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Abstract

Although LLMs have shown great performance001
on Mathematics and Coding related reasoning002
tasks, the reasoning capabilities of LLMs re-003
garding other forms of reasoning are still an004
open problem. Here, we examine the issue of005
reasoning from the perspective of claim ver-006
ification. We propose a framework designed007
to break down any claim paired with evidence008
into atomic reasoning types that are necessary009
for verification. We use this framework to cre-010
ate RECV, the first claim verification bench-011
mark, incorporating real-world claims, to as-012
sess the deductive and abductive reasoning ca-013
pabilities of LLMs. The benchmark comprises014
of three datasets, covering reasoning problems015
of increasing complexity. We evaluate three016
state-of-the-art proprietary LLMs under mul-017
tiple prompt settings. Our results show that018
while LLMs can address deductive reasoning019
problems, they consistently fail in cases of ab-020
ductive reasoning. Moreover, we observe that021
enhancing LLMs with rationale generation is022
not always beneficial. Nonetheless, we find023
that generated rationales are semantically simi-024
lar to those provided by humans, especially in025
deductive reasoning cases.026

1 Introduction027

Large Language Models (LLMs) have shown re-028

markable proficiency in complex tasks where rea-029

soning capabilities, such as logical deduction and030

semantic comparison, are paramount. Notable ex-031

amples include solving MBA exams (Terwiesch,032

2023), passing professional medical tests (Kung033

et al., 2023; Nori et al., 2023), performing quan-034

titative reasoning (Lewkowycz et al., 2022), and035

communication games (Bakhtin et al., 2022; Xu036

et al., 2023; Gandhi et al., 2023). However, there037

is ongoing debate about whether such proficiency038

is due to LLMs manifesting reasoning capabilities039

or rather pattern matching and semantic similar-040

ity via memorization. For example, earlier claims041

that LLMs posses Theory of Mind (ToM) capabil- 042

ities (Bubeck et al., 2023; Kosinski, 2023) were 043

shown to be inaccurate (Ullman, 2023; Sileo and 044

Lernould, 2023). In particular, despite appearing 045

to manifest some form of ToM capabilities, LLMs 046

mostly rely on shallow heuristics and spurious cor- 047

relations (Shapira et al., 2023). Additionally, pre- 048

liminary observations of emergent reasoning ca- 049

pabilities (Wei et al., 2022) were subsequently at- 050

tributed to metric choice (Schaeffer et al., 2023), 051

in-context learning (Lu et al., 2023b), and short- 052

cuts (Kavumba et al., 2019). 053

These findings motivate the need for further re- 054

search on the reasoning capabilities of LLMs, espe- 055

cially in high-stake real-world applications, where 056

research on this topic is in its infancy. A notable 057

example is fact-checking, where LLMs are consid- 058

ered to hold great potential for increased productiv- 059

ity overshadowed by the ease with which bad actors 060

can proliferate misinformation (Guo et al., 2023). 061

Verifying information is challenging since models 062

require both accurate classification and strong ratio- 063

nale generation to be effective (Schlichtkrull et al., 064

2023). It is thus essential to understand the rea- 065

soning capabilities and limitations of LLMs in the 066

context of fact-checking. In particular, we extend 067

the current discussion around the reasoning abil- 068

ities of LLMs, focusing on their ability to verify 069

real-world claims. 070

In this work, we first propose a framework for 071

breaking down complex claims into atomic reason- 072

ing steps. The motivation behind this is the lack of 073

uniform terminology around reasoning evaluation. 074

Most prominent evaluation datasets for reasoning 075

are based on mathematics and coding, which in- 076

volves deductive reasoning but is not treated as 077

such (Sprague et al., 2024). 078

Our framework is rooted in existing philosophy 079

literature concerning logical reasoning that aligns 080

well with NLP (Wason and Johnson-Laird, 1972; 081

Galotti, 1989). We use our framework to create 082
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Reasoning in Evidence-based Claim Verification083

(RECV), the first reasoning benchmark for claim-084

verification. The benchmark comprises three085

datasets, curated from existing resources targeting086

different domains: VitaminC (Schuster et al., 2021)087

from Wikipedia, CLIMATE-FEVER (Diggelmann088

et al., 2020) from online claims and Wikipedia, and089

PHEMEPlus (Dougrez-Lewis et al., 2022) from090

rumours circulating on social media and associated091

evidence from news articles. The claims involve092

increasing levels of complexity as we move from093

VitaminC to PHEMEPlus, often requiring deduc-094

tive and/or abductive reasoning.095

We use RECV to evaluate three state-of-the-096

art proprietary LLMs that have shown impressive097

performance on various reasoning and language098

benchmarks (Huang and Chang, 2023; DeepSeek-099

AI et al., 2025). These models are: Claude V3100

Sonnet (Anthropic, 2023), GPT-4 (OpenAI, 2023),101

and GPT-4o (OpenAI et al., 2024). In particular, we102

prompt models with and without Chain-of-Thought103

(CoT) (Wei et al., 2023) rationale generation to104

assess if and how the latter influences reasoning.105

In alignment with previous work (Saparov et al.,106

2023; Akyürek et al., 2024; Li et al., 2024) we107

find that LLMs are capable of deductive reasoning.108

However, they consistently fail at claim verifica-109

tion when presented with evidence that requires110

abductive reasoning. Furthermore, we observe con-111

flicting results when prompting LLMs with CoT112

strategies. In particular, CoT leads to performance113

improvements for simple claim verification as in114

VitaminC, but detrimental in the case of complex115

claims such as those found in CLIMATE-FEVER116

and PHEMEPlus. Lastly, we carry out a qualitative117

analysis of generated rationales and observe high118

semantic similarity with human explanations, es-119

pecially in deductive reasoning cases. In summary,120

we make the following contributions:121

• We propose a framework for decomposing122

claim-evidence pairs into atomic reasoning123

types for verification, covering deductive and124

abductive reasoning (§3).125

• We create the first reasoning benchmark for126

claim verification comprising three datasets of127

increasing complexity (§4).128

• We extensively evaluate the reasoning capa-129

bilities of three state-of-the-art LLMs, show-130

ing that models fail when it comes to abduc-131

tive reasoning and CoT’s effectiveness is task-132

dependent (§5).133

• We show that generated rationales are consis-134

tent with human reasoning for correct predic- 135

tions, but the model is often unable to leverage 136

such rationales for claim verification (§6). 137

2 RECV Logical Framework 138

Reasoning is often used interchangeably to de- 139

note critical thinking, decision-making, and logical 140

reasoning. Following Wason and Johnson-Laird 141

(1972) and Galotti (1989), we define reasoning as 142

the process of logical steps that result in some form 143

of decision-making or conclusion. Thus we de- 144

fine reasoning as a series of inference steps linking 145

claims and evidence to reach a conclusion. 146

In particular we consider that reasoning consists 147

of the interplay of three interrelated components: 148

types, processes, and tasks. This is the basis of our 149

RECV framework. Reasoning types are different 150

forms of logical inference that we can use to reach 151

a conclusion from a set of observations or premises. 152

We distinguish between atomic and compound rea- 153

soning types. Atomic types denote basic forms of 154

logical inference and include deductive, abductive, 155

inductive, and analogical reasoning. A reasoning 156

task is any task that requires multiple reasoning 157

types, often in complex interaction with each other. 158

For example claim verification is a composite rea- 159

soning task. A reasoning process is the method of 160

interaction between reasoning types or even tasks 161

within complex reasoning tasks. Notable examples 162

of reasoning processes are multi-hop or multi-step 163

inference, where individual steps or hops can be of 164

different reasoning types. In this paper we focus 165

particularly on atomic reasoning types. 166

2.1 Atomic Reasoning Types 167

Deduction: A conclusion is drawn directly from 168

evidence. In the context of a claim, if the evidence 169

supports the claim then the claim is deduced to be 170

true (if P then Q, where P is the claim and Q is 171

the evidence). For example, 172

• P : Schools closed, Dammartin-en-Goele resi- 173

dents told to stay indoors, town ‘like warzone’. 174

[Claim] 175

• Q: Schools went into lockdown and the town 176

appealed to residents to stay inside residents’ 177

houses. [Evidence] 178

• C: Here, P =⇒ Q. The schools have been 179

closed and citizens have been told to stay home. 180

Thus, the town is like in a warzone situation. 181

[Conclusion] 182

Equally if the evidence contradicts the claim then 183

the claim is deduced to be false. 184
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Figure 1: Resolution of claim verification via a single-step abductive reasoning type using RECV framework.

