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ABSTRACT

Language models famously improve under a smooth scaling law, but some specific
capabilities exhibit sudden breakthroughs in performance. While advocates of
“emergence" view breakthroughs as unlocked capabilities, others attribute them
to thresholding effects on noncontinuous metrics. We propose that breakthroughs
are instead driven by continuous changes in the probability distribution of training
outcomes when performance is bimodally distributed across random seeds. In
synthetic length generalization tasks, we show that different random seeds can
produce either highly linear or emergent scaling trends. We reveal that sharp
breakthroughs in metrics are produced by underlying continuous changes in their
distribution across seeds. In a case study of inverse scaling, we show that even as
the probability of a successful run declines, the average performance of a successful
run increases monotonically. We validate our distributional scaling framework
on realistic settings by measuring MMLU performance in LM populations. Our
observations hold true even under continuous loss metrics, confirming that random
variation must be considered when predicting a model’s performance from its scale.

1 INTRODUCTION

On most benchmarks, language model (LM) performance is determined by a scaling law (Hestness
et al., 2017; Rosenfeld et al., 2019; Kaplan et al., 2020) that varies smoothly with parameter size
and overall training compute. There are, however, a number of celebrated exceptions in which
performance abruptly improves on specific benchmarks (Srivastava et al., 2023). These sudden
breakthroughs fuel one of the most heated debates in modern AI.

On one side, advocates of emergence claim that performance abruptly improves at particular scales
because those scales provide the capacity to learn specific concepts (Wei et al., 2022). On the other
side, skeptics argue that these sudden improvements are a mirage driven by thresholding effects
and alleviated by more appropriate continuous metrics—though a few breakthrough capabilities
remain stubbornly emergent (Schaeffer et al., 2024). We will argue that such discontinuities are
driven by continuous changes in the probability of a breakthrough at each scale. In other words, the
discontinuities are real—each model firmly either knows or does not know a given concept—but
emergent breakthroughs do not always reflect some fixed threshold which permits the concept to be
learned. Instead, models may learn the concept at various scales, albeit with changing probability.

We posit that a breakthrough capability is distinguished not by deterministic responses to scale,
but by multimodal random variation. In other words, independent training runs cluster in their
performance metrics. This observation is undocumented because scaling laws usually plot a single
training run at each scale, rarely testing multiple seeds. Although random variation may be benign
when model performance is measured in-distribution (Jordan, 2024), previous work suggests that
out-of-distribution performance may vary widely across training runs (Zhou et al., 2024a;b; Qin et al.,
2024; Juneja et al., 2023; Li et al., 2025), even at larger scales (Madaan et al., 2024).

By connecting breakthrough scaling with random variation, we challenge the narratives of both
the emergence and mirage camps. First, our results contest the position of the mirage or “loss-to-
downstream” camp, which claims that effects of scale are predictable and that continuous metrics
will smooth out apparently discrete concept learning. We discover clustered multimodal distributions
of capabilities, confirming that models unpredictably learn critical discrete concepts—and these
concepts are observable even using continuous loss metrics. Furthermore, we complicate the narrative
of the competing emergence camp, which often treats specific model sizes as distinct in their capacity.
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Figure 1: Different random seeds produce different scaling trends. Scaling trends can be emergent
or linear for different seeds, even if all models train on the same data with the same hyperparameters.
On the count task, we show trends for random seeds with the highest breakthroughness (seed 93;
top left) and linearity (seed 205; top right). We mark parameter counts immediately before and after
seed 93’s emergence respectively as (a) and (b). Histograms illustrate the bimodal distribution of
performance across all random seeds at scales (a) and (b), marking the positions of seeds 93 and 205.
Breakthroughs occur when consecutive points represent different clusters; linear trends occur when
each point is sampled from the same gradually shifting cluster.

While we confirm that algorithms require some minimum model capacity, that capacity may not
be the enormous scale at which emergence is observed. Instead, discontinuous performance jumps
are sampled from a continuously changing multimodal distribution, where the “success” component
ultimately dominates at larger scales. To extrapolate downstream metrics to large scales, we must
predict the likelihood of successful emergence as well as the performance of a successful run.

