
Fully Sparse 3D Object Detection

Lue Fan1,2,3,4 Feng Wang5 Naiyan Wang5 Zhaoxiang Zhang1,2,3,6,�

1Institute of Automation, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

3National Laboratory of Pattern Recognition, CASIA
4School of Future Technology, UCAS

5TuSimple 6Center for Artificial Intelligence and Robotics, HKISI_CAS
{fanlue2019, zhaoxiang.zhang}@ia.ac.cn {feng.wff, winsty}@gmail.com

Abstract

As the perception range of LiDAR increases, LiDAR-based 3D object detection
becomes a dominant task in the long-range perception task of autonomous driving.
The mainstream 3D object detectors usually build dense feature maps in the network
backbone and prediction head. However, the computational and spatial costs
on the dense feature map are quadratic to the perception range, which makes
them hardly scale up to the long-range setting. To enable efficient long-range
LiDAR-based object detection, we build a fully sparse 3D object detector (FSD).
The computational and spatial cost of FSD is roughly linear to the number of
points and independent of the perception range. FSD is built upon the general
sparse voxel encoder and a novel sparse instance recognition (SIR) module. SIR
resolves the issue of center feature missing, which hinders the design of the fully
sparse architecture. Moreover, SIR avoids the time-consuming neighbor queries in
previous point-based methods. We conduct extensive experiments on the large-scale
Waymo Open Dataset to reveal the inner workings, and state-of-the-art performance
is reported. To demonstrate the superiority of FSD in long-range detection, we also
conduct experiments on Argoverse 2 Dataset, which has a much larger perception
range (200m) than Waymo Open Dataset (75m). On such a large perception
range, FSD achieves state-of-the-art performance and is 2.4× faster than the dense
counterpart. Our code is released at https://github.com/TuSimple/SST.

1 Introduction

Figure 1: Illustration of center feature miss-
ing and feature diffusion on dense feature
maps from Bird’s Eye View. The empty in-
stance center (red dot) is filled by the features
diffused from occupied voxels (with LiDAR
points), after several convolutions.

Autonomous driving systems are eager for efficient
long-range perception for downstream tasks, espe-
cially in high-speed scenarios. Current 3D LiDAR-
based object detectors usually convert sparse features
into dense feature maps for further feature extrac-
tion and prediction. For simplicity, we name the
detectors utilizing dense feature maps as dense de-
tectors. Dense detectors perform well on current
popular benchmarks [31, 7, 2], where the percep-
tion range is relatively short (less than 75 meters).
However, it is impractical to scale the dense detec-
tors to the long-range setting (more than 200 meters,
Fig. 2). In such settings, the computational and spa-
tial complexity on dense feature maps is quadratic
to the perception range. Fortunately, the sparsity of
LiDAR point clouds also increases as the perception
range extends (see Fig. 2), and the calculation on the

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/TuSimple/SST

unoccupied area is essentially unnecessary. Given the inherent sparsity, an essential solution for
efficient long-range detection is to remove the dense feature maps and make the network architectures
fully sparse.

However, removing the dense feature map is non-trivial since it plays a critical role in current designs.
Commonly adopted sparse voxel encoders [38, 5, 29] only extract the features on the non-empty
voxels for efficiency. So without dense feature maps, the object centers are usually empty, especially
for large objects. We name this issue as “Center Feature Missing (CFM)” (Fig. 1). Almost all
popular voxel or pillar based detectors [28, 5, 42, 30, 38] in this field adopt center-based or anchor-
based assignment since the center feature is the best representation of the whole object. However,
CFM significantly weakens the representation power of the center voxels, even makes the center
feature empty in some extreme cases like super large vehicles. Given this difficulty, many previous
detectors [38, 42, 28, 5] have to convert sparse voxels to dense feature maps in Bird’s Eye View after
the sparse voxel encoder. Then they resolve the CFM issue by applying convolutions on the dense
feature maps to diffuse features to instance centers, which we name as feature diffusion (Fig. 1).

200𝑚

Figure 2: Short-range point clouds (red, from
KITTI [7]) v.s. long-range point clouds (blue,
from Argoverse 2 [37]). The radius of the
red circle is 75 meters. The sparsity quickly
increases as the range extends.

To properly remove the dense feature map, we then
investigate the purely point-based detectors because
they are naturally fully sparse. However, two draw-
backs limit the usage of point-based methods in the
autonomous driving scenario. (1) Inefficiency: The
time-consuming neighborhood query [24] is the long-
standing difficulty to apply it to large-scale point
cloud (more than 100K points). (2) Coarse represen-
tation: To reduce the computational overhead, point-
based methods aggressively downsample the whole
scene to a fixed number of points. The aggressive
downsampling leads to inevitable information loss
and insufficient recall of foreground objects [40, 43].
As a result, very few purely point-based detectors
have reached state-of-the-art performance in the re-
cent benchmarks with large-scale point clouds.

In this paper, we propose Fully Sparse Detector
(FSD), which takes the advantages of both sparse
voxel encoder and point-based instance predictor.
Since the central region might be empty, the detector
has to predict boxes from other non-empty parts of instances. However, predicting the whole box
from individual parts causes a large variance on the regression targets, making the results noisy and
inconsistent. This motivates us to first group the points into an instance, then we further extract the
instance-level feature and predict a single bounding box from the instance feature. To implement this
principle, FSD first utilizes the sparse voxel encoder [38, 29, 5] to extract voxel features, then votes
object centers based on these features as in VoteNet [23]. Then the Instance Point Grouping (IPG)
module groups the voted centers into instances via Connected Components Labeling. After grouping,
a point-based Sparse Instance Recognition (SIR) module extracts instance features and predicts the
whole bounding boxes. As a point-based module, SIR has several desired properties. (1) Unlike
previous point-based modules, SIR treats instances as groups, and does not apply the time-consuming
neighborhood query for further grouping. (2) Similar to dynamic voxelization [46], SIR leverages
dynamic broadcast/pooling for tensor manipulation to avoid point sampling or padding. (3) Since
SIR covers the whole instance, it builds a sufficient receptive field regardless of the physical size of
the instance. We list our contributions as follows.

