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Figure 1. Framework Overview. ManiTaskGen is a universal system that generates a comprehensive set of feasible mobile manipulation
tasks given arbitrary scene. These tasks facilitate automatic benchmarking and the improvement of embodied decision-making agents.

Abstract

Building embodied agents capable of accomplishing arbi-001
trary tasks is a core objective towards achieving embodied002
artificial general intelligence (E-AGI). While recent work003
has advanced such general robot policies, their training and004
evaluation are often limited to tasks within specific scenes,005
involving restricted instructions and scenarios. Existing006
benchmarks also typically rely on manual annotation of lim-007
ited tasks in a few scenes. We argue that exploring the full008
spectrum of feasible tasks within any given scene is cru-009
cial, as they provide both extensive benchmarks for evalu-010
ation and valuable resources for agent improvement. To-011
wards this end, we introduce ManiTaskGen, a novel system012
that automatically generates comprehensive, diverse, fea-013
sible mobile manipulation tasks for any given scene. The014
generated tasks encompass both process-based, specific in-015
structions (e.g., ”move object from X to Y”) and outcome-016
based, abstract instructions (e.g., ”clear the table”). We ap-017
ply ManiTaskGen to both simulated and real-world scenes,018
demonstrating the validity and diversity of the generated019
tasks. We then leverage these tasks to automatically con-020
struct benchmarks, thoroughly evaluating the embodied021
decision-making capabilities of agents built upon existing022
vision-language models (VLMs). Furthermore, we propose023

a simple yet effective method that utilizes ManiTaskGen 024
tasks to enhance embodied decision-making. Overall, this 025
work presents a universal task generation framework for ar- 026
bitrary scenes, facilitating both benchmarking and improve- 027
ment of embodied decision-making agents. 028

1. Introduction 029

Consider an embodied agent endowed with robust primi- 030
tive skills for mobile manipulation: the ability to navigate 031
to any accessible location, grasp any movable object, and 032
place it wherever it fits. A fundamental question then arises: 033
what is the full extent of the task space this agent can suc- 034
cessfully address in a given environment? This space ap- 035
pears infinite. Despite this immense potential task space, 036
recent efforts have focused on developing general-purpose 037
embodied agents [2, 5, 7, 11, 16, 35, 36] capable of com- 038
pleting any feasible task within it. A promising direction 039
leverages VLMs [4, 26, 38] for high-level decision-making, 040
followed by either the explicit composition of skill primi- 041
tives [13, 14, 17] or the implicit integration with underly- 042
ing action modules to predict joint-level actions—the latter 043
thread is commonly referred to as Vision-Language-Action 044
(VLA) models [6, 7, 20]. To evaluate such agents, numer- 045
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Figure 2. Agent-Env Interaction Cycle. This cycle provides a
fundamental depiction of how an embodied agent executes a task
within a scene. Accordingly, we categorize all tasks into two dis-
tinct types: process- and outcome-based tasks.

ous benchmarks [9, 23, 24, 44, 47] have also been proposed046
to assess their decision-making capabilities.047

Despite these efforts, existing work faces significant lim-048
itations regarding the tasks used in both policy training and049
benchmark design. Common practice [8, 14, 22, 44] in-050
volves manually selecting a few scenes and authoring a lim-051
ited number of scene-specific tasks related to objects within052
those scenes, which serve as training or testing objectives053
for embodied agents. Such manual approaches are labor-054
intensive and require considerable human effort to design055
suitable tasks, resulting in prohibitively high scaling costs056
and making it nearly impossible to generalize task creation057
to the diverse range of scenes encountered in both simulated058
and real-world environments. This fundamental limitation059
creates a substantial gap between current agents and the ul-060
timate goal of E-AGI: while the aim is an agent capable061
of universal generalization across diverse scenes and tasks,062
existing works are confined to training and evaluating the063
agents within limited scenarios and task variations.064

To address these limitations, we present ManiTaskGen,065
a universal mobile manipulation task generator for arbitrary066
scenes. Given scene information (e.g., object poses, ob-067
ject bounding boxes, object mesh models, etc.), it automat-068
ically generates a comprehensive and diverse collection of069
feasible mobile manipulation tasks that are logically near-070
exhaustive for that specific scene. We ensure logical com-071
prehensiveness by grounding task generation in a system-072
atic analysis of the fundamental agent-environment interac-073
tion cycle, as conceptually illustrated in Fig. 2.074

