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Generating Customized 4D Motions from Text Inputs Using
Spatial-Temporal Slicing Approaches
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Abstract—Text-guided diffusion models have revolutionized static 3D
generation, which significantly accelerated progress in 4D content cre-
ation. However, applying diffusion models to 4D content creation poses
huge challenges due to the complexity and diversity of motion. The task
of text to 4D customized generation requires a large amount of guide
data, and it is challenging to integrate diverse knowledge from multiple
diffusion models. To handle these challenges, we present Motion4D,
a novel framework focusing on motion customization in 4D creation
tasks, adopting a spatial-temporal slicing strategy towards the generation
process. Firstly, the initialized 4D Gaussian field (XYZ-T) is temporally
sliced into 3D scenes corresponding to discrete time points along the time
axis. Secondly, for spatial dimension, 3D objects are further decomposed
into orthogonal multi-view images to capture geometric and appearance
features from various perspectives. This spatial-temporal slicing enables a
comprehensive representation of object motion and variation across both
temporal and spatial dimensions, facilitating customized 4D modeling.
Extensive experiments demonstrate that our method surpasses prior
state-of-the-art methods in terms of generation efficiency and motion
consistency across various prompts.
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Fig. 1: Comparisons of text to 4D generation with reference
motions(first row).The results produced by existing methods and
our proposed method are shown in the second and third rows,
respectively. Our approach allows for the customization of both
subject identity and motion patterns, enabling the generation of
desired 4D objects based on contextual descriptions.

Index Terms—Text-to-4D Generation, Decoupled Training Pipeline,
Motion Pattern Optimization, Spatial-Temporal Slicing

I. INTRODUCTION

Generative models have recently achieved remarkable advance-
ments, bringing transformative changes to the fields of image, video,
and 3D generation [1], [2]. Building on these advancements, text-
to-4D generation, which aims to create four-dimensional (3D space
+ time) dynamic scenes or objects from input prompts, has shown
huge potential to study. Leveraging advanced diffusion models,
current methods for 4D generation have demonstrated impressive
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efficacy. This breakthrough can potentially revolutionize dynamic
scene simulations, animation, and the creation of entire virtual worlds.

Universal methods [3]-[5] typically aim for generalized 4D gen-
eration but often struggle with limited motion diversity and lack of
customization as Fig. 1 shows. A key challenge lies in generating cus-
tomized 4D content due to the limited availability of 4D datasets and
the inherent complexity of modeling both temporal and spatial dimen-
sions for specific objects. On the one hand, creating a comprehensive
4D customization dataset requires considering individual variations,
which is both resource-intensive and time-consuming. On the other
hand, dynamic 3D scenes involve diverse spatial content coupled
with intricate temporal dynamics. Effective space-time modeling must
simultaneously capture detailed spatial information (such as geometry
and surface texture) and temporal changes (such as object movements
and deformations), further complicating the modeling process.

Current existing methods blend gradient updates from multiple
pre-trained diffusion models and synthesize 4D scenes. For example,
the pioneer work, MAV3D [6], leverages text-to-image, text-to-video,
and 3D-aware text-to-image, generating customized static 3D object
first and then introducing time dimension for dynamic scenes(3D
space + time) step by step. Furthermore, 4d-fy [7] noticed that this
direct combination strategy shows opposing weakness. It develops
a three-way trade-off method for introducing a hybrid SDS, aiming
to synthesize 4D scenes using the best qualities of each diffusion
model. However, incorporating motion into a static 3D scene using
SDS with a text-to-video model typically degrades the 3D structure
relative to static scenes generated by text-to-3D models. Therefore,
this weakness leads us to a question: how can we harness an existing
text-to-3D model’s knowledge about 3D structure and appearance
while augmenting them with new, custom motions?

