

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PHYSICALLY-GUIDED OPTICAL INVERSION ENABLE NON-CONTACT SIDE-CHANNEL ATTACK ON ISO- LATED SCREENS

Anonymous authors

Paper under double-blind review

ABSTRACT

Noncontact exfiltration of electronic screen content poses a security challenge, with side-channel incursions as the principal vector. We introduce an optical projection side-channel paradigm that confronts two core instabilities: (i) the near-singular Jacobian spectrum of projection mapping breaches Hadamard stability, rendering inversion hypersensitive to perturbations; (ii) irreversible compression in light transport obliterates global semantic cues, magnifying reconstruction ambiguity. Exploiting passive speckle patterns formed by diffuse reflection, our Irradiance Robust Radiometric Inversion Network (IR⁴Net) fuses a Physically Regularized Irradiance Approximation (PRIrr-Approximation), which embeds the radiative transfer equation in a learnable optimizer, with a contour-to-detail cross-scale reconstruction mechanism that arrests noise propagation. Moreover, an Irreversibility Constrained Semantic Reprojection (ICSR) module reinstates lost global structure through context-driven semantic mapping. Evaluated across four scene categories, IR⁴Net achieves fidelity beyond competing neural approaches while retaining resilience to illumination perturbations.

1 INTRODUCTION

Non-contact exfiltration of electronic screen information under unauthorized conditions represents a formidable challenge in information security. Long regarded as the ultimate safeguard, physical isolation may yet succumb to the merest reflection wall-scattered luminescence alone can betray sensitive content. This paper proposes a novel optical projection side-channel attack paradigm. Leveraging intrinsic optical characteristics, self-emissive targets enable imaging solely via their environmental projections. The resulting surveillance modality is passive and non-contact, with limited susceptibility to interception. An attacker can remotely capture the scattered light patterns projected onto nearby surfaces (e.g., walls) and use them to reconstruct the original screen content. As illustrated in Fig. 1, the attacker and the target remain physically separated, with no direct line-of-sight, no RF monitoring, and no communication link needed. This approach is highly stealthy and non-invasive, and it exposes new avenues of information leakage even in systems previously considered secure, such as laser protective glazing, electromagnetically shielded, or physically isolated environments.

Compare to traditional side-channel attacks, this optical approach leverages environmental media as a covert communication path. Microwave/electromagnetic techniques for tracking are vulnerable to attenuation and shielding; network-based channels are constrained by connectivity and congestion; hardware requirements are substantial; and active probing is readily detected, thereby revealing the operator’s location. Electromagnetic-based attacks, for instance, rely on stray field emissions and are limited by distance, shielding, and ambient noise; Network-based attacks require connectivity and software vulnerabilities, making them inapplicable to air-gapped systems and often leaving traceable audit logs. In contrast, the optical projection side-channel attack proposed in this study circumvents these limitations, significantly enhancing attack feasibility and stealth, and prompting a fundamental reassessment of current defensive boundaries and strategies.

Despite its potential, this attack model presents substantial technical challenges. In everyday settings, self-luminous sources typically emit over a continuous spectrum, implying a continuously

054 varying wavevector k . The corresponding Helmholtz solutions are therefore highly oscillatory,
 055 which makes it impossible to construct an accurate spatial propagation model. Furthermore, non-
 056 linearity in the camera response undermines output stability and repeatability. The mapping from
 057 screen content to scattered speckles is ill-conditioned; the Jacobian matrix of the transformation has
 058 singular values that collapse in multiple directions, violating Hadamard’s stability criterion. As a
 059 result, even minor irradiance fluctuations can be magnified into major structural distortions in the
 060 reconstructed image such as unpredictable edge displacement, false textures, or semantic drift. In
 061 addition, the inherently irreversible compression, along with occlusion, diffraction, and other optical
 062 effects, causes significant loss of global semantic structure and contextual cues. Without strong reg-
 063 ularization, these losses manifest as blurry edges, disordered textures, and semantic discontinuities,
 064 leading to highly uncertain reconstructions.

080
 081 Figure 1: In the figure, (a), (b), and (c) correspond to the rendered scene, schematic diagram, and
 082 real-world scene respectively. An observer infers screen content via passive light projection. A
 083 light projection from the screen (“Wanted information”) is cast onto a wall. By recording the wall’s
 084 projection without viewing the screen, hacking, or capturing signals, the observer attempts to recon-
 085 struct the original content non-invasively.

086 To overcome these challenges, we propose IR^4Net , a radiometric-inversion neural architecture
 087 that integrates physical modeling with deep learning priors, substantially improving the fidelity
 088 and stability of screen image reconstruction in optical side-channel scenarios. IR^4Net com-
 089 prises Physically-Regularized Irradiance Approximation (PRIrr-Approximation) and Irreversibility-
 090 Constrained Semantic Re-Projection (ICSR). PRIrr-Approximation recasts nonlinear optical-field
 091 inversion as a learnable iterative path, embedding forward/reverse propagation physics through
 092 neural modules to yield an estimate consistent with irradiance constraints; by constraining the solution’s
 093 trajectory, amplification of minute perturbations is curtailed. Residual noise sensitivity and detail
 094 loss from multi-scale diffraction persist, so a frequency-selective upsampling network decouples
 095 perturbations via a multi-scale frequency separation module, enabling hierarchical reconstruction
 096 from low-frequency contours to high-frequency details while damping inconsistent components. Fi-
 097 nally, to mitigate irreversible semantic loss, ICSR builds a stable mapping in deep semantic space
 098 that aligns global structure with visual context, re-embedding abstract features under perceptual
 099 consistency constraints to infer and complete missing information.

100 The contribution of this paper are summarized as follow:

- 101 • To the best of our knowledge, this work is the first to demonstrate that diffuse wall re-
 102 flections can serve as a viable optical side channel for reconstructing on-screen content,
 103 and to propose the optical projection attack paradigm. This reveals a novel and previously
 104 overlooked avenue of information leakage in physically isolated environments.
- 105 • We introduce the PRIrr-Approximation module, reformulating optical field inversion as a
 106 physics-guided, learnable iterative trajectory to yield a stable initial estimate. A frequency-
 107 selective upsampling mechanism then drives progressive reconstruction from low to high
 108 frequencies, mitigating perturbation amplification and preserving structural integrity.

108

- 109 We propose the ICSR module, which constructs a global-structure-aware semantic re-
 110 sponse within a deep semantic space. By embedding semantic features into a perceptual-
 111 consistency-constrained domain and applying context-driven completion rules to occluded
 112 and diffraction-corrupted regions, ICSR enhances edge continuity and semantic fidelity.

113

2 RELATED WORK

114

115 **Side-Channel Attacks(SCAs)** exploit electromagnetic, optical, acoustic, and microarchitectural
 116 leakages to infer display states. EM-based visual eavesdropping reconstructs HDMI video or camera
 117 views from unintended emanations and profiled traces Fernández et al. (2024); Long et al. (2024);
 118 Fang et al. (2022). Optical side channels turn commodity and ambient light sensors into imaging
 119 probes that recover scene or screen patterns from global illumination variations Chakraborty et al.
 120 (2017); Liu et al. (2024a). Acoustic and ultrasonic reflections around devices and robots encode
 121 passwords, keystrokes, and UI states under non-line-of-sight conditions Wang et al. (2024); Duan
 122 et al. (2024); Chen et al. (2024). Cache-based SCAs on DNN executables enable stealthy inference
 123 about processed visual content and internal architectures Liu et al. (2024b); Wang et al. (2022a);
 124 Gupta et al. (2023); Zhu et al. (2024), while broader models systematize cloud, biometric, and post-
 125 quantum leakage channels Albalawi et al. (2022); Johnson & Ward (2022); Ji & Dubrova (2023);
 126 Devi & Majumder (2021). However, existing optical SCAs typically rely on sensors co-located with
 127 the device or in direct view of the display, and none exploit diffuse wall reflections as an indepen-
 128 dent, remote optical side channel for recovering isolated screen content.

129

130 **Coherent Image generation** from structured priors integrates realism with domain constraints.
 131 Super-resolution He et al. (2022); Hong & Lee (2024); Chen et al. (2025), denoising Ye et al. (2025);
 132 Yang et al. (2025), and dehazing Ma et al. (2025); Fu et al. (2025); Wang et al. (2025) models re-
 133 flect continuously improving efficacy Ryou et al. (2024). Transformer encoders such as Styleformer
 134 modulate diversity via attention-weighted embeddings Park & Kim (2022), while latent diffusion
 135 with implicit decoders enables scale-agnostic synthesis through multiresolution cascades Kim &
 136 Kim (2024). Patch tokenization fused with global context further boosts dehazing performance Ji-
 137 uuchen Chen & Li (2025), and inter-channel consistency drives unsupervised deraining Dong et al.
 138 (2025). Recently, physics-guided approaches have incorporated forward models into dehazing, mi-
 139 croscopy reconstruction, restoration of scattering-degraded images, and inverse rendering Lihe et al.
 140 (2024); Li et al. (2024); Qiao et al. (2025); Wu et al. (2025). However, the underlying physical
 141 assumptions in these models are tailored to specific transport or imaging/rendering mechanisms and
 142 are not well suited to capturing multi-scale diffraction and wavefront interference, making it difficult
 143 to recover occluded emissive patterns from strongly diffusive projections.

144

3 METHOD

145

146 Radiometric inversion under optical projection constitutes a severely ill-conditioned problem
 147 wherein nonlinear image-formation dynamics, perturbation amplification, and irreversible semantic
 148 degradation impede stable recovery. To address these challenges, we introduce the IR⁴Net
 149 (Fig 2) to integrate physical priors with learned optimization. First, PRIrr-Approximation for-
 150 mulates inversion as a physics-guided iterative trajectory embedding optical propagation operators
 151 with momentum-based updates to maintain consistency and mitigate cumulative error. A dual-path
 152 perturbation dissipation module concurrently performs spatial diffusion and semantic attenuation,
 153 while a frequency-selective multi-scale upsampling scheme constrains cross-scale energy propaga-
 154 tion to reduce high-frequency amplification. Subsequently, ICSR establishes semantic completion
 155 and structural alignment within a perceptual space, enabling coherent reconstruction characterized
 156 by structurally preserved contours and contextually consistent textures.

157

3.1 PHYSICALLY-REGULARIZED IRRADIANCE APPROXIMATION

158

159 Optical-projection side-channel attacks confront a fundamental challenge in the intricate physics of
 160 image formation: the observed image arises from a highly nonlinear mapping of the original irradi-
 161 ance through successive diffraction, scattering and reflection. This process imposes extreme infor-
 162 mation compression and yields an operator whose singular values tend toward zero, so that infinitesi-
 163 mal irradiance perturbations at the input become dramatically amplified in inversion, inducing severe

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

Figure 2: Overall architecture of IR⁴Net, comprising the PRIRR-Approximation and ICSR modules. The multi-scale frequency separation module, a key component of ICSR, is implemented via concatenation.

distortion and instability. To mitigate this, we introduce a physics-constrained module: guided inversion trajectory embeds optical-propagation modeling to guarantee physical consistency; in parallel, a frequency-selective upsampling network decouples perturbations and reconstructs multi-scale spectral components, structurally suppressing their amplification.

Our scheme models optical effects via a physics-consistent transfer operator $\Phi(\cdot)$, and derives its inverse approximation $\Psi(\cdot)$ to harvest feedback. A momentum initialization melds local priors with multi-scale global feedback, steering each iteration along tenable, coherent directions. Momentum-guided gradient updates suppress noise and error accumulation, yielding feature estimates $\hat{I}^{(k)}$ that converge toward an accurate inversion of the source radiance; derivations reside in the A.3

In the dual-path feature-dissipation stage, we deploy a frequency-selective upsampling network in parallel with spatial diffusion and semantic attenuation pathways to capture the rapid amplification of minute screen-to-wall perturbations. This decoupled architecture structurally restrains perturbation growth and disperses its energy, to maintain robustness against projection-induced distortions.

The input $I^{(k)}$ flows through two paths: the spatial diffusion path applies a second-order differential kernel to the local gradient:

$$F_A^{(i,c)}(x, y) = \phi \left(\iint_{B_r} \kappa_A^{(i,c)}(\xi, \eta) \frac{\partial^2 I^{(k)}}{\partial x \partial y}(x - \xi, y - \eta) d\xi d\eta + b_A^{(i,c)} \right). \quad (1)$$

Here, $I^{(k)}$ is the feature map at iteration k ; i and c denote decoder and channel indices; $\frac{\partial^2 I^{(k)}}{\partial x \partial y}$ is the mixed second-order derivative, capturing local curvature; B_r the neighborhood centered at (x, y) with radius r ; $\kappa_A^{(i,c)}(\xi, \eta)$ the second-order differential kernel for decoder i , channel c ; $b_A^{(i,c)}$ the bias term; $\phi(\cdot)$ the activation; and $F_A^{(i,c)}(x, y)$ the spatial diffusion output.

The semantic attenuation path, through an attention mechanism, mitigates disturbance components in the semantic dimension, where for the i -th attention head, the linear projection is given by

$$(Q^{(i)}, K^{(i)}, V^{(i)})(x) = I^{(k)}(x) (W_Q^{(i)}, W_K^{(i)}, W_V^{(i)}) \quad (2)$$

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

$$A^{(i)}(x, x') = \frac{\exp \langle Q^{(i)}(x), K^{(i)}(x') \rangle}{\int_{\Omega_s} \exp \langle Q^{(i)}(x), K^{(i)}(x') \rangle dx'} \quad (3)$$

216

$$F_B^{(i,c)}(x, y) = \phi \left(\int_{\Omega_s} A^{(i)}(x, x') V^{(i,c)}(x') dx' + b_B^{(i,c)} \right) \quad (4)$$

217
218
219
220
221
222
223
224
225
In this context, $W_Q^{(i)}, W_K^{(i)}, W_V^{(i)} \in \mathbb{R}^{C \times d}$ represent the projection matrices for query, key, and value, with C being the original number of feature channels and d the projected dimension. The attention mechanism disperses disturbance components in the semantic space to ensure that the disturbance does not concentrate spatially. Consequently, $F_B^{(i,c)}(x, y)$ represents the output feature of this semantic attenuation path.

226
227
228
229
Subsequently, the multi-scale frequency separation module concatenates the outputs of both paths in the spatial domain and performs gating in the frequency domain. This step guarantees that only low-frequency components with cross-scale consistency and structural robustness are amplified layer by layer, while high-frequency components that lack scale consistency attenuate during propagation.

$$230 \quad \widehat{F}^c(u, v) = \iint F_A^{(i,c)}(x, y) e^{-j2\pi(ux+vy)} dx dy, \quad (5)$$

231
232
233
where, $\widehat{F}^c(u, v)$ represents the frequency-domain transformation of the concatenated features, and u and v are the spatial frequency coordinates along the x - and y -axes.

$$234 \quad (F_{\text{low}}^c, F_{\text{high}}^c) = (\mathcal{F}^{-1}[\chi_{\text{low}} \widehat{F}^c], \mathcal{F}^{-1}[(1 - \chi_{\text{low}}) \widehat{F}^c]). \quad (6)$$

235
236
237
The channel response α^c passes through adaptive gating to fuse low/high-frequency features, enabling cross-scale propagation; final fusion is:

$$238 \quad \alpha^c = \sigma \left(W_2 \phi \left(W_1 \int_{\Omega_s} |\nabla F_{\text{low}}^c + \nabla F_{\text{high}}^c| dx dy \right) \right) \quad (7)$$

$$240 \quad 241 \quad F_A'^{(i,c)}(x, y) = F_A^{(i,c)}(x, y) (1 + \alpha^c) \quad (8)$$

242
243
244
245
This attention-based fusion ensures a balanced contribution from both spatial diffusion and semantic attenuation, with each component adapting based on the gradient magnitude of low- and high-frequency features. Thus, $F_A'^{(i,c)}(x, y)$ represents the feature after weighted fusion.

246
247
The channel attention weight m_c is generated through global average pooling and differential operations, with the calculation formula given as:

$$249 \quad 250 \quad 251 \quad m_c = \sigma \left(\frac{d}{d\hat{g}_c} \left(\int_{x=0}^H \int_{y=0}^W (\hat{g}_c \cdot g_c(x, y)) dx dy \right) \right). \quad (9)$$

252
253
254
255
Here, $g_c(x, y)$ is the value at position (x, y) of the c -th channel in the input feature map, and \hat{g}_c is its global average. m_c denotes the attention weight for channel c , and σ is the Sigmoid function ensuring $m_c \in [0, 1]$. Using m_c , the feature maps $F_A'^{(i,c)}(x, y)$ and $F_B^{(i,c)}(x, y)$ are fused at each (x, y) to produce the output map $\tilde{F}^c(x, y)$:

$$257 \quad 258 \quad \tilde{F}^c(x, y) = m_c \cdot (F_A'^{(i,c)}(x, y) + F_B^{(i,c)}(x, y)). \quad (10)$$

259
260
261
In this equation, $F_A'^{(i,c)}(x, y)$ and $F_B^{(i,c)}(x, y)$ represent the values of the c -th channel of the input feature maps F_A' and F_B at position (x, y) . Through this weighted fusion process, the final output feature map $\tilde{F}^c(x, y)$ incorporates the fused channel information.

262
263
Following this, multi-head attention mechanisms are employed to capture and suppress any remaining perturbation structures within the fused features \tilde{F}^c :

$$265 \quad A_h(x, x') = \exp \langle \partial_x Q_h(x), K_h(x') \rangle + \langle Q_h(x), \partial_{x'} K_h(x') \rangle, \quad (11)$$

$$266 \quad 267 \quad 268 \quad O_h(x) = \int_{\Omega_s} A_h(x, x') V_h(x') dx', \quad (12)$$

$$269 \quad Z^{(i)} = \text{Concat}_h(O_h(x)) + \tilde{F}^{(c)}(x, y). \quad (13)$$

In this context, the space-derivative mappings of each attention head allow for precise quantification of perturbation effects on attention distribution. Residual connections preserve stable structural information throughout the process.

During the multi-scale frequency-selective upsampling and output synthesis stage, perturbation growth along successive upsampling layers is mitigated through hierarchical decomposition and reconstruction of enhanced features $Z^{(i)}$ with the preceding layer $Z^{(i-1)}$. Specifically, the intermediate interpolation $U^{(i)}(x)$ is computed as:

$$U^{(i)}(x) = \iint Z^{(i)}(x') \prod_{j=1}^2 \max(0, 1 - |x_j - x'_j|) dx', \quad (14)$$

and the upsampled representation $F_{\text{up}}^{(i)}(x)$ is expressed as:

$$F_{\text{up}}^{(i)}(x) = \phi \left(\iint \kappa_{\text{up}}^{(i)}(x, x') [U^{(i)}(x') + Z^{(i-1)}(x')] dx' \right), \quad (15)$$

where the bilinear interpolation kernel $\prod_{j=1}^2 \max(0, 1 - |x_j - x'_j|)$ operates in concert with the learned upsampling kernel $\kappa_{\text{up}}^{(i)}$, enabling progressive reconstruction. This hierarchical scheme introduces information from low to high frequencies in a controlled manner to permit expansion only of cross-scale-consistent structural features when attenuating perturbations lack multi-scale support.

