracy degradation. Thus, we select bmax as mentioned previously, to avoid quantizing

the network with more bits than needed and at the same time achieving smaller model

size. Furthermore, using bmax < 32 bits reduces the search space during the Monte Carlo

sampling. It is worth mentioning that the above process of using the same bit-width across
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all the layers happens once to obtain the bmin and bmax, and eventually each layer of the

network M is quantized with different bit-widths (mixed-precision bit-width allocation).

For each sampled bit-width configuration Bj = (bij) with j ∈ {1, 2, .., S} and i ∈ {1, .., L},

we quantize the full precision network M with the Bj and the KL-divergence Ωj at the

output is computed. This process results in a training set T with S samples of the form

T = {(Ω1, B1), (Ω2, B2), .., (ΩS, BS)}, which is used to train the MLP. Similarly, we collect

the testing set for the MLP model.

We use the KL divergence between the full precision and the quantized network softmax

output as a metric to quantify the divergence between the two networks. The KL-divergence

(Ω) is calculated as the average of N images from the training set:

Ω = 1
N

N∑
i=1

KL(M(θ, xi), M(θ̃, xi)) (4.1)

Note, that we are using the softmax of the model’s output to obtain the probability dis-

tribution of predicting each class. This probability vector is used for the KL-divergence

computation. By definition, the KL-divergence is a measure of how one probability distri-

bution is different from a second reference probability distribution [  182 ].

4.2.5 MLP Training Process

The MLP training is similar to the training of a typical supervised learning task that

seeks to minimize the empirical risk:

min
θ
L(θ) = 1

S

S∑
j=1

f(MLP (θ; Ωj), Bj) (4.2)

where f(·, ·) is the loss function (typically mean squared error or cross-entropy loss) and S

is the number of samples in the training set.

However, the standard empirical risk described in Equation  4.2 does not account for the

many-to-one mapping problem described in subsection  4.2.1 . The many-to-one mapping

problem, i.e. the problem when two different bit-width configurations result in the same KL

divergence, can be accounted for by ensuring that the MLP learns the configuration that
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Algorithm 2: Bit-width Allocation
Input: Full Precision network M with L layers, desired KL-divergence
Output: Bit-width

1 Sample Collection:
2 for j← 1 to S do
3 Generate the random bit-width Bj
4 Quantize M with Bj
5 Compute the KL-divergence Ωj for N training images
6 Store the pair (Ωj, Bj)
7 Train MLP with the S samples
8 Feed the desired KL-divergence to the MLP and obtain the bit-width configuration

prediction B = (b1, ..., bL) for M

results in the smallest network size. To ensure that the MLP learns the smallest network

size, we need to introduce a penalty parameter in Equation  4.2 . The modified empirical risk

of the MLP includes the size of the quantized network in the loss and it is given by Equation

 4.3 .

min
θ
L(θ) = 1

S

S∑
j=1

f(MLP (θ; Ωj), Bj) + β

S

S∑
j=1

L∑
i=1

bij ∗ pi (4.3)

where f(·, ·) is the loss function (typically mean squared error or cross-entropy loss), S is

the number of samples in the training set, β is a scalar and pi is the number of parameters

of the ith layer of the network M. The product bij ∗ pi corresponds to the size of the ith layer.

The trained MLP predicts the different bit-widths across the layers of the M network (MLP

output), given the desired KL divergence (MLP input). The desired KL divergence is user-

defined. Algorithm  2 summarizes the steps for the bit-width allocation across the layers of

a network M .

4.3 Experimental Results

We present results that deploy our framework to compress the VGG16 [ 140 ], the ResNet50

[ 139 ], and the GoogLeNet [  164 ] network architectures trained on the ImageNet dataset [ 84 ].

The proposed compression framework uses an MLP which consists of two fully connected
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layers with 200 neurons in the hidden layer. The number of output neurons is equal to

the number of layers of the network to be quantized. For example, for a VGG16 model,

which has 16 layers, the MLP will have 16 output neurons. The MLP is trained using

empirical risk minimization given by Equation  4.3 and we use mean squared error as the

loss function f . For all the models, we use an MLP training set of size S = 1200 to train

the MLP, by quantizing the model with Monte Carlo sampled bit-widths and computing the

KL-divergences between the full precision and the quantized model. For the KL-divergence

computation, we observe that N = 50 (refer to Equation  4.1 ) training images are a sufficient

number that captures the KL-divergence between the full precision and quantized model.

Note, that for the KL-divergence calculation, we do not use the testing images but training

images. The activations of the network are set to 8-bit precision for all the simulations. The

proposed methodology is implemented using PyTorch [ 183 ].

4.3.1 Quantization Scheme

In this work, we use uniform symmetric weight quantization and uniform asymmetric

activation quantization for our experiments. We use the ReLU activation function that

always results in non-negative values. This causes an imbalance and therefore asymmetric

is preferred over symmetric quantization for quantizing the activations. Furthermore, per-

tensor quantization of weights and activations is applied, meaning that we use a single set

of quantization parameters (quantizer) per tensor.

4.3.2 KL-Divergence

This section studies the relationship between the size of the network and the KL diver-

gence between the full precision and quantized network output. Figure  4.2 (a) is a plot of

network size versus KL-divergence and visualizes a subset of the training set T that was

used to train the MLP to make the bit-width configuration predictions for the VGG16 [  140 ]

network architecture. Each sample in the training set is depicted as a blue dot. The x-

axis represents the resulting size of the VGG16 network when quantized with a bit-width

configuration B = (b1, ..., bL) from the training set T and the y-axis is the corresponding
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Figure 4.2. The KL-divergence versus the total size of weights and activations
(MB) of: (a) VGG16 [  140 ], (b) ResNet50 [ 139 ], and (c) GoogLeNet [  139 ] on
ImageNet [  84 ]. The x-axis represents the resulting size of the GoogLeNet
network when quantized with a bit-width configuration B = (b1, ..., bL) from
the training set T and the y-axis is the corresponding KL-divergence from T .
The blue dots represent the samples from the MLP training set and the red
dots represent the MLP’s predictions.

KL-divergence from T . We observe that two different bit-width configurations, consequently

two different network sizes, may result in the same KL divergence. This is because the order

of the bit-widths bij in the bit-width configuration B plays a significant role, that is some

layers of the network are more sensitive to quantization than others, which is leveraged with

mixed-precision bit-width allocation.