We propose a novel 4D content customization model, Motion4D,
to fully capture both the spatial and temporal features for consistent
and diversity dynamic generation. In contrast to previous cascaded
methods, we designed a spatial-temporal slicing strategy, achieving
motion customization across frames and geometry consistency of
space dimension simultaneously rather than generating a static 3D
object first and then animating it progressively. Firstly, we take dual
slicing steps both in time and space dimensions for the initialized
4D Gaussian field, where time slicing refers to dividing a dynamic
scene into multiple static 3D scene frames along time dimensions and
spatial slicing represents generating multi-view images from different
perspectives to represent the appearance and geometric features of the
object. Subsequently, some real motion videos are selected for motion
customizing tuning by optimizing cross-attention layers parameters
of UNet blocks, aiming to generate motion patterns assisted with
target pattern. This dual-slicing multi-view framework is efficient in
capturing object features and motion features with shared-weighted
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Fig. 2: The diagram illustrates our proposed framework for 4D customized motion and appearance from input text using spatial-

temporal slicing techniques.

parameters. To summarize, our main contributions are as follows: (1)
We propose Motion4D, a novel 4D content customization model, able
to maintain the variety of motion generation in case of generating a
specific 4D scene. (2) We present a spatial-temporal slicing training
strategy that could accurately capture the movement trajectory and
deformation of objects at each time point while maintaining 3D
geometry and appearance consistency. (3) We conduct extensive qual-
itative and quantitative experiments, demonstrating the superiority of
Motion4D over the existing state-of-the-art methods. Our project is
displayed on https://zhangzhichao19020123.github.io/motion4d1/

II. METHODS
A. Multiview Appearance Customization

Current methods for 3D appearance customization mainly focus
on converting 2D images into 3D models using pretrained models.
However, the generated 3D models often exhibit geometric inconsis-
tencies. To address this, we incorporate fine-tuning the T2I model
directly into 3D diffusion models to achieve multiview customizable
appearance. Specifically, we fine-tune the self-attention layers of the
Transformer in the UNet structure of MVDream [8] to customize
the appearance. MVDream’s pseudo-3D structure naturally integrates
four orthogonal views (front, back, left, right) by merging 2D images
from each view. This allows for spatial layout learning directly across
these views, enabling the extraction, local editing, and optimization of
spatial features and attributes, resulting in highly consistent multiview
customizable 3D appearances.

Text-to-appearance consistency is foundational. Initially, text em-
bedding handles the task of averaging word attribute representations.
For customized appearances or to emphasize specific attributes, text
reweighting is essential to highlight particular characteristics. This
leads to the introduction of a weight adjustment strategy, as outlined
in Equation 1. In the process of three-dimensional customization,

viewpoint consistency must also be addressed to prevent issues such
as multi-head artifacts or color shifts. Fine-tuning techniques are
applied across all three planes to customize the appearance, and a
viewpoint-sensitive 3D diffusion model is used to ensure consistency
across different perspectives.

W = argmin |[WChts, — WoCleg, || F
st.WC" = P, where C = [c1 - ~-cN]T (D

and P = [chlr e WNCE]T,i =z,
B. Multiview Motion Customization

Current video generation approaches [9], [10] primarily utilize
large-scale text-video pairs to train models, ensuring text-motion
consistency. However, this often results in randomly selected views,
limited motion diversity, and suboptimal video quality [11]. To over-
come this, we apply a multiview generation method. Using specific
action videos, we fine-tune the UNet structure of Zeroscope by
applying cross-attention layer fine-tuning in two stages to customize
both the motion and the camera view (front, back, left, and right views
bound to text input). Then, we generate customized videos from the
three orthogonal views produced by the T23D model, ensuring strong
geometric consistency across views in the generated customizable
motions.

Adapting Equation 2 for time slicing, we apply a strategy of
fine-tuning motion models across three views—front, side, and over-
head—each corresponding to a unique orthogonal projection. These
views are defined as:

Pe(u(t)) = (ua,uy)” + (t — u) %

Pu(ult)) = (uy,us)" + (¢ — we) 35 @
Py(u(t)) = (us,us)” + (t —ur) %
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Here, P.(u(t)), Px(u(t)), and Py(u(t)) represent the front, side, and
overhead projections of the object’s motion, respectively. The term
u(t) is the object’s positional vector at time ¢, and the matrix V/W
defines the relationship between spatial and temporal dimensions.
The objective of this step is to minimize the difference between
the predicted noise €”” and the initial noise ¢’ during the fine-tuning
process. The multi-view fine-tuning motion loss £ is formulated as:

Li= Ezf,sft~N(o,1),t” [ Hegt - efer ]’

This loss function ensures that the generated motion matches
the ground truth motion at each timestep for all three views. By
calculating the L2 norm between the predicted noise and ground truth,
the model is optimized to produce accurate motion dynamics across
all views. By adopting this strategy, the model learns to generalize
motion patterns across multiple views, while still retaining the ability
to generate high-quality, fine-tuned dynamic videos. This ensures
that both motion and appearance are preserved, enabling high-fidelity
motion customization in 4D video generation.