The final stage maps the first-level upsampled feature into the pixel domain via an output convolution with kernel κ_{out} and bias b_{out} :

$$\hat{\mathbf{J}}^{(k)}(x, y) = \iint \kappa_{\text{out}}(x, x') F_{\text{up}}^{(1)}(x') dx' + b_{\text{out}}. \quad (16)$$

Through the integration of physical constraints with frequency-selective hierarchical fusion, this mechanism is designed to suppress propagation of fine-scale irradiance perturbations and maintain structural consistency during reconstruction of the projected image.

3.2 IRREVERSIBILITY-CONSTRAINED SEMANTIC RE-PROJECTION

The inversion of optical projection requires irreversible, high-compression mapping original imagery. However, it suffers severe loss of global semantic structure and visual context, manifesting as edge blur, texture artifacts and semantic misalignment due to occlusion, diffraction and reflection. To address this challenge, we introduce the ICSR, comprising two parallel modules: a primary mapping network, driven by a prior-guided map, devoted to restoration of low-level structural detail; and a collaborative completion network, which extracts stable abstract semantic embeddings from the projected observation to capture global semantics and contextual cues. Building upon these, a stable mapping from semantic to structural space is established to enable high-dimensional semantic features to be dynamically fed back into the primary network’s representation domain, thereby enforcing constrained completion and inference over missing regions. Here, the primary network’s structural-space mapping features are $V_P^{(5,c)}(x, y) \in \mathbb{R}^d$ and the abstract semantic-space features are $V_R^{(5,c)}(x, y) \in \mathbb{R}^d$ where c denotes input channels, 5 denotes the encoder stage, (x, y) spatial coordinates and d the feature dimension; derivation appears in the A.4.

$$\mathbf{v}_P^{(5,c)}(x, y) = (v_{P,1}^{(5,c)}(x, y), v_{P,2}^{(5,c)}(x, y), \dots, v_{P,d}^{(5,c)}(x, y)), \quad (17)$$

$$\mathbf{v}_R^{(5,c)}(x, y) = (v_{R,1}^{(5,c)}(x, y), v_{R,2}^{(5,c)}(x, y), \dots, v_{R,d}^{(5,c)}(x, y)). \quad (18)$$

In order to preserve the consistency between the semantic and structural feature spaces, to prevent semantic drift, and to enhance the stability of the completion inference process, we compute the cosine similarity between the projected features as follows:

$$\text{CosSim}(x, y) = \frac{\sum_{i=1}^d v_{P,i}^{(5,c)}(x, y) v_{R,i}^{(5,c)}(x, y)}{\sqrt{\sum_{i=1}^d (v_{P,i}^{(5,c)}(x, y))^2 + \epsilon} \sqrt{\sum_{i=1}^d (v_{R,i}^{(5,c)}(x, y))^2 + \epsilon}} \quad (19)$$

324 where $\epsilon > 0$ is introduced to prevent division by zero.
 325

326 Subsequently, for each batch $\mathcal{B} = \{(x_j, y_j)\}_{j=1}^N$, the batch loss function is defined as:
 327

$$328 \quad s_j = \frac{\sum_{i=1}^d v_{P,i}^{(5,c)}(x_j, y_j) v_{R,i}^{(5,c)}(x_j, y_j)}{\sqrt{\sum_{i=1}^d (v_{P,i}^{(5,c)}(x_j, y_j))^2 + \epsilon} \sqrt{\sum_{i=1}^d (v_{R,i}^{(5,c)}(x_j, y_j))^2 + \epsilon}}. \quad (20)$$

$$332 \quad \mathcal{L}_{\text{batch}} = \frac{1}{N} \sum_{j=1}^N (1 - s_j)^\alpha + \lambda \|\Theta\|_2^2. \quad (21)$$

335 where $\lambda \|\Theta\|_2^2$ represents the L2 regularization term.
 336

337 This loss leverages multi-scale semantic alignment to improve missing-region completion, yielding
 338 sharp, realistic, and coherent reconstructions.
 339

340 4 EXPERIMENTS

342 Four datasets: ReSh-WebSight, ReSh-Password, ReSh-Chart, and ReSh-Screen were employed to
 343 emulate user-interface layouts, password-entry interfaces, chart renderings, and desktop scenarios,
 344 randomized into training, validation, and test subsets in an 8:1:1 ratio. All experiments were im-
 345 plemented in PyTorch on an NVIDIA RTX 3090 GPU cluster, using Adam optimizer with a fixed
 346 learning rate of 1×10^{-4} and a batch size of 16; other hyperparameters were set to their default
 347 values unless stated otherwise.
 348

349 Methods	350 Source	351 ReSh-WebSight			352 ReSh-Password			353 ReSh-Screen			354 ReSh-Char		
		355 PSNR↑	356 RMSE↓	357 SSIM↑	358 PSNR↑	359 RMSE↓	360 SSIM↑	361 PSNR↑	362 RMSE↓	363 SSIM↑	364 PSNR↑	365 RMSE↓	366 SSIM↑
HVI-CIDNet	CVPR,25	18.940	33.837	0.792	13.024	57.269	0.858	21.027	26.686	0.708	15.720	44.843	0.692
DarkIR	CVPR,25	19.234	32.587	0.779	13.580	53.883	0.855	21.609	25.215	0.706	16.861	39.011	0.709
AST	CVPR,24	19.502	31.026	0.787	14.022	51.199	0.832	21.574	24.823	0.673	16.909	38.515	0.709
ConvIR	CVPR,24	19.573	30.678	0.799	14.779	47.077	0.867	22.010	23.718	0.731	16.678	39.569	0.707
C2PNet	CVPR,23	15.641	52.514	0.769	11.209	70.458	0.813	16.428	44.883	0.552	15.278	46.885	0.666
Uformer	CVPR,22	19.698	30.262	0.798	14.142	50.578	0.874	22.299	22.885	0.725	16.909	38.515	0.709
UNet	MICCAI,15	17.735	38.744	0.764	11.891	65.055	0.827	20.195	28.114	0.664	16.133	42.120	0.682
BicycleGAN	NIPS,17	18.680	35.453	0.775	9.784	82.939	0.781	18.305	46.888	0.600	15.289	48.376	0.632
DivCo	CVPR,21	13.353	66.098	0.721	9.266	87.803	0.730	12.280	72.146	0.369	11.091	76.426	0.523
pix2pix	CVPR,17	13.582	62.361	0.651	8.146	99.907	0.684	8.043	103.377	0.232	12.475	63.885	0.452
CycleGAN	ICCV,17	13.068	66.529	0.680	6.206	124.912	0.601	10.358	89.134	0.316	12.348	67.200	0.494
IR ⁴ Net	Ours	20.708	26.719	0.820	15.030	45.911	0.887	25.812	16.531	0.817	17.363	36.748	0.731

361 Table 1: Quantitative comparison of IR⁴Net against reconstruction-centric methods (HVI-
 362 CIDNetYan et al. (2025),DarkIRFeijoo et al. (2025),ASTZhou et al. (2024),ConVIRCui et al.
 363 (2024),C2PNetZheng et al. (2023),UformerWang et al. (2022b), UNetRonneberger et al. (2015)
 364 and generation-centric methods (BicycleGANZhu et al. (2017b),DivcoLiu et al. (2021),pix2pixIsola
 365 et al. (2017),CycleGANZhu et al. (2017a)) on four benchmarks (ReSh-WebSight, ReSh-Password,
 366 ReSh-Screen, ReSh-Chart) under identical data splits and optimization.
 367

368 4.1 COMPARATIVE EVALUATION

370 Deployed across four canonical benchmarks ReSh-WebSight, ReSh-Password, ReSh-Screen, and
 371 ReSh-Chart for assessment under disparate projection scenarios, IR⁴Net is juxtaposed with
 372 reconstruction-centric (Uformer, ConvIR, UNet) and generation-centric (pix2pix, CycleGAN, Bi-
 373 cycleGAN) counterparts, each trained and tested under identical data partitions and optimisation
 374 regimes. Table 1 reports results on PSNR, RMSE, and SSIM: Specifically, PSNR on ReSh-
 375 Screen increases by 15.7% relative to Uformer, and RMSE on ReSh-WebSight falls by 27.9%
 376 compared to AST. Qualitative illustrations (Fig 3) reveal more consistent restoration of edges, tex-
 377 tures, and occluded regions. Such behaviour likely reflects the interplay of two structural modules:
 PRIRR-Approximation, embedding physics-consistent, momentum-guided inversion trajectories with

frequency-selective perturbation dissipation, and ICSR, enacting a stable semantic-space mapping to align and replenish irreversibly lost information. In both perceptual and physical domains, these mechanisms operate in concert to sustain reconstruction fidelity and robustness.

Figure 3: Visual comparison of IR⁴Net and baseline methods on four datasets. Our model yields visually more faithful restorations across various scenes.

4.2 ABLATION EXPERIMENT

Inversion behaviour was evaluated across three datasets using four iterative schemes: classical momentum formulations including ADMM, NAG, and Heavy-Ball, and the proposed update strategy. Table 2 reports the performance under PSNR, SSIM, RMSE, and LPIPS; the mean relative improvement ranges from 8% to 15%. This variation may derive from a dual coupling design: structure-aware momentum initialization, achieved through a learnable convolutional operator over local receptive fields, yielding priors aligned with intrinsic structural patterns; and a physics-feedback pathway, where inverse approximations are constructed from encoded residuals to capture projection-induced perturbations to constrain the update direction in physically admissible regimes. Residual-gated dynamic weighting integrates these cues to mitigate error amplification introduced by near-singular transmission operators while accumulated momentum smooths the update trajectory. Stability observed under diverse conditions suggests adaptability in high-compression, nonlinear inversion scenarios. Additional ablation studies are provided in A.8.

Metric	Chart				Screen				WebSight			
	OURS	ADMM	NAG	Heavyball	OURS	ADMM	NAG	Heavyball	OURS	ADMM	NAG	Heavyball
PSNR↑	17.363	17.180	17.214	17.192	25.812	25.155	25.090	25.077	20.708	20.707	20.621	20.533
RMSE↓	36.748	37.367	37.308	37.447	16.531	17.680	17.672	17.754	26.719	27.024	27.349	27.629
SSIM↑	0.731	0.725	0.724	0.724	0.817	0.806	0.808	0.808	0.820	0.808	0.808	0.807
LPIPS↓	0.431	0.468	0.465	0.462	0.216	0.232	0.235	0.231	0.282	0.299	0.299	0.300

Table 2: Performance comparison of four iterative schemes across three datasets.

4.3 LUMINANCE ROBUSTNESS EVALUATION

To assess stability under low illumination, an experimental setup was devised where display luminance was progressively attenuated to emulate irradiance decay in real projection scenarios. Experiments were conducted on the four previously mentioned datasets, with screen brightness reduced by 0–300 nits. PSNR values were recorded for each method at incremental luminance levels.

As summarized in Table 3, pronounced performance degradation emerged for several baselines under reduced brightness. For instance, UNet exhibited a PSNR decline of approximately 68% on ReSh-Screen, whereas the proposed architecture registered a reduction of 25.9% under identical conditions. Visual evidence Fig 4 indicates that when luminance decreased, competing methods produced outputs with structural misalignment and blurred contours, while the proposed approach maintained coherent edge geometry and stable texture patterns. Results for other datasets, together with qualitative exemplars, appear in the A.12.

Model	0	25	50	75	100	125	150	175	200	225	250	275	300
OURS	25.812	25.726	25.702	25.634	25.533	25.288	24.990	24.537	24.016	23.220	22.306	20.983	19.136
UNet	20.195	6.302	6.461	6.121	6.546	6.104	6.301	7.015	6.089	6.686	6.257	6.144	6.412
C2PNet	16.428	15.913	14.951	13.452	12.311	11.520	11.195	10.948	10.542	10.039	9.666	9.370	9.144
DarkIR	21.609	21.360	20.660	19.288	17.423	15.355	13.672	12.481	11.491	10.614	10.077	9.686	9.424
CIDNet	21.027	20.808	20.337	19.366	18.118	16.576	15.131	13.853	12.791	11.739	10.913	10.192	9.745
ConvIR	22.010	21.824	21.480	20.601	19.223	17.698	16.215	14.885	13.662	12.537	11.707	10.991	10.435

Table 3: PSNR comparison of different models under screen brightness reductions (in nits).

Figure 4: As screen brightness decreases on the ReSh-Screen dataset, our model’s PSNR degrades significantly less than that of other methods.

These observations indicate that robustness to luminance attenuation arises from three architectural constraints: (i) a physics-regularized propagation path limiting perturbation diffusion; (ii) a frequency-selective hierarchical upsampling scheme ensuring cross-scale consistency; and (iii) a semantic-stability module restoring global context via feature-space completion. Without these constraints, conventional models suffer error amplification, causing structural collapse under low-intensity conditions. In contrast, the proposed design suppresses perturbations through physics-guided modeling, applies frequency-domain gating to limit non-structural energy propagation, and employs context-consistent semantic inference to recover projection-induced information loss. Together, these mechanisms preserve texture fidelity and ensure controlled, monotonic degradation across the luminance continuum.

4.4 GEOMETRIC ROBUSTNESS UNDER CAMERA MOTION AND DISTANCE

The geometric setups are shown in Fig. 5. We consider three camera-motion scenarios with a planar projection wall: (a) orbital motion, where the camera center moves along horizontal and vertical circular arcs of fixed radius while the optical axis points to the wall; (b) in-place rotation, where the camera center is fixed and pitch, yaw, and roll are varied; and (c) camera–wall distance variation, where the camera is translated along the optical axis to change the stand-off distance without changing orientation. Table 4 summarizes IR⁴Net performance for these three perturbations, with orbital motion, rotation, and distance shown in the left, middle, and right blocks, respectively.

Orbital motion, summarized in the left block of Table 4, shows that viewpoint changes along both horizontal and vertical arcs still yield high-fidelity reconstructions. PSNR remains above 21 dB for all tested poses, and FID stays between 0.90 and 1.05, indicating robustness to relatively large viewpoint shifts. The rotation setting, shown in the middle block of Table 4, maintains high PSNR and SSIM values that decrease smoothly as the rotation angles increase; even at rotation angles of 8°, 5°, and 4°, the PSNR is 21.47 dB and the SSIM is 0.719, without structural collapse, indicating tolerance to hand shake and mounting errors. The distance setting, reported in the right block of Table 4, shows that PSNR, SSIM, and FID vary only marginally as the distance increases from 2 m to 6 m, with PSNR changing from 25.81 dB to 25.54 dB and SSIM from 0.817 to 0.813, which demonstrates that IR⁴Net is insensitive to irradiance decay and speckle-scale changes induced by distance.

This robustness is primarily attributed to two synergistic components: a physically regularized PR Irr-Approximation, which constrains the inversion with an irradiance-consistent propagation

486	Orbital motion					Camera rotation					Camera-wall distance						
	Pose (horizontal,vertical)		PSNR	SSIM	LPIPS	FID	Angle (pitch,yaw,roll)		PSNR	SSIM	LPIPS	FID	Dist. (m)		PSNR	SSIM	LPIPS
487	(0,5)	25.046	0.801	0.226	1.047		(0, 0, 0)	25.812	0.817	0.216	0.967		2	25.810	0.817	0.216	0.970
488	(0,15)	22.814	0.749	0.263	0.953		(2, 0, 0)	25.586	0.814	0.219	0.995		3	25.791	0.816	0.217	0.967
489	(0,-5)	25.267	0.807	0.224	0.997		(5, 3, 2)	24.508	0.793	0.234	1.057		4	25.764	0.816	0.217	0.975
490	(10,0)	22.901	0.740	0.263	0.899		(8, 5, 4)	21.470	0.719	0.285	0.996		5	25.690	0.815	0.218	0.980
491	(15,0)	21.275	0.705	0.294	0.986		(0, -10, -3)	19.906	0.697	0.308	1.006		6	25.541	0.813	0.219	0.990

Table 4: Summary of IR⁴Net performance under three geometric perturbations: (1) orbital motion, (2) camera rotation, and (3) camera–wall distance variation. Each block lists five representative conditions from the full experiments.

model and frequency-selective upsampling, and an ICSR module that enforces semantic–structural consistency while compensating for information loss in the projected speckle patterns. By jointly enforcing these constraints, the method suppresses error amplification under geometric perturbations and maintains stable reconstruction quality across diverse camera poses and distances.

Additional quantitative results and qualitative visualizations for a wider range of parameter settings are provided in A.9.

Figure 5: Experimental setups for camera motion. (a) Camera orbital motion: (a1) motion along a horizontal circular arc parallel to the ground; (a2) motion along a vertical circular arc perpendicular to the ground (side view). (b) Camera rotation: (b1) tilting parallel to the projection wall; (b2) tilting perpendicular to the ground (side view); (b3) tilting perpendicular to the projection (imaging) plane (top view). (c) Camera–wall distance: camera translating along the direction normal to the projection plane.

5 CONCLUSION AND DISCUSSION

Non-contact exfiltration of screen content in physically isolated or shielded environments is achieved via an optical-projection side channel, realized by IR⁴Net, a physics-constrained reconstruction framework embedding irradiance-consistent modeling and spectral regulation. Addressing two core challenges, namely nonlinear mapping ill-conditioning and semantic attrition, this architecture invalidates the notion that an air gap guarantees security. In the inversion-path stage, PRIrr-Approximation reformulates optical-field inversion as a learnable iterative trajectory that integrates forward and reverse propagation physics, mitigating perturbation amplification. In the spectral domain, a multi-scale frequency separation module decouples and hierarchically restores spectral components to reinforce cross-scale structural coherence and suppress noise. Furthermore, ICSR’s abstract semantic-space mapping drives global semantic completion to bridge gaps induced by strong projection compressions. Experimental results demonstrate stable content restoration under attenuated irradiance, with SSIM and related metrics exceeding those of existing end-to-end models, to confirm the effectiveness and robustness of the physics-prior and deep-model fusion.

540 REFERENCES

542 Abdullah Albalawi, Vassilios Vassilakis, and Radu Calinescu. Side-channel attacks and countermea-
 543 sures in cloud services and infrastructures. In *NOMS 2022-2022 IEEE/IFIP Network Operations*
 544 and *Management Symposium*, pp. 1–4. IEEE, 2022.

545 Supriyo Chakraborty, Wentao Ouyang, and Mani Srivastava. Lightspy: Optical eavesdropping on
 546 displays using light sensors on mobile devices. In *2017 IEEE International Conference on Big*
 547 *Data (Big Data)*, pp. 2980–2989, 2017. doi: 10.1109/BigData.2017.8258268.

548 Bin Chen, Gehui Li, Rongyuan Wu, Xindong Zhang, Jie Chen, Jian Zhang, and Lei Zhang. Ad-
 549 versarial diffusion compression for real-world image super-resolution. In *Proceedings of the*
 550 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025.

551 Peter Chen, Guannan Liu, and Haining Wang. Poster: Acoustic side-channel attack on robot vacu-
 552 ums. In *Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications*
 553 *Security*, pp. 5027–5029, 2024.

554 Yuning Cui, Wenqi Ren, Xiaochun Cao, and Alois Knoll. Revitalizing convolutional network for
 555 image restoration. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

556 Mampi Devi and Abhishek Majumder. Side-channel attack in internet of things: A survey. In
 557 *Applications of Internet of Things: Proceedings of ICCCIOT 2020*, pp. 213–222. Springer, 2021.