Since training numerous seeds is prohibitively expensive at large scales, we study partially reinitialized
LLMs and toy models. Whereas prior work reports summary statistics across only a few training
runs, we characterize the full multimodal performance distribution. We find:

• Breakthroughs result from bimodal performance distributions. In multiple choice (Section
3.1) and synthetic task length generalization (Section 2.1), some random seeds produce linear scale
trends while others are emergent. This variation is caused by the bimodal distribution of each skill
across random seeds (Section 2.2), a property that materializes around breakthrough thresholds
in model size. At these scales, emergence is a stochastic property (Section 2.3).

• Bimodal variation persists under continuous metrics. In the emergence debate, one main
position (Schaeffer et al., 2024) is that breakthroughs are caused by measuring discontinuous
metrics such as accuracy rather than loss. For our tasks, continuous loss metrics can remain visibly
bimodally distributed, particularly when there is a more even split of failed and successful runs.
We confirm these loss distributions on both synthetic (Section 2.4) and natural (Section 3.4) tasks.

• When a scale curve exhibits sudden discontinuous improvement in a skill, the probability
of learning that skill may be changing continuously. Treating the bimodal distribution as a
mix of failure and success distributions, we illustrate that average improvements can come from
changes in the probability of success or in the mean performance of a successful run (Section 2.2).
Although bimodality can appear abruptly at a minimum capacity scale (Section 2.5), these sudden
distributional changes do not necessarily align with breakthrough scales for individual model runs.

• In realistic settings, multimodal performance clusters emerge based on data composition and
model scale. In Section 3, we extend our analysis to the task of multiple choice question answering
by training partially reinitialized LMs. Our findings confirm that random variation in LMs is also
bimodal for established emergent capabilities near their breakthrough threshold.
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Figure 2: Random variation in length generalization (addition task). Histograms of exact match
accuracy on length 40 sequences when independently scaling (a) width and (b) depth.

2 SYNTHETIC LENGTH GENERALIZATION EXPERIMENTS

Usually, performance breakthroughs are measured on a single model per scale or, at most, the average
of a few runs. The literature suggests that these emergent capabilities unlock at specific model
scales (Wei et al., 2022), implying that scaling curves for different seeds would perform similarly to
within a margin of noise. Contrary to this belief, we demonstrate that performance is sampled from a
stochastic distribution which changes gradually even as individual scaling curves jump abruptly.

2.1 TASKS AND SETUP

After training models on synthetic tasks, we measure their length generalization (Graves et al., 2016;
Kaiser and Sutskever, 2015; Lake and Baroni, 2018; Hupkes et al., 2020), one of many compositional
properties that can lead to conceptual breakthroughs (Srivastava et al., 2023; Löwe et al., 2024; Chen
et al., 2024). Further experimental details are in Appendix A.

Architecture: In our synthetic experiments, we train decoder-only Transformer models from scratch
using rotary position embeddings (RoPE) (Su et al., 2024). To observe the random performance distri-
bution at each scale, we train our models from hundreds of seeds. We choose model sizes by separately
adjusting either the width (number of 64-parameter heads per layer) or depth hyperparameter.

Task: We consider two algorithmic tasks previously studied in Zhou et al. (2024a): counting and
reverse order addition. Performance on these task ranges widely across random seeds. At each scale,
we train models from 250 seeds for the count task and 200 seeds for reverse order addition.

• Count: Given two numbers in increasing order, the model is trained to generate a sequence which
counts consecutively from the first number to the second number. Examples are given in the
form "5, 9 >, 5, 6, 7, 8, 9", while limiting the length of the counting sequence during
training. Zhou et al. (2024a) showed that models trained to count can generalize to more than twice
this training length; however, we will reveal a more nuanced view of length generalization based
on its distribution across independent model runs.

• Addition: Zhou et al. (2024b) showed that Transformers can generalize 10-15 digits past training
length for an addition task, if provided with index hints and allowed to generate the answer
backwards. Examples take the form "a0, 3, a1, 4, +, a0, 2, a1, 8, >, a1, 2,
a0, 6", where index hints are a consecutive sequence of the max number of digits sampled
randomly from 0 to the max evaluation length. We use this modified form of reverse order addition
with index hints as our addition task.