• We propose the concept of Fully Sparse Detector (FSD), which is the essential solution for
efficient long-range LiDAR detection. We further propose Sparse Instance Recognition (SIR)
to overcome the issue of Center Feature Missing in sparse feature maps. Combining SIR
with general sparse voxel encoders, we build an efficient and effective FSD implementation.

• FSD achieves state-of-the-art performance on the commonly used Waymo Open Dataset.
Besides, we further apply our method to the recently released Argoverse 2 dataset to
demonstrate the superiority of FSD in long-range detection. Given its challenging 200
meters perception range, FSD showcases state-of-the-art performance while being 2.4×
faster than state-of-the-art dense detectors.

2

Input Point Cloud

Sparse Voxel Feature
Extractor

Point-wise Classification &
Center Voting

Not Connected

Connected

SI
R

 M
od

ul
e

Rule out outliers

Add missing
points SI

R
2

M
od

ul
e

Pr
ed

ic
tio

n
1

Pr
ed

ic
tio

n
2

Predict
proposal

Predict
proposal

Instance 1

Instance 2
Group CorrectionInstance Point Grouping

via CCL
Instance-wise feature

extraction and prediction
Instance-wise feature

extraction and prediction

Corrected instance 1

Corrected instance 2

Figure 3: Overall architecture of FSD. For simplicity, we only use two instances to illustrate the
pipeline. Red dots are the voted centers from each LiDAR point (blue dots). The SIR module and the
SIR2 module all contain 3 SIR layers.

2 Related Work

Voxel-based dense detectors Pioneering work VoxelNet [45] uses dense convolution for voxel
feature extraction. Although it achieves competitive performance, it is inefficient to apply dense
convolution to 3D voxel representation. PIXOR [39] and PointPillars [13] adopt 2D dense convolution
in Bird’s Eye View (BEV) feature map achieving significant efficiency improvement. We name such
detectors as dense detectors since they convert the sparse point cloud into dense feature maps.

Voxel-based semi-dense detectors Different from the dense detectors, semi-dense detectors
incorporate both sparse features and dense features. SECOND [38] adopts sparse convolution to
extract the sparse voxel features in 3D space, which then are converted to dense feature maps in
BEV to enlarge the receptive field and integrate with 2D detection head [19, 25, 44]. Based on
SECOND-style semi-dense detectors, many methods attach a second stage for fine-grained feature
extraction and proposal refinement [29, 28, 30, 3]. It is noteworthy that the semi-dense detector is
hard to be trivially lifted to the fully sparse detector since it will face the issue of Center Feature
Missing, as we discussed in Sec. 1.

Point-based sparse detectors The purely point-based detectors are born to be fully sparse. PointR-
CNN [27] is the pioneering work to build the purely point-based detector. 3DSSD [40] accelerates the
point-based method by removing the feature propagation layer and refinement module. VoteNet [23]
first makes a center voting and then generates proposals from the voted center achieving better
precision. Albeit many methods have tried to accelerate the point-based method, the time-consuming
neighborhood query is still unaffordable in large-scale point clouds (more than 100k points per
scene). So current benchmarks [31, 2] with large-scale point clouds are dominated by voxel-based
dense/semi-dense detectors [11, 30, 15].

3 Methodology

3.1 Overall Architecture

Following the motivation of instances as groups, we have four steps to build the fully sparse detector
(FSD): 1) We first utilize a sparse voxel encoder [5, 29, 38] to extract voxel features and vote object
centers(Sec. 3.2). 2) Instance Point Grouping groups foreground points into instances based on the
voting results (Sec. 3.2). 3) Given the grouping results, Sparse Instance Recognition (SIR) module
extracts instance/point features and generates proposals (Sec. 3.3). 4) The proposals are utilized to
correct the point grouping and refine the proposals via another SIR module (Sec. 3.4).

3.2 Instance Point Grouping

Classification and Voting We first extract voxel features from the point cloud with a sparse voxel
encoder. Although FSD is not restricted to a certain sparse voxel encoder, we utilize sparse attention
block in SST [5] due to its demonstrated effectiveness. Then we build point features by concatenating
voxel features and the offsets from points to their corresponding voxel centers. These point features
are passed into two heads for foreground classification and center voting. The voting is similar to
VoteNet [23], where the model predicts the offsets from foreground points to corresponding object

3

Group 1

Group 2

𝑁! × 3

𝑁" × 3

2 × 3 𝑁 × 3 2 × 𝐶𝑁 × 𝐶 N × 𝐶 N × 𝐶𝑁! + 𝑁" = 𝑁

Grouping results
Group
centers

Broadcasted
group centers

𝑁 × 3

Input point
coordinates

Group
features

Point-wise
subtraction

Dynamic
Pooling

Dynamic
BroadcastInput point

features
Broadcasted
group features

Input point
features

Pair-wise
feature extraction

Pair

Instance 1

Instance 2 Output
point feature

Figure 4: Illustration of building instance-level point operators with dynamic broadcast/pooling. Best
viewed in color. Left: calculating center-to-neighbor offsets given raw point clouds. Right: updating
point features. Note that the operation is parallel among all instances.

centers. L1 loss [25] and Focal Loss [18] are adopted as voting loss Lvote and semantic classification
loss Lsem.