This cycle, where executing atomic actions (e.g., sin-075
gle object relocation) updates the scene state and deter-076
mines subsequent available actions, inherently defines the077
space of all possible tasks. Based on this inherent struc-078
ture, we rigorously categorize all possible tasks into two079
principal types: process-based tasks, capturing action se-080
quences or trajectories (e.g., ”move object A from X to081
Y”), and outcome-based tasks, representing reachable tar-082
get states (e.g., ”make the table clean”). ManiTaskGen em-083
ploys distinct strategies for generating each type. Process-084
based tasks are generated by explicitly sampling and com-085
posing atomic action sequences, which are derived from a086

novel Receptacle-Aware 3D Scene Graph encoding all ob- 087
jects and fine-grained potential placements within the scene. 088
Outcome-based tasks are generated using a hybrid template- 089
based approach combined with VLM voting mechanism to 090
produce diverse descriptions of plausible target states. 091

We assess the validity and diversity of the generated 092
tasks by applying ManiTaskGen to both simulated environ- 093
ments (e.g., ReplicaCAD [33], AI2THOR [21]) and real- 094
world scenes (e.g., SUN-RGBD [32]). Furthermore, we 095
propose a framework for automatically constructing bench- 096
marks in simulators using the generated tasks to assess 097
embodied agent decision-making capabilities, and conduct 098
extensive evaluations of existing VLMs using this bench- 099
mark. Finally, we design an improvement method based on 100
Inference-time Reinforcement Learning [30, 45] to lever- 101
age ManiTaskGen tasks for enhancing the decision-making 102
abilities of existing VLM agents. 103

In summary, this work makes the following contribu- 104
tions: (1) We propose ManiTaskGen, a universal system for 105
generating comprehensive and diverse mobile manipulation 106
tasks for arbitrary scenes. (2) Leveraging the automatically 107
constructed benchmarks based on the generated tasks, we 108
conduct an extensive evaluation of the embodied decision- 109
making capabilities of current VLMs. (3) We demonstrate 110
the utility of the ManiTaskGen tasks for enhancing embod- 111
ied decision-making in current VLMs through a proposed 112
inference-time RL method. 113

2. Related Work 114

Task Generation for Embodied Agents. Recent efforts 115
have explored task generation for digital agents [10, 15, 19, 116
29] and augmenting RL objectives [12, 39]. Among these, 117
ALFRED [31] is the most relevant to our work. It com- 118
bines a procedural task planner with human-annotated task 119
directives. However, ALFRED focuses on expanding task 120
trajectories rather than task definitions and lacks a compre- 121
hensive coverage of both process- and outcome-based mo- 122
bile manipulation tasks. Moreover, it is limited to specific 123
scenes. In contrast, ManiTaskGen aims to generate a di- 124
verse and comprehensive set of tasks for arbitrary scenes, 125
emphasizing scalability and variability in task formulation. 126
Datasets and Benchmarks for Embodied Agents. Nu- 127
merous datasets and benchmarks have been proposed for 128
training [5, 21, 27, 28, 34] and evaluating [22, 27, 31] em- 129
bodied agents, including those tailored to LLM/VLM-based 130
decision-making agents [8, 23, 24, 43]. A common limi- 131
tation of these works is their reliance on manually anno- 132
tated tasks confined to a finite set of predefined scenes. In 133
contrast, ManiTaskGen introduces a general framework for 134
generating rich tasks across arbitrary scenes. Beyond serv- 135
ing as a static dataset, it also provides dynamic evaluation 136
and optimization platform for embodied decision-making 137
agents, making it a more versatile resource. 138
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3. Comprehensive Task Generation139

3.1. Premise and Formalization140

We first formalize the problem for generating compre-141
hensive mobile manipulation tasks solvable by an agent142
equipped with fundamental navigate, pick, and place skills.143

We define the scene state S by the states of all objects144
O = {o1, . . . , oN} within it. The state of an object oi is145
si = (pi, ci), including its pose pi and its containment state146
ci. The containment state specifies the surface it is currently147
located on (e.g., ”on surface A”, ”on internal surface B of148
a multi-layer object”) or if it is held by the agent’s gripper149
(’held’). The scene state is S = {s1, . . . , sN}.150