558 Guanglu Dong, Tianheng Zheng, Yuanzhouhan Cao, Limbo Qing, and Chao Ren. Channel consis-
 559 tency prior and self-reconstruction strategy based unsupervised image deraining. *arXiv preprint*
 560 *arXiv:2503.18703*, 2025.

561 Yingli Duan, Weizhi Meng, Wei-Yang Chiu, and Yu Wang. Towards a novel ultrasonic side-channel
 562 attack on mobile devices. In *Proceedings of the ACM SIGCOMM 2024 Conference: Posters and*
 563 *Demos*, pp. 101–103, 2024.

564 Mingzhu Fang, Baolei Mao, and Wei Hu. A transfer learning approach for electromagnetic side-
 565 channel attack and evaluation. In *2022 7th International Conference on Integrated Circuits and*
 566 *Microsystems (ICICM)*, pp. 636–640. IEEE, 2022.

567 Daniel Feijoo, Juan C. Benito, Alvaro Garcia, and Marcos V. Conde. Darkir: Robust low-light image
 568 restoration. In *Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)*,
 569 pp. 10879–10889, June 2025.

570 Santiago Fernández, Emilio Martínez, Jorge Varela, Pablo Musé, and Federico Larroca. Deep-
 571 tempest: Using deep learning to eavesdrop on hdmi from its unintended electromagnetic em-
 572 emanations. In *Proceedings of the 13th Latin-American Symposium on Dependable and Secure*
 573 *Computing*, pp. 91–100, 2024.

574 Jiayi Fu, Siyu Liu, Zikun Liu, Chun-Le Guo, Hyunhee Park, Ruiqi Wu, Guoqing Wang, and Chongyi
 575 Li. Iterative predictor-critic code decoding for real-world image dehazing. In *Proceedings of the*
 576 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.

577 Naina Gupta, Arpan Jati, and Anupam Chattopadhyay. Ai attacks ai: Recovering neural network
 578 architecture from nvldla using ai-assisted side channel attack. *ACM Transactions on Embedded*
 579 *Computing Systems*, 2023.

580 Jingwen He, Wu Shi, Kai Chen, Lean Fu, and Chao Dong. Gcfsr: a generative and controllable
 581 face super resolution method without facial and gan priors. In *Proceedings of the IEEE/CVF*
 582 *conference on computer vision and pattern recognition*, pp. 1889–1898, 2022.

583 Cheeun Hong and Kyoung Mu Lee. Adabm: on-the-fly adaptive bit mapping for image super-
 584 resolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 585 nition*, pp. 2641–2650, 2024.

586 Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
 587 conditional adversarial networks. In *Computer Vision and Pattern Recognition (CVPR), 2017*
 588 *IEEE Conference on*, 2017.

594 Yanning Ji and Elena Dubrova. A side-channel attack on a masked hardware implementation of
 595 crystals-kyber. In *Proceedings of the 2023 Workshop on Attacks and Solutions in Hardware*
 596 *Security*, pp. 27–37, 2023.

597

598 Qizhi Xu Jiuchen Chen, Xinyu Yan and Kaiqi Li. Tokenize image patches: Global context fusion
 599 for effective haze removal in large images. In *Proceedings of the IEEE Conference on Computer*
 600 *Vision and Pattern Recognition*, 2025.

601

602 Andrew Johnson and Richard Ward. ‘unified side-channel attack-model’(usca-m): An extension
 603 with biometrics side-channel type. In *2022 10th International Symposium on Digital Forensics*
 604 *and Security (ISDFS)*, pp. 1–5. IEEE, 2022.

605

606 Jinseok Kim and Tae-Kyun Kim. Arbitrary-scale image generation and upsampling using latent
 607 diffusion model and implicit neural decoder. In *Proceedings of the IEEE/CVF Conference on*
 608 *Computer Vision and Pattern Recognition*, pp. 9202–9211, 2024.

609

610 Rui Li, Gabriel Della Maggiora, Vardan Andriasyan, Anthony Petkidis, Artsemi Yushkevich, Nikita
 611 Deshpande, Mikhail Kudryashev, and Artur Yakimovich. Microscopy image reconstruction with
 612 physics-informed denoising diffusion probabilistic model. *Communications Engineering*, 3(1):
 186, 2024.

613

614 Ziyang Lihe, Jiang He, Qiangqiang Yuan, Xianyu Jin, Yi Xiao, and Liangpei Zhang. Phdnet: A novel
 615 physic-aware dehazing network for remote sensing images. *Information Fusion*, 106:102277,
 2024.

616

617 Rui Liu, Yixiao Ge, Ching Lam Choi, Xiaogang Wang, and Hongsheng Li. Divco: Diverse con-
 618 ditional image synthesis via contrastive generative adversarial network. In *IEEE Conference on*
 619 *Computer Vision and Pattern Recognition*, 2021.

620

621 Yang Liu, Gregory W Wornell, William T Freeman, and Frédo Durand. Imaging privacy threats
 622 from an ambient light sensor. *Science Advances*, 10(2):eadj3608, 2024a.

623

624 Zhibo Liu, Yuanyuan Yuan, Yanzuo Chen, Sihang Hu, Tianxiang Li, and Shuai Wang. Deepcache:
 625 Revisiting cache side-channel attacks in deep neural networks executables. In *Proceedings of the*
 626 *2024 on ACM SIGSAC Conference on Computer and Communications Security*, pp. 4495–4508,
 2024b.

627

628 Yan Long, Qinhong Jiang, Chen Yan, Tobias Alam, Xiaoyu Ji, Wenyuan Xu, and Kevin Fu. Em eye:
 629 Characterizing electromagnetic side-channel eavesdropping on embedded cameras. 2024.

630

631 Long Ma, Yuxin Feng, Yan Zhang, Jinyuan Liu, Weimin Wang, Guang-Yong Chen, Chengpei Xu,
 632 and Zhuo Su. Coa: Towards real image dehazing via compression-and-adaptation. *arXiv preprint*
 633 *arXiv:2504.05590*, 2025.

634

635 Jeeseung Park and Younggeun Kim. Styleformer: Transformer based generative adversarial net-
 636 works with style vector. In *Proceedings of the IEEE/CVF conference on computer vision and*
 637 *pattern recognition*, pp. 8983–8992, 2022.

638

639 Yuanjian Qiao, Mingwen Shao, Lingzhuang Meng, and Wangmeng Zuo. Learning physical-aware
 640 diffusion priors for zero-shot restoration of scattering-affected images. *Pattern Recognition*, 163:
 111473, 2025.

641

642 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 643 image segmentation. In *Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18*, pp. 234–241. Springer, 2015.

644

645 Donghun Ryou, Inju Ha, Hyewon Yoo, Dongwan Kim, and Bohyung Han. Robust image denoising
 646 through adversarial frequency mixup. In *Proceedings of the IEEE/CVF Conference on Computer*
 647 *Vision and Pattern Recognition*, pp. 2723–2732, 2024.

648 Han Wang, Syed Mahbub Hafiz, Kartik Patwari, Chen-Nee Chuah, Zubair Shafiq, and Houman
 649 Homayoun. Stealthy inference attack on dnn via cache-based side-channel attacks. In *2022
 650 Design, Automation & Test in Europe Conference & Exhibition (DATE)*, pp. 1515–1520. IEEE,
 651 2022a.

652 Penghao Wang, Jingzhi Hu, Chao Liu, and Jun Luo. Reflexnoop: Passwords snooping on nlos
 653 laptops leveraging screen-induced sound reflection. In *Proceedings of the 2024 on ACM SIGSAC
 654 Conference on Computer and Communications Security*, pp. 3361–3375, 2024.

655 Ruiyi Wang, Yushuo Zheng, Zicheng Zhang, Chunyi Li, Shuaicheng Liu, Guangtao Zhai, and Xiao-
 656 hong Liu. Learning hazing to dehazing: Towards realistic haze generation for real-world image
 657 dehazing. *arXiv preprint arXiv:2503.19262*, 2025.

658 Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li.
 659 Uformer: A general u-shaped transformer for image restoration. In *Proceedings of the IEEE/CVF
 660 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 17683–17693, June 2022b.

661 Sean Wu, Shamik Basu, Tim Broedermann, Luc Van Gool, and Christos Sakaridis. Pbr-nerf: Inverse
 662 rendering with physics-based neural fields. In *Proceedings of the Computer Vision and Pattern
 663 Recognition Conference*, pp. 10974–10984, 2025.

664 Qingsen Yan, Yixu Feng, Cheng Zhang, Guansong Pang, Kangbiao Shi, Peng Wu, Wei Dong, Jin-
 665 qiu Sun, and Yanning Zhang. Hvi: A new color space for low-light image enhancement. In
 666 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 667 pp. 5678–5687, June 2025.

668 Sidi Yang, Binxiao Huang, Yulun Zhang, Dahai Yu, Yujiu Yang, and Ngai Wong. Dnlut:
 669 Ultra-efficient color image denoising via channel-aware lookup tables. *arXiv preprint
 670 arXiv:2503.15931*, 2025.

671 Xin Ye, Burhaneddin Yaman, Sheng Cheng, Feng Tao, Abhirup Mallik, and Liu Ren. Bevdiffuser:
 672 Plug-and-play diffusion model for bev denoising with ground-truth guidance. In *Proceedings of
 673 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, June 2025.

674 Yu Zheng, Jiahui Zhan, Shengfeng He, Junyu Dong, and Yong Du. Curricular contrastive regular-
 675 ization for physics-aware single image dehazing. In *IEEE/CVF Conference on Computer Vision
 676 and Pattern Recognition*, 2023.

677 Shihao Zhou, Duosheng Chen, Jinshan Pan, Jinglei Shi, and Jufeng Yang. Adapt or perish: Adaptive
 678 sparse transformer with attentive feature refinement for image restoration. In *Proceedings of the
 679 IEEE/CVF conference on computer vision and pattern recognition*, pp. 2952–2963, 2024.

680 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
 681 using cycle-consistent adversarial networkss. In *Computer Vision (ICCV), 2017 IEEE Interna-
 682 tional Conference on*, 2017a.

683 Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang, and Eli
 684 Shechtman. Toward multimodal image-to-image translation. In *Advances in Neural Information
 685 Processing Systems*, 2017b.

686 Yankun Zhu, Siting Liu, Liyu Yang, and Pingqiang Zhou. Ldl-sca: Linearized deep learning side-
 687 channel attack targeting multi-tenant fpgas. In *Proceedings of the Great Lakes Symposium on
 688 VLSI 2024*, pp. 583–587, 2024.

689

690

691

692

693

694

695

696 **A APPENDIX**

697

698 **A.1 DESCRIPTION OF THE EXPERIMENTAL SETUP**

699

700 As shown in Figure 6, the experimental setup comprises three sub-figures: (a) a rendered scene, (b)
 701 a schematic diagram, and (c) a real-world scene. In this setup, an observer attempts to infer the
 content displayed on a target screen through passive light projection. Specifically, the screen emits

Figure 6: In the figure, (a), (b), and (c) correspond to the rendered scene, schematic diagram, and real-world scene respectively. An observer infers screen content via passive light projection. A light projection from the screen (“Wanted information”) is cast onto a wall. By recording the wall’s projection without viewing the screen, hacking, or capturing signals, the observer attempts to reconstruct the original content non-invasively.

light containing the “Wanted information”, which is indirectly projected onto a wall. The observer, without any direct visual access to the screen or active intrusion (e.g., hacking, signal tapping), records this projection in an attempt to non-invasively reconstruct the original screen content.

Figure (a) presents a 3D rendering of the experimental layout. The target screen, located in an enclosed space, displays sensitive content and is physically shielded from direct view. The light it emits is partially occluded before reaching a wall surface, where it undergoes diffuse reflection and forms a low-contrast, spatially degraded light patch. Blue dashed lines denote the boundaries of light propagation, while the green region marks the area visible to the camera. The inset on the right illustrates how multiple scattering and non-ideal reflections introduce severe nonlinear compression and information loss, eliminating most high-frequency textures and fine details.

Figure (b) presents a two-dimensional schematic of the optical path and imaging logic. It emphasizes the indirect transmission of information, from the screen to the wall and then to the camera, under conditions of severe degradation and highlights the significant compression effects within this high-loss optical channel.

Figure (c) depicts the actual experimental environment. A standard computer monitor displays critical information to simulate a practical side-channel attack scenario. The screen is placed approximately 0.9 m away from the wall behind it. To evaluate the method’s robustness under varying reflective properties, the wall material in the observation area is designed to be interchangeable. This simulates differences in wall reflectance commonly found in offices or server rooms and allows assessment of the system’s sensitivity to environmental perturbations. The camera is located in a separate room, about 2 m from the wall, with solid partitions ensuring complete physical isolation. This guarantees there is no direct line of sight or light path between the camera and the screen, thereby excluding traditional attack vectors such as network intrusion, infrared sensing, or electromagnetic eavesdropping.

756 We use a Sony A7S II camera with standard dynamic-range settings, deliberately avoiding HDR
 757 pipelines or extremely long exposures, in order to keep the acquisition procedure straightforward
 758 to replicate. The wall patch observed by the camera is a matte off-white surface. It behaves as
 759 a predominantly diffuse, but not perfectly Lambertian, reflector; additional measurements of its
 760 bidirectional reflectance and a discussion of this non-Lambertian behaviour are provided in A.10.
 761 The camera is placed in a different room, separated by solid partitions, which ensures there is no
 762 direct line of sight or direct light path from the screen to the sensor and rules out conventional optical
 763 or RF eavesdropping.

764 Crucially, the purpose of this configuration is not to define a razor-thin set of parameters that must
 765 be matched exactly, but to provide a clear reference point from which robustness can be measured.
 766 A.9 reports additional experiments in which we vary the camera–wall distance from roughly 2.0 m
 767 up to 6.0 m and perturb the camera pose with in-plane shifts and angular offsets. The resulting
 768 reconstructions degrade gradually but remain qualitatively consistent, indicating that the attack does
 769 not hinge on a finely tuned baseline or a precisely calibrated viewpoint. A.10 further shows that
 770 even when only a subregion of the wall speckle pattern is observed, the recovered screen content
 771 is still usable. Taken together with the reflectance analysis in A.11, these results demonstrate that
 772 successful reconstruction does not require an exact match to our specific distances, angles, or wall
 773 finish. All key physical parameters of the canonical setup are therefore specified, but the attack is not
 774 brittle with respect to them: approximate reproductions that respect the same qualitative geometry
 775 reproduce the phenomenon without aggressive re-tuning.

776 A.2 DERIVATION OF THE OPTIMIZATION OBJECTIVE FOR INVERSE PROBLEM

777 In the context of wall-based indirect imaging, the screen acts as a radiation source, with each of its
 778 surface elements emitting luminous energy into space. The camera records the re-emission of these
 779 rays after they are reflected by the wall. To model this energy transfer, we begin with the radiative
 780 transfer equation and consider the radiance emitted from a point on the wall. According to classical
 781 photometry, the radiance emitted from surface point \mathbf{p}_w in direction ω_o is expressed as an integral
 782 over all incident directions, as given by the rendering equation:

$$785 \quad 786 \quad L_o(\mathbf{p}_w, \omega_o) = \int_{\Omega^+} f_r(\mathbf{p}_w, \omega_i \rightarrow \omega_o) L_i(\mathbf{p}_w, \omega_i) \cos \theta_i d\omega_i. \quad (22)$$

787 Here, $L_o(\mathbf{p}_w, \omega_o)$ denotes the radiance from the wall point \mathbf{p}_w in the outgoing direction ω_o , Ω^+ represents the set of all incident directions in the hemisphere, and $f_r(\cdot)$ is the bidirectional reflectance distribution function (BRDF) at the point, describing the energy mapping between the incident direction ω_i and outgoing direction ω_o . $L_i(\mathbf{p}_w, \omega_i)$ is the incident radiance, while $\cos \theta_i$ reflects the angle between the incident ray and the surface normal, thus accounting for the energy projection effect.

788 To obtain the wall radiance, the incident radiance term must be further expanded. The light energy received by a point \mathbf{p}_w on the wall originates from various locations on the screen. Let \mathbf{p}_s be a point on the screen emitting radiance $L_s(\mathbf{p}_s, \omega_s)$, which, according to optical propagation principles, contributes to the incident radiance at \mathbf{p}_w as follows:

$$800 \quad 801 \quad L_i(\mathbf{p}_w, \omega_i) = L_s(\mathbf{p}_s, \omega_s) \cdot V(\mathbf{p}_s, \mathbf{p}_w) \cdot \frac{\cos \theta_s}{\|\mathbf{p}_s - \mathbf{p}_w\|^2}. \quad (23)$$

802 Here, $V(\mathbf{p}_s, \mathbf{p}_w)$ is the visibility function (taking value 1 if the propagation path is unobstructed and 0 otherwise), $\cos \theta_s$ is the cosine of the angle between the screen normal and the light propagation direction, and $\|\mathbf{p}_s - \mathbf{p}_w\|$ represents the distance between the two points, indicating the inverse square attenuation of energy during free-space propagation.

