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Abstract

With the exponential growth of data, traditional object detection methods are in-
creasingly struggling to handle vast vocabulary object detection tasks effectively.
We analyze two key limitations of classification-based detectors: positive gradi-
ent dilution, where rare positive categories receive insufficient learning signals,
and hard negative gradient dilution, where discriminative gradients are over-
whelmed by numerous easy negatives. To address these challenges, we propose
CQ-DINO, a category query-based object detection framework that reformulates
classification as a contrastive task between object queries and learnable category
queries. Our method introduces image-guided query selection, which reduces the
negative space by adaptively retrieving the top-K relevant categories per image
via cross-attention, thereby rebalancing gradient distributions and facilitating im-
plicit hard example mining. Furthermore, CQ-DINO flexibly integrates explicit
hierarchical category relationships in structured datasets (e.g., V3Det) or learns
implicit category correlations via self-attention in generic datasets (e.g., COCO).
Experiments demonstrate that CQ-DINO achieves superior performance on the
challenging V3Det benchmark (surpassing previous methods by 2.1% AP) while
maintaining competitiveness on COCO. Our work provides a scalable solution for
real-world detection systems requiring wide category coverage.

1 Introduction

With the rapid expansion of data, developing a robust AI system capable of large-scale object
detection has become essential. This necessity is driven by the increasing complexity and diversity of
real-world applications, where AI must manage an extensive vocabulary and dynamic environments.
Vast vocabularies inherently present hierarchical category structures, as illustrated by classification
datasets like ImageNet [8] and Bamboo [49]. Recent detection benchmarks, such as V3Det [40],
which feature 13,204 object categories organized in hierarchical structures, highlight the magnitude
of this challenge. While object detection has witnessed significant advancements [31, 20, 25, 11],
scaling effectively to vast vocabularies remains a substantial challenge.

Category prediction mechanisms can be broadly categorized into four types, as illustrated in Fig. 1.
Classification head-based methods employ feed-forward networks (FFNs) with sigmoid activation and
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Figure 1: Comparison of category prediction mechanisms for vast vocabulary object detection. (a)
Classification head-based detectors with fixed FFN layers face severe optimization challenges with
increasing vocabulary size. (b) Text-prompted contrastive detectors leverage VLMs but require
multiple inference passes for vast category lists. (c) Language model generated detectors enable
open-ended detection but lack control over category granularity. (d) Our proposed CQ-DINO encodes
categories as learnable category queries and leverages query selection to identify the most relevant
categories in the image, achieving both scalability and improved performance.

Focal Loss [35] optimization. These approaches perform well on benchmarks with limited categories
such as COCO [22] (80 categories) and Objects365 [36] (365 categories), but face fundamental
challenges and scalability issues in vast vocabulary settings. Text-prompted contrastive methods
leverage Vision-Language Models (VLMs) to encode target categories as text inputs, achieving
strong open-vocabulary detection [46] performance. However, in vast vocabulary scenarios, text
input sequences become prohibitively long, necessitating the splitting of category lists across multiple
inference passes. This substantially limits their practical scalability and efficiency. Language model-
generated methods approach open-ended [21] object detection by using language models to generate
category labels without predefined candidate sets. Although these methods theoretically enable the
detection of arbitrary object categories, they generally lack mechanisms to control the granularity of
generated labels, which can result in substantial misalignment with practical detection requirements.

In this work, we first systematically analyze the challenges in vast vocabulary detection, focusing
particularly on classification-based methods. Our analysis reveals two critical limitations: (1) positive
gradient dilution, where the sparse positive categories receive insufficient gradient updates compared
to the overwhelming negative categories, and (2) hard negative gradient dilution, where informative
hard negative gradients get overwhelmed among numerous easy negative examples.

To tackle these challenges, we introduce Category Query-based DINO (CQ-DINO), a novel archi-
tecture that encodes categories as learnable query embeddings. Our approach centers on image-guided
query selection, which identifies relevant categories via category-to-image similarity through cross-
attention. The key insight driving our method is that dynamic sparse category selection significantly
reduces the negative search space. This selection mechanism provides three crucial benefits: (1)
balancing the ratio between positive and negative gradients, (2) performing implicit hard mining by
selecting the most similar categories, and (3) reducing memory and computational costs, making the
framework scalable to extremely large vocabularies. Selected category queries interact with image
features to generate object queries. From these object queries, bounding boxes are predicted through a
cross-modality decoder. The final classifications are obtained using contrastive alignment between the
object queries and the category queries. Unlike traditional classification head-based methods, our cat-
egory query representation offers greater flexibility by naturally encoding inter-category relationships.
For structured datasets with explicit category hierarchies like V3Det [40], we leverage the inherent
tree structure to construct hierarchical category queries with an adaptive weighting mechanism that
balances local and hierarchical features. For datasets without explicit hierarchies (e.g., COCO [22]),
we employ self-attention mechanisms to implicitly learn the correlations between categories.

We evaluate CQ-DINO on both the vast vocabulary V3Det dataset [40] and the standard COCO
benchmark [22]. Our approach surpasses previous state-of-the-art methods on V3Det while maintain-
ing competitive results on COCO compared to DETR-based detectors. Our method benefits from
vast vocabulary detection while maintaining competitive results in limited vocabulary scenarios.
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Our contributions can be summarized as follows:

• We systematically analyze the challenges in vast vocabulary object detection, identifying
positive gradient dilution and hard negative gradient dilution as critical limitations of
classification-based methods.

• We introduce learnable category queries that flexibly encode category correlations with
efficient hierarchical tree construction for explicitly modeling category relationships in vast
vocabulary scenarios.

• We develop an image-guided query selection module that dynamically identifies relevant
categories per image, effectively addressing the identified limitations while significantly
reducing computational complexity.

2 Related Work

2.1 Vast Vocabulary Object Detection

The progression of object detection benchmarks reflects a steady growth in category vocabulary,
evolving from relatively small vocabulary datasets such as PASCAL VOC [10] (20 classes) and
COCO [22] (80 classes), to larger vocabulary benchmarks, including Objects365 [36] (365 classes)
and Open Images [17] (600 classes). Recently, Wang et al. [40] introduce V3Det, the first vast
vocabulary object detection dataset, comprising 13,204 hierarchically structured categories. This
unprecedented scale poses significant challenges in terms of scalability and representation.