The set of atomic actions available to the agent is A =151
{a0, a1, a2, . . . }. Based on the agent’s core capabilities, we152
define an atomic action a ∈ A as a parameterized object153
relocation operation. This conceptually represents a single,154
high-level step in the interaction, such as moving object o155
from its current location p to a new valid placement position156
p′. Formally, executing a feasible action a in state S tran-157
sitions the scene to a new state S ′ = a(S). These actions158
primarily modify the position and containment state of the159
manipulated object, and update the gripper’s state.160

The fundamental agent-environment interaction (as con-161
ceptually illustrated in Fig. 2) follows a discrete-time cycle162
St

at−→ St+1, where at each step t, the agent selects an ac-163
tion at from the set of atomic actions feasible in state St.164
The feasibility of actions depends on the current state (e.g.,165
an object must be movable; a target location must be a valid166
surface that can accommodate the object).167

Based on this formal framework, we categorize all possi-168
ble mobile manipulation tasks by their objective relative to169
the interaction cycle. Process-based tasks explicitly spec-170
ify a desired sequence of atomic actions ⟨a1, . . . , an⟩ that171
constitute a feasible trajectory through the state space. For172
example, the instruction “Move the book from the shelf to173
the left part of the tabletop” corresponds to a sequence of174
parameterized object relocation actions. Outcome-based175
tasks specify a desired target scene state Starget without176
dictating the intermediate actions required to reach it. For177
example, the instruction “Clear the table” corresponds to a178
target state where the containment states of relevant objects179
satisfy specific criteria relative to the table (e.g., no objects180
are on the table’s surface).181

This formalization provides a rigorous basis for system-182
atically defining and generating task instances. Sec. 3.2 will183
detail how to utilize the given scene information to con-184
struct a Receptacle-Aware 3D Scene Graph which enables185
comprehensive retrieval of all objects and receptacles. In186
Sec. 3.3, we illustrate how to further generate both process-187
based and outcome-based tasks.188

Figure 3. Visualized Receptacle Regions on a Surface.

3.2. Receptacle-Aware 3D Scene Graph 189

We construct a scene graph S which serves as a structured 190
representation of the scene, encoding both objects and avail- 191
able receptacles. The input scene information includes: ob- 192
ject poses, object bounding boxes, and object mesh models 193
(optional for extracting interior receptacles within objects). 194

The construction process involves two main steps. First, 195
we initialize the scene graph as a structural object spatial 196
relationship tree. This tree is based on spatial containment 197
on surfaces: the root node represents the ground, while all 198
other nodes correspond to scene objects. Parent-child rela- 199
tionships are determined by spatial containment—an object 200
is assigned as a child of another if it rests on its surface. In 201
addition, we will extract the interior surfaces (if any) of an 202
object if its mesh model is available, and provide a more 203
precise record of multi-level object placement during tree 204
initialization. We also compute and record relative positions 205
and distances between objects on the same surface. 206

After that, we identify the available receptacles within 207
the scene. Building upon the established object relation- 208
ship tree, we characterize receptacles by segmenting the 209
free space of surfaces. Specifically, we treat each object as 210
an anchor, and segment the free space around it into eight 211
directional receptacle regions, with boundaries extending 212
until they encounter another object or the edge of the sup- 213
porting surface. For unoccupied surfaces, we employ a 3×3 214
grid segmentation by default. Visualization of our recepta- 215
cle segmentation is provided in Fig. 3. Receptacle proper- 216
ties such as location, size, and direction relative to its anchor 217
object or the surface are recorded. We also capture complex 218
cases, such as a single receptacle indexed by multiple ob- 219
jects or the potential for merging adjacent receptacles into 220
larger ones. Finally, all these information are stored as at- 221
tributes of each node of the scene graph. This representa- 222
tion enables efficient retrieval of any receptacle by querying 223
objects or surfaces. We include more details on the scene 224
graph construction process in Appendix B. 225

The resulting 3D Scene Graph S integrates object nodes 226
(encoding properties like pose, bounding box, and relation- 227
ships) and receptacle information (encoding properties like 228
location, size, and relationships to objects/surfaces). This 229
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unified representation of the scene is crucial for deriving the230
set of feasible atomic object relocation actions, as detailed231
in the following section.232