803 Substituting this expression for the incident radiance into the rendering equation, and transforming the integral domain from direction space to the screen parameter space Ω_s , we obtain the integral expression for the wall radiance:

810
811
812
813

$$L_o(\mathbf{p}_w, \omega_o) = \iint_{\Omega_s} f_r(\mathbf{p}_w, \omega_i \rightarrow \omega_o) L_s(\mathbf{p}_s, \omega_s) V(\mathbf{p}_s, \mathbf{p}_w) \frac{\cos \theta_s \cos \theta_i}{\|\mathbf{p}_s - \mathbf{p}_w\|^2} dA_s. \quad (24)$$

814 In this equation, $\cos \theta_i$ represents the angle cosine between the wall normal and the incident direction, and dA_s is the area element of the screen surface. This equation indicates that the wall radiance
815 is a weighted integral of the screen's pixel radiance, where the weight is determined by the reflection
816 properties, geometric factors, and visibility.
817

818 To render the model computable, we introduce assumptions regarding the reflective properties of the
819 wall material. If the wall is considered an ideal Lambertian diffuse reflector, the BRDF simplifies
820 to a constant $f_r = \rho/\pi$, where $\rho \in [0, 1]$ is the reflectance of the surface. Substituting this into the
821 equation, the wall radiance formula reduces to:
822

$$L_w(\mathbf{p}_w) = \iint_{\Omega_s} L_s(\mathbf{p}_s) \frac{\rho \cos \theta_s \cos \theta_i}{\pi \|\mathbf{p}_s - \mathbf{p}_w\|^2} dA_s. \quad (25)$$

823 Thus, we derive the precise physical equation that describes how the screen radiance is mapped to
824 the wall radiance through optical propagation and diffuse reflection.
825

826 Consider the imaging process of the camera. The optical system of the camera projects the luminance
827 field of the wall onto the sensor plane, performing spatial sampling and digitization while
828 introducing noise interference. If lens distortion is neglected and the camera response is assumed
829 linear, the value of each pixel can be expressed as the wall's luminance plus noise:
830

$$y(x', y') = L_w(x', y') + n(x', y'), \quad n(x', y') \sim \mathcal{N}(0, \sigma^2), \quad (26)$$

831 where $n(x', y')$ represents Gaussian noise, accounting for sensor quantization errors and environmental
832 disturbances. To facilitate numerical treatment, both the screen image and the camera observations are discretized.
833 Let the screen pixels be expanded into a vector of length N , $\mathbf{x} = [x_1, x_2, \dots, x_N]^T$, and the wall observations into a vector of length M , $\mathbf{y} = [y_1, y_2, \dots, y_M]^T$.
834 The integral equation can then be discretized as follows:
835

$$y_i = \sum_{j=1}^N H_{ij} x_j + n_i, \quad (27)$$

836 where H_{ij} represents the elements of the light transmission matrix, describing the contribution of
837 screen pixel j to wall pixel i . It can be further written as:
838

$$H_{ij} = \frac{\rho \cos \theta_{i,j}^{(s)} \cos \theta_{i,j}^{(i)}}{\pi \|\mathbf{p}_j - \mathbf{p}_i\|^2} \Delta A_j. \quad (28)$$

839 Here, $\theta_{i,j}^{(s)}$ and $\theta_{i,j}^{(i)}$ are the angles between the screen normal and wall normal, respectively, and ΔA_j
840 is the pixel area of the screen. Expressing all pixel relationships in matrix form yields:
841

$$\mathbf{y} = \mathbf{Hx} + \mathbf{n}. \quad (29)$$

842 Further abstraction of this expression into operator form gives the final model:
843

$$\mathbf{y} = \Phi(\mathbf{x}) + \mathbf{n}, \quad \mathbf{n} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}). \quad (30)$$

859 This expression indicates that the observed signal \mathbf{y} is the result of the original image \mathbf{x} mapped by
860 the optical operator Φ , with added noise. Since the operator $\Phi(\cdot)$ inherently causes information loss
861 and noise interference, the problem is a typical ill-posed inverse problem, where direct inversion
862 leads to instability and potential non-solvability.
863

To recover \mathbf{x} , we apply statistical modeling techniques and first derive the likelihood function. According to the noise model, the observation vector \mathbf{y} follows a Gaussian distribution conditioned on \mathbf{x} , with the probability density function given by:

$$p(\mathbf{y} | \mathbf{x}) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{y} - \Phi(\mathbf{x})\|_2^2\right), \quad (31)$$

where $\|\cdot\|_2$ denotes the Euclidean norm. Thus, the negative log-likelihood (NLL) can be written as:

$$-\log p(\mathbf{y} | \mathbf{x}) = \frac{1}{2\sigma^2} \|\mathbf{y} - \Phi(\mathbf{x})\|_2^2 + \text{const}, \quad (32)$$

where const is a constant independent of \mathbf{x} and can be ignored. Therefore, employing maximum likelihood estimation (MLE), the optimization problem becomes:

$$\hat{\mathbf{x}}_{\text{MLE}} = \arg \min_{\mathbf{x}} \|\mathbf{y} - \Phi(\mathbf{x})\|_2^2. \quad (33)$$

However, due to the non-invertibility of $\Phi(\cdot)$ and the noise amplification effects, such reconstruction relying solely on observation consistency leads to severe degradation. Therefore, it is necessary to introduce prior information to constrain the solution space, rendering the problem well-posed.

Within a Bayesian framework, a prior distribution $p(\mathbf{x})$ is introduced to describe the statistical regularities of the image. According to Bayes' theorem, the posterior distribution satisfies:

$$p(\mathbf{x} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{x})p(\mathbf{x}). \quad (34)$$

The goal of maximum a posteriori (MAP) estimation is to maximize the posterior probability:

$$\hat{\mathbf{x}}_{\text{MAP}} = \arg \max_{\mathbf{x}} p(\mathbf{x} | \mathbf{y}) = \arg \max_{\mathbf{x}} [\log p(\mathbf{y} | \mathbf{x}) + \log p(\mathbf{x})]. \quad (35)$$

Equivalently, taking the negative log and ignoring the constant term, this transforms into a minimization problem:

$$\hat{\mathbf{x}}_{\text{MAP}} = \arg \min_{\mathbf{x}} [-\log p(\mathbf{y} | \mathbf{x}) - \log p(\mathbf{x})]. \quad (36)$$

Substituting the likelihood and prior terms, we know that $-\log p(\mathbf{y} | \mathbf{x}) = \frac{1}{2\sigma^2} \|\mathbf{y} - \Phi(\mathbf{x})\|_2^2$. Assuming the prior distribution has the form:

$$p(\mathbf{x}) \propto \exp(-\lambda R(\mathbf{x})), \quad (37)$$

where $R(\mathbf{x})$ represents a regularization function (such as total variation or sparsity constraints), and λ is a weight parameter, the negative log prior becomes:

$$-\log p(\mathbf{x}) = \lambda R(\mathbf{x}). \quad (38)$$

Thus, the MAP optimization problem can be written as:

$$\hat{\mathbf{x}} = \arg \min_{\mathbf{x}} \left[\frac{1}{2\sigma^2} \|\mathbf{y} - \Phi(\mathbf{x})\|_2^2 + \lambda R(\mathbf{x}) \right]. \quad (39)$$

To simplify notation, the factor $\frac{1}{2\sigma^2}$ can be absorbed into the data term or normalized directly, yielding the final form:

918

919
920

$$\hat{\mathbf{x}}^* = \arg \min_{\mathbf{x}} \| \Phi(\mathbf{x}) - \mathbf{y} \|_2^2 + \lambda R(\mathbf{x}). \quad (40)$$

921

In this objective function, $\| \Phi(\mathbf{x}) - \mathbf{y} \|_2^2$ is the data fidelity term, ensuring the reconstructed image is consistent with the observed data; $R(\mathbf{x})$ is the prior regularization term, incorporating statistical properties or deep learning priors of the image, thereby suppressing noise and recovering missing details; and λ is a balancing parameter that adjusts the relative weighting of these two terms.

926
927
928

A.3 DERIVATION OF THE INVERSION PATH EMBEDDED IN OPTICAL PROPAGATION MODELING GUIDED BY THE PHYSICAL MODEL

929
930
931
932
933

To construct an inversion trajectory with momentum guidance and physical consistency, we introduce a structural-aware momentum initialization mechanism. The input image $\mathbf{I}^{(0)}$ is first mapped to the initial momentum tensor $\mathbf{m}^{(0)}$ through a learnable 1×1 convolution operator $\mathcal{C}_{1 \times 1}(\cdot)$, as given by:

934
935
936

$$\mathbf{m}^{(0)} = \mathcal{C}_{1 \times 1}(\mathbf{I}^{(0)}) = \int_{\Omega_m} \mathcal{K}_{\text{init}}(\mathbf{u}) \mathbf{I}^{(0)}(\mathbf{x} - \mathbf{u}) d\mathbf{u}_{jl}, \quad (41)$$

937
938
939
940

where the process within the local receptive field Ω_m extracts structural prior features using the convolution kernel $\mathcal{K}_{\text{init}}$ as weights, providing the initial direction for the subsequent physical consistency optimization. Here, $\mathbf{x} = (x_1, x_2) = (x, y)$ represents the two-dimensional spatial coordinates.

941
942
943

To cohesively model the coupled effects of reflection, diffraction, and scattering in light propagation, the forward light transport operator $\Phi(\cdot)$ is constructed as a triple integral over space, depth, and channel:

944
945
946
947

$$\Phi(\mathbf{I}^{(k-1)}) = \iiint_{\Omega_m \times \mathcal{S}_d \times \mathcal{L}_e} K_\phi(i, j, \mathbf{u}) \cdot \phi(\mathbf{I}^{(k-1)}(\mathbf{x} - \mathbf{u})) \cdot \mathbf{1}_\phi(i, j) d\mathbf{u} di dj, \quad (42)$$

948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963

where $\mathbf{I}^{(k-1)}$ denotes the response at the target position \mathbf{x} , and k indicates the iteration count. This is achieved by integrating over the local receptive field Ω_m , the network depth layer $i \in \mathcal{S}_d$, and the feature channel $j \in \mathcal{L}_e$. The kernel K_ϕ is channel-layer dependent, while $\phi(\cdot)$ provides non-linear modulation, and $\mathbf{1}_\phi(i, j)$ dynamically activates the dominant physical mechanisms. The key advantage of this operator lies in its physical consistency: the spatial integral \int_{Ω_m} models the specular/diffuse light spots and diffraction fringes around the neighborhood of \mathbf{x} via K_ϕ ; the depth integral $\int_{\mathcal{S}_d}$ accumulates the path superposition effects of multiple reflections and scattering, capturing indirect illumination; and the channel integration $\int_{\mathcal{L}_e}$ jointly accounts for multi-physical attribute responses, dynamically switching between reflection, diffraction, or scattering dominance using $\mathbf{1}_\phi$ at specific locations. This cross-domain collaboration facilitates unified modeling of complex light transport.

To obtain the physical feedback direction from the current estimate $\mathbf{I}^{(k-1)}$, the encoding residual is calculated as:

964

$$\Delta\Phi^{(k-1)} = \Phi(\mathbf{I}^{(k-1)}) - \mathbf{z}, \quad (43)$$

965
966
967
968
969
970

where \mathbf{z} represents the deepest layer feature response along the encoding path of Φ , encapsulating the current estimate's structural compressed representation in the projection path. Based on this residual, the inverse mapping approximation $\Psi(\cdot)$ of the forward light transport operator $\Phi(\cdot)$ is constructed. This operation extracts reconstruction information from $\Delta\Phi$ using a multi-scale, multi-channel fusion approach:

971

$$\Psi(\Delta\Phi^{(k-1)}) = \iiint_{\Omega_m \times \mathcal{S}_u \times \mathcal{L}_d} K_\psi(i, j, \mathbf{v}) \cdot \psi(\Delta\Phi^{(k-1)}(\mathbf{x} + \mathbf{v})) \cdot \mathbf{1}_\psi(i, j) d\mathbf{v} di dj, \quad (44)$$

972 where \mathcal{S}_u denotes the upsampling layer set, \mathcal{L}_d is the channel domain, and $K_\psi(i, j, \mathbf{v})$ represents the
 973 deconvolution/upsampling kernel. $\psi(\cdot)$ is the activation function, and $\mathbf{1}_\psi(i, j)$ controls the information pathway.
 974 In physical terms, $\Psi(\cdot)$ is equivalent to a backpropagation process that reconstructs
 975 the pre-projected image structure in the spatial and semantic domains.

976 Next, the model integrates the current structural estimate with physical feedback, constructing a
 977 structure-physical residual fusion term to guide optimization along physically plausible directions:
 978

$$\tilde{\mathbf{X}}^{(k)} = \beta_0 \mathcal{C}_{1 \times 1}(\mathbf{I}^{(k-1)}) + (1 - \beta_0) \Psi(\Delta \Phi^{(k-1)}), \quad (45)$$

981 where the fusion coefficient β_0 balances the local structural prior $\mathcal{C}_{1 \times 1}$ and the global physical
 982 feedback Ψ , maintaining a trade-off between perceptual consistency and physical interpretability.
 983

984 Finally, a momentum mechanism is introduced to smooth the inversion trajectory, suppressing the
 985 propagation of unstable errors:

$$\mathbf{m}^{(k)} = \gamma \mathbf{m}^{(k-1)} + (1 - \gamma) \tilde{\mathbf{X}}^{(k)}, \quad (46)$$

$$\mathbf{I}^{(k)} = \mathbf{I}^{(k-1)} - \rho_k \mathbf{m}^{(k)}. \quad (47)$$

991 where γ controls the degree of historical momentum retention, and ρ_k is the learning rate at the k -th
 992 step. This optimization trajectory explicitly constructs a dynamic inversion framework capable of
 993 guiding the process with structural awareness and physical consistency.
 994

995 A.4 MAPPING FUNCTION DERIVATION PROCESS

997 To prevent redundancy in notation, we define the source set $\mathcal{S} = \{\text{prev}, \text{scr}\}$, where prev and scr
 998 represent the input features for the primary mapping network and the collaborative completion network,
 999 respectively. Define:

$$s(p) = \begin{cases} \text{prev}, & p = P, \\ \text{scr}, & p = R. \end{cases} \quad (48)$$

1004 Consequently, both input paths are unified under the notation $J_{s(p),c}^{(0)}(x, y)$. In the dual-path perturba-
 1005 tion dissipation feature extraction, the spatial diffusion path applies a second-order partial derivative
 1006 convolution diffusion to the input:
 1007

$$F_{A,p}^{(5,c)}(x, y) = \phi \left(\iint_{B_r} \kappa_{A,p}^{(5,c)}(\xi, \eta) \frac{\partial^2 J_{s(p),c}^{(0)}}{\partial x \partial y}(x - \xi, y - \eta) d\xi d\eta + b_{A,p}^{(5,c)} \right). \quad (49)$$

1012 This process simulates the local intensity gradient response of light waves encountering minute
 1013 structural variations. Concurrently, the semantic attenuation path constructs a stable global mapping
 1014 within the abstract space via a query-key-value mechanism:
 1015

$$A_p^{(5)}(x, x') = \frac{\exp \langle Q_p^{(5)}(x), K_p^{(5)}(x') \rangle}{\int_{\Omega_s} \exp \langle Q_p^{(5)}(x), K_p^{(5)}(u) \rangle du}, \quad (50)$$

$$F_{B,p}^{(5,c)}(x, y) = \phi \left(\int_{\Omega_s} A_p^{(5)}(x, x') V_p^{(5,c)}(x') dx' + b_{B,p}^{(5,c)} \right). \quad (51)$$

1023 This mapping establishes a collaborative response mechanism within the feature space for global
 1024 semantic structures. Stable activation of features and participation in subsequent computations oc-
 1025 curs only when regions satisfy contextual consistency and semantic coherence, thereby imposing
 constrained restoration for irreversible information loss.

1026 Subsequently, the outputs from both paths are concatenated along the channel dimension, and
 1027 Fourier transformed with low/high-frequency gated masks χ_{low} and $1 - \chi_{\text{low}}$ for separation:
 1028

$$\hat{F}^c(u, v) = \iint F_A^{(5,c)}(x, y) e^{-j2\pi(ux+vy)} dx dy, \quad (52)$$

$$\hat{F}_p^{(5,c)}(u, v) = \iint F_{\text{cat},p}^{(5,c)} e^{-j2\pi(ux+vy)} dx dy, \quad (53)$$

$$\hat{F}_{\text{low},p}^{(5,c)} = \chi_{\text{low}} \hat{F}_p^{(5,c)}, \quad \hat{F}_{\text{high},p}^{(5,c)} = (1 - \chi_{\text{low}}) \hat{F}_p^{(5,c)}, \quad (54)$$

$$F_{\text{low},p}^{(5,c)} = \mathcal{F}^{-1}[\hat{F}_{\text{low},p}^{(5,c)}], \quad F_{\text{high},p}^{(5,c)} = \mathcal{F}^{-1}[\hat{F}_{\text{high},p}^{(5,c)}]. \quad (55)$$

1029 The gradient integrals of low/high-frequency features yield the channel response s_p^c . This is then pro-
 1030 cessed through two fully connected layers with activation functions to obtain the attention weights
 1031 α_p^c , facilitating adaptive fusion of physical and semantic path features under attention guidance, pro-
 1032 ducing the final perturbation feature $\tilde{F}_p^{(5,c)}$. Based on this, the STM module computes the partial
 1033 derivative attention for each head h :

$$A_{h,p}(x, x') = \exp \langle \partial_x Q_{h,p}^{(5)}(x), K_{h,p}^{(5)}(x') \rangle + \langle Q_{h,p}^{(5)}(x), \partial_{x'} K_{h,p}^{(5)}(x') \rangle, \quad (56)$$

$$O_{h,p}^{(5,c)}(x, y) = \int_{\Omega_s} A_{h,p}(x, x') V_{h,p}^{(5,c)}(x') dx'. \quad (57)$$

1034 The outputs of all heads are concatenated and added to $\tilde{F}_p^{(5,c)}$ to obtain the fused feature at layer 5:
 1035

$$Z_p^{(5,c)}(x, y) = \text{Concat}_{h=1}^H(O_{h,p}^{(5,c)}(x, y)) + \tilde{F}_p^{(5,c)}(x, y), \quad V_p^{(5,c)}(x, y) = Z_p^{(5,c)}(x, y). \quad (58)$$

1036 This mechanism not only enhances the expressiveness of multi-scale perturbations but also ensures
 1037 edge clarity and semantic coherence.

A.5 DATASET DESCRIPTION

1038 In order to assess the efficacy of the proposed method, four datasets were utilized: ReSh-WebSight,
 1039 ReSh-Password, ReSh-Chart, and ReSh-Screen.

1040 **ReSh-WebSight:** As depicted in Figure 7, this is a publicly accessible large-scale synthetic English
 1041 webpage dataset. Each sample comprises HTML/CSS (v0.2 using Tailwind CSS) along with its
 1042 corresponding screenshot.

1043 **ReSh-Password:** As shown in Figure 8, this dataset consists of garbled characters and is designed to
 1044 simulate screen password entry scenarios, containing a total of 6800 images.

1045 **ReSh-Chart:** As illustrated in Figure 9, this dataset includes various types of charts (e.g., line graphs,
 1046 box plots, heatmaps), totaling 7000 images.

1047 **ReSh-Screen:** As shown in Figure 10, this dataset consists of computer interface screenshots, com-
 1048 prising 1272 images.

1049 Following a responsible disclosure strategy, our newly collected datasets and implementation will be
 1050 released publicly only after coordinating with relevant stakeholders and allowing time for practical
 1051 countermeasures to be assessed and, where appropriate, deployed.

1052 All datasets were partitioned using a random strategy, dividing the samples into training, validation,
 1053 and test sets at an 8:1:1 ratio.

Figure 7: The ReSh-WebSight dataset is displayed: the first row shows the projection, and the second row shows the ground truth (GT).

Figure 8: The ReSh-Password dataset is displayed: the first row shows the projection, and the second row shows the ground truth (GT).

A.6 EVALUATION METRICS

(1) Mean Squared Error (MSE)

Figure 9: The ReSh-Chart dataset is displayed: the first row shows the projection, and the second row shows the ground truth (GT).

Figure 10: The ReSh-Screen dataset is displayed: the first row shows the projection, and the second row shows the ground truth (GT).

1183
1184
1185
1186
1187

Mean Squared Error (MSE) serves as one of the fundamental metrics for image reconstruction and compression quality evaluation, directly quantifying the average squared difference between the reconstructed image \hat{I} and the reference image I in pixel space. It is defined as:

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

$$\text{MSE} = \frac{1}{HW} \sum_{i=1}^H \sum_{j=1}^W (I_{ij} - \hat{I}_{ij})^2. \quad (59)$$

where H and W represent the image height and width, and I_{ij} , \hat{I}_{ij} denote pixel values. A smaller MSE indicates a closer match between the reconstructed and original image. Although MSE is straightforward to compute and interpretable, it lacks sensitivity to human visual perception, particularly in terms of structural and textural discrepancies, thereby potentially failing to capture perceptual image quality accurately.

1198 (2) Root Mean Squared Error (RMSE)

1199 Root Mean Squared Error (RMSE), the square root of MSE, eliminates the dimensional change
1200 introduced by squaring and keeps the error measure consistent with pixel values, making it more
1201 intuitive for error interpretation. It is expressed as:

$$1204 \text{RMSE} = \sqrt{\frac{1}{HW} \sum_{i=1}^H \sum_{j=1}^W (I_{ij} - \hat{I}_{ij})^2}. \quad (60)$$

1207 RMSE approximates the average pixel deviation, offering better interpretability than MSE in many
1208 cases. However, like MSE, it fails to account for perceptual differences in image structure or texture.