The proposed training method with the aid of the added penalty described in Equation  4.3 

forces the MLP to learn and predict the bit-width configuration that results in the smallest

network size. We verify this by plotting the MLP predicted sizes in Figure  4.2 (a). The MLP

predictions for various KL-divergence values are marked with red dots. The KL-divergence

values are input to the MLP and the predicted bit-width configurations B = (b1, ..., bL) are

used to compute and plot the resulting network size on the x-axis. We observe from Figure

 4.2 (a) that beyond a certain network size, the KL-divergence value saturates near zero. This

is expected because in this regime the network is not aggressively quantized and therefore

its output does not diverge a lot compared to the original model.

Similarly to Figure  4.2 (a), we plot the training samples T with blue dots and the MLP

predictions with red dots for ResNet50, and GoogLeNet architectures in Figures  4.2 (b)
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Figure 4.3. The bit-width allocation across the layers of (a) VGG16 [ 140 ],
(b) ResNet50 [  139 ], and (c) GoogLeNet [  139 ] for KL-divergence = 0.1.

Figure 4.4. The bit-width allocation across the layers of (a) VGG16 [ 140 ],
(b) ResNet50 [  139 ], and (c) GoogLeNet [  139 ] for KL-divergence = 1.5.

and  4.2 (c), respectively. We make similar observations for ResNet50 and GoogLeNet ar-

chitectures, i.e. the MLP trained for the ResNet50 and GoogLeNet architectures learns the

bit-width configuration leading to the smallest network size.

4.3.3 Bit-width Allocation Analysis

This section presents an analysis of the bit-width allocation across the network’s layers

obtained using our proposed methodology. Firstly, we select KL-divergence to be equal to

0.1 making the divergence between the full precision and the quantized network negligible.

Figure  4.3 (a) illustrates the bit-width allocation for VGG16 that is obtained from the MLP

prediction when the input KL-divergence is equal to 0.1. Next, we repeat the above process,

but we use KL-divergence equal to 1.5 (Figure  4.4 (a)). In this case, the output of the full

precision network significantly diverges from the quantized network. From the bar graphs
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Figure 4.5. The results of state-of-the-art methods on: (a) VGG16 [  140 ], (b)
ResNet50 [  139 ], and (c) GoogLeNet [  139 ] over ImageNet [  84 ] dataset.

in Figures  4.3 (a) and  4.4 (a), we observe that the network is more aggressively quantized

when KL-divergence is 1.5 compared to KL-divergence of 0.1. This result is in line with our

expectation since aggressive quantization introduces more errors and thus the output of the

full precision and the quantized model diverges more.

Moreover, we observe that most of the initial layers have higher bit-width than the later

ones. Our finding is corroborated by previous work that states that trained networks are

more sensitive to their initial layer weights [ 184 ]. For ResNet50 and GoogLeNet, we perform

a similar analysis as VGG16. The resulting bit-width is depicted in Figures  4.3 (b),  4.4 (b),

and  4.3 (c),  4.4 (c), respectively. Note, that similar observations as VGG16, also hold for

ResNet50 and GoogLeNet.

4.3.4 Compression Results and SOTA Comparison

In this section we present the compression results that our method achieves for VGG16

[ 140 ], ResNet50 [  139 ], and GoogLeNet [  164 ] on ImageNet dataset [  84 ] and we compare our

results with state-of-the-art works. Top-1 inference accuracy is the metric used to quantify

the performance of the network.

Our method compresses VGG16 [ 140 ] up to 6x when compared to the full precision

model (32-bit precision weights and activations) with no accuracy drop (see Figure  4.5 (a)).

On ResNet50 and GoogLeNet [  139 ], our method achieves up to 4x compression compared
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to the full precision model (32-bit precision weights and activations) while maintaining the

inference accuracy (see Figures  4.5 (b) and  4.5 (c)).

We compare the results from our experiments with the following state-of-the-art works,

including both 1) QAT methods: Binarized Weight Network (BWN) [ 154 ], Ternary Weight

Network (TWN) [  171 ], Incremental Network Quantization (INQ) [ 168 ], Fine-grained Quan-

tization (FGQ) [  172 ], Two-bit Shift Quantization (TBSQ) [  169 ], Integer Arithmetic-only

Inference (IAOI) [ 166 ], Compression Learning by In-parallel Quantization (CLIP-Q) [  160 ],

Symmetric Quantization (SYQ) [ 167 ], and 2) PTQ methods: Adaptive Quantization (AQ)

[ 158 ], Evolutionary quantization of neural networks with mixed-precision (EMQ) [  161 ], Op-

timizing the Bit Allocation for Network Compression (OBA) [ 159 ] and Mixed Precision

Quantization of DNNs via Sensitivity Guided Evolutionary Search (EvoQ) [  162 ].

Our work demonstrates better performance than uniform bit-width allocation (visualized

with red plot) on VGG16, ResNet50, and GoogLeNet, illustrated in Figures  4.5 (a),  4.5 (b),

and  4.5 (c). This is because uniform quantization treats all the layers equally while mixed-

precision bit-width allocation captures the impact that each layer has to the network’s output

more effectively and efficiently. Our method either outperforms or achieves comparable

results to state-of-the-art works across different networks architectures, as illustrated in

Figures  4.5 (a),  4.5 (b), and  4.5 (c). Our method performs better than all the SOTA works

and has performance comparable with SYQ and OBA on VGG16, FGQ, SYQ, IAOI, INQ and

OBA on ResNet50, and CLIP-Q on GoogLeNet. EvoQ and EMQ perform better than our

method on ResNet50. However, both methods are based on evolutionary search algorithms

that evaluate the fitness function multiple times, and also they require a calibration set to

perform feature adjustments. This adds extra computational complexity, and we report the

exact computational overhead numbers in Section  4.3.5 . Note, that our method achieves high

compression results with less computational overhead than SOTA works, as it is analyzed in

the next section.
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4.3.5 Analysis of Computational Overhead

In this section, we will analyze the computational overhead of our method and we will

compare it with other quantization methods that require retraining and/or use other forms

of optimization. All the experiments were conducted on a system with a Nvidia GTX 1080ti

GPU.

The computational overhead is reported in terms of effort factor (ρ). Effort factor is

defined as the ratio of the number of FLOPs required to compute the bit-width allocation

using a particular method to the number of FLOPs required for one training epoch over the

entire training images of the dataset, in our case ImageNet. The effort factor (ρ) is given by

Equation  4.4 .

ρ = # of FLOPs of an allocation method
# of FLOPs (forward + backward pass) ∗ I

(4.4)

where I is the number of images of the training set. For the ImageNet dataset, the training

set consists of 1.2 million images.

The number of FLOPs required for a training epoch is considered to be three times

the number of FLOPs required for a forward-pass [  185 ]. Note, that the number of FLOPs

required to compute the bit-width allocation of a method, depends on two parameters: 1) if

the method adds a few fine-tuning epochs at the end of bit-width allocation, 2) if the proxy

that it used needs additional statistics, for example the layer-wise error over a few training

images, to formulate the optimization problem.