• P : Heart goes out to 148 passengers and crew185

of Germanwings Airbus A320 that has crashed186

in French Alps, Southern France. [Claim]187

• Q: German jetliner carrying 144 passengers188

and six crew en route from Barcelona, Spain,189

to Düsseldorf, Germany, has crashed in the190

French Alps, killing all 150 people on board.191

[Evidence]192

• C: Here, Q contradicts P . The evidence di-193

rectly states the death toll is 150 which refutes194

the claim. [Conclusion]195

Abduction: The most plausible conclusion is196

drawn from a set of candidate hypotheses, based197

on partial evidence. Abduction could lead to false198

conclusions.199

• Claim: Pluto’s climate change over the last200

14 years is likely a seasonal event.201

• Evidence: The long orbital period of Nep-202

tune results in seasons lasting forty years. As203

a result, Neptune experiences similar seasonal204

changes to Earth. There’s evidence for methane205

escape and strong seasonal and dynamical206

perturbations of Neptune’s atmospheric tem-207

peratures. Each planet therefore has seasons,208

changes to the climate over the course of its209

year.210

• Conclusion: The evidence only mentions Nep-211

tune. However, the claim is regarding Pluto.212

Given the partial evidence, the claim is sup-213

ported based on the plausible hypothesis that214

Pluto is near Neptune and it is likely to have215

similar attributes when it comes to seasons and216

climate change.217

Induction: An inference is drawn from complete218

evidence (in a specific domain) and then a general-219

ization (a rule that can be used beyond the initial 220

domain) is derived from it. As per Flach and Kakas 221

(2000), for inductive reasoning, the evidence can 222

be true whilst only providing partial support for 223

the conclusion, which typically generalizes beyond 224

the evidence itself. Such generalization indicates 225

there is no guarantee that the conclusion is true 226

elsewhere. 227

Analogical reasoning: Conclusions are drawn 228

based on the similarities between entities. While 229

we do not provide examples for inductive and ana- 230

logical reasoning in this section, they are still part 231

of our framework. The focus on deduction and 232

abduction is justified in (§3). We provide more 233

formal definitions of atomic reasoning types in Ap- 234

pendix A with additional examples. 235

3 Methodology 236

We discuss our methodology for reasoning in claim 237

verification. We first showcase the application of 238

our RECV framework and then motivate our focus 239

on deduction and abduction via a preliminary study. 240

RECV Logical Framework Application: The 241

application of the RECV framework can be seen 242

in Figure 1. The reasoning task here is claim veri- 243

fication and the reasoning type is composite. The 244

claim is resolved using a single-step process, that 245

consists of abductive type atomic reasoning. Here 246

we only highlight the most plausible hypothesis 247

that resolves the claim as true. However, in prac- 248

tice, we would generate multiple hypotheses before 249

coming to the most plausible one. 250

Preliminary Study: Our objective here was to 251

determine the atomic reasoning types necessary 252
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for accomplishing claim verification from evi-253

dence. We first collected a small dataset by man-254

ually selecting 90 claims and associated evidence255

from VitaminC (Schuster et al., 2021), CLIMATE-256

FEVER (Diggelmann et al., 2020), and PHEME-257

Plus (Dougrez-Lewis et al., 2022). We focus on258

these resources as they are widely used in claim259

and rumour verification and differ in complexity.260

Two annotators with expertise in Computer Sci-261

ence and native English proficiency assigned rea-262

soning type labels to claim-evidence pairs follow-263

ing (§2). Disagreements encountered were resolved264

via a discussion stage with an independent expert.265

The Inter-Annotator Agreement (IAA) measured as266

Bennett’s S score (Bennet et al., 1954) to account267

for label imbalance of reasoning types is 0.90, de-268

noting almost perfect agreement. We observe that269

all examples either require deductive or abductive270

reasoning types.271

Deductive and Abductive Reasoning: Our pre-272

liminary investigation suggests that inductive and273

analogical reasoning are rarely employed in claim274

verification. This is presumably because inductive275

reasoning relies on complete evidence, which is276

rarely available in real-world domain-specific set-277

tings. Generalisations from one domain to another,278

relevant to inductive reasoning, may only occur in279

scenarios that share common background knowl-280

edge, as in the medical domain. Similarly, ana-281

logical reasoning may be more suitable for other282

fact-checking related tasks like profiling and mo-283

tive analysis where comparing information bits fre-284

quently occurs to reach a conclusion. By contrast,285

deductive and abductive reasoning types are often286

required in fact-checking (Pan et al., 2023; Tan287

et al., 2024). For these reasons, here we focus on288

deduction and abduction. We show that they rep-289

resent a challenging setting for claim verification290

(§4), and model evaluation with LLMs (§5).291

4 RECV Benchmark292

We discuss the creation of RECV, in particular, our293

sample selection strategy and data annotation. See294

Appendix B for details regarding the three datasets.295

Data Sampling Strategy. We build a heuristic-296

based sampling strategy to mitigate the anticipated297

data imbalance between deductive and abductive298

samples, as it was important to ensure both are299

represented in the annotated data. We used a com-300

bination of three embedding-based text similarity301

metrics to compute the average claim similarity302

VitaminC Supported Refuted Total

Deductive 272 199 471
Abductive 11 18 29
Total 283 217 500

CLIMATE-FEVER Supported Refuted Total

Deductive 269 129 398
Abductive 88 14 102
Total 357 143 500

PHEMEPlus Supported Refuted Total

Deductive 336 128 464
Abductive 22 14 36
Total 358 142 500

Table 1: RECV statistics.

between deductive samples. Likewise for abduc- 303

tive samples. The metrics are: cosine similarity, 304

BERTScore (Zhang et al., 2020) and BLEURT 305

score (Pu et al., 2021). We used the data collected 306

during our preliminary study (§3) to set a similarity 307

threshold for each reasoning type. We used each 308

threshold to sample claims likely to be resolved via 309

deductive and abductive reasoning, respectively. In 310

particular, we exclude instances labeled as ‘unveri- 311

fied’ since such claims are always associated with 312

deductive reasoning, either due to lack of proper ev- 313

idence or contradictory evidence. In total, we sam- 314

pled 500 claim-evidence pairs from each dataset. 315

See Appendix C for more details on data sampling. 316

Data Annotation We recruited 9 PhD students in 317

Computer Science, fluent in English and grouped 318

them in triples, one for each dataset. We evenly 319

distributed dataset samples to annotators in a triple, 320

so that 100 samples were annotated by all. In 321

total, each annotator in a triple labeled 233 sam- 322

ples. Annotation guidelines per dataset are in Ap- 323

pendix D. We computed IAA as Bennett’s S score 324

to account for label imbalance (see Appendix E 325

for pairwise agreement scores). The IAA is 0.75 326

for VitaminC, 0.56 for CLIMATE-FEVER, and 327

0.67 for PHEMEPlus. Table 1 reports our RECV 328

statistics. In particular, we observe that the rate of 329

abductive reasoning samples is relatively low com- 330

pared to deductive ones: 5.8% in VitaminC, 20.4% 331

in CLIMATE-FEVER, and 7.2% in PHEMEPlus. 332

This imbalance is expected given the nature of col- 333

lected evidence; most evidence provided, either in 334

the form of Wikipedia articles as in VitaminC and 335

CLIMATE-FEVER or news articles as in PHEME- 336

Plus, contains detailed information to deductively 337

verify the claim. In total, RECV consists of 1500 338
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claim-evidence pairs with associated veracity and339