Dataset: During training, we sample sequences i.i.d from the train set and invoke in-context learning
by adding examples to the context, following prior work (Jelassi et al., 2024; Zhou et al., 2024b).
The lengths of examples are sampled uniformly from 1 to the maximum training length (30 for count
and 35 for addition). Length generalization is then tested at length 60 for count and 40 for addition.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Summary statistics for length generalization (addition task). Exact match statistics
for 200 models trained at length 35 and tested at length 40. We track overall mode and mean in
the two leftmost plots. Because the EM accuracy distribution is bimodal, the mode exhibits a sharp
increase even as the mean evolves continuously. Defining success as > 20% EM accuracy, we also
note the continuous change in the probability of success and in the mean of successful runs in the two
rightmost plots. Means feature 95% confidence intervals over 1000 bootstrapped samples.

2.2 EMERGENCE IS A SIGN OF BIMODAL VARIATION

What do the scaling curves for length generalization tasks look like when we generate them in
conventional ways? Following Srivastava et al. (2023), we take the vector of model performances for
the count task at test length 60 across different scales with a fixed initialization and shuffle seed.1 We
calculate the task’s breakthroughness and linearity metrics on each seed. As defined in Appendix B,
the former metric measures emergence, whereas the latter measures a smooth response to scale. We
plot the performance across scale for the seeds with the highest breakthrough and highest linearity
in Figure 1. As seen in Figure 1 and Appendix Figure 9, we can easily find fixed seeds that show
varying levels of emergence and linearity, due to random variation in breakthroughs.

This variation is explained by the bimodality of model performance distributions when varying
seed. Figure 2 illustrates that, for a population of models independently trained on the addition task,
length generalization clusters into high and low component modes at many parameter sizes. This
clustering produces distinctly bimodal performance distributions, causing some model runs to appear
as breakthroughs while others follow a more linear progression. When bimodally distributed runs
cluster into very high and very low performance components, a model might exhibit linear scaling if
sampled from the same cluster as the previous scale or emergent scaling when switching from the
low cluster to the high cluster. These differences ultimately lead to high variability in the timing and
degree of emergence. Furthermore, these differences can be a source of oscillating scale curves, as
Srivastava et al. (2023) documented in their lowest-linearity tasks.

The subsequent sections further probe the connection between the bimodal nature of the performance
distribution and emergence of length generalization capabilities. We focus on addition here with
results on the count task in Appendix C.1. Interestingly, the counting task exhibits periods of inverse
scaling in average improvement, a phenomenon also observed in LMs (McKenzie et al., 2022) which
we discuss in more detail in the Appendix.

2.3 SUDDEN JUMPS FROM GRADUAL DISTRIBUTION SHIFTS

When reporting metrics from only one seed or the mean of a few seeds, the outcome is likely to be
close to the mode performance of the underlying model population. As shown in Figure 3 (“Overall
Mode”), the mode of the performance distribution shows a massive spike in improvement mirroring
an emergent benchmark’s scaling trend. However, we claim that this discontinuous improvement is
only an artifact of sampling the mode performance, although the underlying bimodality also produces
discontinuity in many single-seed scaling curves. Underlying this discontinuous performance jump are
continuous changes in other distributional statistics. In Figure 3 (“Overall Mean”), the mean exhibits
a smoother trend in accuracy. Mode and mean diverge thus because the underlying distribution is
bimodal, expressing a mixture of “successful” and “failing” runs.

1Although it is standard practice to fix the random seed when reporting LM benchmark performance across
scales, the initializations produced by a single seed have no meaningful relation across different scales.
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Figure 4: Random variation in continuous length generalization error (addition task). Kernel
Density Estimation (KDE) of our loss-based error metric (Equation 1) across model runs. At scales
where the EM accuracy distribution is bimodal, the distribution remains bimodal even when using a
continuous metric.

Treating the distribution as a mixture of successes and failures, we can separately analyze the
probability of a successful run and the performance distribution of successful runs. Both of these
properties are changing continuously and gradually when the mode increases abruptly. If we restrict
our analysis to the runs achieving nontrivial 20% accuracy, we see that the probability and mean of
such “successful” runs (Figure 3, two rightmost plots) both exhibit continuous improvement, with
the exception of increasing from depth 2 to 3 (discussed further in Section 2.5). Even at the mode
breakthrough,these underlying distributional properties are only changing gradually. We conclude
that when tasks exhibit bimodal distributions across random seeds, there are statistics exhibiting
continuous improvements underlying the seemingly abrupt improvements across scale.