The computational overhead of our method arises from the following: 1) the MLP train-

ing and, 2) the Monte Carlo sampling and creation of the custom dataset T . For all the

experiments, we use a 2-layer MLP with 200 neurons in the hidden layer. As far as MLP

training overhead is concerned, we observe that one training epoch requires a forward and

backward pass of MLP over the samples of T . VGG16, ResNet50, and GoogLeNet have 16,

50, and 22 layers, respectively, and a training epoch requires a forward and backward pass

over the 1.2 million training images of ImageNet. As the MLP size is significantly smaller

than the size of VGG16/ResNet50/GoogLeNet and T is substantially smaller than the 1.2
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Table 4.2. Comparison of the Computational Overhead of PTQ Methods.
Method Effort Factor (ρ)

OBA [  159 ] 1x
EMQ [  161 ] 0.3x
EvoQ [ 162 ] 0.0022x
This work 0.0016x

million training images of ImageNet; the computational overhead for the MLP training is

minimal compared to one training epoch of VGG16/ResNet50/GoogLeNet.

Regarding the computational overhead due to sample collection for the custom dataset T ,

we observe that this process requires S∗N forward passes on VGG16/ResNet50/GoogLeNet,

where S is the number of training samples of T and N is the number of training images used

for the KL-divergence computation. No backward pass on VGG16/ResNet50/GoogLeNet

is required. This computational overhead is significantly smaller than a training epoch for

VGG16/ResNet50/GoogLeNet because the number of forward passes (S ∗N) is smaller than

the number of forward passes on the entire ImageNet, and no backward pass is required.

Therefore, our method has minimal computational overhead (ρ = 0.0016x) compared to a

training epoch of VGG16/ResNet50/ GoogLeNet on ImageNet.

We compare our computational overhead with other PTQ work [ 160 ]–[ 162 ], [ 166 ], [ 169 ].

We do not compare the computational overhead with works belonging to QAT methods [  154 ],

[ 166 ]–[ 169 ], [ 171 ], [ 172 ], as all the PTQ work, including ours, starts with a pre-trained full

precision network. Thus, the QAT methods will have higher computation overhead and it is

not a fair comparison. Table  4.2 summarizes the comparison results. We observe that among

the PTQ methods, our work adds the lowest computation overhead. In Table  4.2 , we have not

included the comparison with [  158 ]. This is because it was non-trivial to compute the FLOPs

for this work. However, this method requires the computation of dataset-dependent terms

whose calculations need 6 hours for the ResNet50 network, as stated in their paper [  158 ].

One training epoch for ResNet50 requires 55 minutes under the same underlying hardware,
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which translates to a ρ = 6.54x. Thus, [  158 ] is more time-consuming and computationally

intensive than one training epoch and therefore more computationally intense compared to

our method as well.

4.4 Summary

In this chapter, we proposed a novel simple yet effective bit-width allocation method for

network compression that uses an MLP model. We create a custom dataset consisting of

pairs of bit-width configurations and KL-divergence to train an MLP model. For a desired

KL divergence, which is a proxy for network size, the MLP model predicts the bit-width

configuration that the network should be quantized with. The proposed method has little

computational overhead compared to other state-of-the-art techniques and achieves up to 6x,

4x, and 4x compression on VGG16, ResNet50, and GoogLeNet respectively with no accuracy

degradation compared to the original pretrained full precision network.

Today, there is a trend to move computation from the cloud to the edge. Sensor systems

embedded in different devices are an example of such an application [ 186 ]–[ 188 ]. The edge

devices, however, do not have the computational resources that are available on the cloud.

To deploy a neural model on the edge it should be compressed to achieve energy efficiency.

Our proposal can be used as a low-cost inference method for deploying neural models on

edge devices. Moreover, note that our proposal is evaluated on the image classification task.

However, this could be applied to any model that performs a supervised task. Evaluating

our proposed methodology on other machine learning tasks would be an interesting direction

for exploration in the future.
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5. PROGRESSIVE KNOWLEDGE DISTILLATION FOR

ENHANCED EFFICIENCY AND ACCURACY FOR

COMPRESSED VIDEO ACTION RECOGNITION

In typical video classification, the camera captures video data, which is then compressed

using video compression algorithms (such as MPEG-4, H.264, and HEVC) [  55 ], [  59 ], [  189 ],

transmitted, and subsequently decompressed by the receiver for classification. For such clas-

sification, the bottlenecks are the time-consuming compression and decompression steps. To

alleviate the above bottleneck, video classification directly from compressed videos using mo-

tion vectors (MV), residuals (R), and intra-frames (I-frames) has gained significant attention

in recent years [ 190 ]–[ 195 ]. For example, CoViAR [  190 ] deploys three neural networks, one

for processing each compressed video modality (MV, R, I-frames). We observe that networks

trained on I-frames converge to a flatter minima, compared to networks trained on R, which

in turn are flatter than those trained on MV. Models with flatter minima have been shown to

generalize better [  196 ], [ 197 ]. We leverage these insights to build a more efficient compressed

video classification framework [  198 ].

Firstly, to improve training, we propose progressive knowledge distillation (PKD). The

goal of PKD is to progressively distill knowledge from the models with flatter minima to

models with less flat minima to improve their performance. Similar to previous works [  190 ],

[ 191 ], we deploy three neural networks to process the MV, R, and I-frame modalities: MV

backbone network, R backbone network, and I-frame backbone network. We propose distill-

ing each modality progressively using more flat networks. That is distill in a sequence using

MV, R and I-frame backbones as teachers progressively.

However, this approach presents a cyclic dependency issue. Specifically, training the

MV backbone requires all backbones to be trained, and similarly for the R and I-frame

backbones. To overcome this problem, we propose using early exit classifiers. Specifically,

we train a backbone network using standard cross-entropy (CE) loss for each modality.

After the backbone networks have converged, their parameters are frozen. To the frozen

backbone, we attach Internal Classifiers (ICs) for early exit, as shown in Figure  5.1 . These

ICs are trained using PKD. The teacher models are the final classifiers (FCs) of the backbone
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Figure 5.1. Back-
bone networks with
ICs for each video
modality.