reasoning labels. The average sentence length for340

evidence in VitaminC is 1.084, 7.562 for PHEME-341

Plus and 7.828 for CLIMATE-FEVER. This high-342

lights the varying complexity of the datasets and343

RECV.344

5 Claim Verification with LLMs345

Our objective here is to assess the capabilities of346

LLMs in performing deductive and abductive rea-347

soning to determine the veracity of a claim.348

Setup: We formulate claim verification as a pre-349

diction task. Given a claim-evidence pair, we350

prompt LLMs to predict whether the evidence sup-351

ports or refutes the claim (Figure A2 (bottom)).352

We consider two settings: No-Exp and Exp. In353

No-Exp, we prompt LLMs to predict the claim ve-354

racity without any rationale generation. In Exp,355

we first prompt LLMs to produce a rationale and356

then use the generated information to predict claim357

veracity. For each setting, we consider two differ-358

ent prompt strategies: Zero-Shot (ZS), and Man-359

ual Chain-of-Thought (M-CoT) (Wei et al., 2023).360

In addition, in Exp, we also consider Zero-Shot361

Chain-of-Thought (ZS CoT) (Kojima et al., 2023).362

ZS CoT was applied only under Exp as rationale363

generation is integral to ZS CoT prompting. In all364

the prompts, we provide dataset specific personas365

and instructions in the system prompt and CoT ex-366

amples in the user prompt. We report the prompts367

in Appendix F.368

Metrics: We compute macro F1 score for verac-369

ity of claims given the evidence and the error rate370

of claim-evidence pairs concerning deductive and371

abductive reasoning types, respectively. F1 was372

chosen due to the class imbalance in CLIMATE-373

FEVER and PHEMEPlus (they have a 70/30 ratio374

between support and refute labels). We use annota-375

tors’ reasoning type labels for claim-evidence pairs376

to identify errors in verification per category (cases377

of abduction vs deduction) and express it via error378

rate.379

Models: We consider three state-of-the-art pro-380

prietary LLMs with remarkable proficiency in a381

wide range of tasks: Claude V3 Sonnet (Anthropic,382

2023), GPT-4 (OpenAI, 2023), and GPT-4o (Ope-383

nAI et al., 2024). We conducted our experiments384

using OpenAI and Anthropic’s official API.385

5.1 Results 386

Table 2 reports classification performance and error 387

rates per reasoning type for claim verification on 388

RECV. We discuss dataset-specific results in detail. 389

VitaminC: Among prompting strategies, M-CoT 390

leads to the highest increase in performance across 391

all models. The average error rate across all models 392

and settings is 10.31% for deductive reasoning and 393

32% for abductive reasoning. This shows that all 394

models struggle with abductive reasoning, even in 395

less challenging settings like VitaminC. Regarding 396

model settings, we observe conflicting results. In 397

particular, generating rationales improves veracity 398

classification performance for deductive samples in 399

all models, except for GPT-4 M-CoT. By contrast, 400

only Claude ZS and GPT-4o ZS show improve- 401

ments in Exp compared to No-Exp when target- 402

ing abductive reasoning. Overall, when moving to 403

the Exp settings, we observe a 7.5% average per- 404

formance drop, with GPT-4 reporting the highest 405

degradation (−10%). Lastly, regarding prompting 406

strategies, we observe that M-CoT outperforms 407

CoT in deductive cases, while reporting compara- 408

ble results in abductive ones. 409

CLIMATE-FEVER: The average error rate 410

across all models and settings is 15.58% for de- 411

ductive reasoning and 48.58% for abductive rea- 412

soning. Similar to VitaminC, these results denote 413

that LLMs fail at predicting claim veracity when 414

dealing with abductive reasoning. In particular, 415

abductive reasoning samples are on average three 416

times more challenging than deductive ones. Re- 417

garding model settings, we observe that rationale 418

generation leads to performance degradation in all 419

scenarios. Overall, we observe a 4.36% average 420

performance drop for deductive cases and 14.76% 421

for abductive ones. Regarding prompting strate- 422

gies, we observe similar results to VitaminC where 423

M-CoT outperforms CoT. In particular, the average 424

error rate for M-CoT is 14.24% on deductive cases 425

(+2.76) and 45.1% on abductive ones (+8.17). 426

PHEMEPlus: The results suggest that there is 427

no model or prompting strategy that consistently 428

outperforms others. The average error rate across 429

all models and settings is 20.06% for deductive rea- 430

soning and 44.68% for abductive reasoning. Com- 431

pared to VitaminC and CLIMATE-FEVER, PHE- 432

MEPlus represents a more challenging setting for 433

deductive reasoning, while it is comparable in com- 434

plexity with CLIMATE-FEVER when assessing 435
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VitaminC CLIMATE-FEVER PHEMEPlus

Model F1 ↑ Deductive ↓ Abductive ↓ F1 ↑ Deductive ↓ Abductive ↓ F1 ↑ Deductive ↓ Abductive ↓

Claude ZS No-Exp 0.85 13.62 33.33 0.80 12.81 40.20 0.73 19.40 38.89
Claude M-CoT No-Exp 0.87 12.77 23.33 0.80 12.81 41.84 0.76 18.53 38.89
GPT-4 ZS No-Exp 0.86 12.13 30.00 0.87 8.79 20.59 0.69 20.69 38.89
GPT-4 M-CoT No-Exp 0.90 8.30 26.67 0.85 10.05 27.45 0.70 22.41 52.78
GPT-4o ZS No-Exp 0.88 10.43 40.00 0.84 9.55 33.33 0.72 20.04 41.67
GPT-4o M-CoT No-Exp 0.88 10.43 30.00 0.92 9.05 25.49 0.74 19.40 47.22

Claude ZS Exp 0.89 9.79(+3.83) 30.00(+3.33) 0.74 17.34(−4.53) 52.94(−12.75) 0.74 20.04(−0.65) 41.67(−2.78)

Claude ZS CoT Exp 0.88 11.06 30.00 0.70 22.61 56.86 0.73 21.34 41.67
Claude M-CoT Exp 0.90 8.72(+4.04) 30.00(−6.67) 0.73 17.59(−4.77) 57.84(−16.01) 0.73 23.49(−4.96) 41.67(−2.78)

GPT-4 ZS Exp 0.88 10.64(+1.49) 36.67(−6.67) 0.78 15.08(−6.28) 47.06(−26.47) 0.73 20.04(+0.65) 52.78(−13.89)

GPT-4 ZS CoT Exp 0.88 10.00 36.67 0.77 14.32 57.84 0.71 21.12 50.00
GPT-4 M-CoT Exp 0.89 8.72(−0.42) 36.67(−10.00) 0.82 11.31(−1.26) 35.29(−7.84) 0.73 19.61(+2.80) 50.00(+2.78)

GPT-4o ZS Exp 0.89 9.15(+1.28) 30.00(+10.00) 0.79 14.07(−4.52) 42.16(−8.82) 0.74 18.32(+1.72) 44.44(−2.78)

GPT-4o ZS CoT Exp 0.89 9.36 30.00 0.78 14.07 55.88 0.74 18.97 44.44
GPT-4o M-CoT Exp 0.89 8.94(+9.96) 36.67(−6.67) 0.78 13.82(−4.77) 42.16(−16.67) 0.75 18.75(+0.65) 47.22(+0.00)

Table 2: Claim verification performance on RECV. Best results are in bold, second-best results are underlined. We
report error rate delta performance between No-Exp and Exp settings in brackets. Negative delta indicates that
rationale generation degrades perforamnce.

