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Abstract—Text-guided diffusion models have revolutionized static 3D
generation, which significantly accelerated progress in 4D content cre-
ation. However, applying diffusion models to 4D content creation poses
huge challenges due to the complexity and diversity of motion. The task
of text to 4D customized generation requires a large amount of guide
data, and it is challenging to integrate diverse knowledge from multiple
diffusion models. To handle these challenges, we present Motion4D,
a novel framework focusing on motion customization in 4D creation
tasks, adopting a spatial-temporal slicing strategy towards the generation
process. Firstly, the initialized 4D Gaussian field (XYZ-T) is temporally
sliced into 3D scenes corresponding to discrete time points along the time
axis. Secondly, for spatial dimension, 3D objects are further decomposed
into orthogonal multi-view images to capture geometric and appearance
features from various perspectives. This spatial-temporal slicing enables a
comprehensive representation of object motion and variation across both
temporal and spatial dimensions, facilitating customized 4D modeling.
Extensive experiments demonstrate that our method surpasses prior
state-of-the-art methods in terms of generation efficiency and motion
consistency across various prompts.
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A robot is V*dancing. A panda is V*lifting weights. A dog is V*running.
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Fig. 1: Comparisons of text to 4D generation with reference
motions(first row).The results produced by existing methods and

our proposed method are shown in the second and third rows,

respectively. Our approach allows for the customization of both

subject identity and motion patterns, enabling the generation of

desired 4D objects based on contextual descriptions.

Index Terms—Text-to-4D Generation, Decoupled Training Pipeline,
Motion Pattern Optimization, Spatial-Temporal Slicing

I. INTRODUCTION

Generative models have recently achieved remarkable advance-

ments, bringing transformative changes to the fields of image, video,

and 3D generation [1], [2]. Building on these advancements, text-

to-4D generation, which aims to create four-dimensional (3D space

+ time) dynamic scenes or objects from input prompts, has shown

huge potential to study. Leveraging advanced diffusion models,

current methods for 4D generation have demonstrated impressive

efficacy. This breakthrough can potentially revolutionize dynamic

scene simulations, animation, and the creation of entire virtual worlds.

Universal methods [3]–[5] typically aim for generalized 4D gen-

eration but often struggle with limited motion diversity and lack of

customization as Fig. 1 shows. A key challenge lies in generating cus-

tomized 4D content due to the limited availability of 4D datasets and

the inherent complexity of modeling both temporal and spatial dimen-

sions for specific objects. On the one hand, creating a comprehensive

4D customization dataset requires considering individual variations,

which is both resource-intensive and time-consuming. On the other

hand, dynamic 3D scenes involve diverse spatial content coupled

with intricate temporal dynamics. Effective space-time modeling must

simultaneously capture detailed spatial information (such as geometry

and surface texture) and temporal changes (such as object movements

and deformations), further complicating the modeling process.

Current existing methods blend gradient updates from multiple

pre-trained diffusion models and synthesize 4D scenes. For example,

the pioneer work, MAV3D [6], leverages text-to-image, text-to-video,

and 3D-aware text-to-image, generating customized static 3D object

first and then introducing time dimension for dynamic scenes(3D

space + time) step by step. Furthermore, 4d-fy [7] noticed that this

direct combination strategy shows opposing weakness. It develops

a three-way trade-off method for introducing a hybrid SDS, aiming

to synthesize 4D scenes using the best qualities of each diffusion

model. However, incorporating motion into a static 3D scene using

SDS with a text-to-video model typically degrades the 3D structure

relative to static scenes generated by text-to-3D models. Therefore,

this weakness leads us to a question: how can we harness an existing

text-to-3D model’s knowledge about 3D structure and appearance

while augmenting them with new, custom motions?

We propose a novel 4D content customization model, Motion4D,

to fully capture both the spatial and temporal features for consistent

and diversity dynamic generation. In contrast to previous cascaded

methods, we designed a spatial-temporal slicing strategy, achieving

motion customization across frames and geometry consistency of

space dimension simultaneously rather than generating a static 3D

object first and then animating it progressively. Firstly, we take dual

slicing steps both in time and space dimensions for the initialized

4D Gaussian field, where time slicing refers to dividing a dynamic

scene into multiple static 3D scene frames along time dimensions and

spatial slicing represents generating multi-view images from different

perspectives to represent the appearance and geometric features of the

object. Subsequently, some real motion videos are selected for motion

customizing tuning by optimizing cross-attention layers parameters

of UNet blocks, aiming to generate motion patterns assisted with

target pattern. This dual-slicing multi-view framework is efficient in

capturing object features and motion features with shared-weighted
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Fig. 2: The diagram illustrates our proposed framework for 4D customized motion and appearance from input text using spatial-
temporal slicing techniques.