With PKD (Ours)Standard Cross Entropy (CE)

More Flat Minima

PKD Weight 

Curvature: 2584.14

CE Weight 

Curvature: 7871.83

15 10 5

Figure 5.2. Visualizing flatter minima
resulting from PKD and the associated
loss curvature.

networks of the MV, R, and I-frame. The students are the ICs. Our proposal, PKD trains

the ICs in three steps: (1) distill knowledge from the FC of the MV backbone network to

all the ICs, (2) distill knowledge from the FC of the R backbone network to all the ICs, and

(3) distill knowledge from the FC of the I-frame backbone network to all the ICs. During

knowledge distillation, the parameters of the ICs are updated while the parameters of the

backbone networks remain frozen. We show that PKD for IC training results in a flatter

minima compared to CE (Figure  5.2 ) leading to better performance and thus, improved

efficiency.

While PKD tackles training, to improve inference efficiency, we propose Weighted Infer-

ence with a Scaled Ensemble (WISE). Consider the lth IC, WISE combines the prediction

of the lth IC with predictions from the previous l − 1 ICs. Each of the l predictions is

multiplied by a corresponding scaling factor and aggregated to output a prediction at the

lth exit. If the confidence of this prediction is greater than a predefined threshold value,

then classification for this video sample terminates at this exit. Otherwise, the classification

continues. WISE formulates an optimization problem to determine the scaling factors. Our

experimental evaluation demonstrates an increase in classification accuracy by up to 4.28%

on UCF-101 and 9.30% on HMDB-51 when using WISE.
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In summary, the main contributions are:

• We propose PKD, a novel IC training methodology to transfer knowledge progressively

from the FC of the MV, R, and I-frame backbone networks to the ICs, resulting in

improved efficiency.

• We propose WISE, an efficient inference methodology. WISE leverages cross-modality

predictions of previous ICs to improve inference efficiency.

• Experimental results of our proposal on UCF-101 and HMDB-51 datasets show up to

≈ 11% IC accuracy improvement with PKD compared to CE. Moreover, we observe

up to ≈ 9% accuracy improvement when using WISE.

The rest of the chapter is organized as follows: Section  5.1 gives a brief background on

video compression and summarizes compressed video action recognition works. Section  5.2 

describes our proposal for efficient training and inference on action recognition tasks using

compressed videos. Next, Section  5.3 experimentally evaluates our proposal, and finally,

Section  5.4 concludes the chapter.

5.1 Related Work

Video compression algorithms, including established standards like MPEG-4 [  79 ], H.264

[ 59 ], and HEVC [ 80 ], exploit the recurring similarity between successive frames in a video

sequence. These modern codecs typically partition videos into intra-frames (I-frames) and

predictive frames (P-frames). I-frames are essentially regular images, preserving spatial

information, and are compressed similarly to regular images. P-frames encode temporal

information by capturing the “changes” between the frames over time. P-frames consist of

MV and R. MVs capture the coarse block-wise movement between frames, while the residuals

capture the pixel-wise differences between frames. MV, R, and I-frames are referred as

compressed video modalities.

Prior works can be divided into three categories:

1. works that use both compressed and raw (uncompressed) videos during training to

enhance accuracy,
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2. works that use only compressed videos but have high computational cost, and

3. works that use only compressed videos and focus on reducing the computational cost.

Works that fall in the first category achieve high classification accuracy but come at a

significant computational cost. The authors of compressed modality distillation [  192 ] propose

using multiple networks and mechanisms (such as ResNet50 networks, Bi-ConvLSTM, self-

attention mechanisms, and temporal graphs) to learn and capture the relationship between

the raw and the compressed video domains to boost classification accuracy. The authors of

MFCD-Net [  193 ] propose a network architecture suitable for processing both the raw and

the compressed video. For these works, the benefit of using compressed videos diminishes as

access to the raw video during training is required.

CoViAR [ 190 ] was one of the earliest compressed video action recognition works in the

second category. CoViAR uses the following backbone networks: a ResNet152 to classify

the I-frames, a ResNet18 to classify the R, and a ResNet18 to classify the MV. Then, the

predictions from these three backbone networks are combined by averaging them. While

CoViAR achieves satisfactory classification accuracy, it comes at a significant computational

cost. Moreover, TEAM-Net [ 191 ] is based on CoViAR, uses similar backbone networks

(ResNet50 instead of ResNet152 for the I-frame), and proposes a new module that captures

the temporal and spatial relationship of the compressed modalities. CV-C3D [  195 ] extends

the 3D convolutional neural networks in the compressed domain. DMC-Net [  194 ] follows

an approach similar to CoViAR, but uses an additional network trained using Optical Flow

(OF).

Finally, we discuss works that focus on reducing the computational cost. The authors of

multi-teacher knowledge distillation [  199 ] use the same backbone networks as CoViAR but

replace the ResNet152 with a ResNet18. Their backbone networks are trained using multi-

teacher knowledge distillation. However, distilling knowledge from ResNet152 to ResNet18

leads to a noticeable drop in network accuracy. Based on the independent sub-network

training [  200 ], the authors of MIMO [  201 ] propose a single network that has multiple-inputs-

multiple-outputs (MIMO). The MIMO network concatenates the MV, R, and I-frames and

gives them as input to the network to perform a single forward pass. This methodology
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Figure 5.3. PKD IC training Overview: 1) for epoch 0 till K, we perform
KD between the IC and the final classifier (FC) of the MV backbone network,
2) for epoch K+1 till T, we perform KD between the IC block and FC of
the R backbone network, 3) for epoch T+1 till M, we perform KD between
the IC block and the FC of the I-frame backbone network. Note that, the
parameters of the backbone networks for the MV, R, and I-frame (illustrated
in yellow) are not updated during PKD. The ICs (illustrated in green) are
trained independently.

reduces computational cost but imposes accuracy limitations constrained by the network’s

capacity. Further, the coupled nature of the input imposes the use of an equal number of

MV, R, and I-frame as input. This constraint hinders real-time applications, where the entire

video stream is not available in advance. Our work falls in this third category and scales

between classification accuracy and computational cost.

5.2 Methodology

5.2.1 Progressive Knowledge Distillation (PKD)

PKD is based on the observation that neural networks trained on I-frames converge to a

flatter minima compared to models trained on R when converge to flatter minima that models

trained on MV. Flatter minima is known to generalize better [  196 ], [ 197 ]. To leverage this, we

propose PKD which progressively distills knowledge from the compressed video modalities.
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The training process consists of two phases. In the first phase, the MV, R, and I-frame

backbone networks are trained. The input to the MV backbone network is the motion

vectors. Similarly, the R and I-frame backbone networks classify the R and I-frame inputs,

respectively. For training the backbone networks, we minimize the CE loss between the

predictions and the actual labels. This loss is back-propagated from the FC of the backbone

network to the first layer, updating the parameters of the backbone network. Each MV, R

and I-frame backbone network is trained independently from the other.