Recent progress has been driven by the V3Det Challenge [39], yielding several methodological
advancements. MixPLv2 proposes a semi-supervised framework that combines labeled V3Det
data with unlabeled Objects365 [36] images through pseudo-labeling. RichSem-DINO-FocalNet
enhances detection robustness by integrating the RichSem-DINO [28] framework with a FocalNet-
Huge backbone [44] pretrained on Objects365. Most recently, Prova [4] introduces multi-modal
image-text prototypes specifically optimized for V3Det’s fine-grained classification. However, these
methods still rely on fundamentally similar classification architectures, raising questions about their
effectiveness and scalability for even larger vocabularies beyond tens of thousands of categories.

2.2 Object Detectors

Classification Head-based Methods. Most object detection frameworks employ feedforward
networks (FFNs) as fixed classification heads for category prediction. In two-stage detectors [31,
2, 13], region proposals are generated in a class-agnostic manner by Region Proposal Networks
(RPNs), followed by FFN-based region classifiers. By contrast, one-stage detectors [35, 38, 9] predict
bounding boxes and categories in a single step. Transformer-based methods, such as DETR [3],
reformulate detection as a set prediction problem using learnable queries. Although DETR achieves
an elegant end-to-end design, it suffers from slow convergence. Subsequent works [54, 41, 23, 18,
47, 29, 24, 14] mitigate these limitations. For example, Deformable DETR [54] proposes multi-scale
deformable attention for sparse spatial sampling. DINO [47] improves performance via contrastive
query denoising and mixed query selection. Despite these architectural advances, current methods
fundamentally rely on classification heads with activation functions, typically optimized with Focal
Loss [35] or Cross-Entropy Loss [50]. This design inherently constrains scalability and presents
optimization challenges when extending to vast vocabulary detection scenarios.

Text-prompted Contrastive Methods. Vision-language models have advanced the seamless inte-
gration of visual and textual modalities for open-vocabulary object detection. These methods encode
target categories as text inputs and align visual and textual representations. For instance, GLIP [20]
pioneers the use of contrastive learning between image regions and textual phrases. Grounding
DINO [25] further improves cross-modal alignment through early fusion of vision and textual fea-
tures. Similarly, DetCLIP [45] and RegionCLIP [52] leverage image-text pairs with pseudo-labels to
enhance region-level semantic understanding and improve generalization. Despite these advances,
text-prompted methods face scalability bottlenecks due to the limited capacity of text token inputs
during inference. For example, GLIP [20] and Grounding DINO [25] restrict input prompts to
approximately 128 tokens per pass, allowing for about 40 categories simultaneously. Thus, detecting
all categories in a vast vocabulary benchmark like V3Det [40] (13,204 classes) would require over
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331 sequential inference passes per image. This constraint renders current text-prompted methods
computationally inefficient and impractical for real-time or large-scale detection.

Language Model-Generated Methods. Advances in multimodal large language models (MLLMs)
have inspired detection methods leveraging their visual understanding and generative abilities. Some
MLLMs [5, 1, 37] show preliminary object detection abilities but exhibit limited localization precision
and recognition granularity. To mitigate these limitations, recent works [21, 11, 16, 40, 42] use LLMs
primarily as category generators rather than direct detectors. For instance, GenerateU [21] employs a
T5-based decoder [7] to generate category names from visual features, reframing detection as text
generation. Similarly, LLMDet [11] and ChatRex [16] utilize instruction-tuned LLMs to predict object
categories from image features. While these generative approaches enable open-ended detection, they
often produce inconsistencies due to limited controllability over label granularity. For example, given
an image region of a “Persian cat”, the model may generate the generic term “cat”, causing semantic
ambiguity and reduced accuracy for fine-grained detection tasks.

2.3 Category Query-based Methods

Learnable queries was popularized in computer vision by DETR [3], marking a paradigm shift from
fixed architectural components to task-adaptive representations. Queries serve as learnable embed-
dings that interact with the visual feature space, enabling the model to capture complex, task-specific
patterns. This design has since been adopted in diverse domains, including classification [26], seg-
mentation [6], and multimodal learning [19]. Among these developments, category queries represent
an innovation introduced by Query2Label [26]. Rather than relying on fixed classification heads,
Query2Label proposed learnable category embeddings to capture category-specific features. Subse-
quent works such as ML-Decoder [34] have outperformed conventional classification methods. The
effectiveness of category queries in classification motivated their extension to dense prediction tasks.
For example, CQL [43] applies them to human–object interaction classification, ControlCap [51] uses
them for semantic guidance in region captioning, and RankSeg [12] integrates them into semantic
segmentation, dynamically selecting the top-k most relevant classes during inference. This selective
querying reduces the effective search space, improving computational efficiency and segmentation
accuracy. While prior works have explored category queries in various contexts, our work addresses a
fundamentally different challenge specific to vast vocabulary scenarios. We provide, to the best of our
knowledge, the first systematic theoretical analysis of gradient dilution issues that arise when dealing
with vast category vocabularies, which motivates our image-guided query selection design. Moreover,
we introduce a hierarchical tree construction strategy that explicitly models category correlations,
enabling effective reasoning over deep semantic hierarchies in vast vocabulary datasets.

3 Method

3.1 Challenges in Vast Vocabulary Detection

Figure 2: Positive-to-negative gradient ratio compar-
ing CQ-DINO against DINO with Focal Loss (FL) and
Cross-Entropy Loss (CE) on V3Det and COCO datasets,
showing the initial 2k training iterations where differ-
ences are most evident.

Existing methods for vast vocabulary object de-
tection with C categories (C > 104), particu-
larly those employing sigmoid-based classifiers
with Focal Loss [35], face fundamental opti-
mization challenges. We systematically analyze
these issues through a simplified formulation
using the Cross-Entropy Loss with sigmoid ac-
tivation, revealing two critical limitations:

1) Positive Gradient Dilution. In vast vocab-
ulary detection, the gradient signal for positive
classes is overwhelmed by the aggregated neg-
ative gradients. Let zc denote the logit for class
c and yc ∈ {0, 1} be its ground-truth label. The
gradient of the Cross-Entropy Loss L with re-
spect to zc is:

∇zcL = σ(zc)− yc , (1)

4



Localization LossImage 
Encoder

Category Queries

Image-Guided 
Query Selection

Q

K, V

Fused Category 
Features

Feature
Enhancer

Encoding  
Category 

Correlations

B	×	3	×	𝐻×	𝑊 B	×	𝐷	×	𝐻′×	𝑊′ Fused Image Features

B	×	𝑁	×	𝐷

Q

K, V

✔

✔

K, V

C
ontrastive

Loss

Classification Loss

Language-Guided 
Query Selection

Image Features

Object Queries

C
ross-M

odality D
ecoder

B	×	𝐶!	×	𝐷

Selected Queries

Figure 3: Overview of the CQ-DINO framework for vast vocabulary object detection. Key com-
ponents: (1) Learnable category queries enhanced with hierarchical tree construction for semantic
relationship modeling; (2) Image-guided query selection that identifies the most relevant category
queries; (3) Feature enhancer and cross-modality decoder (adapted from GroundingDINO [25]),
processing object queries with contrastive alignment between object and selected category queries.

where σ(·) is the sigmoid function. For a positive class c+ (yc+ = 1), the gradient magnitude is
|∇zc+

L| = 1− σ(zc+), while for negatives c− (yc− = 0), it is |∇zc−
L| = σ(zc−).