1210 (3) Peak Signal-to-Noise Ratio (PSNR)

1211 PSNR is a classical image quality metric that measures the ratio of signal strength to noise strength
1212 in decibels (dB). It is defined as:

$$1215 \text{PSNR} = 10 \cdot \log_{10} \left(\frac{\text{MAX}^2}{\text{MSE}} \right). \quad (61)$$

1217 Where MAX denotes the maximum possible pixel value (255 for 8-bit images). Higher PSNR values
1218 imply less distortion, with values above 30 dB typically indicating high-quality images. Although
1219 PSNR is computationally simple and widely used in signal processing, it is based solely on pixel
1220 differences and does not fully reflect perceptual quality, particularly in terms of structural or textural
1221 changes.

1222 (4) Structural Similarity Index (SSIM)

1224 The Structural Similarity Index (SSIM) is specifically designed to assess image similarity based on
1225 human visual system characteristics, evaluating luminance, contrast, and structure. It is expressed
1226 as:

$$1228 \text{SSIM}(x, y) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}. \quad (62)$$

1231 where μ_x , μ_y are the local means, σ_x^2 , σ_y^2 are the local variances, and σ_{xy} is the covariance. C_1 and
1232 C_2 are constants to avoid division by zero. SSIM values range from 0 to 1, with higher values indicating
1233 better image quality. Unlike error-based metrics, SSIM aligns more closely with human visual
1234 perception and is widely used in image enhancement, super-resolution, and compression tasks.

1235 (5) Multi-Scale Structural Similarity Index (MS-SSIM)

1237 MS-SSIM is an enhancement of SSIM, calculated across multiple scales to capture structural information
1238 at various resolutions. It is defined as:

$$1240 \text{MS-SSIM}(x, y) = \prod_{j=1}^M [l_j(x, y)]^{\alpha_j} [c_j(x, y)]^{\beta_j} [s_j(x, y)]^{\gamma_j}. \quad (63)$$

Metric	Value
Params	789.9M
FLOPs	134.3G
Inference time	33.18 ms
Peak memory	3.20 GB

Table 5: Computational profile of IR⁴Net on an NVIDIA RTX 3090 for 256 × 256 inputs.

where l_j, c_j, s_j denote the luminance, contrast, and structural components at scale j , and $\alpha_j, \beta_j, \gamma_j$ are the corresponding weighting coefficients. MS-SSIM improves upon single-scale SSIM by incorporating structural fidelity across different scales, making it more suitable for tasks such as super-resolution and image compression quality assessment.

(6) Learned Perceptual Image Patch Similarity (LPIPS)

LPIPS is a deep feature-based perceptual quality metric, which compares multi-layer features extracted from pre-trained convolutional networks (e.g., AlexNet, VGG). It is defined as:

$$\text{LPIPS}(x, y) = \sum_l \frac{1}{H_l W_l} \sum_{h,w} \left\| w_l \odot \left(\hat{f}_l^x(h, w) - \hat{f}_l^y(h, w) \right) \right\|_2^2. \quad (64)$$

where \hat{f}_l^x, \hat{f}_l^y are the normalized feature maps at layer l , w_l is the learned channel weight, and \odot denotes element-wise multiplication. LPIPS captures perceptual differences at higher semantic levels, making it more aligned with human visual judgment than pixel-based metrics. However, it incurs higher computational costs and is more suitable for tasks involving image generation, style transfer, and super-resolution.

A.7 COMPUTATIONAL COST AND ATTACK PRACTICALITY

Table 5 summarizes the computational profile of IR⁴Net. On an NVIDIA RTX 3090, a 256 × 256 frame requires 134.3 GFLOPs, with 789.9M parameters, an average inference time of 33.18 ms, and a peak memory footprint of 3.20 GB. This corresponds to quasi real time throughput of about 30 FPS on a single commodity GPU.

In our threat model the attack is inherently offline: the adversary passively records wall projections during a target session and performs radiometric inversion after acquisition. From an operational perspective, simply capturing wall reflections with a commodity camera and reconstructing them minutes to hours later on a single GPU already provides substantial exfiltration value for passwords, documents, or screen content, and there is no need to react in real time during the target session.

At the same time, the present ~30 FPS throughput places IR⁴Net in the same regime as standard real time video analytics pipelines and can be parallelized across multiple GPUs or edge accelerators for multi stream processing, which makes on site real time capture and reconstruction practically competitive when continuous monitoring is desired. Standard engineering techniques, such as model compression (pruning, quantization, low rank attention), lightweight backbones and depthwise convolutions, resolution or region of interest decoding, and hardware specialization on multi GPU or edge accelerators, can further reduce FLOPs and memory while preserving accuracy. These directions suggest that, if needed, future variants of IR⁴Net could support continuous online monitoring with real time reconstruction, whereas the current configuration already suffices for practical offline optical side channel attacks.

A.8 SUPPLEMENTARY ABLATION STUDY

(1) Neural Substitution of PRIRR-Approximation

To assess the influence of momentum-driven iterative design on radiometric inversion, comparative experiments were conducted across three projection scenarios, namely ReSh Chart, ReSh Screen, and ReSh WebSight. In each case, the proposed PRIRR Approximation was replaced by three canon-

1296 ical neural constructs: an attention-based transformer (AST), a multi-layer convolutional variant
 1297 (ConvIR), and a residual network without physical modeling (DarkIR). The objective was to exam-
 1298 ine the effect of momentum-based updates under varying physical perturbation conditions.
 1299

1300 Table 6 reports metric-wise outcomes. PRIrr-Approximation exhibits consistently favorable stability
 1301 across evaluation criteria: in ReSh-Chart, PSNR exceeds ConvIR by approximately 15.1%, SSIM
 1302 by 14.5%; under ReSh-Screen, LPIPS falls by 10.2% and MSE by 7.8% relative to DarkIR; within
 1303 ReSh-WebSight, PSNR improves by 3.2% and SSIM by 3.3% compared with AST. These patterns
 1304 indicate that momentum-embedded structures yield a broadly consistent impact on reconstruction
 1305 quality across heterogeneous conditions.
 1306

1307 This behavior may derive from momentum acting as a smoothing regulator along the iterative tra-
 1308 jectory. Structure-aware initialization extracts stable directional cues through localized convolution,
 1309 while cumulative momentum integrates historical gradients across iterations, constraining updates
 1310 toward coherent evolution and mitigating oscillations induced by near-singular mappings. Con-
 1311 sequently, this history-guided scheme forms an inversion path that remains stable and physically
 1312 admissible, preserving convergence quality and robustness under multi-scale perturbations.
 1313

Dataset	Method	PSNR↑	MSE↓	RMSE↓	SSIM↑	MS-SSIM↑	LPIPS↓
Chart	Ours	17.363	1513.986	36.748	0.731	0.641	0.431
	DarkIR	16.960	1620.416	38.288	0.709	0.602	0.499
	ConvIR	15.093	2521.525	47.734	0.639	0.463	0.603
	AST	16.958	1630.693	38.285	0.709	0.599	0.499
Screen	Ours	25.812	451.633	16.531	0.817	0.845	0.216
	DarkIR	24.871	490.223	17.799	0.802	0.829	0.241
	ConvIR	24.803	510.053	17.989	0.800	0.826	0.242
	AST	24.697	507.025	18.050	0.792	0.824	0.237
WebSight	Ours	20.708	909.099	26.719	0.820	0.776	0.282
	DarkIR	20.162	1178.313	29.365	0.790	0.745	0.321
	ConvIR	18.259	2041.559	37.487	0.732	0.688	0.402
	AST	20.067	1147.702	29.316	0.794	0.752	0.311

1328 Table 6: Comparison of PRIrr-Approximation with AST, ConvIR, and DarkIR across three
 1329 ReSh projection scenarios. PRIrr-Approximation consistently achieves higher reconstruction sta-
 1330 bility and quality, attributed to momentum-guided updates that enhance convergence and suppress
 1331 perturbation-induced oscillations.
 1332

(2) Ablation on Key Components

1333 To evaluate the contribution of each major component, we perform a component-wise ablation in
 1334 which the semantic attenuation path, the spatial diffusion path, the frequency-selective upsampling
 1335 module, and the radiative transfer equation (RTE) embedding are removed one at a time while keep-
 1336 ing all other settings fixed. The quantitative results are summarized in Table 7. Removing the
 1337 semantic attenuation path, the spatial diffusion path, or the frequency-selective upsampling con-
 1338 sistently lowers PSNR and MS-SSIM and increases MSE/RMSE compared with the full IR⁴Net,
 1339 indicating that both spatial and semantic perturbation-dissipation, as well as frequency-selective
 1340 reconstruction, all make non-trivial contributions to the final reconstruction quality.
 1341

1342 Among the ablated variants, the model without RTE embedding shows relatively better numbers
 1343 than the other reduced configurations but still remains clearly inferior to the complete IR⁴Net across
 1344 all metrics in Table 7. This indicates that relying solely on learned modules leaves noticeable recon-
 1345 struction errors, whereas explicitly embedding the radiative transfer equation provides an additional
 1346 physics-based constraint that tightens the solution space and improves perceptual consistency. Over-
 1347 all, the fact that disabling any single component leads to systematic degradation demonstrates that
 1348 each module in IR⁴Net is effective rather than redundant; their complementary roles in spatial, se-
 1349 mantic, and frequency domains jointly support high-fidelity inversion and, as a by-product, endow
 1350 the full model with stable behaviour under noisy and distorted projection conditions.
 1351

Method	PSNR↑	MSE↓	RMSE↓	SSIM↑	MS-SSIM↑
w/o Semantic Attenuation Path	23.216	615.672	20.707	0.762	0.785
w/o Spatial Diffusion Path	23.328	613.050	20.581	0.756	0.782
w/o Frequency-Selective Upsampling	23.216	615.672	20.707	0.762	0.785
w/o RTE Embedding	24.853	503.245	17.961	0.798	0.824

Table 7: Ablation on key components of IR⁴Net. All values are reported with three decimal places.

(3) Effect of semantic similarity metric in ICSR.

To evaluate the influence of the similarity metric used in the ICSR module, we replace the cosine similarity loss with three alternatives: an MMD-based loss, an ℓ_2 loss, and a CLIP-based contrastive loss, while keeping all other settings unchanged. As shown in Table 8, substituting cosine similarity with any of these alternatives consistently degrades reconstruction quality: PSNR and SSIM decrease, whereas MSE and RMSE increase. The cosine-based formulation achieves the best performance across all metrics, indicating that normalizing feature directions in the shared semantic space yields a more stable alignment under projection-induced intensity fluctuations and camera-response nonlinearity. By emphasizing angular consistency rather than absolute magnitude, the cosine loss suppresses scale-dependent noise and better preserves global layout, which in turn enhances the effectiveness of semantic completion in ICSR and leads to superior reconstruction fidelity of IR⁴Net.

Loss	PSNR↑	MSE↓	RMSE↓	SSIM↑	MS-SSIM↑
MMD	21.196	841.671	25.713	0.706	0.690
L2	23.094	665.960	21.466	0.768	0.768
CLIP	22.463	738.117	22.861	0.749	0.749
Cosine (ours)	25.812	451.638	16.531	0.817	0.845

Table 8: Ablation of the semantic similarity loss in ICSR. All values are rounded to three decimal places. The cosine-based loss used in IR⁴Net achieves the best performance on all metrics.

A.9 ADDITIONAL RESULTS ON GEOMETRIC ROBUSTNESS TO CAMERA MOTION AND CAMERA DISTANCE

In this appendix, we report the full quantitative results and additional qualitative examples for the three geometric-robustness experiments discussed in Sec. 4.4. The corresponding qualitative visual results for orbital motion, in-place rotation, and camera–wall distance variation are shown in Fig. 11, Fig. 12, and Fig. 13, respectively.

Across all settings, visual inspection shows that the reconstructions produced by IR⁴Net remain sharp and structurally consistent as the camera pose and distance are perturbed, indicating that the method maintains stable performance under realistic geometric deviations. We attribute this stability to the physically regularized PRIRR-Approximation and the ICSR module, which jointly help to stabilize the inversion under geometric perturbations.

For each setting, we list all tested camera poses or distances and show that the quantitative trends are consistent with the analysis in the main paper, further confirming the robustness of IR⁴Net to orbital motion, camera rotation, and camera–wall distance variation. See Tables 9, 10, and 11 for the complete quantitative results.

A.10 RECONSTRUCTION PERFORMANCE ACROSS DIFFERENT MATERIALS

This experiment aims to assess the adaptability and robustness of the proposed model under varying wall surface materials. Four surface types were selected for evaluation: a Typical Matte White Wall Surface, a Diffuse Scattering Wallpaper Surface, a Contaminated Diffuse Scattering Wallpaper Surface, and a Rough Textured Wallpaper Surface. Reconstructions were performed under consistent projection and imaging conditions. The quantitative comparison of reconstruction quality on the three wallpaper surfaces is summarized in Table 12.

Figure 11: Qualitative reconstruction results for orbital camera motion. Each group shows reconstructions at different viewpoints along the horizontal and vertical orbital arcs around the projection wall. IR⁴Net produces stable, high-fidelity reconstructions across large viewpoint changes, preserving fine structures and textures compared with competing methods.

Figure 12: Qualitative reconstruction results for in-place camera rotation. We vary pitch, yaw, and roll while keeping the camera center fixed. IR⁴Net maintains coherent geometry and sharp details even at larger rotations, whereas competing methods exhibit blur and structural distortions.

As illustrated in Figure 14, the model successfully reconstructs images containing complete object contours and key semantic structures, even under conditions of surface contamination and high roughness. However, some degradation in texture fidelity is observed in detail areas. These results, together with the metrics in Table 12, indicate that the proposed method maintains high structural consistency across different reflection and scattering patterns.

This performance may be attributed to the physical consistency constraints embedded within the inversion network, coupled with a frequency-selective upsampling mechanism. The former confines unreasonable light transmission paths during the iterative process, thereby reducing instability induced by surface scattering discrepancies. The latter, through cross-scale filtering, ensures the prioritization of low-frequency structural recovery, thereby mitigating the impact of surface feature variations on the overall reconstruction accuracy.

Figure 13: Qualitative reconstruction results for camera–wall distance variation , where the camera is translated along the optical axis to different stand-off distances. IR⁴Net remains robust to irradiance decay and speckle-scale changes, delivering consistently sharper and more faithful reconstructions than competing baselines.

A.11 IMAGE CROPPING EXPERIMENT

The purpose of this experiment is to evaluate the model’s reconstruction performance on images with varying cropped regions, further assessing the efficacy of the frequency-selective upsampling mechanism. Specifically, the projection image is divided into four subregions—top-left, top-right, bottom-left, and bottom-right—using a sliding window technique, while the remaining portion is filled with a gray tone. This approach generates different occlusion configurations to measure the impact of spatial occlusions on model performance.

As indicated in Table 13, the metric comparison demonstrates that the top-left and bottom-left regions consistently exhibit better performance than the top-right and bottom-right regions across different image categories, with average improvements of approximately 29% in Structural Similarity Index (SSIM) and 45% in Multi-Scale SSIM (MS-SSIM). Figure 15 further reveals that reconstructions in the top-left and bottom-left regions preserve richer structural details and texture information. The model is more responsive to occlusion edges in these areas, resulting in fewer blurring and misalignment artifacts.

This observation may be attributed to the multi-scale diffraction interference caused by the occlusion edges, which enhances local frequency activation and triggers the model’s internal frequency

Folder	PSNR	MSE	RMSE	SSIM	MS_SSIM	LPIPS	FID
(0,10)	23.986	590.062	19.902	0.780	0.800	0.242	1.019
(0,15)	22.814	695.304	22.279	0.749	0.770	0.263	0.953
(0,5)	25.046	503.330	17.849	0.801	0.825	0.226	1.047
(0,-10)	23.569	635.564	20.883	0.776	0.797	0.248	0.995
(0,-15)	22.041	849.148	24.672	0.739	0.760	0.275	0.921
(0,-5)	25.267	487.669	17.492	0.807	0.831	0.224	0.997
(10,0)	22.901	782.948	23.106	0.740	0.764	0.263	0.899
(15,0)	21.275	1131.048	28.117	0.705	0.722	0.294	0.986
(5,0)	24.747	548.359	18.683	0.788	0.811	0.234	0.868
(-10,0)	19.627	1512.673	33.280	0.688	0.696	0.311	1.070
(-5,0)	24.181	598.554	19.745	0.785	0.804	0.238	1.209

Table 9: Full quantitative results for orbital camera motion around the projection wall. Each folder corresponds to a different horizontal/vertical viewing angle, and we report standard image-quality and perceptual metrics.

Pose (pitch, yaw, roll)	PSNR	MSE	RMSE	SSIM	MS_SSIM	LPIPS	FID
(0, 0, 0)	25.812	451.638	16.531	0.817	0.845	0.216	0.967
(2, 0, 0)	25.586	465.145	16.906	0.814	0.840	0.219	0.995
(0, 2, 0)	25.579	465.408	16.914	0.814	0.840	0.219	0.999
(2, 2, 1)	25.419	487.936	17.334	0.811	0.836	0.221	0.988
(-2, -2, -1)	24.110	577.852	19.607	0.787	0.804	0.239	1.156
(5, 0, 0)	25.555	467.690	16.972	0.813	0.840	0.219	1.017
(0, 5, 0)	25.549	467.738	16.966	0.814	0.839	0.219	1.000
(5, 3, 2)	24.508	561.343	19.052	0.793	0.812	0.234	1.057
(5, -3, -2)	22.614	782.510	23.389	0.757	0.766	0.263	1.116
(-5, -3, 2)	24.508	561.343	19.052	0.793	0.812	0.234	1.057
(8, 0, 3)	22.660	765.554	23.206	0.748	0.761	0.264	1.067
(0, 8, 3)	22.714	761.648	23.090	0.749	0.763	0.263	1.069
(8, 5, 4)	21.470	1007.554	26.663	0.719	0.727	0.285	0.996
(-8, 0, -3)	20.804	1182.950	29.140	0.714	0.720	0.294	1.014
(0, -8, -3)	20.191	1368.477	31.398	0.704	0.707	0.303	1.008
(10, 0, 3)	22.550	785.126	23.512	0.747	0.759	0.265	1.051
(0, 10, 3)	22.568	793.119	23.562	0.747	0.760	0.265	1.051
(10, 5, 4)	21.489	1007.169	26.639	0.720	0.728	0.285	0.993
(-10, 0, -3)	20.992	1126.537	28.434	0.717	0.725	0.291	1.018
(0, -10, -3)	19.906	1455.199	32.426	0.697	0.700	0.308	1.006

Table 10: Full quantitative results for in-place camera rotation with different combinations of pitch, yaw, and roll. The table lists reconstruction quality and perceptual metrics under each angular perturbation.

upsampling mechanism. Feature heatmaps in Figure 15 show that the network more frequently captures fine-grained diffraction patterns in the top-left and bottom-left regions. This suggests that the frequency domain separation mechanism and physical regularization paths embedded in the design are effectively activated, aiding in the information recovery process.