Upon convergence of the backbone network its weight parameters are frozen in prepara-

tion for the next phase. In the next phase, the ICs are attached to the trained MV, R, and

I-frame backbone networks. The ICs are trained with our proposed PKD methodology. The

trained FCs from each backbone network are used as teachers to perform Knowledge Distil-

lation (KD) on the ICs. PKD is based on the idea that transferring knowledge across the

compressed video modalities (i.e. MV, R, I-frame) yields more efficient training with flatter

minima, compared to using CE or KD from a single classifier. This progressive knowledge

transfer consists of three steps, as illustrated in Figure  5.3 .

1. MV-KD: KD between the FC of the MV backbone network and the ICs.

2. R-KD: KD between the FC of the R backbone network and the ICs.

3. I-frame-KD: KD between the FC of the I-frame backbone network and the ICs.

Note that during PKD, each IC is trained independently, with each KD loss backpropa-

gating only to the layers of the respective IC. Further, in the description provided we assume

that the backbone used is the CoViAR framework, but the same can be applied to other

compressed video classification backbones as shown in the experiments section.

5.2.2 Weighted Inference with Scaled Ensemble (WISE)

During inference, we deploy the trained ICs and each IC is a potential early exit. An IC is

an exit point if the confidence of the prediction exceeds a certain threshold τ (see Figure  5.4 ).

In this case, the classification process terminates at that exit point; otherwise, it proceeds to

the next IC. To that effect, we propose Weighted Inference with Scaled Ensemble (WISE).
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Figure 5.4. WISE Inference Overview: the video sample is evaluated se-
quentially. The exits might be from different compressed video modality back-
bones. The previous IC predictions are combined with scaling factors β into
an ensemble. If the confidence of the prediction exceeds a certain threshold τ ,
classification terminates. Otherwise, the next IC is evaluated.

WISE combines the predictions from previous early exits (i.e. ICs where confidence was less

than τ). This is achieved by multiplying each IC prediction with scaling factors, followed by

aggregation.

For example, let’s consider that we are at the Lth exit IC. At the Lth exit we would have

had information from the previous L − 1 exits. With WISE, we combine the predictions

from these ICs and we propose a simple linear combination, where the predictions from

the previous ICs are multiplied with some scaling factors β and aggregated to an ensemble

prediction. Figure  5.4 illustrates WISE. To find the optimal scaling factors for each IC pre-

diction, we formulate an optimization problem. This optimization problem aims to minimize

the CE loss between the ensemble predictions and the actual labels over the training set.

The optimization problem is defined as:

min
βL

−
1
N

N∑
i=1

ti log

 L∑
j=1

βL
j

exp(IC j
i )∑m=k

m=1 exp(IC j
m)

 (5.1)

90



where N is the number of video samples in the training set, ti is the actual label for the ith

video sample, and L is the Lth IC being optimized. Note that IC j ∈ Rk is an k dimensional

logit from the jth IC for a k class classification problem. IC j
m is the mth element of IC j and

βL = [βL
1 , · · · , βL

L ] are the scaling factors to combine the IC predictions from the various

ICs at the Lth exit. Thus, the optimization problem determines the scaling factors β, which

combines predictions from various ICs from different modalities. The networks are evaluating

sequentially starting from R, then continuing to MV and finally I-frame network. An IC

attached to the I-frame backbone has scaling factors β that combine the predictions from

previous ICs attached to the MV and R backbone networks as well as the previous ICs of

the I-frame backbone network.

5.3 Experimental Evaluation

5.3.1 Datasets and Implementation Details

Datasets. We evaluated our method on two action recognition datasets: UCF-101

[ 202 ] and HMDB-51 [  203 ]. UCF-101 contains 13,320 videos from 101 action categories.

HMDB-51 contains 6,766 videos from 51 action categories. Each video in both datasets is

annotated with one action label. Each dataset has 3 training and testing splits for training

and evaluation. We report the average accuracy of the three testing splits over three different

seeds for all of our results (i.e. 3 seeds for each split thus, 9 data points in total for one

entry).

Architecture and Backbone. We used two types of backbone networks: 1) CoViAR

[ 190 ], and 2) TEAM-Net [ 191 ]. CoViAR consists of a ResNet18 [  139 ] with temporal shift

modules (TSMs) [ 204 ] for the MV, a ResNet18 with TSM modules for the R, and a ResNet50

[ 139 ] with TSMs for the I-frame network. Note that we use a ResNet50 instead of ResNet152

for the CoViAR backbone. The use of TSMs is a standard tool for action recognition tasks

and facilitates the adaptation of 2D convolutional networks for video processing without

increasing the parameters and floating-point operations (FLOPs). ICs are attached after

each ResNet block. TEAM-Net is similar to CoViAR (uses a ResNet18 for MV, a ResNet18

for R, and a ResNet50 for I-frame), but after each block, it inserts an additional block
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(TEAM block) that concatenates the features of the three compressed modalities, passes

them through a convolutional layer, and then separates them again using three fully con-

nected layers. We attach the ICs after each TEAM block. We focused on the CoViAR

backbone for all the experiments, which we found to be more efficient when scaling. How-

ever, we also present the results for the TEAM-Net backbone. The datasets and architectures

used are standard practice [  190 ], [  191 ], [  193 ], [  195 ]. Details about training and inference are

provided in the Subsection  5.3.2 .

5.3.2 Training and Inference Hyperparameters

Training. All videos were resized to 240 Œ 320 resolution and compressed to the MPEG4

Part-2 format [  58 ]. We randomly sampled 3 I-frames, 3 MV, and 3 R from videos allocated for

the training. The networks for the UCF-101 and HMDB-51 were initialized with pre-trained

models on the Kinetics dataset [  205 ]. Further optimization was carried out on UCF-101 and

HMDB-51, employing mini-batch training and the Adam optimizer [ 150 ] with a weight decay

of 0.0001, an epsilon value of 0.001, an initial learning rate of 0.003 for the I-frame input,

a learning rate of 0.01 for the MV input, and a learning rate of 0.005 for the R input. The

backbone networks were trained for 510 epochs, with a decay in learning rate by a factor of

0.1 at the 150th, 270th, and 390th epochs.

ICs were attached after each residual block of the backbone networks. The IC architecture

consists of one convolutional layer and one fully connected layer. The ICs were optimized

for 150 epochs using the Adam optimizer, starting with the same initial learning rate as the

backbone networks. The learning rate for the ICs underwent decay by a factor of 0.1 at the

50th, 100th, and 150th epochs. The temperature value for the KD was set to 1. The training

and evaluation were conducted on a server equipped with an Intel(R) Xeon(R) Silver 4114

CPU and 4 NVIDIA GeForce GTX 1080Ti GPUs with 12 GB of video memory.