The total negative gradient magnitude grows linearly with the category count C:

||∇zc+
L|| ≪

C∑
c− ̸=c+

||∇zc−
L|| ≈ (C − 1) · ϵ, (2)

where ϵ = E[σ(zc−)] represents the average activation probability of negative classes. The positive-
to-negative gradient ratio ρ becomes:

ρ =
||∇zc+

L||∑C
c− ̸=c+ ||∇zc−

L||
≈ 1− σ(zc+)

(C − 1) · E[σ(zc−)]
∝ 1

C · ϵ
. (3)

During early training stages, ϵ retains a non-negligible value. Since C exceeds 104 in vast category
scenarios, ρ → 0, causing positive gradients to be suppressed relative to the cumulative negative
gradients. This fundamentally hinders the model’s ability to learn from positive examples.

2) Hard Negative Gradient Dilution. The massive negative space leads to gradient dominance
by easily classified negatives rather than informative hard negatives. Let H denote the set of hard
negative classes with E[σ(zch)] = ϵh for ch ∈ H. The ratio of hard negative gradients to total
negative gradients is:

η =

∑
ch∈H |∇z

ch
L|∑C

c− ̸=c+ |∇zc−
L|
≈ Nh

C
· ϵ

h

ϵ
, (4)

where Nh is the number of hard negatives. As C exceeds 104, η → 0 due to the 1
C term, making

hard negatives diluted in gradient updates.

Fig. 2 demonstrates these theoretical challenges. The gradient ratio for the V3Det dataset (13,204
classes) is lower than for the COCO dataset (80 classes), revealing the inherent difficulty in vast
vocabulary object detection. While Focal Loss partially mitigates these issues by down-weighting
easy negatives, the gradient ratio for V3Det remains around 0.5 compared to approximately 1.0
for COCO, indicating that gradient imbalance persists despite these improvements. We provide a
comprehensive experimental analysis of Focal Loss performance and limitations in Sec. 4.4.

3.2 CQ-DINO

Our key insight is that dynamically selecting a sparse category subset S ⊂ {1, . . . , C} simultaneously
addresses both gradient dilution challenges through gradient magnitude rebalancing and adaptive
hard negative mining. As shown in Fig. 3, CQ-DINO consists of three key components:
1) Learnable category queries with correlation encoding. We initialize learnable category queries
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Figure 5: Hierarchical tree construction for
category queries.

Qcat ∈ RB×C×D using the OpenCLIP [30] text encoder, where B is the batch size, C denotes the
total number of categories, and D is the embedding dimension. These category queries enable flexible
encoding of category correlations through self-attention or hierarchical tree construction (Sec. 3.4).
2) Image-guided query selection. Given image features Fimg ∈ RB×D×H′×W ′

from the image
encoder, we compute similarities between Fimg and Qcat through multi-head cross-attention modules.
For each image, we select the top-C ′ most relevant queries (C ′ ≪ C, typically C ′ = 100 for
C > 104), ensuring that the target class c+ and its most confusing negative classes are preserved.
This selection process rebalances the gradients and implicitly performs hard negative mining.
3) Feature enhancer and cross-modality decoder. The selected category queries Q′

cat ∈ RB×C′×D

and image features Fimg are processed through GroundingDINO [25] components. First, the feature
enhancer module fuses the category queries and image features. Next, object queries are generated
through language-guided query selection. Finally, detection outputs are produced by the cross-
modality decoder and contrastive alignment between object queries and selected category queries.

3.3 Image-Guided Query Selection

The core innovation of CQ-DINO is our image-guided category selection module, illustrated in Fig. 4.
This module employs cross-attention between category queries Qcat and image features Fimg . Here,
Qcat serves as queries (Q), while Fimg provides keys (K) and values (V). The cross-attention layer
establishes category-to-image correlations through similarity computation. Then, we apply TopK
selection to retain only the top-C ′ categories (C ′ ≪ C) based on activation values. We supervise this
selection using Asymmetric Loss [33], which serves as a multi-class classification loss.

The selection rebalances the positive-to-negative gradient ratio. Let ρ and ρ′ denote the original and
revised positive-to-negative gradient ratios, respectively:

ρ′

ρ
=

∑C
c− ||∇zc−

L||∑C′

c−∈S ||∇zc−
L||
≈ C

C ′ . (5)

For a typical setting (C > 104, C ′ = 100), this achieves a 100× gradient rebalancing factor. Our
design provides three benefits: 1) Gradient rebalancing. By filtering out easy negative categories,
our selection module improves the influence of gradients from positive examples. 2) Adaptive hard
negative mining. The selection mechanism ensures that retained negative categories exhibit high
semantic relevance to the image content, naturally implementing hard negative mining. 3) Scalable
computation. Processing only C ′ categories reduces memory consumption and computational cost,
making the framework scalable to extremely large vocabularies.

3.4 Encoding Category Correlations

A key advantage of our category query approach is the capacity to model complex semantic relation-
ships among categories, which is difficult for traditional classification head-based methods to achieve.
We propose two complementary strategies for encoding category correlations.

Explicit Hierarchical Tree Construction. For hierarchical datasets like V3Det [40], we introduce
hierarchical tree construction, as shown in Fig. 5. The process begins at leaf nodes and progressively
integrates hierarchical information upward through the category tree. For each parent node v with
children C(v), its new query Q′

v is a combination of its original query Qv and the mean pooling of all
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Table 1: Comparison with state-of-the-art methods on the V3Det validation set. Best results in each
group are highlighted in bold.