3.3. Generating Tasks233

Building upon the Receptacle-Aware 3D Scene Graph S in-234
troduced in Sec. 3.2, this subsection details our method-235
ologies for generating comprehensive sets of process- and236
outcome-based tasks.237

Atomic Action Derivation. We first derive the complete238
set of feasible atomic actions (A) based on S, which ex-239
plicitly encodes the the properties of every object (location,240
size, relationships) as well as all available receptacles. As241
formalized in Sec. 3.1, an atomic action corresponds to a242
parameterized object relocation operation, such as moving243
object o from its current location P to a new valid place-244
ment position P ′. Accordingly, by identifying every object-245
receptacle pair where the object can be feasibly placed on246
the receptacle’s surface, we enumerate the full set of pos-247
sible target locations P ′ for each object. The set of atomic248
actions A is thus defined by all currently feasible object-to-249
receptacle relocation operations within the scene.250

Process-based Tasks. As formalized in Sec. 3.1, process-251
based tasks explicitly specify a desired sequence of atomic252
actions ⟨a1, . . . , an⟩. Leveraging the agent-environment in-253
teraction cycle (Fig. 2) and the derived atomic action set A,254
we generate diverse process-based tasks by systematically255
sampling and composing feasible action sequences. Single-256
step tasks are simply individual actions sampled from A.257
Multi-step tasks are formed by chaining sequences of ac-258
tions. The interaction cycle enables this chaining: after ex-259
ecuting an action at in state St, it transitions to St+1, then260
we can sample a subsequent action at+1 that is feasible in261
the new state St+1.262

We compose these sequential actions using logical con-263
nectors to form complex process-based task instructions.264
The most common one for defining a task sequence is265
THEN (e.g., ”Execute at THEN execute at+1”). Other con-266
nectors like AND or OR can also be used to generate more267
diverse task structures, reflecting different types of process268
specifications. By iteratively sampling and chaining such269
feasible actions across multiple steps, we construct process-270
based tasks of varying lengths and complexity.271

To further enhance linguistic and spatial diversity, we de-272
fine and describe the target location for each object reloca-273
tion action within a sampled sequence using distinct spatial274
strategies derived from the scene graph. These strategies in-275
clude: move to a named surface, move to a location around276
a specific object, move to a location with specific direction277
relative to a specific object, or move to a location between278
two objects. Furthermore, LLMs can be optionally used279
to rephrase the entire generated task instruction, increasing280
linguistic variation while preserving semantics.281

Datasets Num. of Scenes Num. of Tasks

GenSim [39] - 100
λ [18] 20 521
M3Bench [47] 119 31,050
ALFRED [31] 120 25,743
Language Rearrangement [35] 1 1,000
Embodied Agent Interface [23] 2 438
EmbodiedBench [43] 4 1,128

ManiTaskGen-RAS-40K (Ours) 3 39,871
ManiTaskGen-RAS (Ours) 3 +∞

Table 1. Comparison between ManiTaskGen-RAS and Other
Existing Datasets.

Outcome-based Tasks. Generating outcome-based tasks, 282
which define desired target scene states, is more challenging 283
as it requires abstract state descriptions. A naive approach 284
of using VLMs or LLMs directly on the scene information 285
often yields impractical tasks and limited diversity due to 286
model limitations in understanding complex 3D scenes (fur- 287
ther discussed in Sec. 4). 288

To address this, we employ a hybrid approach combining 289
template-based generation and VLM-based filtering. We in- 290
troduce MANITASKOT-200, a manually curated outcome- 291
based task template dataset acquired from human-written 292
instructions on diverse scenes, comprising 200 structured 293
templates (details in Appendix C.1). Examples of these 294
templates include: 295

”Create a tidy arrangement on [PLATFORM0].” 296
”Disorganize [PLATFORM0] to make it messy.” 297
”Sort all [SUB-OBJECTS00] on [PLATFORM0] 298
by material.” 299

Given a scene, we generate outcome-based tasks by instan- 300
tiating MANITASKOT-200 templates with scene-specific 301
objects. To ensure task feasibility, we then employ an en- 302
semble of VLMs to vote on the executability of each gener- 303
ated instruction, filtering out impractical tasks and refining 304
the final set. We provide more details on this process in 305
Appendix C.2. 306