Inference. During inference, we use 1 I-frame, 1 MV, and 2 R segments when using the

CoViAR backbone, and 8 I-frames, 8 MV, and 8 R segments for the TEAM-Net backbone

unless stated otherwise. The frames were cropped into 224 Œ 224 patches and underwent
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Table 5.1. Comparing the results of the proposed PKD method for IC1, IC2,
and IC3 with Cross Entropy (CE) using MV, R, and I-frames. The reported
accuracy corresponds to the average of the three testing splits on UCF-101
and HMDB-51 datasets for results over three different seeds and two backbone
frameworks CoViAR and TEAM-Net.

Backbones

Dataset Method
CoViAR TEAM-Net

MV Residual I-Frame IC1 IC2 IC3IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

UCF-101
CE 34.39 47.29 57.43 46.45 60.57 72.63 48.40 57.61 74.11 8.86 28.93 47.41

Prog KD (Ours) 35.10 48.67 59.20 47.17 62.23 75.34 49.11 60.72 79.98 10.10 31.25 50.20
Diff. Prog KD − CE 0.71 1.38 1.77 0.72 1.66 2.72 0.71 3.11 5.87 1.24 2.32 2.79

HMDB-51
CE 19.92 26.24 34.58 21.78 31.13 40.19 23.55 27.09 42.42 5.38 18.12 24.40

Prog KD (Ours) 20.10 27.43 38.08 24.77 35.27 48.07 27.32 35.15 53.84 5.71 19.21 26.04
Diff. Prog KD − CE 0.18 1.20 3.50 2.99 4.14 7.87 3.77 8.06 11.42 0.33 1.08 1.65

horizontal flipping with 50% probability (i.e., we used only 1 crop). The entire framework

was implemented using PyTorch [ 183 ].

5.3.3 Evaluating PKD

Experiment. We train the ICs attached to the MV, R, and I-frame backbone networks

using two approaches: 1) PKD, and 2) CE. We evaluate the accuracy of each IC on the test

set. We use 3 frames for each compressed video modality (I-frame, R, MV) for CoViAR and

8 frames for TEAM-Net. We present the accuracy of the ICs on UCF-101 and HMDB-51

in Table  5.1 . Since the backbone networks have 4 blocks, attaching an IC after each block

results in 3 ICs per modality (i.e. 3 for each MV, R, and I-frame). Note that the 4th IC is

the final classifier and is not trained using PKD or CE, but is trained in the pre-training

phase and thus is excluded from this comparison.

Results. The classification accuracy of the ICs are presented in Table  5.1 . IC1, IC2, and

IC3 correspond to the ICs attached after the first block, second block, and third block re-

spectively for classifying all the video samples. To highlight the improvement of the proposed

PKD over CE we also present a row with the difference between CE and PKD. The results

in Table  5.1 demonstrate the superior accuracy of ICs trained with PKD using CoViAR as

the backbone framework, showing an increase in accuracy of up to 1.77%, 2.72%, and 5.87%,
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IC1 IC2 IC3

CE

PKD

Figure 5.5. Visualizing the loss surface around the minimum of early exit
classifiers attached to the MV backbone network when trained using CE vs
PKD.

for MV, R, and I-frame, respectively on UCF-101 and 3.50%, 7.87% and 11.42% on HMDB-

51 when compared to the ICs trained with CE. When using TEAM-Net as the backbone

framework, we observe an increase in IC accuracy of up to 1.24%, 2.32%, and 2.79%, for

MV, R, and I-frame, respectively on UCF-101 and 0.33%, 1.08% and 1.65% on HMDB-51,

when using PKD compared to training the ICs with CE loss. Note, that this improvement

sources from the fact that the ICs trained with PKD result in flatter minima compared to

the ICs trained with CE, and thus generalize better. Figure  5.2 visualizes the landscape for

IC2 of I-frame. Figures  5.5 ,  5.6 ,  5.7 visualize the loss landscape for the ICs of the Motion

Vector, Residual, and I-frame network, respectively, trained with CE and PKD.
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IC1 IC2 IC3

CE

PKD

Figure 5.6. Visualizing the loss surface around the minimum of early exit
classifiers attached to the Residual backbone network when trained using CE
vs PKD.

IC1 IC2 IC3

CE

PKD

Figure 5.7. Visualizing the loss surface around the minimum of early exit
classifiers attached to the I-frame backbone network when trained using CE
vs PKD.
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5.3.4 Evaluating WISE

We experimentally analyze the effectiveness of the proposed WISE methodology during

inference. WISE has two key features: 1) the use of previous IC predictions (via lateral con-

nections) available at the exit point to capture cross-modality information during inference,

and 2) the efficient combination of these predictions using scaling factors. As a comparison,

we evaluate WISE versus three alternative scenarios:

1. a baseline scenario not utilizing previous IC predictions (no lateral connections)

2. using previous ICs with uniform scaling factors

3. utilizing scaling factors obtained from WISE.

Note, that lateral connections at the Lth exit point mean the use of predictions from the

previous L− 1 ICs.

Experiment. For this experiment, we evaluate the three methods (no lateral connec-

tions, uniform scaling, WISE) and select a threshold for the exit points such that all the

methods have iso-computational cost. Note when using lateral connections with uniform

scaling, β is set to 1, that is all the previous predictions have equal weighting on the output.

The accuracy of the three methods on UCF-101 and HMDB-51 datasets are shown in Table

 5.2 .

Results. The accuracy of each approach is summarized in Table  5.2 . The results demon-

strate the comparative accuracy of the baseline (no lateral connections), uniform scaling, and

WISE scenarios. WISE outperforms the baseline and uniform scaling by ≈ 4.28% and 0.8%

respectively when using CoViAR as the backbone, and by ≈ 0.1% and 4% using TEAM-Net

as the backbone on UCF-101. Furthermore, WISE outperforms the baseline and uniform

scaling by ≈ 9% and 1% respectively when using CoViAR as the backbone, and by 0.4%

and 4% using TEAM-Net as the backbone network on HMDB-51.
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Table 5.2. Result Summary when using: 1) no lateral connections between
the ICs, 2) uniform scaling factors and lateral connections between the ICs, 3)
WISE. CoViAR and TEAM-Net are used as backbone networks. The reported
accuracy is the average over the three testing splits and three different seeds (9
data points per entry) for UCF-101 and HMDB-51.