Method Epochs Backbone AP AP50 AP75

ATSS [48] 24 Swin-B 7.6 8.9 8.0
FCOS [38] 24 Swin-B 21.0 24.8 22.3
Faster R-CNN [31] 24 Swin-B 37.6 46.0 41.1
CenterNet2 [53] 24 Swin-B 39.8 46.1 42.4
Cascade R-CNN [2] 24 Swin-B 42.5 49.1 44.9
Deformable DETR [54] 50 Swin-B 42.5 48.3 44.7
DINO [47] 24 Swin-B 42.0 46.8 43.9
Prova [4] 24 Swin-B 44.5 49.9 46.6
CQ-DINO (Ours) 24 Swin-B 46.3 51.5 48.4

DINO [47] 24 Swin-B-22k 43.4 48.4 45.4
Prova [4] 24 Swin-B-22k 50.3 56.1 52.6
CQ-DINO (Ours) 24 Swin-B-22k 52.3 57.7 54.6

DINO [47] 24 Swin-L 48.5 54.3 50.7
Prova [4] 24 Swin-L 50.9 57.2 53.2
CQ-DINO (Ours) 24 Swin-L 53.0 58.4 55.4

direct child nodes. Leaf nodes retain their original features directly, since they have no children.

Q′
v = (1− αv) ·Qv + αv ·

1

|C(v)|
∑

c∈C(v)

Qc, (6)

where αv ∈ [0, 1] balances local and hierarchical features.

αv = w

(
1 +

log(nv + 1)

log(Nmax + 1)

)
, (7)

where nv is the child count for node v, Nmax is the maximum child count across the tree, and
w ∈ [0, 0.5] is a hyperparameter (default: 0.3). This adaptive weight αv ensures that parent nodes
with more descendants incorporate more collective knowledge, while nodes with fewer children
maintain stronger individual semantics.

Building upon this structural design, we introduce a masking strategy during the classification loss
computation to mitigate hierarchical ambiguity. If any child category exists in the ground truth, its
parent nodes are excluded from the classification loss. This prevents conflicting supervision signals
for semantically related categories, such as suppressing “vehicle” when “car” is annotated.

Implicit Relation Learning. For categories without an explicit hierarchical structure, we employ a
self-attention mechanism to learn category relationships. This allows semantically related categories
to influence each other’s representations based on learned attention patterns.

4 Experiments

4.1 Datasets and Implementation Details

We conduct experiments on two detection benchmarks: (1) V3Det [40]: a vast vocabulary detection
dataset containing 13,204 categories, with 183k training and 30k validation images. This is our
primary benchmark for evaluating vast vocabulary detection. (2) COCO val2017 [22]: a standard
benchmark dataset with 80 object categories, comprising 118k training and 5k validation images. We
include this dataset to verify the effectiveness of our method in limited vocabulary scenarios.

Experiments are conducted on 8 A100-40G GPUs with a total batch size of 16, unless otherwise
specified. Baseline configurations are used for fair comparison. Three Swin Transformer [27] variants
serve as backbones: Swin-B (ImageNet-1k [8] pre-trained), Swin-B-22k (ImageNet-22k pre-trained),
and Swin-L (ImageNet-22k pre-trained). Category queries are initialized using CLIP-ViT-L [30] text
embeddings. To match dataset vocabularies, we employ 100 category queries for V3Det and 30 for
COCO, aligned with their category sizes. The hierarchical tree structure is derived from V3Det’s
category taxonomy. For implicit relation learning, we use an 8-head self-attention module.
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Table 2: Comparison between the proposed
CQ-DINO and state-of-the-art DETR variants on
COCO val2017, reporting the best results as pro-
vided by their respective original papers.
Method Epochs Backbone AP APS APM APL

H-Def-DETR [15] 36 Swin-L 57.1 39.7 61.4 73.4
Relation-DETR [14] 12 Swin-L 57.8 41.2 62.1 74.4
DINO [47] 36 Swin-L 58.0 41.3 62.1 73.6
Rank-DETR [29] 36 Swin-L 58.2 42.4 62.2 73.6
CQ-DINO (ours) 24 Swin-L 58.5 42.5 62.1 74.0

Table 3: Performance of Open-world meth-
ods on V3Det dataset. We report zero-shot
performance using their strongest models. *
* indicates finetuned results.
Method Backbone AP AP50 AP75

GenerateU [21] Swin-L&T5-B 0.4 0.5 0.4
ChatRex [16] Swin-L&LLM-7B 1.3 1.5 1.4
*GenerateU* [21] Swin-L&T5-B 21.8 27.2 22.1

DINO [47] Swin-L 48.5 54.4 50.7
CQ-DINO (Ours) Swin-L 53.0 58.4 55.4

Table 4: Ablation study on the effectiveness of encoding category correlations and image-guided
query selection components in CQ-DINO on V3Det dataset with Swin-Base-22k backbone. “–”
denotes unavailable ARC metrics due to absence of query selection.

Encoding Category Correlations Image-guided Query Selection AP ARC FPS

47.3 – 0.7
Hierarchical Tree construction 49.4 (↑ 2.1) – 0.6 (↓ 0.1)

✓ 51.1 80.9 10.8
Self-Attention module ✓ 51.3 (↑ 0.2) 75.5 (↓ 5.4) 10.4 (↓ 0.4)

Hierarchical Tree Construction ✓ 52.3 (↑ 1.2) 83.3 (↑ 2.4) 10.6 (↓ 0.2)

The training objective combines multiple loss terms with the following weights: classification loss
(Asymmetric Loss [33], weight=1.0), contrastive alignment (Focal Loss [35], weight=1.0), bounding
box regression (L1 Loss, weight=5.0), and GIoU Loss [32] (weight=2.0), as in GroundingDINO [25].
Hungarian matching is used, following GroundingDINO, with identical matching costs for object-
to-query assignment. To stabilize training, we use a two-stage approach: first, pre-training category
queries, image encoder, and image-guided query selection for 10 epochs to establish high initial
target category recall; then, fine-tuning the full detection pipeline in the second stage.

4.2 Experimental Results

Performance on Vast Vocabulary Detection. Tab. 1 presents our comparison with state-of-the-art
methods on the V3Det [40] benchmark. CQ-DINO consistently outperforms all previous approaches
across different backbone configurations. With the Swin-B backbone, CQ-DINO achieves 46.3%
AP, outperforming general detection methods like Deformable DETR [54] by 3.8% AP and DINO
[47] by 4.3% AP. More importantly, CQ-DINO surpasses Prova [4], a specialized vast vocabulary
detection method, by 1.8% AP. When integrated with the Swin-B-22k backbone, CQ-DINO achieves
52.3% AP, outperforming Prova by 2.0% AP. With the Swin-L backbone, CQ-DINO achieves 53.0%
AP. The consistent improvements across different backbones demonstrate that CQ-DINO effectively
addresses vast vocabulary detection challenges.