4. Evaluation of ManiTaskGen Tasks 307

To evaluate the effectiveness of ManiTaskGen in generat- 308
ing comprehensive and diverse tasks for varying scenes, 309
we apply it to both simulated environments (Replica- 310
CAD [33], AI2THOR [21]) and real-world scene datasets 311
(SUN-RGBD [32]). 312

These datasets provide scene information including ob- 313
ject poses and bounding boxes, with ReplicaCAD and 314
AI2THOR covering additional object mesh models which 315
enable generating tasks w.r.t object interior surfaces. For 316
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Figure 4. The ”lightmap”s Which Show the Diversity of Generated Tasks. Each time an object or location is mentioned in a task, we
add a highlight at the corresponding position. The brightness distribution reveals that our generated tasks cover more objects and locations.

this evaluation, we selected one representative scene from317
each dataset and used ManiTaskGen to generate a dataset318
of tasks, named as ManiTaskGen-RAS. Note that Mani-319
TaskGen’s generative process supports arbitrarily complex320
and length of process-based tasks by sampling from mul-321
tiple interaction cycles, and instantiating outcome-based322
task templates with diverse objects also generates a vast323
number of tasks. Thus, the potential size of the task324
space is theoretically infinite. Yet, for the purpose of sta-325
tistical analysis, we curate a finite subset of these tasks,326
named as ManiTaskGen-RAS-40K, comprising a total of327
39,871 tasks. Specifically, for the process-based tasks,328
we include 39,221 instances comprising single-step pick-329
and-place tasks (sampled from a single interaction cycle)330
and two-step tasks (sampled from two consecutive cy-331
cles and connected with the logical connector THEN). For332
the outcome-based tasks, we generated them by instantiat-333
ing templates part from MANITASKOT-200 and employed334
an ensemble of VLMs (GPT-4o [1], Gemini-2.5-pro [37],335
Claude-3.7-sonnet [3]) to vote on their feasibility. This fil-336
tering process resulted in a final set of 650 outcome-based337
task instructions. More details of ManiTaskGen-RAS-40K338
are provided in Appendix D.1.339

We compare our generated datasets with existing embod-340
ied decision-making datasets in Tab. 1. Notably, despite341
using only 3 scenes, ManiTaskGen-RAS-40K contains sig-342
nificantly more tasks than other datasets. Furthermore, our343
method is scene-agnostic, meaning it can be applied to any344
given scene, allowing for the incorporation of additional345
scene data sources to further expand the task set.346

Next, we present further results of evaluating the qual-347
ity of generated tasks from two key aspects : Validity and348
Diversity. For a fair comparison, we implement a GPT-349
based task generation approach as a baseline, referred to350
as GPTTaskGen. Specifically, we feed each scene’s object351
information along with their images to GPT-4o [1], instruct-352

Process-based Tasks Outcome-based Tasks

GPTTaskGen-RAS 29.4% 21.1 %
ManiTaskGen-RAS-40K (Ours) 94.0% 86.5 %

Table 2. Human-Verified Task Validity Rate.

ing it to generate the tasks. We apply this baseline method 353
to the same 3 scenes as in ManiTaskGen-RAS-40K to gen- 354
erate 10,000 process-based tasks and 1,000 outcome-based 355
tasks, referred to as GPTTaskGen-RAS. This task set serves 356
as a direct comparison to evaluate the validity and diversity 357
of the tasks produced by our method. 358
Validity Assessment. We first evaluate the validity of 359
the generated tasks by conducting human verification on 360
ManiTaskGen-RAS-40K and GPTTaskGen-RAS, with the 361
results reported in Tab. 2. For process-based tasks, although 362
our generation algorithm ensures the target location has suf- 363
ficient space to accommodate the moved object, some tasks 364
may still be infeasible due to occlusions or obstacles, mak- 365
ing the target position difficult to reach or observe. Nev- 366
ertheless, our results show that most tasks are valid, with 367
significantly higher validity rates compared to the baseline 368
method. For outcome-based tasks, the validity rate is ex- 369
pectedly lower compared to process-based tasks, as it relies 370
on a VLM-based filtering mechanism. Yet our method pro- 371
duces mostly valid tasks. 372
Diversity Assessment. We proceed to assess the diver- 373
sity of the generated task set, which reflects how well the 374
tasks cover various scenarios. To compare task diversity, 375
we randomly sample 100 tasks for the same apartment 376
scene of ReplicaCAD from ManiTaskGen-RAS-40K and 377
GPTTaskGen-RAS, and count their object and location cov- 378
erings. Fig. 4 presents two ”lightmap”s that visualizes the 379
distribution of involved objects and locations. Specifically, 380
we light up the centroid of an object or location whenever 381
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it appears in a task. The figure clearly demonstrates that382
our method generates a wider range of tasks, covering more383
diverse objects and locations compared to the baseline.384