Backbones
COVIAR TEAM-Net

Method UCF-101 HMDB-51 UCF-101 HMDB-51
No Lateral Connections 88.59% 58.91% 93.24% 65.94%
Uniform Scaling (Ours) 92.08% 67.50% 89.49% 61.89%

WISE (Ours) 92.87% 68.21% 93.29% 66.29%

Table 5.3. Accuracy results for IC1, IC2, and IC3 when performing KD with
I-frame only (I-frame KD), PKD curriculum, which performs KD between MV,
then R and then I-frame (our proposal), and PKD anti-curriculum performs
KD between I-frame, then R and then MV (also ours). The reported accuracy
is the average over the three testing splits and over three different seeds for
the UCF-101 and HMDB-51 datasets.

Backbones

Dataset Method
CoViAR TEAM-Net

MV Residual I-Frame IC1 IC2 IC3IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

UCF-101
I-frame KD 34.51 47.19 57.38 46.70 60.92 73.25 48.93 59.41 78.00 9.71 30.80 49.52

PKD curriculum 35.10 48.67 59.20 47.17 62.23 75.34 49.11 60.72 79.98 10.10 31.25 50.20
PKD anti-curriculum 34.61 47.93 58.39 46.44 61.43 74.67 48.70 60.02 79.37 8.80 26.38 44.54

HMDB-51
I-frame KD 19.65 25.95 35.38 23.98 33.74 44.71 27.05 34.85 53.74 5.88 19.63 26.66

PKD curriculum 20.10 27.43 38.08 24.77 35.27 48.07 27.32 35.15 53.84 5.99 19.81 26.78
PKD anti-curriculum 19.54 26.24 36.21 24.61 35.33 47.30 26.78 34.14 52.68 5.57 16.32 23.12

5.3.5 Analysis of Teacher Classifier Order for PKD

Experiment. This analysis considers three approaches. Firstly, we evaluate a structured

curriculum, termed PKD curriculum, which orders the FCs of the MV, R, and I-frame

backbone networks (teacher network) from the highest to lowest accuracy. PKD curriculum

is doing KD using MV, followed by R, and then I-frame FCs as teachers. Secondly, we

evaluate the anti-curriculum PKD, starting with I-frame, followed by R, and then MV.

Finally, we do KD using only the I-frame final classifier as the teacher. This analysis aims
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Figure 5.8. Trade-off curve of our proposal and SOTA work comparison on
UCF-101 and HMDB-51. SOTA works (marked in red) fall either in the low
accuracy and low computation cost regime (lower-left of the plot) or in the high
accuracy and computation cost regime (top-right of the plot). Our proposal
uses two backbones, i.e. CoViAR and TEAM-NET, (marked in green) scales
in accuracy and computational cost.

to assess the efficacy of progressive knowledge transfer of the compressed video modalities

against the standard approach of KD from a single, highly accurate teacher. To isolate the

effect of the training order, we report results without using lateral connections. The results

reported are the average over the three test splits and three seeds in Table  5.3 using 3 frames

for each compressed video modality.

Results. From the results in Table  5.3 , we observe that the PKD curriculum performs

the best by up to 2% and 3% over I-frame KD on UCF-101 and HMDB-51 respectively. This

observation aligns with insights from prior studies in the image classification domain [  206 ],

[ 207 ], underscoring that KD from the most accurate classifier may not always ensure the

most efficient knowledge transfer.

5.3.6 Comparison with Prior Works

Experiment. We plot the trade-off curve between accuracy and computational cost

(Giga Floating point operations - GFLOPs) in Figure  5.8 for UCF-101 and HMDB-51. We
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Table 5.4. SOTA comparison (from top to bottom): 1) works using both CD
and RD during training, 2) works using only CD but with high computational
cost, 3) works focusing on optimizing the computational cost. CD: Compressed
Domain, RD: Raw Domain, OF: Optical Flow.

Method Modalites Accuracy GFLOPs
UCF-101 HMDB-51 UCF-101 HMDB-51

Liu et al. [  192 ] CD+RD 95.8% 73.5% > 543,903 > 222,615
MFCD-Net [ 193 ] CD+RD 93.2% 66.9% 1,328,536 543,764

CoViAR [ 190 ] CD 93.1% 68.0% 543,903 222,615
CV-C3D [  195 ] CD 83.9% 55.7% 284,555 116,465

TEAM-NET [  191 ] CD 93.4% 66.1% 646,582 264,639
DMC-Net [  194 ] CD+OF 92.3% 71.8% 31,264,121 12,796,286
Wu et al. [ 199 ] CD 88.5% 56.2% 4,717,060 1,930,655

MIMO [  201 ] CD 85.8% 58.6% 172,587 70,639
Ours CD 88.4% 60.3% 147,391 56,340

report the cumulative GFLOPs for all three testing splits UCF-101 and HMDB-51. We

compare with works that optimize for computational cost. Moreover, Table  5.4 summarizes

the state-of-the-art (SOTA) methods: works using both Compressed Domain (CD) and Raw

Domain (RD) during training (highlighted in blue), 2) works using only CD but with high

computational cost (highlighted in orange), 3) works focusing on optimizing the computa-

tional cost (highlighted in green). Our proposal falls in the third category, and we compare

it with these works in the trade-off plots (Figure  5.8 ).

Results. Figure  5.8 plots the accuracy-compute cost trade-off for UCF-101 and HMDB-

51 of our proposal and SOTA methods. The trade-off is achieved by changing the threshold

value τ of WISE. Note, that the threshold value is the same across all the ICs. We observe

that MIMO [  201 ] has a very low computational cost but trades off accuracy, while CoViAR

[ 190 ] is at the other end of the spectrum where it trades off compute cost for accuracy.

Our approach with PKD and WISE can efficiently scale between these two extremes by

changing the threshold. Notably, our proposal showcases a reduction in GFLOPs under the

iso-accuracy scenario, surpassing the efficiency of CoViAR [  190 ], and the method proposed

by Wu et al. [  199 ]. On the other extreme when compared to MIMO [ 201 ] it achieves better
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Table 5.5. Latency and Bandwidth comparison results.
Method Latency Bandwidth

MIMO [  201 ] 8x 2.09x
Wu et al. [ 199 ] 3x 3.3x
CoViAR [  190 ] 3x 3.3x
Our Method 1x 1x

accuracy at a similar compute cost for UCF-101 and significantly improved accuracy at the

lower compute cost for the HMDB-51 dataset. Further, when compared with the MIMO

[ 201 ] approach, our proposal has better latency and bandwidth efficiency, as reported in

Section  5.3.7 .

5.3.7 Latency and Bandwidth Results

We evaluate our proposal using the latency and bandwidth metrics. Consider the fol-

lowing scenario: video is transmitted in the form of packets that include Motion Vectors

(MV), Residuals (R), and Intra-frames (I-frames). To classify a video stream, it is necessary

to receive a sufficient number of these packets, as required by each classification technique.