2.4 IS BIMODALITY A MIRAGE?

Metrics with hard thresholds and discontinuities can artificially induce breakthrough behavior (Scha-
effer et al., 2024); conversely, continuous metrics turn apparent emergence into smooth curves
(Srivastava et al., 2023). We must be particularly cautious about claiming emergence when requiring
outputs to exactly match a target string, as we have so far. Are our case studies artifacts of thresholding
effects? Do our bimodal distributions become unimodal under continuous metrics?

To avoid thresholding artifacts, we use a continuous equivalent to the exact match metric: the
maximum loss assigned to any individual token. Each token is individually computed in the correct
output context, so the entire sequence represents a fixed set of continuous per-token loss functions.
Because the maximum of a fixed set of Lipschitz-continuous functions is always Lipschitz-continuous,
this error score is guaranteed to be continuous as long as per-token loss is continuous. For model f
on dataset X , the continuous error score based on per-token loss L(f(x0...i−1), xi) is:

error(f,X) =
1

|X|
∑
x∈X

max
i<|x|

L(f(x0...i−1), xi) (1)

In Figure 4, we plot this continuous metric for addition models on the length generalization test dataset.
The distribution of this metric across random seeds is often still clustered. We therefore confirm
that emergent capabilities exhibit bimodal performance distributions even when using a continuous
performance metric; their bimodality is not due to thresholding alone. Further discussion around
continuous metric plots for count and histograms for probability-based metrics are in Appendix C.3.
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2.5 BIMODALITY EMERGES ABRUPTLY

The previous section showed that bimodal performance distributions produce emergent scaling curves
for individual seeds. We next analyze how the distribution itself evolves across scales. As shown in
Figure 2, the performance distribution starts as unimodal at the smallest scale, where no models can
length generalize. Larger scales yield a bimodal distribution where most of the probability mass is
ultimately placed on successful length generalizing runs. A priori, there could be a smooth evolution
between these two distributions in which probability mass from failing runs gradually shifts towards
higher performance metrics, eventually splitting into a clear separate cluster. We find instead that
the shift from unimodal to bimodal is abrupt and instantly polarized into low and high clusters. In
Appendix Figure 13 we show that models fail to generalize when fixing depth to be one layer even
when scaling width (despite having perfect in-distribution accuracy).

To quantify this abrupt transition, we track how the performance distribution changes across scales.
Specifically, we plot the Wasserstein-L2 distance of each distribution relative to that of the final,
largest model scale when separately fixing width and depth.
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Figure 5: Changes in random variation (addi-
tion task). Wasserstein-L2 distance of each scale’s
performance distribution relative to the largest
scale, scaling depth and width independently. The
sharpest change in distance occurs early.

In Figure 5 we see that there is a sharp decrease
in the W2 distance for scaling with a fixed width,
quantifying the sudden appearance of highly
successful runs when model depth reaches 3
layers or model width reaches 2 heads. These
sudden changes identify the moment when a
new capability is unlocked, as the distribution
transitions abruptly from unimodal on one ex-
treme to bimodal at both extremes. We posit
that this transition marks the minimum capac-
ity required to learn the task. We also mark
the point in each trend where the mode in Fig-
ure 3 increases sharply. We posit that it may be
misleading to draw conclusions about minimal
model capacity on a specific task using single
runs at each scale, whereas distributional met-
rics correctly predict the sudden appearance of
probability mass placed on successful runs.

3 LLM EXPERIMENTS

After connecting emergence with bimodality in small synthetic settings, we turn to LMs. We focus on
the MMLU dataset, where high performance emerges after the LM learns the multiple choice format
(Srivastava et al., 2023; Hu and Frank, 2024). To avoid the expense of repeatedly training large-scale
models from scratch, we simulate independent runs by reinitializing the upper layer of pretrained
LMs before continuing to train them. Because Qwen base models perform well for their scale (39.5%
for Qwen2.5-0.5B), these experiments effectively require models to re-discover MMLU capabilities
after their removal. Our continued training dataset, a mix of C4 news data and the MMLU auxiliary
training data, is insufficient to recover the full MMLU capability of the the base model.