5. Benchmarking and Improving Embodied385

Decision-Making386

In this section, we showcase two important applications387
of ManiTaskGen: benchmarking and improving embodied388
decision-making agents. In Sec. 5.1, we design an auto-389
matic framework for constructing benchmarks using tasks390
generated by ManiTaskGen, evaluate the decision-making391
capabilities of existing VLM agents. In Sec. 5.2, we fur-392
ther propose an inference-time improvement method that393
utilizes ManiTaskGen tasks and validate its effectiveness394
through experimental results.395

5.1. Benchmarking VLM Agents396

To facilitate necessary agent-environment interaction, the397
benchmark is constructed within an simulator [42]. Af-398
ter loading the given interactive scene and generating the399
tasks, at each timestep of an episode, the VLM-based agent400
receives observations from the environment and selects an401
abstracted action (Sec. 5.1.1) to execute. The environment402
will be automatically updated and conduct the result judg-403
ment (Sec. 5.1.2) if a completion signal is given. Sec. 5.1.3404
presents our benchmark results.405

5.1.1. Action Space and Test Flow406

Action Space. We define a discrete, abstracted action space407
that the VLM-based agent selects from at each timestep.408
The scene graph S introduced in Sec. 3.2 is used to cal-409
culate feasible walkable areas around each ground object,410
which define possible navigation targets, and also to iden-411
tify platforms within objects and segment them into recep-412
tacle regions. The detailed action space includes:413
• go to(platform id): Navigate to a walkable area414

around a specific platform of an object.415
• change view: Re-navigate to a different walkable area416

(if any) of the current platform.417
• pick(object id): Grasp the object with the speci-418

fied ID. The object ids are associated with the tags419
provided as the visual observation when the agent is lo-420
cated near a platform.421

• show receptacle(object id): Visualize feasible422
receptacle regions (tagged by receptacle IDs) asso-423
ciated with an specified object on the current platform.424

• place: Place the held object at a specified location. We425
offer two placement modes:426
– place r: Place the object at a random feasible recep-427

tacle on the current platform.428
– place s([object id:receptacle id]):429

Place the object within the space defined by the list of430
receptacle regions associated with specified objects on431

current platform. If multiple receptacles are provided, 432
the system merges them into a larger placement region 433
if they are connected or overlapped. 434

• call end: Signals the agent’s intention to complete the 435
task and terminates the episode. 436

Test Flow. An example episode of the benchmark test 437
flow is visualized in Fig. 5. At each timestep, the agent 438
receives multimodal observations from the system, in- 439
cluding rendered images (with tags for objects or, after 440
show receptacle, for receptacles), and text informa- 441
tion. The system executes the given actions, updates the 442
environment, and provides the next observation. An episode 443
terminates when the agent executes call end or a preset 444
timestep limit is reached. After termination, the benchmark 445
automatically evaluates the episode, following the criteria 446
illustrated in the next section. 447