Performance on Standard Detection Benchmark . Tab. 2 compares our method with state-
of-the-art approaches on COCO val2017. Despite being primarily designed for vast vocabulary
scenarios, CQ-DINO achieves competitive performance, reaching 58.5% AP, which is comparable
to recent DETR-based methods. We report the best results from their original papers to ensure a
fair comparison. The competitive performance of CQ-DINO is mainly due to the proposed gradient
rebalancing and adaptive hard mining strategies.

4.3 Ablation Studies

We conduct ablation studies to evaluate the effectiveness of each component in CQ-DINO. Unless
otherwise stated, all experiments are performed on the V3Det dataset using a Swin-B-22k backbone.
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Table 5: Ablation study on self-attention module
(SA) in CQ-DINO on the COCO dataset.
Method AP ARC Params (M)

CQ-DINO w/o SA 58.3 98.2 244.3
CQ-DINO w/ SA 58.5 (↑ 0.2) 99.1 (↑ 0.9) 246.7 (+2.4)

Table 6: Ablation study on adaptive weighting
in tree construction.

Method AP AP50 AP75 ARC

Fixed weight (0.5) 51.9 57.4 54.3 82.3
Ours (αv) 52.3 57.7 55.4 83.3

Table 7: Scalability comparison of CQ-DINO
with DINO on A100 40G GPU using Swin-B-22k
backbone, showing per-category parameters (K),
CUDA memory consumption (kB), and maximum
supported category capacity (k).

Method Params/Cat. Memory/Cat. Max Cats.
(K) (kB) (k)

DINO [47] 2.1 8.9 100
CQ-DINO 0.8 2.7 130

Table 8: Focal Loss parameter analysis in DINO
using Swin-B-22k backbone. AP scores (%) com-
pare different α and γ combinations. Dashes “–”
indicate unstable training configurations.

γ
α 0.25 0.35 0.50 0.75

2 43.4 45.1 47.4 –
3 43.7 43.9 45.1 –
5 – – – –

Effect of Each Component in CQ-DINO. Table 4 presents the contribution of each component in
terms of average precision (AP ) and category-level average recall with selected queries (ARC). To
establish a baseline without image-guided query selection, we conduct experiments on 8 H800-80G
GPUs due to memory constraints. Notably, incorporating image-guided query selection increases FPS
from 0.7 to 10.8, highlighting its effectiveness in alleviating memory bottlenecks and substantially
enhancing inference efficiency. Furthermore, this component addresses the issue of gradient dilution
and leads to a substantial AP improvement, from 47.3% to 51.1% in detection performance.

Explicit hierarchical modeling via tree construction leads to an improvement of 1.2% AP and 2.4%
ARC . In contrast, employing self-attention for implicit relationship modeling achieves a marginal
increase of 0.2% AP but reduces ARC . This is due to difficulties in learning complex relationships
across 13k+ categories. Notably, the tree construction method introduces zero additional parameters
with only a 0.2 FPS overhead, while the self-attention approach adds 2.36M extra parameters and a
0.4 FPS reduction in inference speed.

While Tab. 4 shows that explicit tree construction outperforms self-attention on V3Det’s vast category
space, we conduct further experiments on COCO (Table 5). The results reveal that self-attention
contributes meaningful 0.2% AP and 0.9% ARC improvements on datasets with fewer categories.
Both experiments validate the effectiveness of encoding category correlations, with the optimal
approach depending on the scale of the category space.

Effectiveness of Adaptive Weighting in Tree Construction. Tab. 6 shows the importance of our
adaptive weighting strategy compared to a fixed weight of 0.5. This approach adjusts weights based
on the varying number of child categories for each parent node in the hierarchy. Results show that
our adaptive approach outperforms fixed weighting.

4.4 Discussion

Scalability of CQ-DINO. Tab. 7 compares the scaling efficiency of CQ-DINO and DINO for vast
vocabulary detection. CQ-DINO requires only 0.8K parameters per category, representing a 62%
reduction from DINO’s 2.1K parameters. For runtime memory consumption, CQ-DINO uses 2.7KB
CUDA memory per category. To evaluate practical scalability limits, we test the maximum category
support on an A100-40G GPU using the Swin-B-22k backbone with a single 800× 1333 resolution
input image. CQ-DINO supports detection of up to 130k categories, surpassing DINO’s 100k limit.
These experiments validate that CQ-DINO enables applications with extremely large vocabularies.

Limitations of Generation-based Methods. We evaluate generation-based methods on the V3Det
dataset in Tab. 3. Following the evaluation protocol from GenerateU [21], we compute semantic
similarity between generated category embeddings and V3Det category embeddings, selecting
the highest similarity match as the final prediction. Our experiments reveal poor performance:
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GenerateU [21] achieves only 0.4% AP, while the more recent ChatRex [16] achieves just 1.3%
AP. This highlights a fundamental limitation: generation-based methods struggle to control the
granularity of generated categories, creating semantic misalignments with the specific requirements
of detection tasks. Furthermore, even when we finetune GenerateU on V3Det data, the resulting
performance (21.8% AP) still exhibits a substantial gap compared to classification-head methods.

Focal Loss Parameters Analysis under Gradient Dilution. As discussed in Sec. 3.1, vast vo-
cabulary detection suffers from gradient dilution challenges. Focal Loss (FL) [35] mitigates this via
adaptive weighting with hyperparameters α and γ. Theoretically, α balances positive/negative sample
contributions, and increasing α enhances the model’s ability to handle more categories. The factor γ
focuses learning on hard negatives, where increasing γ improves the mining of hard examples. Tab. 8
evaluates FL configurations on DINO. The default setting [40] (α = 0.25, γ = 2) achieves 43.4%
AP. Tuning these hyperparameters reveals that training is unstable when γ ≥ 5 or α ≥ 0.75. Notably,
the optimal configuration (γ = 2 and α = 0.5) achieves 47.4% AP, surpassing the baseline by 4.0%.
Nonetheless, this is still lower than the 52.3% AP achieved by our CQ-DINO, suggesting that FL
hyperparameter tuning, while beneficial, leaves room for further improvement. Interestingly, when
examining parameter transferability across architectures in Appendix Tab. 9, we find that this optimal
setting does not generalize well. Applying the Swin-B-22k optimal parameters (α = 0.5, γ = 2) to
Swin-B degrades performance by 3.3 % AP relative to its default setting. However, they increase
the performance by 4.0% AP and 1.6% AP for Swin-B-22k and Swin-L backbones, respectively.
These findings suggest that while Focal Loss is effective in addressing the gradient dilution challenge,
optimal hyperparameter selection remains architecture-dependent and requires careful tuning.