A.12 SUPPLEMENTARY LUMINANCE EXPERIMENT

As shown in Table 14 - 19, with decreasing luminance, certain methods suffer from abrupt performance degradation across multiple datasets. For instance, **UNet** on the *ReSh-Screen* dataset experiences a drop of 69%, while **CIDNet** on *ReSh-WebSight* decreases by 58.6%. In contrast, the proposed method only exhibits reductions of 25.9% and 31.9% under the same conditions, respectively. Furthermore, on the *ReSh-Password* dataset, **C2PNet** shows a substantial decline from 11.2 to 2.82, amounting to a decrease of over 74%, whereas our method only drops by 19.3%.

1566	Distance (m)	PSNR	MSE	RMSE	SSIM	MS.SSIM	LPIPS	FID
1567	3	25.791	451.804	16.557	0.816	0.844	0.217	0.967
1568	4	25.764	454.569	16.618	0.816	0.843	0.217	0.975
1569	5	25.690	456.944	16.692	0.815	0.841	0.218	0.980
1570	6	25.541	463.673	16.902	0.813	0.839	0.219	0.990
1571								

1572 Table 11: Full quantitative results for different camera–wall distances. For each stand-off distance,
 1573 standard reconstruction and perceptual metrics are reported.
 1574

1575	Wallpaper Type	PSNR	MSE	RMSE	SSIM	MS.SSIM	FID
1576	Rough Textured Wallpaper	20.192	1189.661	30.030	0.658	0.668	1.292
1577	Diffuse Scattering Wallpaper	20.316	964.582	27.973	0.680	0.664	3.633
1578	Contaminated Diffuse Scattering Wallpaper	20.084	1021.363	28.781	0.667	0.652	3.514
1579							

1580 Table 12: Quantitative reconstruction performance under different wallpaper surfaces.
 1581

1582
 1583 As depicted in Figure 16 - 19, when luminance falls , most models produce images with misaligned
 1584 structures and blurred contours. In contrast, the proposed method maintains stable textures and
 1585 consistent edge definition under the same low-luminance conditions.
 1586

1587 The results indicate that the robustness of this architecture arises from three key components: (i)
 1588 physical constraints that limit the propagation of disturbances, (ii) frequency-selective upsampling
 1589 that enhances cross-scale consistency, and (iii) the semantic stability module that replenishes lost
 1590 information. In contrast to traditional methods that tend to accumulate errors and experience struc-
 1591 tural degradation under low luminance, the proposed method suppresses perturbations through phys-
 1592 ical modeling, controls non-structural amplification in the frequency domain, and utilizes semantic
 1593 consistency to restore missing regions, thereby achieving texture preservation and feature stability,
 1594 significantly mitigating performance decline.
 1595

1596 A.13 SUPPLEMENTARY NOISE EXPERIMENTS

1597 The objective of this experiment is to evaluate the robustness of the proposed method in the con-
 1598 text of image inversion under diverse noise conditions. The experiments are conducted across four
 1599 datasets, with the application of five types of Gaussian noise and five types of salt-and-pepper noise.
 1600 Comparisons are made against four baseline models as well as the proposed Physically-Regularized
 1601 Inversion Network. The evaluation metrics include PSNR, SSIM, LPIPS, and MS-SSIM, which
 1602 comprehensively assess structural fidelity, perceptual quality, and noise suppression performance.
 1603 As depicted in Figures 20- 23 it is evident that the proposed method consistently outperforms the
 1604 alternatives across various noise levels in most scenarios.
 1605

1606 As shown in Table 20 - 24, the proposed method maintains a leading performance in both PSNR
 1607 and SSIM. For instance, in the Gaussian noise scenario at 20 dB on the *ReSh-Screen* dataset, the
 1608 PSNR improves by approximately 20%–30% compared to the second-best baseline, while SSIM
 1609 increases by over 10%, accompanied by a significant reduction in LPIPS. This trend is similarly
 1610 observed in the salt-and-pepper noise tests, indicating the method’s stability in recovering structures
 1611 even under destructive noise conditions. Overall, the results suggest that the proposed approach
 1612 achieves superior reconstruction quality across various noise types and intensities.
 1613

1614 The observed performance gains are likely attributable to the integration of physical consistency
 1615 constraints and a frequency-selective feature fusion mechanism within the network architecture. On
 1616 the one hand, the inversion path incorporating the optical propagation model effectively mitigates
 1617 noise amplification, steering the estimation process toward physically plausible directions. On the
 1618 other hand, the dual-path disturbance decoupling and frequency-domain gating strategy attenuate
 1619 high-frequency noise components while maintaining the cross-scale consistency of low-frequency
 semantic features. These combined design elements likely explain the method’s ability to maintain
 stable recovery under multiple noise scenarios.

Figure 14: Reconstruction results under different wall surface materials: (a) Typical Matte White Wall; (b) Diffuse Scattering Wallpaper; (c) Contaminated Diffuse Scattering Wallpaper; (d) Rough Textured Wallpaper. All experiments were conducted under consistent projection and imaging conditions.

Dataset	Region	SSIM↑	PSNR↑	MSE↓	RMSE↓	LPIPS↓	MS-SSIM↑
Chart	Top-Left	0.621	15.044	2362.987	46.877	0.502	0.472
	Top-Right	0.389	10.054	6604.782	80.704	0.629	0.124
	Bottom-Left	0.637	15.026	2285.840	46.487	0.501	0.484
	Bottom-Right	0.406	10.515	5959.803	76.586	0.619	0.135
Password	Top-Left	0.801	11.305	4877.204	69.613	0.235	0.743
	Top-Right	0.749	9.896	6702.749	81.742	0.302	0.630
	Bottom-Left	0.847	13.179	3219.007	56.338	0.215	0.825
	Bottom-Right	0.769	10.110	6369.445	79.715	0.255	0.677
Screen	Top-Left	0.614	17.732	1793.367	38.514	0.379	0.606
	Top-Right	0.365	11.597	7093.265	77.646	0.600	0.278
	Bottom-Left	0.684	19.727	1075.403	29.778	0.320	0.688
	Bottom-Right	0.374	12.037	6352.646	73.519	0.591	0.295
WebSight	Top-Left	0.624	14.975	2631.137	48.225	0.496	0.452
	Top-Right	0.523	11.101	5765.094	73.468	0.582	0.309
	Bottom-Left	0.667	13.757	3504.527	55.736	0.439	0.531
	Bottom-Right	0.524	12.221	5039.852	66.680	0.566	0.349

Table 13: Ablation results of quadrant-wise occlusion across four datasets. The top-right and bottom-right occlusions consistently lead to better reconstruction quality, as reflected in higher SSIM and lower LPIPS, indicating that the left-side regions are more critical for structure-preserving inversion. Occluding left-side regions, especially top-left, causes more severe degradation in perceptual and structural metrics.

A.14 VIDEO-BASED DYNAMIC IRRADIANCE RECONSTRUCTION EVALUATION

To assess the model’s capacity to preserve temporal irradiance consistency and detail integrity under realistic human–computer interaction patterns, we construct a test sequence comprising common window operations within the Windows OS interface—namely, window switching, interface scrolling, and dialog box invocation. These user-driven events naturally induce dynamic irradiance modulations, encompassing localized brightness fluctuations, shadow transitions, and specular variations, thereby emulating realistic projection-induced perturbations in temporal irradiance fields.

1674	1675	1676	1677	Dataset	Brightness reduced (nits)	SSIM↑	PSNR↑	MSE↓	RMSE↓	LPIPS↓	MS-SSIM↑
1678		ReSh-Chart	25	0.727	17.259	1544.880	37.155	0.435	0.634		
1679			50	0.725	17.201	1562.124	37.378	0.436	0.630		
1680			75	0.725	17.193	1570.321	37.451	0.436	0.631		
1681			100	0.724	17.187	1572.670	37.482	0.436	0.630		
1682			125	0.722	17.134	1588.369	37.687	0.437	0.630		
1683			150	0.718	17.066	1615.228	37.994	0.440	0.626		
1684			175	0.712	16.958	1650.673	38.438	0.445	0.619		
1685			200	0.704	16.804	1709.271	39.124	0.450	0.610		
1686			225	0.686	16.480	1830.240	40.551	0.464	0.586		
1687			250	0.661	15.991	2023.473	42.763	0.481	0.550		
1688			275	0.606	14.954	2472.827	47.676	0.516	0.461		
1689			300	0.542	13.712	3162.928	54.383	0.554	0.365		
1690		ReSh-Password	25	0.880	14.586	2388.873	48.242	0.128	0.885		
1691			50	0.864	13.680	2909.675	53.385	0.150	0.857		
1692			75	0.857	13.345	3145.904	55.500	0.158	0.846		
1693			100	0.853	13.159	3272.432	56.650	0.164	0.839		
1694			125	0.850	12.969	3400.880	57.820	0.168	0.833		
1695			150	0.846	12.796	3534.532	58.966	0.174	0.827		
1696			175	0.842	12.622	3671.877	60.129	0.179	0.820		
1697			200	0.841	12.567	3716.191	60.499	0.179	0.819		
1698			225	0.837	12.371	3877.600	61.836	0.185	0.811		
1699			250	0.836	12.335	3909.543	62.090	0.187	0.809		
1700			275	0.833	12.212	4011.323	62.932	0.192	0.802		
1701			300	0.830	12.127	4091.547	63.556	0.198	0.797		
1702		ReSh-Screen	25	0.816	25.726	453.701	16.653	0.219	0.842		
1703			50	0.814	25.702	451.119	16.658	0.219	0.841		
1704			75	0.812	25.634	450.689	16.727	0.220	0.840		
1705			100	0.810	25.533	453.817	16.841	0.222	0.837		
1706			125	0.806	25.288	463.534	17.181	0.226	0.832		
1707			150	0.800	24.990	478.884	17.628	0.231	0.825		
1708			175	0.790	24.537	509.553	18.388	0.238	0.814		
1709			200	0.777	24.016	553.675	19.352	0.247	0.800		
1710			225	0.757	23.220	635.812	21.025	0.262	0.779		
1711			250	0.731	22.306	767.505	23.326	0.282	0.752		
1712			275	0.691	20.983	1043.217	27.348	0.310	0.713		
1713			300	0.641	19.136	1804.186	35.266	0.350	0.667		
1714		ReSh-Websight	25	0.815	20.050	1065.026	28.849	0.302	0.764		
1715			50	0.813	20.142	1051.119	28.615	0.304	0.764		
1716			75	0.812	20.134	1048.181	28.600	0.305	0.763		
1717			100	0.810	20.062	1065.397	28.839	0.306	0.762		
1718			125	0.806	19.925	1094.066	29.250	0.308	0.758		
1719			150	0.798	19.595	1155.733	30.211	0.313	0.751		
1720			175	0.794	19.483	1186.217	30.604	0.317	0.746		
1721			200	0.773	18.747	1343.429	32.911	0.334	0.724		
1722			225	0.746	18.029	1504.957	35.211	0.366	0.691		
1723			250	0.714	17.049	1747.104	38.628	0.404	0.655		
1724			275	0.690	15.950	2090.561	43.037	0.430	0.629		
1725			300	0.663	14.108	2949.844	52.241	0.449	0.600		

Table 14: Performance of our model(IR⁴Net) under varying brightness reduction levels across different datasets. The values on the left indicate the amount of brightness reduced (in nits). Higher SSIM, PSNR, and MS-SSIM and lower MSE, RMSE, and LPIPS represent better quality.

1727

1728

1729

1730

Dataset	Brightness Reduction (nits)	SSIM↑	PSNR↑	MSE↓	RMSE↓	LPIPS↓	MS-SSIM↑
chart	25	0.648	15.196	2538.976	47.548	0.594	0.456
	50	0.611	14.752	2901.607	50.482	0.606	0.406
	75	0.553	13.816	3512.275	55.756	0.629	0.314
	100	0.476	12.196	4622.488	65.367	0.662	0.201
	125	0.410	10.152	6564.463	80.124	0.691	0.133
	150	0.392	9.495	7565.657	86.229	0.700	0.127
	175	0.389	9.105	8272.198	90.182	0.708	0.131
	200	0.384	8.756	8966.084	93.889	0.712	0.133
	225	0.381	8.369	9808.027	98.194	0.716	0.134
	250	0.375	7.897	10939.179	103.712	0.716	0.141
password	275	0.370	7.283	12652.558	111.464	0.723	0.153
	300	0.359	6.805	14241.234	118.054	0.730	0.157
	25	0.751	10.118	6352.994	79.630	0.364	0.614
	50	0.684	8.814	8576.730	92.524	0.436	0.461
	75	0.589	7.520	11563.799	107.413	0.528	0.295
	100	0.535	6.832	13561.278	116.295	0.569	0.246
	125	0.491	6.060	16180.022	127.066	0.610	0.165
	150	0.423	5.449	18581.314	136.241	0.642	0.100
	175	0.372	5.032	20449.292	142.938	0.666	0.081
	200	0.312	4.837	21369.060	146.149	0.709	0.073
screen	225	0.239	4.426	23509.117	153.256	0.734	0.048
	250	0.186	3.632	28249.950	167.967	0.731	0.030
	275	0.165	2.871	33594.730	183.263	0.729	0.035
	300	0.151	2.823	33954.049	184.254	0.742	0.061
	25	0.536	15.913	2726.712	47.457	0.521	0.474
	50	0.502	14.951	3661.368	54.182	0.546	0.430
	75	0.463	13.452	5886.223	66.939	0.575	0.374
	100	0.433	12.311	7786.670	76.863	0.598	0.340
	125	0.417	11.520	8912.763	83.150	0.616	0.320
websight	150	0.414	11.195	9137.827	85.224	0.625	0.318
	175	0.410	10.948	9255.518	86.737	0.630	0.320
	200	0.403	10.542	9749.742	90.004	0.640	0.317
	225	0.397	10.039	10738.375	95.089	0.652	0.321
	250	0.389	9.666	11653.274	99.311	0.660	0.319
	275	0.385	9.370	12583.531	103.077	0.667	0.324
	300	0.384	9.144	13365.562	106.060	0.671	0.336
	25	0.762	15.500	3897.519	52.999	0.436	0.591
	50	0.751	15.058	4173.101	55.312	0.445	0.583
	75	0.736	14.356	4806.018	59.771	0.457	0.573
1778	100	0.713	13.342	5888.361	66.785	0.474	0.557
	125	0.682	11.925	7562.463	77.095	0.499	0.536
	150	0.643	10.126	9957.350	91.080	0.528	0.515
	175	0.597	8.252	12982.224	107.414	0.560	0.499
	200	0.550	6.699	16394.340	123.773	0.591	0.488
	225	0.503	5.569	20038.779	138.662	0.616	0.488
	250	0.463	4.868	23097.679	149.561	0.631	0.492
	275	0.424	4.321	25990.787	158.970	0.642	0.499
	300	0.391	3.937	28323.736	166.064	0.647	0.504
	300	0.391	3.937	28323.736	166.064	0.647	0.504

Table 15: Performance of C2PNet model under varying brightness reduction levels across different datasets. The values in the left column represent the amount of brightness reduced (in nits). Higher SSIM, PSNR, and MS-SSIM, and lower MSE, RMSE, and LPIPS indicate better visual quality.

1780

1781

1782	Dataset	Brightness Reduction (nits)	SSIM↑	PSNR↑	MSE↓	RMSE↓	LPIPS↓	MS-SSIM↑
1783	chart	25	0.688	15.662	2298.720	45.111	0.536	0.525
1784		50	0.686	15.601	2329.272	45.422	0.535	0.522
1785		75	0.682	15.516	2375.274	45.875	0.536	0.517
1786		100	0.675	15.360	2450.391	46.656	0.539	0.506
1787		125	0.662	15.084	2589.863	48.073	0.544	0.485
1788		150	0.644	14.649	2814.312	50.305	0.554	0.453
1789		175	0.621	14.060	3121.791	53.340	0.567	0.412
1790		200	0.591	13.338	3542.436	57.307	0.581	0.357
1791		225	0.552	12.462	4137.767	62.577	0.600	0.287
1792		250	0.517	11.675	4774.064	67.808	0.615	0.232
1793	password	275	0.490	10.984	5440.248	72.874	0.629	0.194
1794		300	0.473	10.543	5948.814	76.437	0.640	0.174
1795		25	0.850	12.650	3611.269	59.772	0.193	0.813
1796		50	0.846	12.433	3796.162	61.283	0.197	0.804
1797		75	0.843	12.329	3887.131	62.017	0.199	0.800
1798		100	0.844	12.383	3836.463	61.623	0.203	0.800
1799		125	0.841	12.227	3976.559	62.738	0.209	0.793
1800		150	0.832	11.877	4307.986	65.311	0.224	0.776
1801		175	0.823	11.622	4576.196	67.286	0.237	0.761
1802		200	0.808	11.160	5080.836	70.927	0.266	0.732
1803	screen	225	0.786	10.529	5864.582	76.236	0.296	0.695
1804		250	0.764	9.952	6671.487	81.388	0.325	0.658
1805		275	0.730	9.181	7950.280	88.894	0.361	0.604
1806		300	0.696	8.466	9338.889	96.429	0.400	0.549
1807		25	0.701	20.808	1052.193	27.296	0.380	0.683
1808		50	0.684	20.337	1149.735	28.830	0.392	0.664
1809		75	0.654	19.366	1400.857	32.230	0.411	0.627
1810		100	0.616	18.118	1823.141	37.282	0.437	0.580
1811		125	0.567	16.576	2582.688	44.834	0.473	0.522
1812		150	0.521	15.131	3590.042	53.192	0.505	0.467
1813	websight	175	0.480	13.853	4775.349	61.686	0.534	0.420
1814		200	0.445	12.791	6108.109	69.960	0.560	0.381
1815		225	0.415	11.739	7860.197	79.504	0.587	0.344
1816		250	0.394	10.913	9647.824	88.081	0.608	0.322
1817		275	0.381	10.192	11570.630	96.381	0.627	0.311
1818		300	0.379	9.745	12831.590	101.587	0.641	0.320
1819		25	0.661	8.574	9515.409	96.525	0.570	0.427
1820		50	0.664	8.903	8814.484	92.867	0.573	0.421
1821		75	0.653	8.314	10054.489	99.327	0.582	0.435
1822		100	0.657	8.296	10093.491	99.532	0.577	0.436
1823	websight	125	0.640	7.691	11643.784	106.882	0.582	0.447
1824		150	0.629	7.301	12772.741	111.904	0.583	0.457
1825		175	0.615	7.001	13744.349	116.006	0.584	0.455
1826		200	0.579	6.196	16627.105	127.521	0.596	0.472
1827		225	0.625	7.253	12916.477	112.528	0.588	0.465
1828		250	0.611	6.874	14157.671	117.735	0.586	0.464
1829		275	0.571	6.067	17127.085	129.420	0.599	0.473
1830		300	0.645	7.924	11049.247	104.073	0.578	0.442

Table 16: Performance of HVI-CIDNet model under varying brightness reduction levels across different datasets. The values in the left column indicate the amount of brightness reduced (in nits). Higher SSIM, PSNR, and MS-SSIM and lower MSE, RMSE, and LPIPS indicate better visual quality.