LLMs for claim verification. Regarding model436

settings, we observe minor performance improve-437

ments when prompting LLMs to generate ratio-438

nales in deductive cases, with a 1.46% average439

gain. Claude is the only exception with a 2.81% av-440

erage performance drop when moving to Exp. By441

contrast, we observe notable performance degrada-442

tion in abductive reasoning cases, with GPT-4 ZS443

Exp being the worst (−13.89%). Lastly, regarding444

prompting strategies, we observe no performance445

difference between ZS CoT and M-CoT, highlight-446

ing the higher task complexity in PHEMEPlus.447

6 Explanation evaluation448

Providing reasonable explanations to support pre-449

dicted veracity labels is a crucial aspect of claim450

verification systems. In particular, an automated451

system needs to be both convincing and trustwor-452

thy to convince users in practice (Schlichtkrull453

et al., 2023). Therefore, we evaluate the LLMs454

generated rationales in the Exp setting. This is455

paramount considering that LLMs tend to hallu-456

cinate (Bouyamourn, 2023; Rawte et al., 2023)457

and be self-contradictory at times (Mündler et al.,458

2023). We randomly selected 100 samples from459

each dataset in RECV and compared generated460

rationales against those provided by human annota-461

tors. We restricted sample selection to those where462

at least three models predicted wrong veracity la-463

bels. We follow Song et al. (2024) and compute464

Factual Consistency (FC), Evidence Appropriate-465

ness (EA), BARTScore (Yuan et al., 2021), and466

Perplexity (PPL) to assess the quality of the gen- 467

erated explanations. We provide additional details 468

about metrics in Appendix G. 469

6.1 Results 470

Table 3 reports the results concerning explana- 471

tion evaluation. We observe that all models 472

achieve comparable results on appropriateness 473

(EA), consistency (FC), and coherence measured 474

via BARTScore (BART), while showing notable 475

discrepancies regarding perplexity (PPL). In par- 476

ticular, GPT-4o ZS CoT has the most faithful ra- 477

tionales across all datasets. Moreover, prompting 478

strategies like ZS CoT and M-CoT do not lead to 479

consistent improvements over ZS, suggesting that 480

their effectiveness may be problem- and model- 481

dependent. 482

Additionally, we assess generated rationales re- 483

garding correct and wrong model predictions in 484

Appendix G. Our results show that rationales from 485

correct predictions better align with ground-truth 486

explanations, suggesting that wrong predictions are 487

usually the by-product of incorrect reasoning (the 488

model is unable to leverage the explanation). 489

Lastly, we analyze how similar the generated ra- 490

tionales were between the models. To do so, we per- 491

form a permutation test using sentence-level contra- 492

diction scores from Fact_Score (see Appendix G). 493

We find that Claude ZS has the most unique ratio- 494

nales on all datasets. 495

We discuss properties of rationales generated 496

in the case of abductive and deductive errors per 497

6



VitaminC CLIMATE-FEVER PHEMEPlus

Model EA ↑ FC ↑ BART ↑ PPL ↓ EA ↑ FC ↑ BART ↑ PPL ↓ EA ↑ FC ↑ BART ↑ PPL ↓

Claude ZS 0.85 0.85 -4.16 99.63 0.87 0.88 -4.26 31.08 0.82 0.81 -4.31 39.82
Claude ZS CoT 0.82 0.83 -4.38 52.85 0.82 0.83 -4.28 29.57 0.85 0.84 -4.44 38.81
Claude M-CoT 0.85 0.86 -4.05 68.53 0.89 0.90 -3.42 25.52 0.89 0.88 -4.17 37.83
GPT-4 ZS 0.87 0.87 -3.83 66.84 0.91 0.91 -3.67 27.93 0.87 0.86 -3.89 40.83
GPT-4 ZS CoT 0.87 0.86 -3.78 59.01 0.90 0.91 -3.65 20.65 0.87 0.87 -3.89 28.83
GPT-4 M-CoT 0.89 0.88 -2.98 45.84 0.93 0.94 -2.90 28.13 0.85 0.85 -3.40 47.15
GPT-4o ZS 0.90 0.88 -3.63 52.96 0.92 0.93 -3.64 58.42 0.85 0.86 -4.01 99.63
GPT-4o ZS CoT 0.91 0.89 -3.45 35.82 0.93 0.94 -3.39 46.92 0.89 0.90 -3.74 52.85
GPT-4o M-CoT 0.90 0.88 -3.63 50.10 0.90 0.91 -3.57 57.65 0.87 0.86 -4.08 68.53

Table 3: Qualitative evaluation on RECV in the Exp setting. Best results are in bold, second-best results are
underlined.