parameters. To summarize, our main contributions are as follows: (1)

We propose Motion4D, a novel 4D content customization model, able

to maintain the variety of motion generation in case of generating a

specific 4D scene. (2) We present a spatial-temporal slicing training

strategy that could accurately capture the movement trajectory and

deformation of objects at each time point while maintaining 3D

geometry and appearance consistency. (3) We conduct extensive qual-

itative and quantitative experiments, demonstrating the superiority of

Motion4D over the existing state-of-the-art methods. Our project is

displayed on https://zhangzhichao19020123.github.io/motion4d1/

II. METHODS

A. Multiview Appearance Customization

Current methods for 3D appearance customization mainly focus

on converting 2D images into 3D models using pretrained models.

However, the generated 3D models often exhibit geometric inconsis-

tencies. To address this, we incorporate fine-tuning the T2I model

directly into 3D diffusion models to achieve multiview customizable

appearance. Specifically, we fine-tune the self-attention layers of the

Transformer in the UNet structure of MVDream [8] to customize

the appearance. MVDream’s pseudo-3D structure naturally integrates

four orthogonal views (front, back, left, right) by merging 2D images

from each view. This allows for spatial layout learning directly across

these views, enabling the extraction, local editing, and optimization of

spatial features and attributes, resulting in highly consistent multiview

customizable 3D appearances.

Text-to-appearance consistency is foundational. Initially, text em-

bedding handles the task of averaging word attribute representations.

For customized appearances or to emphasize specific attributes, text

reweighting is essential to highlight particular characteristics. This

leads to the introduction of a weight adjustment strategy, as outlined

in Equation 1. In the process of three-dimensional customization,

viewpoint consistency must also be addressed to prevent issues such

as multi-head artifacts or color shifts. Fine-tuning techniques are

applied across all three planes to customize the appearance, and a

viewpoint-sensitive 3D diffusion model is used to ensure consistency

across different perspectives.

Ŵ = argmin
W

||WC�
regi −W0C

�
regi ||F

s.t.WC� = P, where C = [c1 · · · cN ]�

andP = [W1c
�
1 · · ·WNc�N ]�, i = z, x, y.

(1)

B. Multiview Motion Customization

Current video generation approaches [9], [10] primarily utilize

large-scale text-video pairs to train models, ensuring text-motion

consistency. However, this often results in randomly selected views,

limited motion diversity, and suboptimal video quality [11]. To over-

come this, we apply a multiview generation method. Using specific

action videos, we fine-tune the UNet structure of Zeroscope by

applying cross-attention layer fine-tuning in two stages to customize

both the motion and the camera view (front, back, left, and right views

bound to text input). Then, we generate customized videos from the

three orthogonal views produced by the T23D model, ensuring strong

geometric consistency across views in the generated customizable

motions.

Adapting Equation 2 for time slicing, we apply a strategy of

fine-tuning motion models across three views—front, side, and over-

head—each corresponding to a unique orthogonal projection. These

views are defined as:

⎧⎪⎨
⎪⎩
Pz(u(t)) = (ux, uy)

T + (t− ut)
V
W

Px(u(t)) = (uy, uz)
T + (t− ut)

V
W

Py(u(t)) = (ux, uz)
T + (t− ut)

V
W

(2)
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Here, Pz(u(t)), Px(u(t)), and Py(u(t)) represent the front, side, and

overhead projections of the object’s motion, respectively. The term

u(t) is the object’s positional vector at time t, and the matrix V/W
defines the relationship between spatial and temporal dimensions.

The objective of this step is to minimize the difference between

the predicted noise εpr and the initial noise εgt during the fine-tuning

process. The multi-view fine-tuning motion loss L is formulated as:

Li = E
Zt,ε

gt
t ∼N (0,1),t̂

[ ∥∥εgtt − εprt
∥∥2

2

]
,

i = Pz(u(t)), Px(u(t)), Py(u(t))
(3)

This loss function ensures that the generated motion matches

the ground truth motion at each timestep for all three views. By

calculating the L2 norm between the predicted noise and ground truth,

the model is optimized to produce accurate motion dynamics across

all views. By adopting this strategy, the model learns to generalize

motion patterns across multiple views, while still retaining the ability

to generate high-quality, fine-tuned dynamic videos. This ensures

that both motion and appearance are preserved, enabling high-fidelity

motion customization in 4D video generation.