Connected Components Labeling (CCL) To group points into instances, we regard all the predicted
centers (red dots in Fig. 3) as vertices in a graph. Two vertices are connected if their distance is
smaller than a certain threshold. Then a connected component in this graph can be viewed as an
instance, and all points voted to this connected component share a group ID. Unlike the ball query in
VoteNet, our CCL-based grouping greatly avoids fragmented instances. Although there are many
elaborately designed instance grouping methods [12, 34, 10], we opt for the simple CCL because it is
adequate in our design and can be implemented by the efficient depth-first search.

3.3 Sparse Instance Recognition

3.3.1 Preliminaries: Dynamic Broadcast/Pooling

Given N points belong to M groups, we define their corresponding group ID array as I in shape of [N,]
and their feature array as F in shape of [N,C], where C is the feature dimensions. F (i) is the feature
array of points belonging to the i-th group. Dynamic pooling aggregates each F (i) into one group
feature gi of shape [C,]. Thus we have gi = p(F (i)), where p is a symmetrical pooling function. The
dynamic pooling on all group features G of shape [M,C] is formulated as G = p(F, I). The dynamic
broadcast can be viewed as the inverse operation to dynamic pooling, which broadcasts gi to all
the points in the i-th group. Since the broadcasting is essentially an indexing operation, we use the
indexing notation [] to denote it as G[I], which is in shape of [N,C]. Dynamic broadcast/pooling is
very efficient because it can be implemented with high parallelism on modern devices and well fits
the sparse data with dynamic size.

The prerequisite of dynamic broadcast/pooling is that each point uniquely belongs to a group. In
other words, groups should not overlap with each other. Thanks to the motivation of instances as
groups, the groups in 3D space do not overlap with each other naturally.

3.3.2 Formulation of Sparse Instance Recognition

After grouping points into instances in Sec. 3.2, we can directly extract instance features by some
basic point-based networks like PointNet, DGCNN, etc. There are three elements to define a basic
point-based module: group center, pair-wise feature and group feature aggregation.

Group center The group center is the representative point of a group. For example, in the ball
query, it is the local origin of the sphere. In SIR, the group center is defined as the centroid of all
voted centers in a group.

Pair-wise feature defines the input for per point feature extraction. SIR adopts two kinds of features:
1) relative coordinate between group center and each point, 2) feature concatenation between group
and each neighbor point. Taking feature concatenation as example and using the notations in 3.3.1,
the pair-wise feature can be denoted as CAT(F,G[I]), where CAT is channel concatenation.

Group feature aggregation In a group, a pooling function is used to aggregate neighbor features.
SIR applies dynamic pooling to aggregate feature array F . Following the notations in 3.3.1, we have
G = p(F, I), where G is the aggregated group features.

4

Integration Combining the three basic elements, we could build many variants of point-based
operators, such as PointNet [22], DGCNN [35], Meta-Kernel [4], etc. Fig. 4 illustrates the basic
idea of how to build an instance-level point operator with dynamic broadcast/pooling. In our design,
we adopt the formulation of VFE [45] as the basic structure of SIR layers, which is basically a
two-layer PointNet. In the l-th layer of SIR module, given the input point-wise feature array Fl,
point coordinates array X , the voted center X ′ and group ID array I , the output of l-th layer can be
formulated as:

F ′
l = LinNormAct (CAT (Fl, X − pavg(X

′, I)[I])) , (1)

Fl+1 = LinNormAct (CAT (F ′
l , pmax(F

′
l , I)[I])) , (2)

where LinNormAct is a fully-connected layer followed by a normalization layer [33] and an activation
function [9]. The pavg and the pmax are average-pooling and max-pooling function, respectively. The
output Fl+1 can be further used as the input of the next SIR layer, so our SIR module is a stack of a
couple of basic SIR layers.

3.3.3 Sparse Prediction

With the formulation in Eqn. 1 and Eqn. 2, SIR extracts features of all instances dynamically in
parallel. And then SIR makes sparse prediction for all groups. In contrast to two-stage sparse
prediction, our proposals (i.e., groups) do not overlap with each other. Unlike one-stage dense
prediction, we only generate a single prediction for a group. Sparse prediction avoids the difficulty of
label assignment in dense prediction when the center feature is missing, because there is no need to
attach anchors or anchor points to non-empty voxels. It is noteworthy that the fully sparse architecture
may face a severe imbalance problem: short-range objects contain much more points than long-range
objects. Some methods [1, 4] use hand-crafted normalization factors to mitigate the imbalance.
Instead, SIR avoids the imbalance because it only generates a single prediction for a group regardless
of the number of points in the group.

Specifically, for each SIR layer, there is a Gl = pmax(F
′
l , I) in Eqn. 2, which can be viewed as

the group features. We concatenate all Gl from each SIR layer in channel dimension and use the
concatenated group features to predict bounding boxes and class labels via MLPs. All the groups
whose centers fall into ground-truth boxes are positive samples. For positive samples, the regression
branch predicts the offsets from group centers to ground-truth centers and object sizes and orientations.
L1 loss [25] and Focal Loss [18] are adopted as regression loss Lreg and classification loss Lcls,
respectively.

3.4 Group Correction

There is inevitable incorrect grouping in the Instance Point Grouping module. For example, some
foreground points may be missed, or some groups may be contaminated by background clutter. So we
leverage the bounding box proposals from SIR to correct the grouping. The points inside a proposal
belong to a corrected group regardless of their previous group IDs. After correction, we apply an
additional SIR to these new groups. To distinguish it from the first SIR module, we denote the
additional SIR module as SIR2.

SIR2 predicts box residual from the proposal to its corresponding ground-truth box, following many
two-stage detectors. To make SIR2 aware of the size and location of a proposal, we adopt the offsets
from inside points to proposal boundaries as extra point features following [16]. The regression
loss is denoted as Lres = L1(∆res, ∆̂res), where ∆res is the ground-truth residual and ∆̂res is
the predicted residual. Following previous methods [29, 28], the 3D Intersection over Union (IoU)
between the proposal and ground-truth serves as the soft classification label in SIR2. Specifically, the
soft label q is defined as q = min(1,max(0, 2IoU − 0.5)), where IoU is the IoU between proposals
and corresponding ground-truth. Then cross entropy loss is adopted to train the classification branch,
denoted as Liou. Taking all the loss functions in grouping (Sec. 3.2) and sparse prediction into
account, we have

Ltotal = Lsem + Lvote + Lreg + Lcls + Lres + Liou, (3)

where we omit the normalization factors for simplicity.