dataset.498

VitaminC We observe that LLMs struggle to gen-499

erate faithful rationales in abductive cases. In par-500

ticular, models tend to generate assertions rather501

than hedged information. This has implications for502

claim verification, where models predominantly re-503

fute or misclassify the veracity of the claim based504

on the generated explanations. Regarding deduc-505

tive reasoning, we observe that the majority of er-506

rors are due to internal biases of LLMs, heavily507

influencing rationale generation, and to semantic508

faults in attending to only some parts of the claim509

and evidence.510

CLIMATE-FEVER Regarding abductive cases,511

we observe the same issue reported in VitaminC.512

Regarding deductive reasoning, the majority of fail-513

ures are due to implicit reasoning where relevant514

evidence information is implicit or where temporal515

relations between factual content must be under-516

stood to reach the correct conclusion.517

PHEMEPlus Contrary to VitaminC and518

CLIMATE-FEVER, abductive and deductive519

reasoning errors are mainly due to semantic520

interpretation issues where models focus only on521

specific information in the claim and evidence.522

This limits models in assessing claim-evidence523

pairs in their entirety, thus, hindering them in524

capturing relations between the evidence and525

the claim. As in VitaminC, this issue affects the526

claim verification performance, often leading to527

misclassification.528

7 Findings529

We discuss the main findings of our work, including530

task complexity, the effectiveness of prompting531

strategies, and rationale generation.532

Reasoning and Task complexity. Our results 533

show that abductive reasoning is consistently more 534

challenging than deductive reasoning. In particu- 535

lar, the performance gap between the two cases is 536

around three times on average. This is mainly mo- 537

tivated by LLMs failing in performing uncertainty 538

reasoning, often leading to erroneous assertive con- 539

clusions. Nonetheless, this is not the only issue 540

that makes RECV challenging; task complexity 541

plays a crucial role in reasoning performance. For 542

instance, PHEMEPlus represents a more complex 543

setting than VitaminC where news articles can con- 544

tain extensive amount of information compared to 545

Wikipedia pages. As shown in our qualitative anal- 546

ysis, LLMs tend to focus only on specific parts of 547

input claim-evidence pairs, leading to suboptimal 548

performance. For example, in the following claim 549

from VitaminC, 550

Claim: Peking University is in a unitary 551

sovereign state that’s located in East Asia. 552

Evidence: Peking University abbreviated PKU 553

is a major Chinese research university located in 554

Beijing and a member of the C9 League. 555

the veracity of is deductively refuted. However, 556

all the models labelled this pair as evidence sup- 557

porting the claim. The rationale provided was that 558

China was a sovereign country, ignoring the claim 559

completely. This shows the over-reliance on spe- 560

cific parts of the evidence by the models while 561

ignoring others. Overall, our findings suggest that 562

LLMs’ reasoning capabilities are domain and task 563

dependent. Thus, we believe RECV represents a 564

valuable resource to assess reasoning capabilities 565

since it covers a wide spectrum of settings concern- 566

ing claim verification. 567

Prompting Settings and Strategies Our experi- 568

ments show that prompting strategies like ZS CoT 569

and M-CoT do not lead to systematic performance 570

7



improvements, but are rather specific to datasets571

(e.g., VitaminC) and models. These results align572

with recent findings about CoT being beneficial573

mainly for math- and code-related tasks (Sprague574

et al., 2024). This is likely derived by divergent575

reasoning paths within the models during infer-576

ence that lead to reduction in performance (Chollet,577

2023; Todd et al., 2023; Dutta et al., 2024). Fur-578

thermore, we also observe that internal alignment579

can hinder reasoning capabilities when it comes580

to abductive reasoning. Models are averse to pro-581

vide predictions when evidence is incomplete. Yet582

abductive reasoning is often required for more com-583

plex tasks such as legal reasoning, just in time fact-584

checking, and other diverse forms of composite585

reasoning tasks. Hence, in order to achieve good586

results on these type of reasoning tasks, LLMs need587

to improve in the direction of abductive reasoning.588

Explanation Quality Our evaluation of gener-589

ated explanations shows that these are on average590

consistent with human rationales. In particular, ZS591

CoT rationales are more convincing due to their ver-592

bosity, whereas M-CoT rationales are more concise.593

Moreover, we observe that rationales generated for594

abductive reasoning cases resemble assertions as595

models disprefer generating uncertain rationales.596

Nonetheless, considering that our results are lim-597

ited to macro performance results and given the598

limited number of abductive cases, we believe our599

estimates to decrease as dataset size increases. We600

leave a fine-grained analysis on generated ratio-601

nales concerning an extended version of RECV as602

future work.603

8 Related work604

LLMs for Reasoning Several contributions have605

evaluated different reasoning capabilities in LLMs,606

including atomic and compounds types. For in-607

stance, LLMs can perform abductive reasoning608

for event prediction (Shi et al., 2023), but strug-609

gle with common sense reasoning (Zhao et al.,610

2023). Similarly, deductive reasoning in LLMs611

is beneficial to theorem-proving (Saparov et al.,612

2023), factual content generation (Akyürek et al.,613

2024), and question-answering (Li et al., 2024).614

Nonetheless, the observed improvements are of-615

ten attributable to how prompts are designed rather616

than an emergent deductive capability (Chen et al.,617

2024). Moreover, LLMs perform out-of-context618

inductive reasoning (Treutlein et al., 2024), but619

fail in lexical tasks (Ye et al., 2023). Regarding620

analogical reasoning, LLMs address a wide vari- 621

ety of tasks, including nonverbal tests (Webb et al., 622

2023; Hu et al., 2023), question-answering (Yu 623

et al., 2023), mathematical problem solving (Ya- 624

sunaga et al., 2024), and planning (Yu et al., 2024), 625

but present shortcomings in as many others (Ye 626

et al., 2024; Sourati et al., 2024; Stevenson et al., 627

2024; Ahrabian et al., 2024; Lewis and Mitchell, 628

2024). Likewise, despite promising results in com- 629

pound reasoning tasks, such as counterfactual (Wu 630

et al., 2023), and compositional reasoning (Lu et al., 631

2023a), LLMs are notably unreliable (Gao et al., 632

2023; Zhang et al., 2024), sensitive to context (Hos- 633

seini et al., 2024; Chang and Bergen, 2024), and 634

rely on shortcuts (Yang et al., 2024). 635

LLMs for Claim Verification Early work with 636

LLMs focused on verifying simple facts (Lee et al., 637

2020). More recently, LLMs for claim verification 638

have been augmented with external knowledge (Li 639

et al., 2023a; Cheung and Lam, 2023), prompt- 640

based reasoning (Cao, 2023; Li et al., 2023b; Lin 641

et al., 2023), claim decomposition for fine-grained 642

search into text chunks (Li et al., 2023a) or first- 643

order logic terms (Wang and Shu, 2023), and data- 644

augmentation (Alhindi et al., 2023). While LLMs 645

have been extensively applied in fact-checking, the 646

question of which reasoning capabilities are needed 647

to verify claims remains unaddressed. Thus, we 648

are the first to propose a reasoning benchmark for 649

claim verification. 650

9 Conclusion 651

We propose a novel extendable logical reasoning 652

framework for deconstructing claim-evidence pairs 653

into reasoning steps, required to determine the ve- 654

racity of a claim. We use our framework to create 655

RECV, the first reasoning benchmark for claim 656

verification focussed on deductive and abductive 657

reasoning. Our results show that LLMs notably 658

struggle with abductive reasoning, while perform- 659

ing better in deductive cases. Our findings show 660

that LLMs reasoning capabilities are domain and 661

task dependent. In particular, no specific prompting 662

strategy, including rationale generation, is system- 663

atically beneficial across all datasets and models. 664

Nevertheless, rationales generated by LLMs for de- 665

ductive reasoning are on average consistent with 666

human ones. Overall, these results highlight that 667

RECV represents a challenging reasoning setting 668

for LLMs and further research is required to reach 669

satisfying performance. 670
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Limitations671

Dataset Selection and Reasoning Types Our672

focus on deductive and abductive reasoning types673

is dictated by our findings in the preliminary study.674

Nonetheless, other resources could be investigated675

to expand our approach to include other reasoning676

types. An example domain is biomedicine where677

datasets like COVID-Fact (Saakyan et al., 2021)678

could include examples where inductive reasoning679

is required to infer claim veracity.680

Models We analyse three widely adopted pro-681

prietary LLMs. However, other models, includ-682

ing open-source ones, are also widely assessed683

in reasoning tasks. For a broader evaluation of684

LLMs, our study could include other models al-685

though these are currently unlikely to outperform686

the most established proprietary models.687

Rationale Generation When LLMs generate an688

explanation, there is no guarantee that it is true to689

the final label assigned by the model. We mitigate690

this issue by obtaining both the label and explana-691

tion in the same prompt, although it should still be692

treated as merely "a plausible post-hoc explanation693

generated by the model" rather than the specific694

reason behind its decision.695

Ethics Statement696

The PHEMEPlus dataset is a pre-existing dataset697

of rumours, for which ethical approval was ob-698

tained by the original research team. The rest of the699

datasets were sampled from pre-existing datasets700

for which no ethical approval was required.701
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A Logical Reasoning Examples1289

We hereby provide a formal description of atomic1290

reasoning types, including examples on claim veri-1291

fication whenever possible.1292

Deductive. Deductive reasoning or top-down 1293

logic is a logical reasoning process where we use 1294

inference rules such as modus ponens to deduce 1295

the veracity of a conclusion based on multiple 1296

hypotheses. A core element of deductive inference 1297

is that if the premises are true, then the conclusion 1298

is true. In formal logic, the rules of deduction are 1299

infinite (Morishita et al., 2023), where the most 1300

common ones are modus ponens, syllogism, and 1301

elimination. The reader is referred to the works of 1302

Morishita et al. (2023) and Saparov et al. (2023) 1303

for a more in-depth discussion of deduction rules. 1304

1305

Example. 1306

Claim: Schools closed, Dammartin-en-Goele resi- 1307

dents told to stay indoors, town ‘like warzone’. 1308

Evidence: Schools went into lockdown and the 1309

town appealed to residents to stay inside resi- 1310

dent’s houses. 1311

Conclusion: The evidence references the school 1312

closing down and residents being told to shelter 1313

at home. Therefore, we deductively infer that the 1314

rumour is true as the conclusion logically follows 1315

the evidence. 1316

Abductive. There is much debate regarding def- 1317

inition of abductive reasoning (Plutynski, 2011). 1318

We follow the work of Paul (1993), which provides 1319

three different approaches towards defining abduc- 1320

tive reasoning as: 1321

• A set-cover-based approach; 1322

• A logic-based approach; 1323

• A knowledge-level approach. 1324

In this work, we use the set-cover-based ap- 1325

proach, in which we construct the set of most plau- 1326

sible hypotheses H given some observations O. 1327

Afterwards, we find the best possible explanation 1328

E based on H . In other words, 1329

‘A domain for hypothesis assembly is defined by 1330

the triple ϕ, σ, ϵ), where ϕ is a finite set of hypothe- 1331

ses, σ is a set of observations and ϵ is a mapping 1332

from subsets of ϕ to subsets of σ. ϵ(ϕ) is called 1333

the explanatory power of the set of hypotheses ϕ 1334

and determines the set of observations σ accounts 1335

for. An assembly problem is given by a set σ′ ⊆ σ 1336

of observations that have to be explained.’ (Paul, 1337

1993). 1338
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Additionally, the key difference between abduc-1339