Therefore, we assess the latency based on the time interval required to classify a video stream

at a consistent bit rate (i.e. iso-bandwidth). In our results, we provide relative latency be-

tween different SOTA methods for convenience.

To compare bandwidth effectively, we align the latency across different methods. Specifi-

cally, we determine how much bandwidth other techniques would require to match the latency

of our method. This approach allows us to measure and compare the bandwidth efficiency

of various techniques, ensuring they all meet the same latency target (i.e. iso-latency).

For this comparison, we use the CoViAR backbone with the proposed PKD methodology.

CoViAR backbone uses a ResNet18 for MV, a ResNet18 for R, and a ResNet50 for I-frames.

This allows the use of different numbers of frames for MV, R, and I-frames. For example,

we can use 3 MV, 2 R, and 5 I-frames. In comparison, MIMO [  201 ] uses a single network

architecture, and this imposes the constraint of using the same number of MV, R, and I-
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Figure 5.9. Study on the effect of number of frames when using our proposal
with the CoViAR backbone when: 1) increasing the MV frames while keeping
the number of R and I-frames constant, 2) increasing the R frames while keep-
ing the number of MV and I-frames constant, and 3) increasing the I-frames
while keeping the number of MV and R constant. The first row illustrates the
plots for UCF-101 and the second row illustrates the plots for HMDB-51.

frames. The authors of MIMO [ 201 ] report results when using 8 MV, 8 R, and 8 I-frames

in their experiments, and we follow the same when comparing with MIMO. The comparison

results of our method with SOTA works for latency and bandwidth metrics are reported in

Table  5.5 . Notably, our proposal is 3x and 8x times more efficient than Wu et al. and MIMO

in terms of latency, and 3.3x and 2.09x more efficient than Wu et al. and MIMO in terms

of bandwidth. Please note that unlike the CoViAR backbone, the TEAM-Net backbone

requires the same number of MV, R, and I-frames as input, and thus does not benefit from

the proposed PKD methodology.
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5.3.8 Effect of the Number of MV, R, and I-Frames

CoViAR [ 190 ] backbone employs a ResNet18 for MV, a ResNet18 for R, and a ResNet50

for I-frames. Thus, we explore the impact of using a different number of frames for each

compressed video modality (MV, R, I-frame) on the accuracy and the computational cost

(Giga Floating point operations - GFLOPs) during inference. TEAM-Net backbone requires

the same number of MV, R, and I-frames as input. Therefore, this analysis cannot be done

using our proposal with the TEAM-Net backbone.

Experiment. We perform the following experiments to isolate the effect of utilizing

more frames on each compressed video modality:

1. We increase the number of MV frames while maintaining constant R and I-frames and

observe how test accuracy changes (we use 3 R and 3 I-frames and the threshold is set

to 99.99%).

2. Similarly we increase R frames while maintaining constant MV and I-frames (we use

3 MV and 3 I-frames and the threshold is set to 99.99%).

3. Similarly we increase I-frames while maintaining constant MV and R frames (we use

3 MV and 3 R frames and the threshold is set to 99.99%).

The accuracy was measured using the backbone networks (without the ICs) and the

results were averaged over the three test splits. To calculate the GFLOP operations, we

used the ptflops library [  208 ].

Results. Figure  5.9 illustrates the effect of using more frames for each compressed video

modality. Each plot in Figure  5.9 plots the computational cost (GFLOPs) on the x-axis and

accuracy in percentage on the y-axis. Interestingly, beyond a certain number of frames, we

observe a saturation point in accuracy despite increasing the GFLOPs. This underscores

that an excessive number of frames fails to yield accuracy benefits.
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5.4 Summary

In conclusion, this chapter presented a novel method for efficient compressed video action

recognition, comprising two major components: PKD for training and WISE for inference.

PKD uses the hierarchical nature of neural network convergence across the different video

modalities: motion vectors, residuals, and intra-frames and facilitates the sequential transfer

of knowledge leading to better generalization. The results of our experiments highlight the

superiority of PKD over CE based training methods. Additionally, WISE further enhances

inference accuracy by optimally combining outputs from the ICs. These findings underscore

the potential of our proposed techniques to significantly advance the field of video action

recognition, offering a promising avenue for future research and application.
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6. SUMMARY AND FUTURE WORK

We conclude this thesis by underscoring the two primary objectives: privacy and efficiency

in deep learning algorithms. The success of deep learning largely stems from the abundant

availability of publicly available data. Using these datasets, we can train neural models to

execute various machine learning tasks. However, certain data are private, preventing their

public release. In such cases, it becomes imperative to find alternative ways to use these

data, while maintaining privacy. Chapter  3 introduces a framework (DP-ImgSyn) that aims

to address these challenges. Our proposal synthesizes images that can be publicly released

instead of private data. These synthetic images have (ε, δ)-Differential Privacy guarantees,

while being visually dissimilar from the private images. Additionally, they maintain similar

utility as the private images. The synthetic images for neural network training yields com-

parable accuracy to the case of using private images. Therefore, with DP-ImgSyn, we can

release synthetic images without compromising privacy.

Note, deep learning comes with significant time and computational overhead, requir-

ing more efficient machine learning algorithms. One popular approach to reducing these

demands is to quantize the weights and the activations of neural networks. However, deter-

mining the right bit width for quantization is difficult, due to the fact that the search space

is exponential. In Chapter  4 , we describe a method to determine the precision of weights and

activations across the various layers of the neural network. Our technique uses a Multi-Layer

Perceptron to predict the bit width for weights and activations in different layers, which re-

duces the network size and improves inference efficiency. Additionally, for action recognition

tasks, we address efficiency by allowing the network to directly process compressed videos

as inputs. Chapter  5 introduces a framework that gives compressed videos as input to the

neural network, eliminating the need for video decompression. To further enhance efficiency,

we incorporate early exits into neural networks and use progressive knowledge distillation.

Several future research directions can be sourced from this thesis. The effectiveness of

the proposed privacy framework (DP-ImgSyn), evaluated on image classification tasks, could

be explored in other tasks, such as object detection and scene understanding. Additionally,

extending DP-ImgSyn to support multiple users sharing data with a central server (feder-
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ated learning) raises interesting questions about communication costs, convergence steps,

and network architecture diversity. For neural network quantization discussed in Chapter  4 ,

examining the effects of different quantization methods is a promising area for future explo-

ration. Lastly, studying the impact of various codecs, such as HEVC, on the classification

performance could build upon the findings presented in Chapter  5 .
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