5.1.2. Task Difficulty and Evaluation Criteria 448

Task Difficulty Levels. We classify ManiTaskGen tasks 449
into four difficulty levels. Levels 1 to 3 are process-based 450
tasks, with increasing structural and perceptual complex- 451
ity. Level 1 comprises single-step pick-and-place tasks in- 452
volving unique target objects. Level 2 introduces perceptual 453
ambiguity with non-unique target objects requiring disam- 454
biguation and additional description, such as moving a red 455
cup when multiple cups are present on the same platform. 456
Level 3 consists of two sub-tasks formed by chaining atomic 457
actions (two one-step pick-and-place tasks from Level 1 or 458
2) using the logical connector THEN. Level 4 includes all 459
outcome-based tasks. 460
Evaluation Criteria. For process-based tasks (Levels 1 to 461
3), the expected final scene state is precisely defined, en- 462
abling automatic success verification by comparing the ini- 463
tial and final scene graphs. For each testing episode, we 464
conclude following evaluation metrics: (1) Success Rate 465
(SR); (2) Intermediate Points (IP). For Level 1 & 2 tasks, 466
a successful episode should include the following four sub- 467
steps, each contributing 25 points of IP: Navigate to the 468
correct starting location; Grasp the correct object; Navi- 469
gate to the correct destination with the right object; Place 470
the right object in the correct place. IP for Level 3 tasks 471
is computed by averaging points from the two sequential 472
sub-tasks. Regarding Level 4 tasks, which involve abstract 473
descriptions of scene state changes (e.g., ”make the desk 474
cleaner”), defining an unbiased and precise success-state 475
scene graph is challenging. Possible evaluation methods 476
include human verification or leveraging VLMs to assess 477
whether the final scene state satisfies the requirements. We 478
leave benchmarking Level 4 tasks in future work. 479

5.1.3. Benchmarking Results on VLM Agents 480

We evaluate existing VLM-based embodied agents in the 481
simulated scenes [21, 33] from ManiTaskGen-RAS-40K. 482
Specifically, we randomly sample 1000 tasks for each level 483
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Figure 5. Visualization of An Example Testing Episode. The agent is equipped with abstracted navigation (go to, change view),
grasping (pick) and placing (show receptacle, place) skills. Blue marks indicate the walkable locations around ground objects
involved in this episode.

Level 1 Level 2 Level 3 Average

IP SR (%) IP SR (%) IP SR (%) IP SR (%)

Human 96.0 82.5 95.0 80.5 95.0 80.0 95.3 81.0
Random 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0

GPT-4o[1] 71.6 40.1 42.9 16.3 57.0 8.2 57.2 21.5
GPT-4.1[1] 67.5 36.4 46.4 20.4 54.4 4.2 56.1 20.3
GPT-4.1-mini [1] 67.0 34.0 45.9 22.4 45.3 0.0 52.7 18.8
Gemini-2.5-flash[37] 75.0 40.3 40.8 14.3 56.0 4.1 57.3 19.6
Gemini-2.5-pro [37] 82.3 51.5 54.1 22.4 68.9 13.3 68.4 29.1
Claude-3.7-sonnet [3] 73.9 45.7 55.6 28.6 54.7 8.9 61.4 27.7
Claude-3.5-haiku [3] 60.0 31.5 40.3 12.2 37.8 2.2 46.0 15.3
Qwen-2.5-VL-72B-Ins [40] 55.1 28.2 37.2 8.2 43.5 4.4 45.3 13.6
Llama-3.3-70B-Vision-Ins [26] 66.1 37.6 42.9 12.2 51.4 0.0 53.5 16.6

Table 3. Evaluation Results on Existing VLMs. We cover both proprietary (upper part) and open-source models (lower part). Here, IP
refers to Intermediate Points, and SR refers to Success Rate.

of the tasks. A timestep limit of 20 is set for Level 1 &484
2 tasks, and 40 for Level 3 tasks. Results are shown in485
Tab. 3. We observe that all models achieve a low aver-486
age SR (under 30%), significantly below human-level per-487
formance. Performance generally decreases with increas-488
ing task difficulty. Longer tasks (Level 3) lead to signif-489
icantly lower performance compared to single-step tasks,490
highlighting the substantial challenge posed by the gener-491
ated tasks. To further analyze failure cases, in Fig. 6, we vi-492
sualize the sub-step mistake distribution from Gemini-2.5-493

pro [37] for Level 3 tasks. We observe that wrong place- 494
ment accounts for the largest proportion of mistakes, sug- 495
gesting that VLMs’ spatial understanding capabilities may 496
serve as a primary bottleneck for mobile manipulation tasks. 497
Furthermore, analysis of execution traces reveals that while 498
the agent performs well in navigation in early stages of 499
the episode (e.g., navigating to the first target object), it 500
makes more navigation mistakes in later steps, indicating 501
that longer-horizon tasks pose a greater challenge to the 502
VLM agent’s decision-making capabilities. 503
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Figure 6. Success and Failure Modes from Gemini-2.5-pro in
each stage of Level 3 tasks.