3.1 DATA AND SETUP

We extend our investigation to LMs by testing multiple choice question answering, an emergent
natural language understanding task (Srivastava et al., 2023; Snell et al., 2024). We test whether
the performance clusters observed in emergent synthetic tasks also manifest in LMs. Specifically,
we hypothesize that emergent scaling curves in LMs express underlying bimodal (or multimodal)
performance distributions.

Our procedure can be regarded as continued pretraining: we mimic the model’s original pretraining
objective with a dataset of English language sequences. We hypothesize that at the emergence point for
this task, performance distributions will also be bimodal across random seeds. During pretraining, a
large diverse corpus encourages models to acquire various capabilities. While sufficiently large models
may learn all such capabilities, smaller models have limited capacity, requiring these capabilities to
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Figure 6: Performance on MMLU. All models have their last layer reinitialized randomly and
then are trained on a mix of C4 news and MMLU, with varying proportions of MMLU. Left: With
insufficient MMLU training data, each model fails to follow the multiple-choice format, resulting in
trivial performance. As more MMLU data is included, different seeds lead to bimodally distributed
performance. With enough MMLU data, all models score above the random baseline. Right: For a
fixed data mix, the smaller model has bimodally distributed performance. In contrast, the larger model
consistently relearns to answer multiple-choice questions, though not at its original base performance.

compete (Merrill et al., 2023). This competition, influenced by initialization and data order, leads to
varying outcomes across random seeds, forming performance clusters for specific benchmarks.

Task: We test LMs on MMLU (Hendrycks et al., 2021), a multiple-choice question-answering
benchmark. Strong performance on MMLU requires two key abilities: (1) natural language reasoning
with domain-specific knowledge and (2) producing correct answers in the required format. It is this
latter ability which leads to emergent trends (Srivastava et al., 2023; Hu and Frank, 2024).

Model: We use the Qwen2.5 family of base models (Yang et al., 2024). To introduce randomness
during continued pretraining, we reinitialize the final attention layer and the subsequent LM head.
We perform full-parameter continued pretraining on these reinitialized models.

Data: To ensure that the multiple choice formatting circuits compete with other tasks during continued
pretraining, we create a diverse dataset by mixing the English news subset of C4 (Raffel et al., 2023)
with the official MMLU auxiliary training data. The C4 news data reinforces general language
modeling ability, while the MMLU data focuses on multiple-choice question answering. We vary the
proportion of MMLU in this mixture to control the target task’s data size in addition to model size, as
both are common control variables in the scaling laws literature.

Training: We continue pretraining the Qwen2.5-0.5B and Qwen2.5-1.5B models on our C4-MMLU
mixes, training 80 reinitializations on each data mixture ratio. We train Qwen2.5-0.5B models for 2
epochs and Qwen2.5-1.5B models for 5 epochs to ensure convergence on the MMLU validation set.
We use a learning rate of 1e-5 with linear decay scheduler.

We focus our analysis on experiment results from Qwen2.5-0.5B. In Appendix D, we include results
from Qwen2.5-1.5B (Appendix D.1) as well as a second task CommonSenseQA (Talmor et al., 2019)
(Appendix D.2).

3.2 EMERGENCE ACROSS DATA COMPOSITIONS

We first examine how data composition influences the bimodal capabilities of Qwen2.5-0.5B. Specifi-
cally, as the training data contains more examples of a target breakthrough task, it changes the task’s
performance distribution in ways that mirror the effect of scale.