During the training phase, the model primarily focuses on capturing
common motion patterns in D™, without heavily focusing on appear-
ance or the specific subject presenting the motion. This is achieved
by leveraging the denoising process inherent in diffusion models.
In these models, Gaussian noise is sampled at various timesteps,
and progressively removed to recover the underlying motion. Early
denoising steps significantly impact the dynamic structure of the
video, while later steps add finer detail. To prioritize learning dynamic
motion patterns over visual details such as background or subject
appearance, we define a timestep sampling strategy that biases the
training process towards earlier denoising steps. Unlike traditional
approaches that uniformly sample timesteps for denoising, we define
a probability distribution over the timesteps to emphasize earlier
stages:

3

falt) = 10— acos(5) @

This function f.(t) defines a cosine distribution over timesteps,
where « controls the weighting towards earlier steps in the denoising
process. This approach ensures that the model focuses on the overall
dynamic structure of the video, as represented in the early stages of
denoising, rather than the fine details that are recovered later.

C. 4D Spatial Temporal Slicing

In text-to-4D space generation, existing methods either use NeRF
rendering [12]-[16] (with 4D representations encoded using hash
functions, resulting in long backpropagation times, slow training,
limited motion range, or scene distortion) or Gaussian deformation
fields [17]-[20](which are faster for object formation but fail to
render 4D dynamic objects correctly under large motions and drastic
camera view changes, often leading to severe structural distortions).
To resolve these issues, we introduce temporal slicing in 4DGS
(4D Gaussian Splatting), which allows rendering in 2D slices across
the 4D space, enabling highly customizable large-scale 4D space
expression.

However, a new challenge arises: there are no highly consistent
spatio-temporal slices available for rendering. Therefore, we develop
a spatial-temporal slicing matrix to serve as a suitable representation
for 4DGS slicing. Additionally, we design a 4D consistency loss
to optimize and adjust the 4D space. Specifically, we initialize the
columns of the matrix as spatial slices using the orthogonal view
images from the T23D model and the rows as temporal slices using

video frames obtained from fine-tuned views. The combination of
temporal and spatial slices forms the spatial-temporal slicing matrix,
which is aligned with the dimensions of 4DGS. The matrix is then
fed into a 4D spatial-temporal feature extraction network for iterative
training, ultimately producing a consistent and accurate 4D dynamic
scene representation.

In the process of converting the 4D representation into 3D pro-
jections, we formalize the slicing operation using Gaussian splatting.
Starting from the 4D covariance matrix >4p, we define the following

relationship:
\% _ A M
W> and ¥, = (MT z) O]

U

Yup = <VT
Here, U and A are 3 x 3 matrices that describe the spatial variance,
while V captures the interaction between spatial and temporal dimen-
sions. For a given time ¢, the projected 3D Gaussian is computed as:
Gsp(x,t) = e~ 2M—10? o= 3ben®TEpe-n®] (4
where the spatial and temporal components are decoupled, and tl;e

1
time evolution is controlled by the temporal decay term em 2T
The 3D covariance matrix Ysp and the time-dependent mean pu(t)
are given by:
RAS

A=W 'Ssp=A1=U ,
w @)

lE) = oty )T+ (6= )

Compared to the original 3D Gaussian Splatting (3DGS) method,
the sliced 3D Gaussian in Equation 7 includes a temporal decay
term e~ 22(t=10° | Ag time ¢ progresses, a Gaussian point becomes
visible when ¢ is near its temporal position i, gradually increasing
in opacity until reaching its peak at ¢ = py. It then decreases in
density, vanishing when ¢ is sufficiently far from p. Controlling
the temporal position and scaling factor allows a 4D Gaussian to
model complex dynamics effectively, such as motions that appear or
disappear suddenly. During rendering, temporally distant points are
filtered out, with the visibility threshold A(t — p:)® empirically set
to 16.

III. EXPERIMENT

We implement Motion4D under the 4D Gaussian Splatting frame-
work. For motion slices finetuning, we regard the ZeroScope T2V
diffusion model [21] as pretrained model, with multi-view resolutions
for the resolutions of 512 x 512, using a batch size of 16 on a
single Nvidia A100 80GB GPU. For spatial slices, we optimize the
partial parameters of UNets for Zero-1-to-3-XL [22], optimizing the
model for an additional 5,000 iterations. The Adam optimizer, with
a learning rate of 0.001, was used throughout all stages.