During the training phase, the model primarily focuses on capturing

common motion patterns in Dm, without heavily focusing on appear-

ance or the specific subject presenting the motion. This is achieved

by leveraging the denoising process inherent in diffusion models.

In these models, Gaussian noise is sampled at various timesteps,

and progressively removed to recover the underlying motion. Early

denoising steps significantly impact the dynamic structure of the

video, while later steps add finer detail. To prioritize learning dynamic

motion patterns over visual details such as background or subject

appearance, we define a timestep sampling strategy that biases the

training process towards earlier denoising steps. Unlike traditional

approaches that uniformly sample timesteps for denoising, we define

a probability distribution over the timesteps to emphasize earlier

stages:

fα(t) =
1

T
(1− α cos(

πt

T
)) (4)

This function fα(t) defines a cosine distribution over timesteps,

where α controls the weighting towards earlier steps in the denoising

process. This approach ensures that the model focuses on the overall

dynamic structure of the video, as represented in the early stages of

denoising, rather than the fine details that are recovered later.

C. 4D Spatial Temporal Slicing

In text-to-4D space generation, existing methods either use NeRF

rendering [12]–[16] (with 4D representations encoded using hash

functions, resulting in long backpropagation times, slow training,

limited motion range, or scene distortion) or Gaussian deformation

fields [17]–[20](which are faster for object formation but fail to

render 4D dynamic objects correctly under large motions and drastic

camera view changes, often leading to severe structural distortions).

To resolve these issues, we introduce temporal slicing in 4DGS

(4D Gaussian Splatting), which allows rendering in 2D slices across

the 4D space, enabling highly customizable large-scale 4D space

expression.

However, a new challenge arises: there are no highly consistent

spatio-temporal slices available for rendering. Therefore, we develop

a spatial-temporal slicing matrix to serve as a suitable representation

for 4DGS slicing. Additionally, we design a 4D consistency loss

to optimize and adjust the 4D space. Specifically, we initialize the

columns of the matrix as spatial slices using the orthogonal view

images from the T23D model and the rows as temporal slices using

video frames obtained from fine-tuned views. The combination of

temporal and spatial slices forms the spatial-temporal slicing matrix,

which is aligned with the dimensions of 4DGS. The matrix is then

fed into a 4D spatial-temporal feature extraction network for iterative

training, ultimately producing a consistent and accurate 4D dynamic

scene representation.

In the process of converting the 4D representation into 3D pro-

jections, we formalize the slicing operation using Gaussian splatting.

Starting from the 4D covariance matrix Σ4D , we define the following

relationship:

Σ4D =

(
U V
VT W

)
and Σ−1

4D =

(
A M
MT Z

)
, (5)

Here, U and A are 3× 3 matrices that describe the spatial variance,

while V captures the interaction between spatial and temporal dimen-

sions. For a given time t, the projected 3D Gaussian is computed as:

G3D(x, t) = e−
1
2
λ(t−μt)

2

e−
1
2
[x−μ(t)]TΣ−1

3D
[x−μ(t)], (6)

where the spatial and temporal components are decoupled, and the

time evolution is controlled by the temporal decay term e−
1
2
λ(t−μt)

2

.

The 3D covariance matrix Σ3D and the time-dependent mean μ(t)
are given by:

λ = W−1,Σ3D = A−1 = U− VVT

W
,

μ(t) = (μx, μy, μz)
T + (t− μt)

V

W
.

(7)

Compared to the original 3D Gaussian Splatting (3DGS) method,

the sliced 3D Gaussian in Equation 7 includes a temporal decay

term e−
1
2
λ(t−μt)

2

. As time t progresses, a Gaussian point becomes

visible when t is near its temporal position μt, gradually increasing

in opacity until reaching its peak at t = μt. It then decreases in

density, vanishing when t is sufficiently far from μt. Controlling

the temporal position and scaling factor allows a 4D Gaussian to

model complex dynamics effectively, such as motions that appear or

disappear suddenly. During rendering, temporally distant points are

filtered out, with the visibility threshold λ(t − μt)
2 empirically set

to 16.

III. EXPERIMENT

We implement Motion4D under the 4D Gaussian Splatting frame-

work. For motion slices finetuning, we regard the ZeroScope T2V

diffusion model [21] as pretrained model, with multi-view resolutions

for the resolutions of 512 × 512, using a batch size of 16 on a

single Nvidia A100 80GB GPU. For spatial slices, we optimize the

partial parameters of UNets for Zero-1-to-3-XL [22], optimizing the

model for an additional 5,000 iterations. The Adam optimizer, with

a learning rate of 0.001, was used throughout all stages.