tive reasoning and the other forms of reasoning1340

types is that, unlike the other types, abdctive reason-1341

ing works "backwards" towards the most plausible1342

hypothesis from a given set of rules and happenings.1343

Deductive reasoning is formulation of results based1344

on rule and observation and inductive reasoning is1345

formulation of rule based on result and observation.1346

Whereas, abductive reasoning is formulation of an1347

observation based on rule and result. For example1348

from Flach and Kakas (2000):1349

Rule All the beans from this bag are white.1350

Result These beans are white.1351

Conclusion These beans are from this bag.1352

Inductive. Inductive reasoning is the reasoning1353

process where we use observations and outcomes1354

to infer a generalizable rule. Hence, the logical1355

structure can be represented as:1356

∀x, observations(x) =⇒ conclusion1357

or1358

∃x, observations(x) =⇒ conclusion1359

amongst many other forms. A conclusion1360

reached by inductive reasoning is not necessarily1361

true. As per Flach and Kakas (2000), if the1362

premises for any stated argument only provide1363

partial support for its conclusion, then that1364

argument is inductive supposing the premises are1365

true.1366

1367

Example 1.1368

Claim: Injecting or consuming bleach is good for1369

killing the virus (Covid-19).1370

Evidence 1: Applying bleach or chlorine to the1371

skin can cause harm, especially if it enters the1372

eyes or mouth.1373

Evidence 2: These chemicals can disinfect sur-1374

faces, but people should not use them on their1375

bodies.1376

Evidence 3: Also, these products cannot kill1377

viruses inside the body.1378

Conclusion: From the evidence we can inductively1379

draw a general conclusion that the claim is false,1380

as bleach causes harm to the body and would not1381

kill any viruses within.1382

Example 2. 1383

Observation1 Eagles have wings. Eagles are birds 1384

and eagles can fly. 1385

Observation2 Ducks have wings. Ducks are birds 1386

and ducks can fly. 1387

Observation 3a Pigeons have wings. Pigeons are 1388

birds and pigeons can fly. 1389

or 1390

Observation 3b Bats have wings. Bats are mam- 1391

mals and bats can fly. 1392

Conclusion a All birds have wings and all birds 1393

can fly. 1394

or 1395

Conclusion b Those who have wings can fly. 1396

It is clear that each conclusion is true if we make 1397

a closed-world assumption regarding the premises. 1398

However, in reality, it is false as there exist flight- 1399

less birds including Penguins and wingless birds 1400

such as Kiwi. 1401

Analogical. Analogical reasoning is the reason- 1402

ing process concerned with comparison between 1403

two or more objects, arguments, or entities. 1404

1405

Example. 1406

Claim: entity α is equivalent to entities ζ, κ, ϕ, 1407

and ω. 1408

Evidence: entity β is equivalent to entities ζ, κ, 1409

and ϕ. 1410

Conclusion: entity β is probably equivalent to en- 1411

tity ω. 1412

B Claim Verification Datasets 1413

We select three popular resources for claim verifi- 1414

cation, covering different domains and increasing 1415

task complexity. 1416

VitaminC (Schuster et al., 2021). A multi-task 1417

fact-checking dataset based on manual and syn- 1418

thetic English revisions to Wikipedia pages. The 1419

dataset comprises ∼450k claim-evidence pairs. For 1420

the claim verification task, claim-evidence pairs are 1421

annotated with veracity labels: supports, refutes, 1422

and not-enough-information. VitaminC is licensed 1423

under MIT License. 1424
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CLIMATE-FEVER (Diggelmann et al., 2020) .1425

A claim verification dataset that consists of ∼1.5k1426

real-world claims concerning climate change. The1427

claims are retrieved from Google while the evi-1428

dence is Wikipedia-based. The claim-evidence1429

pairs are annotated with veracity labels: supports,1430

refutes, and not-enough-information.1431

PHEMEPlus (Dougrez-Lewis et al., 2022). A1432

rumour verification dataset comprising social me-1433

dia claims about real-world events. The dataset con-1434

tains five different events where associated claim-1435

evidence pairs are annotated with veracity labels:1436

true, false, not-enough-information. PHEMEPlus1437

is an extension of the PHEME (Zubiaga et al.,1438

2016) dataset, where web-retrieved news articles1439

are used as evidence in place of Twitter threads as1440

done in PHEME.1441

C Sampling details1442

Figure A1 shows the distribution of cosine sim-1443

ilarity (denoted as Sim Score), BERTScore and1444

BLEURT score. We used this distribution to set up1445

two different thresholds for deductive and abduc-1446

tive samples. We found that the Bertscores and Sim1447

Scores for abductive sample did not seem to over-1448

lap. However, the deductive score had overlap be-1449

tween them. From this observation, we derived the1450

following thresholds. For abductive samples, the1451

threshold is: BERTScore ≤ 0.25 ∧ Sim Score ≥1452

0.35. For deductive samples, the threshold is:1453

Sim Score ≥ 0.36 ∧ BLEURT > 0.15.1454

D Annotation Guidelines1455

Figure A2 summarizes our annotation pipeline for1456

RECV. In data annotation (Figure A2, Top), we1457

provide a human annotator with claim-evidence1458

pairs with corresponding veracity label. The an-1459

notator determines the reasoning type required to1460

infer the claim veracity and provides a rationale1461

in free-text format as motivation. Table A1 re-1462

ports the annotation guidelines we used to instruct1463

annotators in creating RECV.1464

E Data Annotation1465

Table A2 reports pairwise agreement scores for1466

each dataset in RECV.1467

F Prompts1468

Tables A3, A4, and A5 report the prompts we used1469

for VitaminC, CLIMATE-FEVER, and PHEME-1470

Plus, respectively. We follow standard prompt con-1471

struction strategies and provide dataset specific per-1472

sonas and instructions. Additionally, in M-CoT 1473

with provide examples to guide the model. 1474

G Qualitative Analysis 1475

Tables A9, A10, and A11 report pairwise permuta- 1476

tion tests on RECV datasets. Moreover, Tables A6, 1477

A7, and A8 report qualitative analysis metrics on 1478

RECV datasets. In particular, we compute quali- 1479

tative metrics on two sets of examples: those for 1480

which models correctly predicted the correspond- 1481

ing claim veracity (Correct), and those where mod- 1482

els made wrong predictions (Wrong). 1483

The metrics used for qualitative analysis are as 1484

following, 1485

Factual consistency. We assess the consistency 1486

of LLM generated rationales R with human-written 1487

ones H , where consistency is the absence of contra- 1488

diction. We define C to be a function that quantifies 1489

the consistency of text B based on text A: 1490

C(A,B) = 1
|A|·|B|

∑
a∈A

∑
b∈B (1− NLI(Contradict|a, b)) 1491

We calculate the consistency of LLM rationales to 1492

human rationales as, 1493

FC = 1− 1

N

N∑
i=1

Ci (1) 1494

where N is the total number of sentence pairs 1495

compared,Ci is the consistency score of the i-th 1496

comparison. 1497

Evidence appropriateness. For evidence appro- 1498

priateness, we use the same consistency score C as 1499

Fact_Expert. 1500

EA =
1

M

M∑
j=1

 1

Nj

Nj∑
i=1

(1− cij)

 (2) 1501

Here, M is the total number of generated ra- 1502

tionales, Nj is the number of sentences in the j- 1503

th generated rationale and Cij is the consistency 1504

score for the i-th sentence in the j-th rationale. Ev- 1505

idence appropriateness can be considered as the 1506

mean factual consistency whereas Fact_Expert is 1507

the granular sentence level consistency. 1508

Coherence. We estimate how easy it is to fol- 1509

low the rationales and how effectively it integrates 1510

information from the evidence using BARTScore. 1511

Fluency. We estimate fluency for rationales using 1512

perplexity (PPL) under GPT-2-XL (Radford et al., 1513

2019). 1514
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Read each claim and evidence pair samples along with their associated veracity labels. Afterwards
you will label them with the type of reasoning you think was necessary for inferring the veracity label
of the claim given the evidence. The reasoning types are abductive and deductive. Also, provide
rationale for your labels.