In Figure 6 (left), when trained on a data mix containing only 5% MMLU examples and 95% random
sequences from C4 (Raffel et al., 2023), most models (out of 80 seeds) achieve near 0% performance
on the MMLU test set. According to the existing literature, this failure stems from a failure to
process the multiple-choice format (Hu and Frank, 2024). As the proportion of MMLU samples
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Figure 8: NLL loss distributions on the MMLU test set. Each distribution is provided as a
histogram and as a smoothed KDE. Even with a continuous metric (NLL), we still observe multi-
modal distribution across random seeds.

increases, bimodality emerges when MMLU composes 10% of the training data, where models form
two distinct performance clusters. In one cluster, continually pretrained models still fail to follow the
correct format, while in the other, models achieve performance at or above the random guess baseline
of 25%. This second cluster contains models that consistently respond with valid multiple choice
options; those that outperform the random baseline have even learned to compose the multiple choice
format with their world knowledge when selecting an answer. Finally, with sufficient data (> 20%
MMLU), models across all 80 seeds consistently outperform the 25% random baseline.

Table 1: Hartigan’s Dip Test on MMLU accura-
cies across 80 seeds at different training data ratios.
Larger Dip implies greater deviation from unimodal-
ity.

MMLU Ratio Dip ↑ p-value

5.00% 0.047 0.368
7.50% 0.057 0.110
10.00% 0.144 <0.001
20.00% 0.107 <0.001

Quantifying multimodality. To verify the
distributional pattern in Fig. 6, we use Harti-
gan’s Dip Test Hartigan and Hartigan (1985).
The test fits the closest unimodal cumula-
tive distribution function (CDF) to the em-
pirical CDF of model accuracies across seeds
and measures the largest vertical gap between
them, referred to as the Dip score. By def-
inition, Dip ∈ (0, 0.25]: values near zero
indicate a shape that closely follows a uni-
modal distribution, while larger values reflect
stronger deviation from unimodality. We then
perform a statistical test using the Dip statistic and report the associated p-value, which quantifies
whether the observed multimodality is statistically significant. A smaller p-value implies that the ob-
served distribution is unlikely to have arisen from a unimodal population, providing stronger evidence
for multimodality. As shown in Table 1, at 5% the p-value is large (consistent with unimodality); at
7.5% the p-value is 0.11, suggesting a mild deviation; and at 10% and 20% we obtain p < 0.001,
indicating statistically significant multimodality in the distribution of outcomes across seeds.

3.3 EMERGENCE ACROSS MODEL SCALES

Like in the synthetic setting, LM model size affects the clustered performance distribution. Using a
training data mixture with 10% MMLU auxiliary training samples, we continually pretrain Qwen2.5-
1.5B on the same 80 seeds and report MMLU test accuracy in Figure 6 (right). While models
built on the smaller Qwen2.5-0.5B form two distinct performance clusters, those built on the larger
Qwen2.5-1.5B consistently outperform the random baseline. In fact, larger models reliably acquire
MMLU capability when trained on the same dataset that produces highly bimodal variation at smaller
scales. This conclusion recalls the literature on scaling laws, which argues that smaller models require
more training examples to match the performance of larger models (Rosenfeld et al., 2019; Kaplan
et al., 2020). Appendix D.2 shows similar results on the Commonsense QA (Talmor et al., 2019) task.
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3.4 IS MMLU EMERGENCE A MIRAGE?
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 Qwen2.5-0.5B on 10% MMLU mix

Mean: 11.6245
Median: 11.6179

Figure 7: KDE approximation of LM training
loss on 10% MMLU mixture. Approximation
of the distribution across 80 random seeds is uni-
modal, smooth, and nearly symmetrical with me-
dian close to mean. By contrast, Figure 8 depicts
MMLU loss for LMs trained on the same mix as
irregularly clustered with multiple modes.

Is multiple choice performance only bimodal
because accuracy is thresholded? As in our
synthetic setting (Section 2.4), we must address
the effect of the discontinuous metric. In
Figure 8, we find that continuous negative log
likelihood (NLL) loss metrics remain highly
multimodal. The 10% MMLU ratio leads to the
most even split between successes and failure
in accuracy, and accordingly to clear bimodality
in NLL loss, mirroring the link we observed
on synthetic tasks. Notably, training data with
a 7.5% MMLU ratio produces a performance
distribution with a small “success” cluster
peaked around NLL=3.4. The 10% MMLU
ratio produces a performance distribution with
a larger success cluster, also peaking around
NLL=3.4. Therefore, the continuous metrics
remain roughly bimodal—as is especially clear
in the 10% mix setting, which is most evenly
split between success and failure.