To evaluate our approach, we used Fréchet Video Distance (FVD)

[23], T3Bench [24]. We also use four qualitative metrics by asking

human raters their preferences based on:(1)3D appearance(3D-A),

(2)3D text alignment(3D-T), (3)motion text alignment(MT), and

(4)motion realism(MR). A total of 200 questionnaires were dis-

tributed to gather comprehensive feedback on the generated 4D

objects.

A. Comparative Experimental Results

We compared our method against state-of-the-art models using the

same input prompt, as illustrated in Fig. 3. The results demonstrate

significant differences in how each method responds to the prompt

”a dinosaur is running.” The outputs from Dreamgaussion4D and

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on August 27,2025 at 13:32:44 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3: Visual comparisons of 4D generation methods with the
input prompt ”A dinosaur is running”.
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Fig. 4: Ablation experiment results for the 4D generation of
”Cloud rolls and volcano erupts”

Diffusion4D exhibit simple, repetitive motions with a lack of fluidity,

which hinders their ability to achieve high levels of customization.

While 4dfy offers a distinctive stylization, the generated motions

suffer from low detail resolution, distortion, and insufficient conti-

nuity. SV4D shows improvements in both smoothness and motion

diversity, suggesting some potential for customization. In contrast,

TABLE I: Quantitative comparison with 4D generation methods.

Combined Method FVD↓ Text to 3D User Preference
3D-A↑ 3D-T↑ MT↑ MR↑

DreamGaussian4D [25] 71.25 56.74 47.36 23.90 26.57
Diffusion4D [26] 61.07 32.50 42.59 32.60 35.89
4dfy [7] 54.41 26.05 34.95 43.31 57.41
SV4D [27] 60.15 51.79 42.47 51.40 56.34
Ours 40.12 57.13 59.28 63.99 62.58

our proposed method outperforms the others, producing smooth,

natural dinosaur movements with finely detailed and realistic actions.

Its robust customization capabilities make it particularly well-suited

for applications requiring high-precision dynamic representations. As

shown in Table 1, our method also achieves the highest scores,

particularly in MT and MR metrics, further highlighting its strength

in generating both natural and customizable motion.

B. Ablation Experimental Results

TABLE II: Ablation study of various rendering methods with/without

motion control.

Method FVD↓ Text to 3D User Preference
3D-A↑ 3D-T↑ MT↑ MR↑

w/o TS 48.54 46.78 54.79 55.94 55.02
w/o SS 52.07 50.76 52.31 53.57 58.12
w/o FT 44.62 55.54 55.88 60.84 61.26
Ours 42.82 56.25 58.24 61.21 65.72

We provide an in-depth analysis of our temporal-spatial slicing

training strategy through an ablation study, removing each component

individually. The results of this study are presented in Fig. 4 and

Table 2. To evaluate the contribution of each component, we conduct

experiments by removing temporal slicing (w/o TS), spatial slicing

(w/o SS), and fine-tuning (w/o FT), and compare the results to our

full method. Fig. 4 shows the effect of omitting each component in

the 4D generation process using the input prompt ”cloud rolls and

volcano eruptions.”

Without the TS module, we observed less coherent motion trajec-

tories and reduced fluidity in the first row compared to our full model.

Additionally, removing the spatial slicing module notably diminished

the level of detail, especially in the smoke dispersion and volcanic

eruptions. When the fine-tuning strategy is excluded from the training

process, the detail in the volcanic eruptions and smoke generation

slightly decreased in both overall motion and 3D appearance. Overall,

our method demonstrates superior performance in enhancing the

dynamic realism and complexity of 4D scene generation. This is

further supported by the quantitative results in Table 2, where the

superior performance of our approach is clearly verified.

IV. CONCLUSION

We propose Motion4D, a novel framework for generating cus-

tomized text-to-4D outputs. To achieve greater precision in gener-

ation, we employ temporal-spatial slicing techniques to accurately

capture motion features of objects at various time slots, while utilizing

multi-view images to capture the geometric structure and appearance

features of objects. This approach enhances the specificity of both

motion and appearance adjustments. By splitting 4D scenes into

smaller, more manageable temporal and spatial slices, we reduce the

dependence on large amounts of 4D datasets, improve processing

efficiency, and offer better control over object behavior in both time

and space. This ultimately leads to more precise fine-tuning of motion

and appearance.
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