1836	1837	1838	Dataset	Brightness Reduction (nits)	SSIM↑	PSNR↑	MSE↓	RMSE↓	LPIPS↓	MS-SSIM↑
1839	chart	25	0.705	16.601	1762.022	39.926	0.526	0.574		
1840		50	0.699	16.421	1831.477	40.729	0.525	0.570		
1841		75	0.691	16.183	1943.446	41.917	0.536	0.550		
1842		100	0.675	15.809	2126.285	43.813	0.552	0.522		
1843		125	0.635	15.130	2462.232	47.286	0.567	0.472		
1844		150	0.549	13.046	3493.387	57.960	0.604	0.344		
1845		175	0.492	11.733	4550.248	66.785	0.633	0.264		
1846		200	0.471	11.253	5047.724	70.460	0.645	0.236		
1847		225	0.462	10.877	5497.519	73.554	0.654	0.223		
1848		250	0.451	10.324	6248.731	78.411	0.664	0.212		
1849	password	275	0.443	9.537	7505.830	85.916	0.675	0.203		
1850		300	0.436	8.843	8841.484	93.186	0.689	0.198		
1851		25	0.849	13.422	3038.232	54.759	0.187	0.834		
1852		50	0.845	13.136	3239.782	56.568	0.194	0.825		
1853		75	0.842	12.952	3380.108	57.781	0.198	0.820		
1854		100	0.839	12.734	3526.131	59.126	0.205	0.816		
1855		125	0.833	12.432	3764.814	61.154	0.216	0.807		
1856		150	0.822	12.049	4106.705	63.892	0.230	0.786		
1857		175	0.803	11.590	4544.990	67.285	0.253	0.758		
1858		200	0.779	11.037	5145.557	71.648	0.283	0.719		
1859	screen	225	0.756	10.474	5852.138	76.426	0.315	0.688		
1860		250	0.739	10.026	6488.705	80.474	0.336	0.673		
1861		275	0.728	9.728	6953.603	83.298	0.348	0.669		
1862		300	0.722	9.501	7325.570	85.498	0.358	0.670		
1863		25	0.728	21.824	786.760	24.137	0.354	0.718		
1864		50	0.721	21.480	826.035	24.909	0.359	0.711		
1865		75	0.699	20.601	989.336	27.535	0.374	0.689		
1866		100	0.671	19.223	1364.980	32.575	0.401	0.651		
1867		125	0.636	17.698	2050.895	39.810	0.436	0.608		
1868		150	0.601	16.215	3052.722	48.381	0.468	0.569		
1869	websight	175	0.570	14.885	4357.889	57.576	0.500	0.536		
1870		200	0.543	13.662	6016.988	67.405	0.528	0.508		
1871		225	0.516	12.537	7943.358	77.409	0.553	0.486		
1872		250	0.492	11.707	9622.782	85.364	0.571	0.472		
1873		275	0.469	10.991	11226.232	92.501	0.585	0.462		
1874		300	0.449	10.435	12495.862	97.994	0.595	0.455		
1875		25	0.796	19.667	1219.075	30.491	0.329	0.748		
1876		50	0.791	18.957	1297.736	32.081	0.336	0.741		
1877		75	0.785	17.889	1486.076	35.249	0.345	0.733		
1878		100	0.775	16.347	1890.953	40.976	0.357	0.721		
1879	websight	125	0.637	17.698	2050.895	39.810	0.436	0.608		
1880		150	0.740	12.632	3966.833	61.330	0.395	0.687		
1881		175	0.570	14.885	4357.889	57.576	0.500	0.536		
1882		200	0.682	9.405	8163.928	88.666	0.442	0.656		
1883		225	0.645	8.104	11025.751	103.115	0.466	0.646		
1884		250	0.609	7.151	13782.521	115.249	0.488	0.638		
1885		275	0.469	10.991	11226.232	92.501	0.585	0.462		
1886		300	0.541	5.842	18674.280	134.159	0.530	0.621		

Table 17: Performance of our ConvIR under varying brightness reduction levels across different datasets. The values in the left column represent the amount of brightness reduced (in nits). Higher SSIM, PSNR, and MS-SSIM and lower MSE, RMSE, and LPIPS indicate better visual quality.

1890	Dataset	Brightness Reduction (nits)	SSIM↑	PSNR↑	MSE↓	RMSE↓	LPIPS↓	MS-SSIM↑
1891	chart	25	0.697	16.550	1821.971	40.350	0.489	0.576
1892		50	0.678	16.044	2010.286	42.574	0.503	0.546
1893		75	0.653	15.441	2286.395	45.526	0.521	0.506
1894		100	0.622	14.692	2692.348	49.479	0.542	0.456
1895		125	0.569	13.497	3448.897	56.325	0.568	0.386
1896		150	0.483	11.571	5069.740	69.262	0.612	0.275
1897		175	0.392	9.406	7882.010	87.622	0.659	0.166
1898		200	0.362	8.329	10083.420	99.197	0.685	0.138
1899		225	0.347	7.867	11192.537	104.568	0.697	0.123
1900		250	0.337	7.628	11772.978	107.367	0.704	0.116
1901	password	275	0.329	7.374	12472.405	110.540	0.706	0.111
1902		300	0.325	7.077	13415.085	114.532	0.705	0.109
1903		25	0.842	13.053	3314.844	57.168	0.179	0.824
1904		50	0.834	12.651	3627.064	59.838	0.187	0.806
1905		75	0.834	12.730	3564.317	59.306	0.186	0.811
1906		100	0.829	12.514	3729.618	60.730	0.192	0.802
1907		125	0.820	12.165	4032.859	63.182	0.199	0.788
1908		150	0.809	11.818	4351.762	65.695	0.207	0.773
1909		175	0.792	11.244	4961.238	70.163	0.222	0.741
1910		200	0.776	10.747	5554.808	74.268	0.237	0.715
1911	screen	225	0.759	10.281	6165.694	78.301	0.252	0.686
1912		250	0.747	10.027	6527.133	80.593	0.261	0.670
1913		275	0.693	9.283	7738.470	87.774	0.341	0.585
1914		300	0.648	8.635	8932.544	94.439	0.385	0.527
1915		25	0.698	21.360	903.737	25.729	0.352	0.703
1916		50	0.678	20.660	997.602	27.556	0.361	0.685
1917		75	0.637	19.288	1322.155	32.283	0.384	0.642
1918		100	0.577	17.423	2026.182	40.377	0.421	0.573
1919		125	0.511	15.355	3299.462	51.885	0.469	0.492
1920		150	0.467	13.672	4911.837	63.491	0.511	0.429
1921	websight	175	0.438	12.481	6502.774	73.155	0.549	0.387
1922		200	0.412	11.491	8205.150	82.303	0.577	0.354
1923		225	0.393	10.614	9949.519	90.878	0.599	0.332
1924		250	0.383	10.077	11180.983	96.505	0.614	0.319
1925		275	0.379	9.686	12156.798	100.737	0.626	0.315
1926		300	0.378	9.424	12810.155	103.526	0.637	0.325
1927		25	0.154	5.414	19568.754	138.729	0.818	0.382
1928		50	0.102	6.789	14199.959	118.251	0.739	0.390
1929		75	0.085	5.868	17809.940	132.014	0.825	0.410
1930		100	0.117	4.735	23413.799	151.120	0.751	0.432
1931	websight	125	0.165	6.456	15524.627	123.371	0.727	0.398
1932		150	0.246	7.249	12871.406	112.405	0.675	0.397
1933		175	0.255	6.030	16908.888	128.927	0.662	0.460
1934		200	0.094	7.147	13087.513	113.473	0.676	0.368
1935		225	0.182	6.794	14243.713	118.289	0.702	0.422
1936		250	0.252	6.665	14682.275	120.069	0.718	0.433
1937		275	0.107	6.336	15799.116	124.619	0.656	0.415
1938		300	0.232	7.306	12615.531	111.383	0.646	0.437
1939								

Table 18: Performance of DarkIR model under varying brightness reduction levels across different datasets. The values in the left column represent the amount of brightness reduced (in nits). Higher SSIM, PSNR, and MS-SSIM and lower MSE, RMSE, and LPIPS indicate better visual quality.

1944	Dataset	Brightness Reduction (nits)	SSIM↑	PSNR↑	MSE↓	RMSE↓	LPIPS↓	MS-SSIM↑
1945	chart	25	0.130	1.682	44923.767	211.063	0.840	0.287
1946		50	0.056	1.200	50139.276	223.041	0.852	0.253
1947		75	0.034	1.035	52072.622	227.307	0.867	0.225
1948		100	0.041	1.129	50963.553	224.872	0.864	0.244
1949		125	0.069	1.262	49451.318	221.486	0.870	0.259
1950		150	0.022	0.988	52629.401	228.528	0.865	0.212
1951		175	0.058	1.222	49884.200	222.478	0.856	0.256
1952		200	0.085	1.377	48153.784	218.558	0.889	0.269
1953		225	0.011	0.913	53539.982	230.503	0.876	0.110
1954		250	0.071	1.263	49445.035	221.468	0.876	0.259
1955	password	275	0.029	1.007	52412.011	228.047	0.872	0.217
1956		300	0.011	0.913	53539.982	230.503	0.876	0.110
1957		25	0.097	1.054	51025.639	225.871	0.758	0.349
1958		50	0.127	1.226	49046.130	221.446	0.745	0.366
1959		75	0.107	0.979	51915.575	227.832	0.786	0.341
1960		100	0.096	0.923	52587.651	229.302	0.774	0.333
1961		125	0.065	0.669	55766.004	236.130	0.758	0.234
1962		150	0.125	1.344	47734.110	218.464	0.714	0.374
1963		175	0.065	0.667	55789.352	236.179	0.755	0.230
1964		200	0.070	0.788	54248.641	232.895	0.767	0.304
1965	screen	225	0.128	1.228	49026.231	221.401	0.757	0.366
1966		250	0.088	0.877	53147.653	230.520	0.798	0.325
1967		275	0.092	0.903	52829.031	229.827	0.771	0.329
1968		300	0.085	0.864	53311.254	230.874	0.733	0.322
1969		25	0.176	6.302	23948.491	141.973	0.750	0.343
1970		50	0.200	6.461	23712.630	140.711	0.716	0.347
1971		75	0.147	6.121	24933.079	145.014	0.755	0.329
1972		100	0.197	6.546	23431.301	139.664	0.702	0.349
1973		125	0.140	6.104	25550.478	146.626	0.737	0.321
1974		150	0.180	6.301	25076.352	144.499	0.689	0.329
1975		175	0.272	7.015	21270.457	132.532	0.684	0.364
1976		200	0.120	6.089	26911.471	150.267	0.707	0.242
1977		225	0.227	6.686	22740.821	137.512	0.697	0.355
1978		250	0.146	6.257	25667.588	146.308	0.694	0.320
1979	websight	275	0.124	6.144	25850.045	147.294	0.719	0.319
1980		300	0.182	6.412	24671.415	143.170	0.693	0.337
1981		25	0.087	1.741	47075.345	213.935	0.707	0.439
1982		50	0.050	1.458	14199.959	118.251	0.703	0.214
1983		75	0.107	1.788	46488.952	212.612	0.672	0.450
1984		100	0.094	1.721	47246.318	214.342	0.752	0.437
1985		125	0.112	1.880	45541.721	210.416	0.728	0.462
1986		150	0.094	1.792	46522.294	212.662	0.679	0.448
1987		175	0.120	1.926	45103.866	209.376	0.715	0.467
1988		200	0.100	1.755	46883.500	213.497	0.726	0.443
1989		225	0.106	1.774	46641.908	212.966	0.762	0.448
1990		250	0.078	1.666	47902.625	215.821	0.681	0.424
1991		275	0.069	1.659	48007.867	216.049	0.700	0.421
1992		300	0.108	1.792	46447.455	212.512	0.672	0.450
1993								

Table 19: Performance of UNet model under varying brightness reduction levels across different datasets. The values in the left column indicate the amount of brightness reduced (in nits). Higher SSIM, PSNR, and MS-SSIM and lower MSE, RMSE, and LPIPS indicate better visual quality.

1998
1999
2000
2001
2002

	Dataset	Noise Type	SNR (dB)	SSIM↑	PSNR↑	MSE↓	RMSE↓	LPIPS↓	MS-SSIM↑
2003	chart	gaussian	15	0.688	15.674	2293.165	45.056	0.533	8.311
2004			20	0.691	15.705	2280.971	44.916	0.533	8.703
2005			25	0.691	15.715	2276.276	44.866	0.533	8.834
2006			30	0.692	15.716	2276.042	44.863	0.533	8.869
2007			35	0.692	15.715	2275.895	44.865	0.533	8.876
2008		salt pepper	25	0.678	15.437	2401.394	46.204	0.539	8.289
2009			30	0.681	15.499	2370.929	45.888	0.537	8.397
2010			35	0.681	15.496	2373.288	45.913	0.537	8.391
2011			40	0.681	15.481	2376.261	45.963	0.537	8.391
2012			45	0.681	15.495	2370.964	45.899	0.538	8.408
2013	password	gaussian	15	0.801	10.953	5293.539	72.512	0.270	0.359
2014			20	0.836	12.071	4111.432	63.832	0.208	0.148
2015			25	0.848	12.551	3689.944	60.436	0.196	0.155
2016			30	0.850	12.674	3589.991	59.599	0.194	0.160
2017			35	0.850	12.676	3591.947	59.604	0.194	0.161
2018		salt pepper	25	0.659	8.036	10325.171	101.359	0.517	4.148
2019			30	0.683	8.414	9482.130	97.089	0.486	3.153
2020			35	0.682	8.407	9497.168	97.163	0.486	3.215
2021			40	0.681	8.384	9538.681	97.397	0.488	3.216
2022			45	0.683	8.414	9472.439	97.061	0.486	3.151
2023	screen	gaussian	15	0.701	21.088	1009.091	26.535	0.373	3.428
2024			20	0.707	21.133	1007.925	26.476	0.374	3.910
2025			25	0.709	21.145	1007.086	26.465	0.374	4.135
2026			30	0.709	21.149	1006.137	26.452	0.374	4.193
2027			35	0.709	21.149	1007.045	26.460	0.374	4.195
2028		salt pepper	25	0.702	21.298	1007.783	26.532	0.366	3.568
2029			30	0.704	21.258	1010.903	26.542	0.366	3.699
2030			35	0.701	21.095	1009.556	26.535	0.366	3.703
2031			40	0.703	21.095	1010.971	26.548	0.366	3.700
2032			45	0.704	21.299	1009.449	26.529	0.366	3.715
2033	websight	gaussian	15	0.638	9.416	7887.189	87.655	0.572	13.517
2034			20	0.620	7.447	12325.767	109.951	0.594	19.986
2035			25	0.671	9.467	7793.617	87.134	0.568	13.071
2036			30	0.661	8.777	9083.029	94.265	0.569	14.724
2037			35	0.628	7.462	12277.075	109.751	0.588	19.541
2038		salt pepper	25	0.626	8.376	9943.443	98.710	0.652	15.744
2039			30	0.602	7.292	12786.478	111.977	0.664	19.803
2040			35	0.636	8.723	9183.856	94.819	0.649	14.966
2041			40	0.656	9.946	7050.120	82.602	0.633	12.060
2042			45	0.619	8.060	10686.007	102.371	0.655	17.279

Table 20: Performance of our model(IR⁴Net) under Gaussian and Salt & Pepper noise with various SNR levels (dB). Values are reported as mean values rounded to three decimal places. Horizontal rules separate noise types for clarity.

2049
2050
2051

2052	2053	2054	2055	2056	Dataset	Noise Type	SNR (dB)	SSIM↑	PSNR↑	MSE↓	RMSE↓	LPIPS↓	MS-SSIM↑
2057	2058	2059	2060	2061	chart	gaussian	15	0.688	15.674	2293.165	45.056	0.533	8.311
2058	2059	2060	2061	2062			20	0.691	15.705	2280.971	44.916	0.533	8.703
2059	2060	2061	2062	2063			25	0.691	15.715	2276.276	44.866	0.533	8.834
2060	2061	2062	2063	2064			30	0.692	15.716	2276.042	44.863	0.533	8.869
2061	2062	2063	2064	2065			35	0.692	15.715	2275.895	44.865	0.533	8.876
2062	2063	2064	2065	2066		salt pepper	25	0.678	15.437	2401.394	46.204	0.539	8.289
2063	2064	2065	2066	2067			30	0.681	15.499	2370.929	45.888	0.537	8.397
2064	2065	2066	2067	2068			35	0.681	15.496	2373.288	45.913	0.537	8.391
2065	2066	2067	2068	2069			40	0.681	15.481	2376.261	45.963	0.537	8.391
2066	2067	2068	2069	2070			45	0.681	15.495	2370.964	45.899	0.538	8.408
2068	2069	2070	2071	2072	password	gaussian	15	0.801	10.953	5293.539	72.512	0.270	0.359
2069	2070	2071	2072	2073			20	0.836	12.071	4111.432	63.832	0.208	0.148
2070	2071	2072	2073	2074			25	0.848	12.551	3689.944	60.436	0.196	0.155
2071	2072	2073	2074	2075			30	0.850	12.674	3589.991	59.599	0.194	0.160
2072	2073	2074	2075	2076			35	0.850	12.676	3591.947	59.604	0.194	0.161
2073	2074	2075	2076	2077		salt pepper	25	0.659	8.036	10325.171	101.359	0.517	4.148
2074	2075	2076	2077	2078			30	0.683	8.414	9482.130	97.089	0.486	3.153
2075	2076	2077	2078	2079			35	0.682	8.407	9497.168	97.163	0.486	3.215
2076	2077	2078	2079	2080			40	0.681	8.384	9538.681	97.397	0.488	3.216
2077	2078	2079	2080	2081			45	0.683	8.414	9472.439	97.061	0.486	3.151
2079	2080	2081	2082	2083	screen	gaussian	15	0.701	21.088	1009.091	26.535	0.373	3.428
2080	2081	2082	2083	2084			20	0.707	21.133	1007.925	26.476	0.374	3.910
2081	2082	2083	2084	2085			25	0.709	21.145	1007.086	26.465	0.374	4.135
2082	2083	2084	2085	2086			30	0.709	21.149	1006.137	26.452	0.374	4.193
2083	2084	2085	2086	2087			35	0.709	21.149	1007.045	26.460	0.374	4.195
2084	2085	2086	2087	2088		salt pepper	25	0.702	21.298	1007.783	26.532	0.366	3.568
2085	2086	2087	2088	2089			30	0.704	21.258	1010.903	26.542	0.366	3.699
2086	2087	2088	2089	2090			35	0.701	21.095	1009.556	26.535	0.366	3.703
2087	2088	2089	2090	2091			40	0.703	21.095	1010.971	26.548	0.366	3.700
2088	2089	2090	2091	2092			45	0.704	21.299	1009.449	26.529	0.366	3.715
2090	2091	2092	2093	2094	websight	gaussian	15	0.638	9.416	7887.189	87.655	0.572	13.517
2091	2092	2093	2094	2095			20	0.620	7.447	12325.767	109.951	0.594	19.986
2092	2093	2094	2095	2096			25	0.671	9.467	7793.617	87.134	0.568	13.071
2093	2094	2095	2096	2097			30	0.661	8.777	9083.029	94.265	0.569	14.724
2094	2095	2096	2097	2098			35	0.628	7.462	12277.075	109.751	0.588	19.541
2095	2096	2097	2098	2099		salt pepper	25	0.626	8.376	9943.443	98.710	0.652	15.744
2096	2097	2098	2099	2100			30	0.602	7.292	12786.478	111.977	0.664	19.803
2097	2098	2099	2100	2101			35	0.636	8.723	9183.856	94.819	0.649	14.966
2098	2099	2100	2101	2102			40	0.656	9.946	7050.120	82.602	0.633	12.060
2099	2100	2101	2102	2103			45	0.619	8.060	10686.007	102.371	0.655	17.279

Table 21: Performance of CIDNet model under Gaussian and Salt & Pepper noise with various SNR levels (dB). Horizontal rules are added to separate different noise types for each dataset.