4.5 Limitation

Although CQ-DINO improves vast vocabulary object detection, several limitations remain. First,
detection performance is influenced by the recall of the category query selection. Fortunately, CQ-
DINO achieves 83.3% ARC . Appendix Tab. 11 shows that increasing the number of category queries
improves ARC but does not lead to higher AP . This indicates, in most cases, 83.3% ARC is not a
primary bottleneck. Future work will explore more sophisticated selection strategies to address this
gap. Second, the two-stage training paradigm, while efficient in practice (first stage requires only ∼1
hour), may yield suboptimal coordination between stages compared to end-to-end alternatives.

5 Conclusion

In this work, we systematically analyze the challenges inherent in vast vocabulary detection: positive
gradient dilution and hard negative gradient dilution. Through comprehensive experiments, we expose
the limitations of Focal Loss under these challenging settings. To mitigate these issues, we propose
CQ-DINO, a novel framework with two core innovations: (1) learnable category queries that encode
category correlations, and (2) image-guided query selection that effectively reduces the negative
space while performing adaptive hard negative mining. Extensive evaluations on the V3Det and
COCO benchmarks demonstrate that CQ-DINO achieves superior performance and strong scalability
as vocabulary sizes increase. As future work, we plan to investigate the adaptability of our category
query formulation for open-vocabulary detection and incremental learning scenarios.
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A Appendix

A.1 Extended Analysis on Gradient Dilution in Vast Vocabulary vs. Class-Imbalanced

In Sec. 3.1 of the main paper, we introduced the concept of positive gradient dilution as a primary
challenge in vast vocabulary object detection, using a simplified model assuming a relatively balanced
data distribution. This appendix provides a more comprehensive analysis to further clarify the
distinction between the gradient dilution problem caused by vast vocabulary size and the one
addressed in traditional class-imbalanced learning.

The simplified gradient ratio in our main paper (Eq. (3)) demonstrates that ρ ∝ 1
C , highlighting

the direct impact of the vocabulary size C. To better distinguish the effects of class imbalance and
vocabulary size, we can formulate a more general gradient signal ratio, ρc+ , for a positive class c+:

ρc+ =
nc+ · ∥∇zc+

L∥∑C
c− ̸=c+ nc− · ∥∇zc−

L∥
≈ nc+ · (1− σ(zc+))

Ec− [σ(zc−)] ·
∑C

c− ̸=c+ nc−

By letting ϵ+ and ϵ− represent the average gradient magnitudes for positive and negative samples
respectively, and N be the total sample count across all classes, the ratio can be expressed as:

ρc+ ∝
nc+ · ϵ+

(N − nc+) · ϵ−
(8)

This generalized formula reveals two distinct and compounding sources of gradient dilution:

Class Imbalance: This well-studied issue is primarily reflected by the term nc+ in the numerator.
When a class is rare (i.e., has a long-tailed distribution), its sample count nc+ is small, which directly
reduces the gradient signal ratio ρc+ . This is the central challenge that traditional class-imbalance
methods aim to solve.

Vast Vocabulary Size: This is primarily driven by the term N − nc+ in the denominator. In vast
vocabulary settings (C > 10, 000), N − nc+ becomes enormous because it aggregates all negative
samples from the other C − 1 categories. The large C further reduces the ratio ρc+ , making the
gradient dilution more severe in vast vocabulary object detection. This impacts both rare and
common classes.

This distinction in the problem’s source explains why conventional methods for class imbalance are
not sufficient for the vast vocabulary challenge.

A.2 Algorithm Details

This section provides the detailed algorithmic implementations of the three core components in
CQ-DINO, as described in Sec. 3. Each algorithm addresses specific challenges in vast vocabulary
object detection:

Algorithm 1 - Image-Guided Query Selection (Sec. 3.3): This algorithm implements the core
innovation of CQ-DINO by dynamically selecting the most relevant category queries for each image.
Through cross-attention mechanisms between category queries and image features, it reduces the
negative search space from the full vocabulary to a manageable subset (C ′ ≪ C), addressing both
positive gradient dilution and hard negative gradient dilution issues identified in Sec. 3.1.
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Algorithm 1: Image-Guided Query Selection
Input:

B: Batch size, C: Number of category queries,
D: Embedding dimension, C ′: Number of selected category queries,
H ′: Height of image features, W ′: Width of image features,
Qcat ∈ RB×C×D: Category queries,
Fimg ∈ RB×D×H′×W ′

: Image features
Output:

Q′
cat ∈ RB×C′×D: Selected enhanced category queries,
I ∈ RB×C′

: Selection indices

// Reshape image features for cross-attention
Fflat ← Reshape(Fimg, [B,D,H ′ ×W ′]);
Qenhanced ← Qcat;

// Enhancement through cross-attention layers
for l = 1 to 2 do

// Cross-attention with image features
Qattn ← MultiHeadCrossAttention(Qenhanced,Fflat,Fflat);
Qenhanced ← LayerNorm(Qattn +Qenhanced);
// Feed-forward transformation
Qffn ← FFN(Qenhanced);
Qenhanced ← LayerNorm(Qffn +Qenhanced);

// Query selection based on enhanced representations
L← LinearProjection(Qenhanced) // L ∈ RB×C

for b = 1 to B do
Ib,: ← TopK(Lb,:, C

′);
Q′

cat[b, :, :]← Qenhanced[b, Ib,:, :];
return Q′

cat, I

Algorithm 2 - Self-Attention for Implicit Category Relations (Sec. 3.4): For datasets without
explicit hierarchical structures, this algorithm employs multi-head self-attention to learn implicit
correlations between categories. It allows semantically related categories to influence each other’s
representations based on learned attention patterns, complementing the explicit hierarchical approach.