5

3.5 Discussion

The center voting in FSD is inspired by VoteNet [23], while FSD has two essential differences from
VoteNet.

• After voting, VoteNet simply aggregates features around the voted centers without further
feature extraction. Instead, FSD builds a highly efficient SIR module taking advantage of
dynamic broadcast/pooling for further instance-level feature extraction. Thus, FSD extracts
more powerful instance features, which is experimentally demonstrated in Sec. 4.6.

• VoteNet is a typical point-based method. As we discussed in Sec. 1, it aggressively down-
samples the whole scene to a fixed number of points for efficiency, causing inevitable
information loss. Instead, the dynamic characteristic and efficiency of SIR enable fine-
grained point feature extraction from any number of input points without any downsampling.
In Sec. 4.6, we showcase the efficiency of our design in processing large-scale point clouds
and the benefits from fine-grained point representation.

4 Experiments

4.1 Setup

Dataset: Waymo Open Dataset (WOD) We conduct our main experiments on WOD [31]. WOD
is currently the largest and most trustworthy benchmark for LiDAR-based 3D object detection. WOD
contains 1150 sequences (more than 200K frames), 798 for training, 202 for validation, and 150 for
test. The detection range in WOD is 75 meters (cover area of 150m× 150m).
Dataset: Argoverse 2 (AV2) We further conduct long-range experiments on the recently released
Argoverse 2 dataset [37] to demonstrate the superiority of FSD in long-range detection. AV2 has a
similar scale to WOD, and it contains 1000 sequences in total, 700 for training, 150 for validation,
and 150 for test. In addition to average precision (AP), AV2 adopts a composite score as evaluation
metric, which takes both AP and localization errors into account. The perception range in AV2 is
200 meters (cover area of 400m× 400m), which is much larger than WOD. Such a large perception
range leads to a huge memory footprint for dense detectors.
Model Variants To demonstrate the generality of SIR, we build two FSD variants. FSDsst adopts
the emerging single stride sparse transformer [5] as sparse voxel feature extractor. FSDspconv is built
upon sparse convolution based U-Net in PartA2 [29]. Unless otherwise specified, we use FSDsst in
the experiments.
Implementation Details We use 4 sparse regional attention blocks [5] in SST as our voxel feature
extractor. The SIR module and SIR2 module consist of 3 and 6 SIR layers, respectively. A SIR layer
is defined by Eqn. 1 and Eqn. 2. Our SST-based model converges much faster than SST, so we train
our models for 6 epochs instead of the 2× schedule (24 epochs) in SST. For FSDspconv , in addition to
the 6-epoch schedule, we adopt a longer schedule (12 epochs) for better performance. Different from
the default setting in MMDetection3D, we decrease the number of pasted instances in the CopyPaste
augmentation, to prevent FSD from overfitting.

4.2 Comparison to State-of-the-art Methods

We first compare FSD with state-of-the-art detectors and our baseline in Table 1. FSD achieves the
state-of-the-art performance among all the mainstream detectors. Thanks to the fine-grained feature
extraction in SIR, FSD also obtains exciting performance on Pedestrian class and Cyclist class with
single-frame point clouds.

4.3 Study of Treatments to Center Feature Missing

In what follows, we conduct experiments on WOD to elaborate the issue of Center Feature Missing
(CFM). We first build several models with different characteristics. Note that all the following models
adopt the same voxelization resolution, so they face the same degree of CFM at the beginning.

• FSDplain: After the sparse voxel encoder, FSDplain directly predicts the box from each voxel.
The voxels inside ground-truth boxes are assigned positive. Although FSDplain uses the most

6

Table 1: Performances on the Waymo Open Dataset validation split. All models only take single-
frame point cloud as input without any test-time augmentations or model ensemble. All classes are
trained in a single model in FSD. Different from the default CopyPaste in MMDetection3D, we
decrease the number of pasted instances to prevent overfitting. †: Longer schedule (12 epochs).