2103
2104
2105

2106

2107

2108

2109

2110

Dataset	Noise Type	SNR (dB)	SSIM↑	PSNR↑	MSE↓	RMSE↓	LPIPS↓	MS-SSIM↑
chart	gaussian	15	0.662	15.288	2442.810	46.837	0.588	0.469
		20	0.664	15.289	2442.064	46.828	0.588	0.470
		25	0.665	15.289	2442.062	46.828	0.589	0.470
		30	0.665	15.289	2441.872	46.826	0.589	0.470
		35	0.665	15.289	2441.750	46.825	0.589	0.470
	salt pepper	25	0.629	14.642	2941.085	51.041	0.603	0.414
		30	0.633	14.725	2865.547	50.455	0.601	0.421
		35	0.633	14.727	2866.524	50.451	0.601	0.421
		40	0.633	14.725	2869.631	50.470	0.601	0.421
		45	0.634	14.731	2860.082	50.410	0.601	0.422
password	gaussian	15	0.792	10.917	5327.250	72.778	0.268	0.702
		20	0.802	11.012	5213.150	71.992	0.265	0.713
		25	0.806	11.050	5168.650	71.681	0.264	0.717
		30	0.807	11.056	5161.045	71.628	0.264	0.717
		35	0.807	11.060	5156.797	71.599	0.264	0.717
	salt pepper	25	0.761	10.449	5944.950	76.848	0.346	0.626
		30	0.770	10.575	5778.882	75.755	0.329	0.645
		35	0.770	10.583	5766.338	75.675	0.328	0.645
		40	0.770	10.579	5772.561	75.715	0.330	0.644
		45	0.770	10.562	5795.700	75.867	0.330	0.643
screen	gaussian	15	0.531	16.155	2607.021	46.273	0.513	0.489
		20	0.543	16.164	2605.241	46.247	0.512	0.491
		25	0.547	16.168	2604.352	46.235	0.512	0.492
		30	0.548	16.170	2603.673	46.228	0.513	0.492
		35	0.548	16.169	2603.948	46.231	0.513	0.492
	salt pepper	25	0.527	15.908	2638.782	46.674	0.548	0.483
		30	0.531	15.925	2636.481	46.633	0.540	0.484
		35	0.531	15.927	2635.730	46.625	0.541	0.484
		40	0.531	15.931	2633.924	46.613	0.541	0.484
		45	0.531	15.932	2635.638	46.617	0.540	0.485
websight	gaussian	15	0.750	15.678	3850.090	52.363	0.430	0.595
		20	0.762	15.684	3849.236	52.349	0.430	0.596
		25	0.766	15.686	3848.946	52.345	0.430	0.597
		30	0.767	15.687	3848.896	52.344	0.430	0.597
		35	0.767	15.687	3848.868	52.344	0.430	0.597
	salt pepper	25	0.753	15.676	3859.689	52.405	0.426	0.594
		30	0.756	15.679	3858.871	52.395	0.424	0.595
		35	0.756	15.679	3859.115	52.396	0.424	0.595
		40	0.756	15.679	3858.920	52.396	0.425	0.595
		45	0.756	15.679	3858.924	52.396	0.424	0.595

Table 22: Performance of C2PNet model under Gaussian and Salt & Pepper noise with various SNR levels (dB). Horizontal rules are added to separate different noise types for each dataset.

2157

2158

2159

2160

2161

2162

2163

2164

Dataset	Noise Type	SNR (dB)	SSIM \uparrow	PSNR \uparrow	MSE \downarrow	RMSE \downarrow	LPIPS \downarrow	MS-SSIM \uparrow
chart	gaussian	15	0.696	16.588	1806.016	40.172	0.490	0.573
		20	0.704	16.759	1747.515	39.443	0.487	0.585
		25	0.707	16.818	1727.139	39.193	0.485	0.590
		30	0.708	16.832	1722.569	39.136	0.485	0.591
		35	0.708	16.828	1721.878	39.138	0.485	0.591
	salt pepper	25	0.667	16.045	2000.447	42.522	0.496	0.532
		30	0.674	16.163	1955.533	41.991	0.494	0.542
		35	0.673	16.173	1954.646	41.965	0.495	0.541
		40	0.674	16.179	1945.937	41.900	0.494	0.542
		45	0.674	16.184	1949.674	41.916	0.494	0.543
password	gaussian	15	0.804	11.657	4526.573	66.966	0.209	0.755
		20	0.828	12.446	3790.971	61.215	0.190	0.798
		25	0.840	12.925	3412.466	58.008	0.181	0.819
		30	0.843	13.076	3299.814	57.029	0.178	0.826
		35	0.843	13.073	3304.336	57.059	0.178	0.826
	salt pepper	25	0.772	10.956	5309.416	72.555	0.271	0.703
		30	0.783	11.195	5032.207	70.616	0.256	0.721
		35	0.783	11.207	5019.571	70.519	0.256	0.721
		40	0.782	11.163	5060.958	70.843	0.257	0.719
		45	0.783	11.191	5035.419	70.642	0.257	0.721
screen	gaussian	15	0.691	21.577	881.163	25.247	0.349	0.710
		20	0.701	21.598	879.713	25.213	0.348	0.710
		25	0.704	21.606	879.065	25.199	0.348	0.711
		30	0.705	21.608	878.769	25.194	0.348	0.711
		35	0.705	21.608	879.055	25.197	0.348	0.711
	salt pepper	25	0.681	21.280	892.819	25.564	0.382	0.704
		30	0.686	21.308	890.678	25.516	0.374	0.705
		35	0.685	21.309	891.003	25.518	0.374	0.705
		40	0.685	21.316	890.951	25.512	0.375	0.705
		45	0.686	21.320	889.921	25.495	0.374	0.705
websight	gaussian	15	0.289	6.797	13928.000	117.393	0.689	0.442
		20	0.262	6.688	14502.166	119.533	0.754	0.428
		25	0.125	8.492	9677.961	97.341	0.819	0.353
		30	0.219	10.417	6542.657	78.783	0.642	0.369
		35	0.360	12.754	5151.496	64.950	0.582	0.419
	salt pepper	25	0.147	6.049	16884.073	128.802	0.808	0.416
		30	0.300	9.792	7373.893	84.169	0.693	0.408
		35	0.071	5.599	18737.056	135.688	0.808	0.405
		40	0.100	5.560	19054.560	136.686	0.767	0.402
		45	0.063	5.156	21122.362	143.680	0.767	0.393

Table 23: Performance of DarkIR method under Gaussian and Salt & Pepper noise with various SNR levels (dB). Values are reported as mean values rounded to three decimal places. Horizontal rules separate noise types for clarity.

2211

2212

2213

2214
2215
2216
2217
2218

Dataset	Noise Type	SNR (dB)	SSIM \uparrow	PSNR \uparrow	MSE \downarrow	RMSE \downarrow	LPIPS \downarrow	MS-SSIM \uparrow
chart	gaussian	15	0.039	1.061	51774.245	226.646	0.866	0.231
		20	0.011	0.913	53539.983	230.503	0.876	0.110
		25	0.094	1.448	47371.925	216.784	0.843	0.274
		30	0.038	1.059	51790.868	226.687	0.866	0.231
		35	0.011	0.913	53539.873	230.503	0.876	0.111
	salt pepper	25	0.131	1.696	44769.063	210.715	0.838	0.288
		30	0.089	1.411	47794.117	217.728	0.859	0.272
		35	0.043	1.085	51494.270	226.029	0.867	0.236
		40	0.011	0.913	53539.983	230.503	0.876	0.110
		45	0.011	0.913	53539.983	230.503	0.876	0.110
password	gaussian	15	0.105	0.968	52044.985	228.116	0.784	0.340
		20	0.091	1.133	50111.171	223.838	0.748	0.357
		25	0.054	0.734	54926.827	234.346	0.749	0.284
		30	0.091	1.056	51003.151	225.821	0.782	0.350
		35	0.100	0.943	52350.750	228.785	0.778	0.336
	salt pepper	25	0.060	0.690	55489.232	235.543	0.761	0.258
		30	0.076	0.813	53939.530	232.230	0.757	0.311
		35	0.106	0.974	51975.131	227.963	0.785	0.341
		40	0.090	0.892	52971.265	230.137	0.802	0.327
		45	0.081	0.839	53614.884	231.531	0.786	0.317
screen	gaussian	15	0.196	6.393	23446.930	140.414	0.729	0.349
		20	0.114	6.098	26527.193	149.210	0.715	0.299
		25	0.163	6.182	25439.589	145.921	0.731	0.325
		30	0.147	6.095	25191.974	145.751	0.752	0.324
		35	0.131	6.142	26396.819	148.658	0.704	0.296
	salt pepper	25	0.220	6.596	23569.123	139.666	0.687	0.350
		30	0.197	6.596	23637.809	139.995	0.689	0.351
		35	0.151	6.282	25545.719	145.907	0.695	0.323
		40	0.196	6.497	23871.159	140.838	0.693	0.349
		45	0.167	6.323	24592.989	143.382	0.724	0.341
websight	gaussian	15	0.190	2.377	40709.124	198.837	0.669	0.503
		20	0.092	1.789	46578.809	212.777	0.701	0.447
		25	0.096	1.726	47189.535	214.213	0.754	0.438
		30	0.107	1.790	46491.301	212.608	0.733	0.449
		35	0.095	1.733	47113.800	214.046	0.750	0.440
	salt pepper	25	0.132	2.061	43767.778	206.224	0.669	0.479
		30	0.158	2.115	43144.857	204.777	0.756	0.486
		35	0.107	1.784	46539.378	212.725	0.672	0.449
		40	0.081	1.702	47488.963	214.890	0.680	0.432
		45	0.098	1.738	47052.677	213.903	0.756	0.441

2262
2263 Table 24: Performance of UNet method under Gaussian and Salt & Pepper noise with various SNR
2264 levels (dB). Values are reported as mean values rounded to three decimal places. Horizontal rules
2265 separate noise types for clarity.
2266
2267

Figure 15: This figure presents the results of cropping experiments conducted on four different datasets. Each image is cropped into four regions: top-left, top-right, bottom-left, and bottom-right, with other areas filled in gray. The purpose of the experiment is to analyze, by combining model inference with heatmaps, whether the model can attend to multi-scale diffraction fringes caused by shadow edges, thereby achieving effective reconstruction.

As illustrated in Figure 24, the proposed method preserves inter-frame structural sharpness and exhibits smooth, artifact-free light transitions across temporally adjacent frames. Notably, during abrupt events such as control emergence or interface swapping—where luminance discontinuities become pronounced—the reconstruction maintains temporal coherence and structural integrity, avoiding edge fragmentation or texture drift. Highlight reflectance and shading continuity are preserved without explicit supervision, suggesting implicit stability under photometric discontinuities.

Such behavior may be attributed to the architectural coupling of structural constraint enforcement and perturbation-resilient feature processing. The model dynamically balances global irradiance trends and localized textural fidelity, suppressing illumination-induced bias without sacrificing high-frequency detail. Multi-scale feature decomposition facilitates low-frequency irradiance smoothing while concurrently preserving high-frequency structural features, enabling temporally consistent recovery under visually non-stationary conditions.

A.15 SECURITY ANALYSIS: DEFENSES AND STEALTHINESS

(1) Defense Strategies

The proposed optical projection attack reveals a new information leakage path for isolated displays, but the same physical model also points to several practical mitigation strategies. Since IR^4Net models the screen–environment–camera chain as a highly compressive, ill-conditioned operator whose Jacobian spectrum is nearly singular, any mechanism that further reduces the effective rank of this operator or injects controlled uncertainty into the mapping will directly weaken an adversary’s ability to invert wall speckles into screen content.

At the hardware level, a natural defense is to modify the display surface so that the pixel-to-speckle mapping becomes less informative. This can be achieved by adding matte diffusers, privacy films, or micro-structured layers on top of the panel, which broaden the angular emission profile and increase spatial blur before the light interacts with the environment. From the perspective of our forward operator, these layers implement an additional scattering transform that suppresses high-frequency components of the emitted field and flattens the singular value distribution of the overall screen-to-wall mapping. As a result, the speckle patterns observed on nearby walls become much less sensitive to fine-grained on-screen variations such as character strokes or small UI widgets, and IR^4Net is forced to reconstruct from substantially reduced information, degrading both geometric accuracy and semantic fidelity.

2322 A stronger physical defense is to employ spatially varying micro-structures whose scattering statistics
 2323 change across the panel. In this case, the screen output is no longer modulated by a single,
 2324 approximately shift-invariant point spread function, but instead by a spatially varying, partially ran-
 2325 dom kernel. This destroys the near-convolutional structure that the current architecture implicitly
 2326 leverages and significantly increases the complexity of the forward model that the attacker must
 2327 infer. In practice, this either forces the adversary to perform per-device calibration under controlled
 2328 conditions, or to train a much larger model on substantially more data to approximate the mapping,
 2329 both of which conflict with the passive, opportunistic threat model considered in this work.

2330 When hardware modifications are not feasible, software-level defenses can still reduce the amount
 2331 of stable information exposed through optical side channels. For sensitive UI elements such as pass-
 2332 word fields, PIN pads, or credential dialogs, the system can introduce lightweight randomization in
 2333 the spatial layout, appearance, and temporal persistence of on-screen content while keeping the inter-
 2334 action semantics unchanged for legitimate users. Examples include jittering the position of buttons
 2335 and digit keys within a constrained region, slightly randomizing font style or background shading at
 2336 each rendering, inserting low-contrast masking noise around sensitive regions, and briefly, sporad-
 2337 ically occluding completed fields. Because IR⁴Net and similar models rely on aggregating stable
 2338 mappings between speckle patterns and underlying screen coordinates, such UI-level randomization
 2339 reduces temporal coherence in the observations and makes it significantly harder to reliably infer
 2340 exact characters or key presses, even if coarse layout remains partially visible.

2341 (2) Attack Stealthiness and Detectability

2342 Beyond mitigation, it is important to analyze the stealthiness and detectability of the proposed at-
 2343 tack. In our setting, the adversary is strictly passive: the screen renders its normal content, the
 2344 environment is left unmodified, and the attacker only records wall-reflected light using a remote
 2345 camera. There is no active modulation of screen content, no injected watermark patterns, and no de-
 2346 liberate brightness fluctuation or temporal coding designed to aid inversion. Consequently, from the
 2347 perspective of the display and its driving electronics, the attack is indistinguishable from ordinary
 2348 usage; any observable signal that could reveal the attack must arise from the presence and behavior
 2349 of the external camera rather than from the screen itself.

2350 Because the attack does not require controlling the display, traditional side-channel detection mech-
 2351 anisms that monitor power draw, refresh timing, or brightness modulation are ineffective in this
 2352 setting. The temporal statistics of the screen output are governed solely by the legitimate appli-
 2353 cation, and IR⁴Net is trained to cope with natural illumination variations rather than relying on
 2354 artificial probe patterns. In particular, there is no requirement to impose high-frequency flicker,
 2355 structured coding sequences, or exaggerated contrast changes that might otherwise be flagged by a
 2356 local anomaly detector on the display controller or operating system.

2357 In this context, the only reliable detection surface is the imaging device used by the attacker. In
 2358 principle, the defender can deploy countermeasures that search for remote cameras, for example via
 2359 active optical probing, lens reflection scanning, or wide-field IR illumination to detect suspicious
 2360 sensors in the environment. Such mechanisms are orthogonal to our method: they do not rely
 2361 on analyzing the screen signal, but instead treat any unknown camera as a potential exfiltration
 2362 vector, whether it is used for our optical projection attack, for direct shoulder surfing, or for other
 2363 visual side channels. In practice, however, such camera-monitoring defenses are neither perfect nor
 2364 instantaneous, and our attack only requires a short passive recording window to irreversibly capture
 2365 wall-speckle observations. This limitation is therefore structural to all camera-based visual side
 2366 channels rather than a weakness specific to our method.

2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375

Figure 16: Brightness experiment results on the Resh-Screen dataset. Each row corresponds to a model. The first column shows the projected images, and the second column shows the ground truth (GT). From left to right, the brightness of the subsequent columns gradually decreases, illustrating the performance of the models under different lighting conditions. This figure reveals the models' sensitivity to changes in brightness and demonstrates how the preservation of image details and prediction quality vary as brightness decreases.

Figure 17: Brightness experiment results on the Resh-Chart dataset. Each row corresponds to a model. The first column shows the projected images, and the second column shows the ground truth (GT). From left to right, the brightness of the subsequent columns gradually decreases, illustrating the performance of the models under different lighting conditions. This figure reveals the models' sensitivity to changes in brightness and demonstrates how the preservation of image details and prediction quality vary as brightness decreases.

2533
2534 Figure 18: Brightness experiment results on the Resh-Welsight dataset. Each row corresponds to a
2535 model. The first column shows the projected images, and the second column shows the ground truth
2536 (GT). From left to right, the brightness of the subsequent columns gradually decreases, illustrating
2537 the performance of the models under different lighting conditions. This figure reveals the models'
2538 sensitivity to changes in brightness and demonstrates how the preservation of image details and
2539 prediction quality vary as brightness decreases.

Figure 19: Brightness experiment results on the Resh-Password dataset. Each row corresponds to a model. The first column shows the projected images, and the second column shows the ground truth (GT). From left to right, the brightness of the subsequent columns gradually decreases, illustrating the performance of the models under different lighting conditions. This figure reveals the models' sensitivity to changes in brightness and demonstrates how the preservation of image details and prediction quality vary as brightness decreases.

Figure 20: The noise experiment results on the Resh-Chart dataset. Each row corresponds to a model; the first column shows the projected image, the second column shows the ground truth (GT), and the subsequent columns represent the model's performance under different types and levels of injected noise, where G denotes Gaussian noise and S denotes salt-and-pepper noise.

Figure 21: The noise experiment results on the Resh-screen dataset. Each row corresponds to a model; the first column shows the projected image, the second column shows the ground truth (GT), and the subsequent columns represent the model's performance under different types and levels of injected noise, where G denotes Gaussian noise and S denotes salt-and-pepper noise.

Figure 22: The noise experiment results on the Resh-screen dataset. Each row corresponds to a model; the first column shows the projected image, the second column shows the ground truth (GT), and the subsequent columns represent the model's performance under different types and levels of injected noise, where G denotes Gaussian noise and S denotes salt-and-pepper noise.

Figure 23: The noise experiment results on the Resh-screen dataset. Each row corresponds to a model; the first column shows the projected image, the second column shows the ground truth (GT), and the subsequent columns represent the model's performance under different types and levels of injected noise, where G denotes Gaussian noise and S denotes salt-and-pepper noise.

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Figure 24: Our model’s reconstruction results on video: the first column shows the video frames after sampling, the second column presents the corresponding projected frames, and the third column displays the results reconstructed by our model.