Model Name IP (Before) IP (After) SR (Before) SR (After)

GPT-4.1[1] 75.5 79.4 38% 49%
Gemini-2.5-flash[37] 79.4 81.7 36% 58%
Claude-3.5-haiku [3] 68.9 79.4 36% 51%

Table 4. Improvement of Agent Performance.

5.2. Improving VLM Agents504

ManiTaskGen tasks can not only be used for benchmarking505
VLMs, but also for optimizing VLM-based agents. There506
are two prominent directions for improvement: one lever-507
ages precisely labeled task trajectories for supervised fine-508
tuning (SFT) [25, 41], and the other is reinforcement fine-509
tuning (RFT) [30, 46], utilizing feedback of task execution510
process for unsupervised optimization. Given that Mani-511
TaskGen enables automated evaluation of the final results as512
well as intermediate steps (Sec. 5.1), we adopt an inference-513
time RFT policy to enhance agent capabilities inspired by514
Reflexion [30] and ReAct [45]. Specifically, we design a515
self-reflection model that processes the evaluation results of516
each episode to generate a verbal summary. This summary517
is then stored in a long-term memory and used as part of518
the input for the agent when attempting the task in future519
episodes. We present details of our optimization process in520
Sec. 5.2.1, and experimental results in Sec. 5.2.2.521

5.2.1. Optimization based on Self-Reflection522

Given a trial episode and its evaluation results (including523
final success judgment and intermediate step evaluations), a524
rule-based self-reflection model automatically generates the525
following summary:526
• The task goal, the history of the trial episode, and whether527

the task was ultimately successful.528
• If the task was not successful, a summary indicating529

which intermediate step goals were achieved and the530
point in the action history up to which they were success-531
fully completed. As described in Sec. 5.1.2, these correct532
intermediate steps include: navigate to the starting loca-533
tion, grasp the object, navigate to the destination location,534
and place the object .535

• For the intermediate goals underachieved, what are the536
next suggested actions.537

Figure 7. Improvement of Gemini-2.5-flash Agent. We find that
more trial episodes continuously contribute to the performance.

• Corresponding observations in each part of the summary. 538
We maintain a long-term memory to store these verbal sum- 539
maries from multiple trial episodes. The optimization pro- 540
cess is iterative. After each trial, the corresponding self- 541
reflection updates the memory, which is used as part of the 542
input for the agent when attempting subsequent trials. 543

5.2.2. Improvement Results 544

To ensure no data leakage between optimization and de- 545
ployment, we select tasks from the ReplicaCAD [33] scene 546
of ManiTaskGen-RAS as source trial episodes, and subse- 547
quently tested in the AI2THOR [21] scene. Tab. 4 sum- 548
marizes the performance improvements of agents after op- 549
timization. We used 10 trial episodes for optimization, then 550
conducted evaluation on 100 randomly sampled test tasks, 551
which are all Level 1 tasks. As shown in the table, our opti- 552
mization significantly improved both the task execution suc- 553
cess rate and the Intermediate Points score. We further in- 554
vestigated the impact of the number of trial episodes on final 555
agent performance. Results are presented in Fig. 7. Pre- 556
liminary results show that agent performance continuously 557
improves with an increasing number of self-reflection trial 558
episodes. Similar findings have been observed in previous 559
work [30]. Therefore, these findings further underscore the 560
significance of ManiTaskGen. Because it can generate and 561
evaluate tasks in arbitrary scenes, thus providing abundant 562
resources for agent improvement. 563

6. Conclusion 564

In this paper, we introduce ManiTaskGen, an automated 565
method for task generation for any given scene. Mani- 566
TaskGen can generate a comprehensive set of long-horizon 567
mobile manipulation tasks, covering both process-based 568
and outcome-based tasks, thereby providing a diverse set 569
of testing scenarios and improving resources for embod- 570
ied decision-making agents. Our experiments demonstrate 571
the validity and diversity of the generated tasks, while 572
also showcasing their practical usability by benchmarking 573
and improving the decision-making capabilities of existing 574
VLM-based agents. 575
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