Methods mAP/mAPH
L2

Vehicle 3D AP/APH Pedestrian 3D AP/APH Cyclist 3D AP/APH
L1 L2 L1 L2 L1 L2

SECOND [38] 61.0/57.2 72.3/71.7 63.9/63.3 68.7/58.2 60.7/51.3 60.6/59.3 58.3/57.0
MVF [46] -/- 62.9/- -/- 65.3/- -/- -/- -/-
AFDet [6] -/- 63.7/- -/- -/- -/- -/- -/-
Pillar-OD [36] -/- 69.8/- -/- 72.5/- -/- -/- -/-
RangeDet [4] 65.0/63.2 72.9/72.3 64.0/63.6 75.9/71.9 67.6/63.9 65.7/64.4 63.3/62.1
PointPillars [13] 62.8/57.8 72.1/71.5 63.6/63.1 70.6/56.7 62.8/50.3 64.4/62.3 61.9/59.9
Voxel RCNN [3] -/- 75.6/- 66.6/- -/- -/- -/- -/-
RCD [1] -/- 69.0/68.5 -/- -/- -/- -/- -/-
VoTr-TSD [21] -/- 74.9/74.3 65.9/65.3 -/- -/- -/- -/-
LiDAR-RCNN [16] 65.8/61.3 76.0/75.5 68.3/67.9 71.2/58.7 63.1/51.7 68.6/66.9 66.1/64.4
Pyramid RCNN [20] -/- 76.3/75.7 67.2/66.7 -/- -/- -/- -/-
Voxel-to-Point [14] -/- 77.2/- 69.8/- -/- -/- -/- -/-
3D-MAN [41] -/- 74.5/74.0 67.6/67.1 71.7/67.7 62.6/59.0 -/- -/-
M3DETR [8] 61.8/58.7 75.7/75.1 66.6/66.0 65.0/56.4 56.0/48.4 65.4/64.2 62.7/61.5
Part-A2-Net [29] 66.9/63.8 77.1/76.5 68.5/68.0 75.2/66.9 66.2/58.6 68.6/67.4 66.1/64.9
CenterPoint-Pillar [42] -/- 76.1/75.5 68.0/67.5 76.1/65.1 68.1/57.9 -/- -/-
CenterPoint-Voxel [42] 69.8/67.6 76.6/76.0 68.9/68.4 79.0/73.4 71.0/65.8 72.1/71.0 69.5/68.5
IA-SSD [43] 62.3/58.1 70.5/69.7 61.6/61.0 69.4/58.5 60.3/50.7 67.7/65.3 65.0/62.7
PV-RCNN [28] 66.8/63.3 77.5/76.9 69.0/68.4 75.0/65.6 66.0/57.6 67.8/66.4 65.4/64.0
RSN [32] -/- 75.1/74.6 66.0/65.5 77.8/72.7 68.3/63.7 -/- -/-
SST_TS [5] -/- 76.2/75.8 68.0/67.6 81.4/74.0 72.8/65.9 -/- -/-
SST [5] 67.8/64.6 74.2/73.8 65.5/65.1 78.7/69.6 70.0/61.7 70.7/69.6 68.0/66.9
AFDetV2 [11] 71.0/68.8 77.6/77.1 69.7/69.2 80.2/74.6 72.2/67.0 73.7/72.7 71.0/70.1
PillarNet-34 [26] 71.0/68.5 79.1/78.6 70.9/70.5 80.6/74.0 72.3/66.2 72.3/71.2 69.7/68.7
PV-RCNN++ [30] 68.4/64.9 78.8/78.2 70.3/69.7 76.7/67.2 68.5/59.7 69.0/67.6 66.5/65.2
PV-RCNN++(center) [30] 71.7/69.5 79.3/78.8 70.6/70.2 81.3/76.3 73.2/68.0 73.7/72.7 71.2/70.2

FSDspconv (ours) 71.9/69.7 77.8/77.3 68.9/68.5 81.9/76.4 73.2/68.0 76.5/75.2 73.8/72.5
FSDsst (ours) 71.5/69.2 76.8/76.3 67.9/67.5 81.3/75.3 72.5/67.0 77.2/76.0 74.4/73.2
FSDspconv (ours) † 72.9/70.8 79.2/78.8 70.5/70.1 82.6/77.3 73.9/69.1 77.1/76.0 74.4/73.3

straightforward solution for CFM, it suffers from the large variance of regression targets and
low-quality predictions from hard voxels.

• SSTcenter: It replaces the anchor-based head in SST with CenterHead [44, 42]. Based on sparse
voxel encoder, SSTcenter converts sparse voxels into dense feature maps and applies several
convolutions to diffuse features to the empty object centers as in Fig. 1. Then it makes predictions
from the diffused center feature.

• FSDnogc: It removes the group correction and SIR2 module in FSD.

• CenterPoint-PP: It does not resort to any sparse voxel encoders. Instead, it applies multiple
dense convolutions soon after voxelization for feature diffusion, greatly eliminating CFM. It also is
equipped with CenterHead avoiding large variance of regression targets.

Table 2: Vehicle detection with vehicle length breakdown. †:
re-implemented ourselves. ∗: official Waymo L2 overall metric.
Arrows indicate the performance changes from SSTcenter.

Vehicle length (m)
Methods [0, 4) [4, 8) [8, 12) [12, +∞) Official∗

CenterPoint-PP† 34.3 69.3 42.0 43.6 66.2
FSDplain 32.2 64.6 41.3 42.2 62.3
SSTcenter [5] 36.0 69.4 33.7 30.5 66.3

FSDnogc 33.5 ↓ 2.5 68.2 ↓ 1.2 47.7 ↑ 14.0 47.9 ↑ 17.4 65.2 ↓ 1.1
FSD 36.7 ↑ 0.7 71.0 ↑ 1.6 51.3 ↑ 17.6 53.7 ↑ 23.2 69.3 ↑ 3.0

Experiments and analyses
There is usually a quite large
unoccupied area around the cen-
ters of large vehicles. Thus the
performance of large vehicles
is an appropriate indicator that
reveals the effect of CFM. So we
build a customized evaluation
tool, which breaks down the
object length following the
COCO evaluation [17]. Then we
use it to evaluate the performance of vehicles with different lengths. Table 2 shows the results, and
we list our findings as follows.

7

20050 100 150
Perception Range (m)

Tr
ai

ni
ng

 M
em

or
y

(G
B

)

1.0

3.0

5.0

7.0

9.0

11.0

13.0

> 24.0

11.8

3.4

1.4

3.4

6.3

10.4

4.9
5.95.23.6

15.0

OOM
> 24.0

5.6

15.5

> 24.0
> 24.0

FSD

CenterPoint

CenterPoint-PP

50 100 200150
Perception Range (m)

In
fe

re
nc

e
La

te
nc

y
(m

s)

50

100

150

200

250

300

400
434

238

89
81

105

164

232

90 94 97
80

500

> 800 714

83

208

400

626SST_center

Figure 5: Memory footprints and inference latency in different perception ranges. We use
FSDsst (Sec. 4.1) here. Statistics are obtained on a single 3090 GPU with batch size 1. Inference
latency is evaluated by the standard benchmark script in MMDetection3D without any test-time
optimization. CenterPoint-PP and SSTcenter are defined in Sec. 4.3. Best viewed in color.