Algorithm 2: Self-Attention for Implicit Category Relations

Input: Qcat ∈ RC×D: Category queries,
H: Number of attention heads
Output: Qcorr ∈ RC×D: Correlation-enhanced queries

// Enhance queries through self-attention mechanism
Qattn ← MultiHeadSelfAttention(Qcat);
Qcorr ← LayerNorm(Qattn +Qcat);
return Qcorr

Algorithm 3 - Explicit Hierarchical Tree Construction (Sec. 3.4): For datasets with explicit hierar-
chical structures like V3Det, this algorithm leverages the category hierarchical structures to enhance
query representations. It performs bottom-up tree traversal to incorporate hierarchical relationships
through adaptive weighting, enabling parent categories to aggregate semantic information from their
children while maintaining individual semantics.
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Algorithm 3: Explicit Hierarchical Tree Construction

Input: Qcat ∈ RC×D: Category queries,
T : Hierarchical tree structure with nodes V ,
w: Base weight parameter (default: 0.3)
Output: Qcorr ∈ RC×D: Correlation-enhanced queries

// Initialize and prepare tree traversal
Qcorr ← Qcat;
Nmax ← maxv∈V |Children(v, T )|;
L ← TopologicalSort(T );
// Bottom-up tree traversal for correlation enhancement
foreach node v in Reverse(L) do

if IsLeaf(v, T ) then
// Leaf nodes retain original queries
continue;

else
// Compute adaptive weight based on children count
C(v)← GetChildren(v, T );
nv ← |C(v)|;
αv ← w + log(nv+1)

log(Nmax+1) ;
αv ← min(αv, 1.0);

// Update parent query with weighted combination
Qmean

child ← 1
nv

∑
c∈C(v) Qcorr[c, :];

Qcorr[v, :]← (1− αv) ·Qcat[v, :] + αv ·Qmean
child ;

return Qcorr

A.3 Performance of DINO with Different Focal Loss Parameters

In Tab. 8, we achieve the optimal Focal Loss parameters at α = 0.5 and γ = 2 with the Swin-B-22k
backbone. We conduct parameter setting experiments with different backbone in Tab. 9. We find
that this optimal setting does not generalize well. The same parameters (α = 0.5, γ = 2) lead to a
performance degradation of 3.3% AP for the Swin-B backbone compared to the default configuration
(α = 0.25, γ = 2). However, they improve the performance by 4.0% AP and 1.6% AP for the
Swin-B-22k and Swin-L backbones, respectively. These findings show that while Focal loss addresses
gradient dilution issues, its optimal configuration requires careful parameter tuning.

Table 9: Performance comparison between standard DINO (α = 0.25, γ = 2), ‡ DINO with modified
Focal loss parameters (α = 0.50, γ = 2), and the proposed CQ-DINO.

Method Backbone AP AP50 AP75

DINO Swin-B 42.0 46.8 43.9
‡ DINO Swin-B 38.7 (↓ 3.3) 43.7 (↓ 3.1) 40.4 (↓ 3.5)

CQ-DINO Swin-B 46.3 51.5 48.4

DINO Swin-B-22k 43.4 48.4 45.4
‡ DINO Swin-B-22k 47.4 (↑ 4.0) 53.3 (↑ 4.9) 49.7 (↑ 4.3)

CQ-DINO Swin-B-22k 52.3 57.7 54.6

DINO Swin-L 48.5 54.3 50.7
‡ DINO Swin-L 50.1 (↑ 1.6) 56.3 (↑ 2.0) 52.4 (↑ 1.7)

CQ-DINO Swin-L 53.0 58.4 55.4

A.4 Gradient Norm Visualization During Training

As reported in Tab. 8, CQ-DINO achieves superior performance compared to DINO with optimal
Focal Loss parameters (α = 0.5, γ = 2), outperforming the default configuration of DINO (α = 0.25,
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γ = 2). To analyze their impact on training gradients, we visualize the gradient norm in Fig. 6
for three configurations: (1) CQ-DINO (red), (2) DINO with α = 0.5 (blue), and (3) DINO with
α = 0.25 (orange), all using the Swin-B-22k backbone. The results reveal that the gradient norm
for DINO with α = 0.25 (orange line) remains low throughout training, indicating insufficient
learning from both positive and hard negative samples. In contrast, DINO with α = 0.5 (blue line)
initially displays strong gradients, but these are unstable and fluctuate considerably, as reflected in the
high variance of the blue points. Meanwhile, CQ-DINO maintains a balanced trajectory, sustaining
moderate and stable gradient magnitudes during the entire training process. This sustained and
balanced gradient norm demonstrates that CQ-DINO more effectively addresses the gradient dilution
issues.
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Figure 6: Gradient norm visualization during training process.

A.5 Extended Gradient Ratio Analysis

Positive-to-Negative Gradient Ratio. We extend our analysis to 400k training iterations to examine
the effect of CQ-DINO on gradient distribution. As illustrated in Fig. 7, CQ-DINO mitigates the
positive gradient dilution problem inherent in vast vocabulary tasks. During the early training stage
(fewer than 10k iterations; see Fig. 2), CQ-DINO maintains a substantially higher positive-to-negative
gradient ratio compared to DINO with cross-entropy (CE) or focal loss (FL). Moreover, CQ-DINO
reaches a balanced state (>1.0) earlier than baselines such as DINO w/CE and DINO w/FL.
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Figure 7: Positive-to-negative gradient ratio across extended training iterations on V3Det dataset.

Hard-Negative Gradient Contribution. We define hard negatives as the top 10% of negative
categories with the highest prediction scores, representing the most confusing negatives that require
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focused learning. Fig. 8 presents the proportion of total negative-gradient magnitude attributable to
hard negatives. In early training stage, CQ-DINO achieves higher hard-negative ratios compared
to DINO w/CE and DINO w/FL. This confirms that our image-guided query selection implicitly
performs effective hard-negative mining by filtering irrelevant categories and concentrating on
informative ones.
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Figure 8: Hard negative-to-all negative gradient ratio across training iterations on V3Det dataset.

A.6 Additional Ablations on Isolated Component Contributions

To provide a comprehensive understanding of our method’s effectiveness and isolate the contributions
of individual components, we conduct additional ablation studies that complement the analysis
presented in Tab. 4. We analyze the following components, with results presented in Tab. 10:

1. Baseline Architecture: The foundational model based on Grounding DINO, including its
feature enhancer and decoder. This corresponds to the setting where all our proposed
components are disabled (row 1).

2. Training-stage Gradient Dilution Mitigation: Our proposed image-guided query selection
method applied during training. This ensures that the model’s text encoder and fusion layers
receive focused gradient signals from a small subset of relevant categories for each image.

3. Inference-stage Category Selection: A computational efficiency mechanism that selects only
the top-K most relevant categories based on similarity between category queries and image
features during inference.

4. Encoding Category Correlations: the hierarchical tree construction method, which was
identified as the effective approach for vast vocabulary setting.