While recent arguments against emergence (Schaeffer et al., 2024) claim that discontinuities disappear
with continuous loss metrics, Figure 8 reveals the opposite effect in random variation—NLL loss
reveals clusters that are concealed by accuracy metrics, specifically among low-performance models
like those trained on the 5% MMLU mix. (To easily compare these metrics, see Figure 14.)

Is this random clustering particular to the emergent task? As an alternative hypothesis, we might
expect all tasks—including training loss—to have similarly multimodal NLL distributions, when
approximated with our KDE settings. To the contrary, the pretraining loss produces a smooth, uni-
modal, and almost symmetric KDE distribution (Figure 7). We therefore conclude that multimodality
is linked to emergent tasks—not merely a downstream effect of in-distribution training noise.

4 DISCUSSION

Our work explores the evolution of random variation in model performance across scales, bringing
a more nuanced perspective on emergent capabilities. The mode of our performance distributions
sharply improves at a certain model scale, similar to emergent capabilities in the literature, but we
attribute these sudden jumps to gradual improvements in the random distribution. Furthermore,
we show that bimodality can emerge before the mode—or most seeds—exhibit a breakthrough
(Section 2.5); the transition from the initial unimodal distribution to a bimodal one is sudden.

Random variation: Model performance can be sensitive to stochastic aspects of the training process
like random initialization and training data order. Prior studies have documented performance
differences across various stress test sets (D’Amour et al., 2022; Naik et al., 2018). Most relevant
to us, the high variability of length generalization is well-documented (Zhou et al., 2024b;a). More
generally, out-of-distribution behavior like compositional rules (McCoy et al., 2019) or associative
biases (Sellam et al., 2022) often exhibit extreme variation compared to in-distribution loss. Such
differences persist throughout training, not just at the final checkpoint (Zhou et al., 2020). Dodge
et al. (2020) compared the impacts of weight initialization and data ordering, concluding that both
contribute equally to variation in performance. Existing work has also found model runs can cluster
in shortcut learning (Juneja et al., 2023) and in training dynamics (Qin et al., 2024; Hu et al.,
2023), hinting at multimodal variation. Our work connects these random clustering effects to the
phenomenon of emergence at scale.

Length generalization and compositionality with transformers: Transformer models cannot
always generalize to longer sequences than they are trained on (Anil et al., 2022; Deletang et al.,
2023; Gontier et al., 2020; Hupkes et al., 2020; Schwarzschild et al., 2021; Zhang et al., 2022).
Various proposals have, consequently, aimed to improve length generalization. Some methods focus

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

on alternative positional encodings (Shaw et al., 2018; Press et al., 2022; Su et al., 2024; Kazemnejad
et al., 2024; Jelassi et al., 2024). Others modify the dataset format by adding scratchpad or Chain-of-
Thought (Anil et al., 2022) or by incorporating padding and index hints (Jelassi et al., 2023; Zhou
et al., 2024a). Regarding random variation, Zhou et al. (2024a) and Zhou et al. (2024b) provide
evidence of variability in length generalization across random seeds, which we further investigate
and analyze across a range of model scales.

Emergent abilities of LMs: In LLMs, emergent abilities are behaviors that arise unexpectedly as
models are scaled up in size or trained on larger datasets (Hestness et al., 2017; Rosenfeld et al., 2019;
Brown et al., 2020; Kaplan et al., 2020). These abilities are characterized by unpredictable and abrupt
performance improvements on specific benchmarks at certain scales (Wei et al., 2022; Ganguli et al.,
2022; Srivastava et al., 2023). Understanding the conditions and mechanisms underlying emergence
is a key area of research. Although recent studies suggest that some breakthroughs may stem from
the choice of evaluation metrics rather than fundamental changes in model behavior with increased
scale (Srivastava et al., 2023; Schaeffer et al., 2024), some breakthrough capabilities remain emergent.
Snell et al. (2024) found that some scales exhibit earlier emergence if finetuned explicitly on an
emergent task, suggesting that smaller models may have the capacity for that task but are limited
by its scarcity in the training corpus. Similarly, we show that emergent capabilities can arise from
multimodal random variation using synthetic length generalization tasks as a case study.