• Comparing FSDplain with SSTcenter, they share the same attention-based sparse voxel encoder.
However, the trend is totally opposite w.r.t vehicle size. With feature diffusion, SSTcenter attains
much worse performance than FSDplain on large vehicles. It suggests feature diffusion is a sub-
optimal solution for CFM in the case of large objects. For those large objects, the features may not
be diffused to the centers or the diffused features are too weak to make accurate predictions.

• However, FSDplain obtains the worst performance among all detectors on vehicles with normal
sizes. Note that the CFM issue is minor for the normal size vehicles. So, in this case, the center-
based assignment in SSTcenter shows its superiority to the assignment in FSDplain. It suggests the
solution for CFM in FSDplain is also sub-optimal, even if it achieves better performance in large
objects.

• Comparing FSDnogc with SSTcenter, they share the same sparse voxel encoder while FSDnogc

replaces the dense part in SSTcenter with SIR. The huge improvements of FSDnogc on large
vehicles fairly reveal that SIR effectively resolves CFM and is better than feature diffusion.

• CenterPoint-PP suffers much less from CFM because it leverages dense feature maps from very
beginning of the network. It is also equipped with the advanced center-based assignment. Even so,
FSDnogc and FSD still outperform CenterPoint-PP, especially on large vehicles.

Table 3: Performance in Argoverse 2 validation split. †: provided by authors of AV2 dataset. ‡:
Weak CopyPaste augmentation for preventing overfitting (one instance per class). ∗: re-implemented
by ourselves. C-Barrel: construction barrel. MPC-Sign: mobile pedestrian crossing sign. A-Bus:
articulated bus. C-Cone: construction cone. V-Trailer: vehicular trailer. We omit the results of
dog, wheelchair and message board trailer because these categories contain very few instances.
The average results take all categories into account, including the omitted categories. We mark the
categories attaining notable improvements in bold.

Methods Av
er

ag
e

V
eh

ic
le

B
us

Pe
de

st
ri

an

St
op

Si
gn

B
ox

Tr
uc

k

B
ol

la
rd

C
-B

ar
re

l

M
ot

or
cy

cl
is

t

M
PC

-S
ig

n

M
ot

or
cy

cl
e

B
ic

yc
le

A
-B

us

Sc
ho

ol
B

us

Tr
uc

k
C

ab

C
-C

on
e

V
-T

ra
ile

r

Si
gn

L
ar

ge
V

eh
ic

le

St
ro

lle
r

B
ic

yc
lis

t

Precision

CenterPoint† [42] 13.5 61.0 36.0 33.0 28.0 26.0 25.0 22.5 16.0 16.0 12.5 9.5 8.5 7.5 8.0 8.0 7.0 6.5 3.0 2.0 14
CenterPoint∗ 22.0 67.6 38.9 46.5 16.9 37.4 40.1 32.2 28.6 27.4 33.4 24.5 8.7 25.8 22.6 29.5 22.4 6.3 3.9 0.5 20.1
FSD 24.0 67.1 39.8 57.4 21.3 38.3 38.3 38.1 30.0 23.6 38.1 25.5 15.6 30.0 20.1 38.9 23.9 7.9 5.1 5.7 27.0
FSDspconv‡ 28.2 68.1 40.9 59.0 29.0 38.5 41.8 42.6 39.7 26.2 49.0 38.6 20.4 30.5 14.8 41.2 26.9 11.9 5.9 13.8 33.4

Composite Score

CenterPoint∗ 17.6 57.2 32.0 35.7 13.2 31.0 28.9 25.6 22.2 19.1 28.2 19.6 6.8 22.5 17.4 22.4 17.2 4.8 3.0 0.4 16.7
FSD 19.1 56.0 33.0 45.7 16.7 31.6 27.7 30.4 23.8 16.4 31.9 20.5 12.0 25.6 15.9 29.2 18.1 6.4 3.8 4.5 22.1
FSDspconv‡ 22.7 57.7 34.2 47.5 23.4 31.7 30.9 34.4 32.3 18.0 41.4 32.0 15.9 26.1 11.0 30.7 20.5 9.5 4.4 11.5 28.0

4.4 Long-range Detection

Several widely adopted 3D detection benchmarks [31, 7, 2] have relatively short perception range. To
unleash the potential of FSD, we conduct long-range detection experiments on the recently released

8

Argoverse 2 dataset (AV2), with a perception range of 200 meters. In addition, AV2 contains objects
in 30 classes, facing the challenging long-tail issue.

Main results We first list the main results of FSD on AV2 in Table 3. The authors of AV2 provide a
baseline CenterPoint model, but the results are mediocre. To make a fair comparison, we re-implement
a stronger CenterPoint model on the AV2 dataset. The re-implemented CenterPoint adopts the same
training scheme with FSD, including ground-truth sampling to alleviate the long-tail issue. FSD
outperforms CenterPoint in the average metric. It is noteworthy that FSD significantly outperforms
CenterPoint in some tiny objects (e.g., Pedestrian, Construction Cone) as well as some objects with
extremely large sizes (e.g., Articulated Bus, School Bus). We owe this to the virtue of instance-level
fine-grained feature extraction in SIR.

Range Scaling To demonstrate the efficiency of FSD in long-range detection, we depict the trend
of training memory and inference latency of three detectors when the perception range increases
in Fig. 5. Fig. 5 shows dramatic latency/memory increase when applying dense detectors to larger
perception ranges. Designed to be fully sparse, the resource needed for FSD is roughly linear to the
number of input points, so its memory and latency only slightly increase as the perception range
extends.

4.5 More Sparse Scenes

Table 4: Performance with different detection ar-
eas. †: Region of Interest is defined by the HD
map in AV2 dataset.