The goal is to identify what type of reasoning is necessary to infer the veracity of the claim given the
associated evidence, for each of the given pairs.

Example 1.

Claim: Climate change isn’t increasing extreme weather damage costs.

Evidence: 1. Many analyses, such as that of the Stern Review presented to the British Government,
have predicted reductions by several percent of world gross domestic product due to climate related
costs such as dealing with increased extreme weather events and stresses to low-lying areas due to sea
level rises. 2. Global losses reveal rapidly rising costs due to extreme weather-related events since the
1970s. 3. Global warming boosts the probability of extreme weather events, like heat waves, far more
than it boosts more moderate events. 4. "Impacts [of climate change] will very likely increase due to
increased frequencies and intensities of some extreme weather events".

Veracity: Refutes

Reasoning: Deductive

Rationale: The evidence deductively refutes the claim. We find explicit mention of increased damage
cost in the second line of the evidence. While the last two lines of evidence provide explicit evidence
of global causing more adverse weather events.

Example 2.

Claim: Pluto’s climate change over the last 14 years is likely a seasonal event.

Evidence: The long orbital period of Neptune results in seasons lasting forty years. 2. As a result,
Neptune experiences similar seasonal changes to Earth. 3. "Evidence for methane escape and strong
seasonal and dynamical perturbations of Neptune’s atmospheric temperatures". 4. Each planet
therefore has seasons, changes to the climate over the course of its year.

Veracity: Supports

Reasoning: Abductive

Rationale: The claim is abductively supported. Given Pluto used to be a planet and now is labeled as
a dwarf planet, we can hypothesize that it likely has the same attribute as neptune. Given pluto has the
biggest orbital period, it is very much likely pluto seasons last over 10 years.

Table A1: Annotation guidelines used to create RECV. This specific example was for CLIMATE-FEVER. This
partial representation of the guideline as we provided 8 examples for each dataset with a mix of supports and refutes
label.
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Figure A1: Distribution of the sampling metrics.

Figure A2: (Top) Our annotation process for reasoning-based claim verification. An annotator provides reasoning
type required to infer the claim veracity and a rationale as motivation. (Bottom) The claim verification task where a
LLM has to predict the claim veracity and generate a rationale as support.

VitaminC CLIMATE-FEVER PHEMEPlus

Annotator A Annotator B Annotator C Annotator A Annotator B Annotator C Annotator A Annotator B Annotator C

Annotator A - 0.72 0.74 - 0.56 0.56 - 0.64 0.68
Annotator B 0.72 - 0.78 0.56 - 0.56 0.64 - 0.68

Table A2: Pairwise Bennett’s S Score across different datasets.
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ZS.
You are an expert fact checker. As an expert fact checker, you will be helping us verify some claims.
For your task, you will be provided with claims and evidence in this format Q:[<!C> Claim: ...<C!> \n
<!E> Evidence: ...<E!>]. You will use the provided evidence to decide whether the associated claim is
supported or refuted. You will first briefly explain your reasoning in one sentence, and then make the
final judgment by writing LABEL: followed by a single word SUPPORTS or REFUTES.

CoT.
You are an expert fact checker. As an expert fact checker, you will be helping us verify some claims.
For your task, you will be provided with claims and evidence in this format Q:[<!C> Claim: ...<C!> \n
<!E> Evidence: ...<E!>]. You will use the provided evidence to decide whether the associated claim is
supported or refuted. You will first briefly explain your reasoning in one sentence, and then make the
final judgment by writing LABEL: followed by a single word SUPPORTS or REFUTES. Let’s think
step by step.

M-CoT.
You are an expert fact checker. As an expert fact checker, you will be helping us verify some claims.
You will be provided with tuples of claim, evidence and answer as examples first. The example
claims will be inside <!eC>...<eC!> tokens, evidence will be inside <!eE>...<eE!> tokens and the
answer/reasoning will be inside <!eA>...<eA!> tokens. The answer is based on the evidence and it
verifies whether the evidence supports or refutes the claim. For your task, you will be provided with
claims and evidence in this format Q:[<!C> Claim: ...<C!> \n <!E> Evidence: ...<E!>]. You will use
the provided evidence to decide whether the associated claim is supported or refuted. You will first
briefly explain your reasoning in one sentence, and then make the final judgement by writing LABEL:
followed by a single word SUPPORTS or REFUTES.

Here are some examples:
{examples}

Table A3: Prompts used in VitaminC.
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ZS.
You are an expert climate scientist. As an expert climate scientist, you will be helping us verify some
climate-related claims. For your task, you will be provided with climate-related claims and evidence
in this format Q:[<!C> Claim: ...<C!> \n <!E> Evidence: ...<E!>]. You will use the provided evidence
to decide whether the associated claim is supported or refuted. You will first briefly explain your
reasoning in one sentence, and then make the final judgement by writing LABEL: followed by a single
word SUPPORTS or REFUTES.

CoT.
You are an expert climate scientist. As an expert climate scientist, you will be helping us verify some
climate-related claims. For your task, you will be provided with climate-related claims and evidence
in this format Q:[<!C> Claim: ...<C!> \n <!E> Evidence: ...<E!>]. You will use the provided evidence
to decide whether the associated claim is supported or refuted. You will first briefly explain your
reasoning in one sentence, and then make the final judgement by writing LABEL: followed by a single
word SUPPORTS or REFUTES. Let’s think step by step.

M-CoT.
You are an expert climate scientist. As an expert climate scientist, you will be helping us verify some
climate-related claims. You will be provided with tuples of claim, evidence and answer as examples
first. The example claims will be inside <!eC>...<eC!> tokens, evidence will be inside <!eE>...<eE!>
tokens and the answer/reasoning will be inside <!eA>...<eA!> tokens. The answer is based on the
evidence and it verifies whether the evidence supports or refutes the claim. For your task, you will
be provided with climate-related claims and evidence in this format Q:[<!C> Claim: ...<C!> \n <!E>
Evidence: ...<E!>]. You will use the provided evidence to decide whether the associated claim is
supported or refuted. You will first briefly explain your reasoning in one sentence, and then make the
final judgement by writing LABEL: followed by a single word SUPPORTS or REFUTES.

Here are some examples:
{examples}

Table A4: Prompts used in CLIMATE-FEVER.
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ZS.
You are an expert journalist. As an expert journalist, you will be helping us verify some rumours. For
your task, you will be provided with rumours and evidence in this format Q:[<!R> Rumour: ...<R!> \n
<!E> Evidence: ...<E!>]. You will use the provided evidence to decide whether the associated rumour
is supported or refuted. You will first briefly explain your reasoning in one sentence, and then make
the final judgement by writing LABEL: followed by a single word SUPPORTS or REFUTES.

CoT.
You are an expert journalist. As an expert journalist, you will be helping us verify some rumours. For
your task, you will be provided with rumours and evidence in this format Q:[<!R> Rumour: ...<R!> \n
<!E> Evidence: ...<E!>]. You will use the provided evidence to decide whether the associated rumour
is supported or refuted. You will first briefly explain your reasoning in one sentence, and then make
the final judgement by writing LABEL: followed by a single word SUPPORTS or REFUTES. Let’s
think step by step.