The detailed ablations in Tab. 10 confirm three main observations:

Training-stage gradient dilution mitigation is the primary contributor. On V3Det, introducing
this component yields a +1.9% AP gain (row 2 vs. row 4), validating our hypothesis that gradient
dilution poses a significant challenge in large-vocabulary detection. On COCO, where the label space
is much smaller, the improvement is modest (+0.3% AP).

Inference-stage category selection alone does not resolve gradient dilution. On V3Det, applying
inference selection without training-stage mitigation reduces AP (row 2 vs. row 3), likely because
the underlying gradients remain diluted during training. In contrast, on COCO, inference selection
provides a mild AP improvement due to reduced background competition.

18



Table 10: Detailed ablation study on the isolated contributions of our proposed components. “0”
denotes the absence of the corresponding component, “1” denotes its inclusion.

Training-stage Inference-stage Encoding category V3Det COCO
gradient dilution category selection correlations AP FPS AP FPS

0 0 0 47.3 0.7 57.5 9.8
0 0 1 49.4 0.6 57.9 9.7
0 1 1 46.6 10.6 58.2 9.9
1 0 1 51.3 0.6 58.2 9.7
1 1 0 51.1 10.8 58.3 10.0
1 1 1 52.3 10.6 58.5 9.9

Combination leads to best accuracy–efficiency trade-off. Integrating both training-stage gradient
dilution mitigation and inference-stage category selection (row 6) achieves the highest AP on both
datasets while providing substantial speedups: on V3Det, FPS improves from 0.6 to 10.6.

A.7 Impact of Category Query Count

Tab. 11 presents the impact of varying the number of category queries (50, 100, 200) on performance.
As expected, increasing the number of queries leads to higher ARC scores, at the cost of reduced
inference speed. However, simply increasing the query count is not always beneficial. Excessive
queries lead to gradient imbalance between positive and negative examples, resulting in diminishing
performance gains. Furthermore, improvements in AR do not necessarily correlate with increases in
AP, as reflected in our observation that an ARC of 83.3% is not the limiting factor at the current stage.
Empirically, we find that 100 queries achieve an optimal balance between detection performance
and computational efficiency for V3Det. On the COCO dataset, 30 queries are sufficient, achieving
99.1% ARC .

Table 11: Ablation study with different numbers of selected category queries in CQ-DINO on V3Det.

Query Count AP ARC FPS

50 51.8 78.4 6.9
100 52.3 83.3 6.6
200 52.2 87.5 5.9

A.8 Failure Case Analysis

To better understand the limitations of our approach and identify key bottlenecks, we conduct a
systematic failure case analysis of CQ-DINO. Specifically, we examine the 3,527 categories for
which the category-level recall falls below 83.3%. This analysis highlights category frequency and
object scale as the dominant factors behind performance drops.

Analysis by Category Frequency. Among the 3,527 low-recall categories, 374 are rare and
3,153 are common, following our defined frequency threshold. As shown in Tab. 12, CQ-DINO
achieves 20.5% AP on rare categories, which is significantly lower than our overall performance of
52.3% AP. This gap underscores the inherent difficulty of rare-category detection in large-vocabulary
settings. Notably, despite the challenge, CQ-DINO consistently surpasses both the vanilla DINO and
a DINO variant optimized with Focal Loss, indicating that the drop in rare-category performance is a
domain-wide challenge rather than a limitation specific to our model design.

Analysis by Object Scale We further assess performance across object scales (Tab. 13). The largest
gap appears for small objects, where CQ-DINO achieves only 14.1% AP, far below the overall 52.3%
AP. While performance on medium- and large-scale objects is robust, this finding highlights that
small object detection remains a critical challenge in vast vocabulary settings.
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Table 12: Performance on category frequency with category-level recall below 83.3%.
Method Rare Common All

DINO (Focal α=0.50, γ=2) 15.5 27.1 25.8
DINO (Focal α=0.50, γ=2) 19.9 31.1 29.9
CQ-DINO 20.5 32.1 30.9

Table 13: Performance across object scales in low-recall cases.
Method Small Middle Large

DINO 9.1 16.5 33.8
DINO (Focal α=0.50, γ=2) 11.6 20.2 38.3
CQ-DINO 14.1 23.1 38.9

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction precisely reflect the scope and contributions of
our work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 4.6 provides a detailed discussion of our method’s limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

20



• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Complete proofs with all assumptions are provided in Sec. 3.1, and supporting
details appear in Fig. 2, Fig. 6, Tab. 9, and Tab.10 ; all statements and proofs are clearly
referenced.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide comprehensive information in Sec.4.2 to enable reproducibility
of our main experimental results. Additionally, the code to reproduce our results are made
available in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

21



• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The codes are fully available in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed implementation details are provided in the Sec. 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We ensured reproducibility with fixed seeds. Besides, we found that results
varied minimally across multiple random seeds, though error bars or significance tests were
not reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report inference times in Table 4, using 8 NVIDIA A100-40G GPUs for
most experiments and 8 NVIDIA H800-80G GPUs for those in Table 4 due to memory
constraints, providing sufficient detail to reproduce our compute setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

23

https://neurips.cc/public/EthicsGuidelines


Justification: Our research fully complies with the NeurIPS Code of Ethics in all respects.
No sensitive data or personally identifiable information was used. There are no conflicts of
interest or ethical concerns in this work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The research presented in this paper remains purely at the experimental levels
and has not yet results in any societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work does not involve data or models with high risk for misuse, so no
additional safeguards are necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

24



• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in this work are publicly available for academic research. We
have cited the original sources as required and, to the best of our knowledge, have respected
their terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new model with comprehensive documentation provided
in the supplemental material, including a structured README detailing data collection,
preprocessing, usage, license, limitations, and anonymization, in compliance with double-
blind review requirements.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

25

paperswithcode.com/datasets


• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper dose not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: Large Language Models were used solely for writing and editing the paper,
not as part of the research methods or experiments.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

26

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Vast Vocabulary Object Detection
	Object Detectors
	Category Query-based Methods

	Method
	Challenges in Vast Vocabulary Detection
	CQ-DINO
	Image-Guided Query Selection
	Encoding Category Correlations

	Experiments
	Datasets and Implementation Details
	Experimental Results
	Ablation Studies
	Discussion
	Limitation

	Conclusion
	Appendix
	Extended Analysis on Gradient Dilution in Vast Vocabulary vs. Class-Imbalanced
	Algorithm Details
	Performance of DINO with Different Focal Loss Parameters
	Gradient Norm Visualization During Training
	Extended Gradient Ratio Analysis
	Additional Ablations on Isolated Component Contributions
	Impact of Category Query Count
	Failure Case Analysis