FSD CenterPoint
Mem. Latency(ms) mAP Mem. Latency(ms) mAP

all 5.9 97 24.0 10.4 232 22.0
only RoI† 3.2 ↓ 45.8% 81↓ 16.5% 23.2 9.9↓ 4.8% 227↓ 2.2% 21.5
w/o ground 2.3 ↓ 61.0% 74↓ 25.8% 21.0 9.7↓ 6.7% 217↓ 6.4% 19.8

Argoverse 2 dataset provides a highly reliable
HD map, which could be utilized as a prior to
remove uninterested regions making the scene
more sparse. Thus we proceed with experiments
removing some uninterested regions to show the
advantages of FSD in more sparse scenarios.
The results are summarized in Table 4. FSD has
a significantly lower memory footprint and latency with an acceptable precision loss after removing
the uninterested regions. On the contrary, the efficiency improvement of CenterPoint is minor. It
reveals that FSD benefits more from the increase of data sparsity, which is another advantage of the
fully sparse architecture.

4.6 Ablation Study

Table 5: Ablation of design factors in SIR. Perfor-
mances are evaluated on Waymo validation split.

Grouping SIR
Group

Correction
L2 3D APH

Vehicle Pedestrian Cyclist

FSDplain 62.29 64.31 64.49
FSDagg ✓ 63.13 65.13 64.52
FSDnogc ✓ ✓ 65.20 67.39 67.78
FSD ✓ ✓ ✓ 69.30 69.30 69.60

Effectiveness of Components In addition to
FSDplain and FSDnogc (Sec. 4.3), we also de-
grade FSD to FSDagg to understand the mecha-
nism of FSD. In FSDagg , we aggregate grouped
point features by dynamic pooling and then di-
rectly make predictions from the pooled features,
after Instance Point Grouping. FSDagg is simi-
lar to the way in VoteNet [23] as we discussed
in Sec. 3.5. Thus, FSDagg can explicitly leverage instance-level features other than the point-level
features in FSDplain. However, FSDagg can not take advantage of further point feature extraction in
SIR. As can be seen in Table 5, the improvement is limited if we only apply grouping without SIR.
The combination of grouping and SIR attain notable improvements.

Table 6: Performances with different representa-
tion granularity. †: Latency of SIR module.

AP
Voxel size CC Bollard Bicyclist Stop Sign Latency (ms)†

30cm 35.4 36.5 24.6 18.3 3.5
20cm 37.3 37.3 26.4 20.0 4.1
10cm 38.9 38.3 27.0 21.3 4.5
Point 39.3 38.6 27.1 21.5 6.3

Downsampling in SIR The efficiency of SIR
makes it feasible to extract fine-grained point
features without any point downsampling. This
is another notable difference between FSD and
VoteNet. To demonstrate the superiority, we
apply voxelization on the raw points before
SIR module and treat the centroids of voxels as
downsampled points. We conduct experiments
on AV2 dataset because it contains a couple of
categories in a tiny size, which may be sensitive to downsampling. As expected, small objects have
notable performance loss when adopting downsampling, and we list some of them in Table 6. We

9

also evaluate the inference latency of the SIR module on 3090 GPU. As can be seen, compared with
the overall latency (97ms, Fig. 5), the SIR module is highly efficient.

5 Conclusion

This paper proposes FSD, a fully sparse 3D object detector, aiming for efficient long-range object
detection. FSD utilizes a highly efficient point-based Sparse Instance Recognition module to solve the
center feature missing in fully sparse architecture. FSD achieves not only competitive performance
on the widely-used Waymo Open Dataset, but also state-of-the-art performance in the long-range
Argoverse 2 dataset with a much faster inference speed than previous detectors.

Limitation A more elaborately designed grouping strategy may help with performance improve-
ments. However, it is beyond our design goal in this paper, and we will pursue it in future work.

6 Acknowledgements

This work was supported in part by the Major Project for New Generation of AI
(No.2018AAA0100400), the National Natural Science Foundation of China (No. 61836014, No.
U21B2042, No. 62072457, No. 62006231), and in part by the TuSimple Collaborative Research
Project.

References
[1] Alex Bewley, Pei Sun, Thomas Mensink, Dragomir Anguelov, and Cristian Sminchisescu. Range Condi-

tioned Dilated Convolutions for Scale Invariant 3D Object Detection. arXiv preprint arXiv:2005.09927,
2020.

[2] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In CVPR, 2020.

[3] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou, Yanyong Zhang, and Houqiang Li. Voxel R-CNN:
Towards High Performance Voxel-based 3D Object Detection. In AAAI, 2021.

[4] Lue Fan, Xuan Xiong, Feng Wang, Naiyan Wang, and ZhaoXiang Zhang. RangeDet: In Defense of Range
View for LiDAR-Based 3D Object Detection. In ICCV, 2021.

[5] Lue Fan, Ziqi Pang, Tianyuan Zhang, Yu-Xiong Wang, Hang Zhao, Feng Wang, Naiyan Wang, and
Zhaoxiang Zhang. Embracing Single Stride 3D Object Detector with Sparse Transformer. In CVPR, 2022.

[6] Runzhou Ge, Zhuangzhuang Ding, Yihan Hu, Yu Wang, Sijia Chen, Li Huang, and Yuan Li. AFDet:
Anchor Free One Stage 3D Object Detection. arXiv preprint arXiv:2006.12671, 2020.

[7] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition. IEEE, 2012.

[8] Tianrui Guan, Jun Wang, Shiyi Lan, Rohan Chandra, Zuxuan Wu, Larry Davis, and Dinesh Manocha.
M3DETR: Multi-Representation, Multi-Scale, Mutual-Relation 3D Object Detection With Transformers.
In WACV, 2022.

[9] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

[10] Fangzhou Hong, Hui Zhou, Xinge Zhu, Hongsheng Li, and Ziwei Liu. Lidar-based panoptic segmentation
via dynamic shifting network. In CVPR, 2021.