M-CoT.
You are an expert journalist. As an expert journalist, you will be helping us verify some rumours.
You will be provided with tuples of rumour, evidence and answer as examples first. The example
rumours will be inside <!eR>...<eR!> tokens, evidence will be inside <!eE>...<eE!> tokens and the
answer/reasoning will be inside <!eA>...<eA!> tokens. The answer is based on the evidence and it
verifies whether the evidence supports or refutes the rumour. For your task, you will be provided with
rumours and evidence in this format Q:[<!R> Rumour: ...<R!> \n <!E> Evidence: ...<E!>]. You will
use the provided evidence to decide whether the associated rumour is supported or refuted. You will
first briefly explain your reasoning in one sentence, and then make the final judgement by writing
LABEL: followed by a single word SUPPORTS or REFUTES.

Here are some examples:
{examples}

Table A5: Prompts used in PHEMEPlus.

EA ↑ FC ↑ BART ↑ PPL ↓

Model Correct Wrong Correct Wrong Correct Wrong Correct Wrong

Claude ZS 0.86 0.75 0.86 0.77 -4.15 -4.21 103.49 75.94
Claude ZS CoT 0.86 0.61 0.86 0.75 -4.42 -4.19 55.44 39.25
Claude M-CoT 0.87 0.82 0.86 0.84 -4.08 -3.90 72.02 47.03
GPT-4 ZS 0.89 0.76 0.88 0.82 -3.82 -3.87 69.82 51.17
GPT-4 ZS CoT 0.89 0.76 0.88 0.80 -3.77 -3.8 61.13 47.85
GPT-4 M-CoT 0.90 0.77 0.90 0.75 -2.98 -3.01 46.39 40.95
GPT-4o ZS 0.91 0.79 0.90 0.81 -3.67 -3.41 57.60 24.46
GPT-4o ZS CoT 0.93 0.75 0.92 0.76 -3.47 -3.29 37.77 21.57
GPT-4o M-CoT 0.92 0.77 0.90 0.78 -3.68 -3.35 53.63 26.52

Table A6: Qualitative evaluation on VitaminC. We distinguish between correct and wrong claim veracity predictions.
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EA ↑ FC ↑ BART ↑ PPL ↓

Model Correct Wrong Correct Wrong Correct Wrong Correct Wrong

Claude ZS 0.87 0.88 0.87 0.89 -4.19 -4.60 61.26 79.73
Claude ZS CoT 0.81 0.86 0.91 0.86 -4.29 -4.26 29.27 25.08
Claude M-CoT 0.90 0.82 0.91 0.85 -3.36 -3.68 33.51 33.33
GPT-4 ZS 0.93 0.79 0.93 0.84 -3.65 -3.79 30.17 36.24
GPT-4 ZS CoT 0.92 0.81 0.92 0.87 -3.63 -3.76 29.23 31.51
GPT-4 M-CoT 0.96 0.70 0.96 0.75 -2.88 -3.07 25.50 25.65
GPT-4o ZS 0.93 0.89 0.93 0.90 -3.63 -3.71 28.09 26.62
GPT-4o ZS CoT 0.95 0.85 0.95 0.90 -3.37 -3.48 20.77 19.95
GPT-4o M-CoT 0.90 0.88 0.91 0.86 -3.56 -3.72 28.15 28.04

Table A7: Qualitative evaluation on CLIMATE-FEVER. We distinguish between correct and wrong claim veracity
predictions.

EA ↑ FC ↑ BART ↑ PPL ↓

Model Correct Wrong Correct Wrong Correct Wrong Correct Wrong

Claude ZS 0.85 0.76 0.84 0.74 -4.29 -4.38 60.15 53.23
Claude ZS CoT 0.86 0.81 0.85 0.81 -4.43 -4.49 48.25 42.95
Claude M-CoT 0.89 0.87 0.89 0.86 -4.11 -4.30 57.30 58.42
GPT-4 ZS 0.88 0.81 0.89 0.81 -3.90 -3.87 41.33 35.52
GPT-4 ZS CoT 0.88 0.85 0.88 0.85 -3.90 -3.85 39.65 36.18
GPT-4 M-CoT 0.91 0.70 0.89 0.72 -3.40 -3.39 40.59 30.73
GPT-4o ZS 0.90 0.74 0.90 0.75 -4.02 -4.00 43.29 34.20
GPT-4o ZS CoT 0.92 0.82 0.92 0.84 -3.76 -3.70 30.33 24.55
GPT-4o M-CoT 0.89 0.79 0.89 0.79 -4.08 -4.05 49.46 40.59

Table A8: Qualitative evaluation on PHEMEPlus. We distinguish between correct and wrong claim veracity
predictions.

Claude ZS Claude ZS CoT Claude M-CoT GPT-4 ZS GPT-4 ZS CoT GPT-4 M-CoT GPT-4o ZS GPT-4o ZS CoT

Claude ZS CoT 0.4061 - - - - - - -
Claude M-CoT 0.5985 0.1768 - - - - - -
GPT-4 ZS 0.3461 0.0639 0.6466 - - - - -
GPT-4 ZS CoT 0.3303 0.0600 0.6636 0.9703 - - - -
GPT-4 M-CoT 0.0830 0.0066 0.1943 0.3769 0.3489 - - -
GPT-4o ZS 0.0732 0.0067 0.1897 0.4086 0.3739 0.8896 - -
GPT-4o ZS CoT 0.0158 0.0002 0.0558 0.1511 0.1269 0.6856 0.5457 -
GPT-4o M-CoT 0.0866 0.0064 0.2211 0.4259 0.3837 0.8893 0.9988 0.5626

Table A9: Pairwise Permutation Test on 100 evaluation samples from VitaminC.

Claude ZS Claude ZS CoT Claude M-CoT GPT-4 ZS GPT-4 ZS CoT GPT-4 M-CoT GPT-4o ZS GPT-4o ZS CoT

Claude ZS CoT 0.0480 - - - - - - -
Claude M-CoT 0.4062 0.0027 - - - - - -
GPT-4 ZS 0.0811 0.0001 0.5795 - - - - -
GPT-4 ZS CoT 0.0889 0.0002 0.6516 0.8770 - - - -
GPT-4 M-CoT 0.0022 0.0001 0.0802 0.1529 0.1005 - - -
GPT-4o ZS 0.0108 0.0001 0.2442 0.4047 0.3009 0.5190 - -
GPT-4o ZS CoT 0.0006 0.0001 0.0528 0.0932 0.0536 0.9319 0.4036 -
GPT-4o M-CoT 0.1325 0.0001 0.7312 0.7618 0.8751 0.0741 0.2653 0.0369

Table A10: Pairwise Permutation Test on 100 evaluation samples from CLIMATE-FEVER.
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Claude ZS Claude ZS CoT Claude M-CoT GPT-4 ZS GPT-4 ZS CoT GPT-4 M-CoT GPT-4o ZS GPT-4o ZS CoT

Claude ZS CoT 0.1872 - - - - - - -
Claude M-CoT 0.0068 0.0953 - - - - - -
GPT-4 ZS 0.0276 0.3199 0.4636 - - - - -
GPT-4 ZS CoT 0.0082 0.1534 0.6888 0.7094 - - - -
GPT-4 M-CoT 0.2363 0.8827 0.2256 0.4959 0.3116 - - -
GPT-4o ZS 0.0534 0.4611 0.3528 0.8139 0.5373 0.6487 - -
GPT-4o ZS CoT 0.0002 0.0033 0.4062 0.0791 0.1584 0.0263 0.0518 -
GPT-4o M-CoT 0.0270 0.3188 0.4208 0.9707 0.6609 0.5043 0.8387 0.0681

Table A11: Pairwise Permutation Test on 100 evaluation samples from PHEMEPlus.
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