To evaluate our approach, we used Fréchet Video Distance (FVD)
[23], T3Bench [24]. We also use four qualitative metrics by asking
human raters their preferences based on:(1)3D appearance(3D-A),
(2)3D text alignment(3D-T), (3)motion text alignment(MT), and
(4)motion realism(MR). A total of 200 questionnaires were dis-
tributed to gather comprehensive feedback on the generated 4D
objects.

A. Comparative Experimental Results

We compared our method against state-of-the-art models using the
same input prompt, as illustrated in Fig. 3. The results demonstrate
significant differences in how each method responds to the prompt
”a dinosaur is running.” The outputs from Dreamgaussion4D and
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wio TS

w/o SS

wio FT

Ours

Time Progress

Fig. 4: Ablation experiment results for the 4D generation of
”Cloud rolls and volcano erupts”

Diffusion4D exhibit simple, repetitive motions with a lack of fluidity,
which hinders their ability to achieve high levels of customization.
While 4dfy offers a distinctive stylization, the generated motions
suffer from low detail resolution, distortion, and insufficient conti-
nuity. SV4D shows improvements in both smoothness and motion
diversity, suggesting some potential for customization. In contrast,

TABLE I: Quantitative comparison with 4D generation methods.

Combined Method FVD, 3D_T§’f “’;f?_T X E;;"T Prefifl‘;‘f
DreamGaussiandD [25] 7125 5674 4736 2390 2657
Diffusion4D [26] 6107 3250 4259 3260 3589
adfy [7] 5441 2605 3495 4331 5741
SVAD [27] 60.15 5179 4247 5140  56.34
Ours 40.12 5713 5928 6399  62.58

our proposed method outperforms the others, producing smooth,
natural dinosaur movements with finely detailed and realistic actions.
Its robust customization capabilities make it particularly well-suited
for applications requiring high-precision dynamic representations. As
shown in Table 1, our method also achieves the highest scores,
particularly in MT and MR metrics, further highlighting its strength
in generating both natural and customizable motion.

B. Ablation Experimental Results

TABLE II: Ablation study of various rendering methods with/without
motion control.

Text to 3D User Preference
Method  FVDL 5, o4 “3ppt MTT  MRT
w/o TS 48.54 46.78 54.79 55.94 55.02
w/o SS 52.07 50.76 52.31 53.57 58.12
w/o FT 44.62 55.54 5588  60.84 61.26
Ours 42.82 56.25 58.24  61.21 65.72

We provide an in-depth analysis of our temporal-spatial slicing
training strategy through an ablation study, removing each component
individually. The results of this study are presented in Fig. 4 and
Table 2. To evaluate the contribution of each component, we conduct
experiments by removing temporal slicing (w/o TS), spatial slicing
(w/o SS), and fine-tuning (w/o FT), and compare the results to our
full method. Fig. 4 shows the effect of omitting each component in
the 4D generation process using the input prompt “cloud rolls and
volcano eruptions.”

Without the TS module, we observed less coherent motion trajec-
tories and reduced fluidity in the first row compared to our full model.
Additionally, removing the spatial slicing module notably diminished
the level of detail, especially in the smoke dispersion and volcanic
eruptions. When the fine-tuning strategy is excluded from the training
process, the detail in the volcanic eruptions and smoke generation
slightly decreased in both overall motion and 3D appearance. Overall,
our method demonstrates superior performance in enhancing the
dynamic realism and complexity of 4D scene generation. This is
further supported by the quantitative results in Table 2, where the
superior performance of our approach is clearly verified.

IV. CONCLUSION

We propose Motion4D, a novel framework for generating cus-
tomized text-to-4D outputs. To achieve greater precision in gener-
ation, we employ temporal-spatial slicing techniques to accurately
capture motion features of objects at various time slots, while utilizing
multi-view images to capture the geometric structure and appearance
features of objects. This approach enhances the specificity of both
motion and appearance adjustments. By splitting 4D scenes into
smaller, more manageable temporal and spatial slices, we reduce the
dependence on large amounts of 4D datasets, improve processing
efficiency, and offer better control over object behavior in both time
and space. This ultimately leads to more precise fine-tuning of motion
and appearance.
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