[11] Yihan Hu, Zhuangzhuang Ding, Runzhou Ge, Wenxin Shao, Li Huang, Kun Li, and Qiang Liu. AFDetV2:
Rethinking the Necessity of the Second Stage for Object Detection from Point Clouds. arXiv preprint
arXiv:2112.09205, 2021.

[12] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Pointgroup: Dual-set
point grouping for 3d instance segmentation. In CVPR, 2020.

[13] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. PointPillars:
Fast Encoders for Object Detection from Point Clouds. In CVPR, 2019.

10

[14] Jiale Li, Hang Dai, Ling Shao, and Yong Ding. From Voxel to Point: IoU-guided 3D Object Detection for
Point Cloud with Voxel-to-Point Decoder. In ACM-MM, 2021.

[15] Yingwei Li, Adams Wei Yu, Tianjian Meng, Ben Caine, Jiquan Ngiam, Daiyi Peng, Junyang Shen, Bo Wu,
Yifeng Lu, Denny Zhou, et al. DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object
Detection. In CVPR, 2022.

[16] Zhichao Li, Feng Wang, and Naiyan Wang. LiDAR R-CNN: An Efficient and Universal 3D Object
Detector. In CVPR, 2021.

[17] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In European conference on
computer vision. Springer, 2014.

[18] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal Loss for Dense Object
Detection. In ICCV, 2017.

[19] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. SSD: Single Shot Multibox Detector. In ECCV, 2016.

[20] Jiageng Mao, Minzhe Niu, Haoyue Bai, Xiaodan Liang, Hang Xu, and Chunjing Xu. Pyramid R-CNN:
Towards Better Performance and Adaptability for 3D Object Detection. In ICCV, 2021.

[21] Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi Feng, Xiaodan Liang, Hang Xu, and Chunjing
Xu. Voxel Transformer for 3D Object Detection. In ICCV, 2021.

[22] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation. In CVPR, 2017.

[23] Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas. Deep Hough Voting for 3D Object Detection
in Point Clouds. In ICCV, 2019.

[24] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space. In NeurIPS, 2017.

[25] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-time Object
Detection with Region Proposal Networks. NeurIPS, 28, 2015.

[26] Guangsheng Shi, Ruifeng Li, and Chao Ma. PillarNet: High-Performance Pillar-based 3D Object Detection.
arXiv preprint arXiv:2205.07403, 2022.

[27] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. PointRCNN: 3D Object Proposal Generation and
Detection from Point Cloud. In CVPR, 2019.

[28] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li.
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. In CVPR, 2020.

[29] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. From Points to Parts: 3D
Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2020.

[30] Shaoshuai Shi, Li Jiang, Jiajun Deng, Zhe Wang, Chaoxu Guo, Jianping Shi, Xiaogang Wang, and
Hongsheng Li. PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector Representation for
3D Object Detection. arXiv preprint arXiv:2102.00463, 2021.

[31] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James
Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in Perception for Autonomous Driving:
Waymo Open Dataset. In CVPR, 2020.

[32] Pei Sun, Weiyue Wang, Yuning Chai, Gamaleldin Elsayed, Alex Bewley, Xiao Zhang, Cristian Smin-
chisescu, and Dragomir Anguelov. RSN: Range Sparse Net for Efficient, Accurate LiDAR 3D Object
Detection. In CVPR, 2021.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. In NeurIPS, 2017.

[34] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neumann. SGPN: Similarity Group Proposal
Network for 3d Point Cloud Instance Segmentation. In CVPR, 2018.

11

[35] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.

[36] Yue Wang, Alireza Fathi, Abhijit Kundu, David Ross, Caroline Pantofaru, Tom Funkhouser, and Justin
Solomon. Pillar-based Object Detection for Autonomous Driving. In ECCV, 2020.

[37] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandelwal,
Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, Deva Ramanan, Peter Carr,
and James Hays. Argoverse 2: Next Generation Datasets for Self-Driving Perception and Forecasting. In
NeurIPS Datasets and Benchmarks 2021, 2021.

[38] Yan Yan, Yuxing Mao, and Bo Li. SECOND: Sparsely Embedded Convolutional Detection. Sensors, 18
(10), 2018.

[39] Bin Yang, Wenjie Luo, and Raquel Urtasun. PIXOR: Real-time 3D Object Detection from Point Clouds.
In CVPR, 2018.

[40] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3DSSD: Point-based 3D Single Stage Object Detector.
In CVPR, 2020.

[41] Zetong Yang, Yin Zhou, Zhifeng Chen, and Jiquan Ngiam. 3D-MAN: 3D Multi-Frame Attention Network
for Object Detection. In CVPR, 2021.

[42] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Center-based 3D Object Detection and Tracking.
arXiv preprint arXiv:2006.11275, 2020.

[43] Yifan Zhang, Qingyong Hu, Guoquan Xu, Yanxin Ma, Jianwei Wan, and Yulan Guo. Not All Points Are
Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. In CVPR, 2022.

[44] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as Points. arXiv preprint arXiv:1904.07850,
2019.

[45] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection.
In CVPR, 2018.

[46] Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang Gao, Tom Ouyang, James Guo, Jiquan Ngiam,
and Vijay Vasudevan. End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds. In
CoRL, 2020.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

12

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

We are not releasing new assets.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	Methodology
	Overall Architecture
	Instance Point Grouping
	Sparse Instance Recognition
	Preliminaries: Dynamic Broadcast/Pooling
	Formulation of Sparse Instance Recognition
	Sparse Prediction

	Group Correction
	Discussion

	Experiments
	Setup
	Comparison to State-of-the-art Methods
	Study of Treatments to Center Feature Missing
	Long-range Detection
	More Sparse Scenes
	Ablation Study

	Conclusion
	Acknowledgements