Depth versus Width Scaling: Although scaling laws offer a smooth extrapolation for model
performance, downstream performance can vary depending on architecture shape and not just model
size (Tay et al., 2022). For compositional tasks, deeper models often generalize better up to a
certain point, but for a fixed compute budget, it may be more advantageous to train a shallower,
wider model (Petty et al., 2024). Various works have proposed explanations for the role of width
versus depth in scaling behavior; for instance, Edelman et al. (2024) show that increasing network
width offers more ‘parallel queries’ over randomized subnetworks which learn sparse features more
efficiently. Levine et al. (2020) use a border rank argument to establish a width-dependent depth
threshold, beyond which additional depth yields diminishing returns. In this work, we specifically
investigate how independently scaling width and depth influences the random variation distribution
in compositional tasks. In one surprising result, we document a regime in which increasing width
damages model performance but increasing depth improves model performance. In a research
community increasingly concerned with emergent capabilities, our findings should inspire further
study of how emergent tasks respond to architectural hyperparameter tradeoffs.

LIMITATIONS

Our study is constrained by computational resources. Ideally, we would pretrain full language
models from scratch across many model scales and many random seeds, but end-to-end pretraining at
this density is prohibitively expensive. Instead, our LM experiments rely on partially reinitialized
Qwen2.5 models at a small number of scales, which may not capture all aspects of large-scale
training dynamics. While these models use a standard decoder-only Transformer architecture and
thus are representative of many contemporary LMs, our conclusions about distributional scaling
and bimodality should be validated on additional architectures and pretraining pipelines. Finally,
although we document when and where bimodal performance distributions appear, we do not fully
characterize their mechanistic origin—for example, how optimization landscapes, data composition,
or competition between circuits give rise to distinct performance clusters. Understanding these causal
mechanisms is an important direction for future work.

REPRODUCIBILITY STATEMENT

Upon publication, we will release the code for both synthetic and LLM experiments, including
code, and data. Detailed descriptions of model, data and training are provided in Appendix A, and
Section 3.
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A EXPERIMENTAL DETAILS ON SYNTHETIC TASKS

Below we provide more details when training decoder-only language models on the count and
addition—with index hints—tasks. Hyperparameters are largely adapted from (Zhou et al., 2024a).
We train all of our models to convergence on the train distribution. Our experiments were run on
an internal cluster and all model scales can be run on a single 40GB A100 GPU with gradient
accumulation; for count, runs can finish within 2 hours and for addition, runs can finish within 6
hours.

Count task: For all of our training runs, we fix the vocabulary size to 150. For evaluation, we
compute the exact match (EM) accuracy across all consecutive subsequences of the test length.

• Model scales: As mentioned in Section 2.1, we scale up our models by fixing width and
scaling depth and fixing depth and scaling width. The precise parameters for each variation
are as follows. For our fixed depth experiments, we fix the network depth to 4 layers and
vary width by taking hidden dimensions {64, 128, 256, 384, 512, 640, 768, 1024}. The head
dimension is fixed to 64. For our fixed width experiments, we fix the hidden dimension to
be 512 and vary the depth from {1, 2, 4, 6, 8} layers.

• Hyperparameters: We use a learning rate of 1e − 3 with a cosine decay scheduler and
weight decay 0.1. We set the maximum training duration to be 10000 steps, with batch size
128 and context length 256.

Reverse Order Addition with Index Hints: For evaluation, we compute the exact match (EM)
accuracy across 500 batches of 128 examples each.

• Model scales: For our fixed depth experiments, we fix the network depth to 6 layers
and vary width by taking hidden dimensions {64, 128, 256, 384, 512, 640, 768}. For our
fixed width experiments, we fix the hidden dimension to be 512 and vary the depth from
{1, 2, 3, 4, 6, 8, 10, 12} layers.

• Hyperparameters: We use a learning rate of 1e − 4 with a cosine decay scheduler and
weight decay 0. We set the maximum training duration to be 30000 steps, with batch size 64
and context length 512.

B BREAKTHROUGHNESS AND LINEARITY

Srivastava et al. (2023) introduced breakthroughness and linearity metrics to capture model per-
formance improving suddenly or reliably with scale. Given a model’s performances yi at model
scales xi sorted by ascending model scale, the linearity metric L and breakthroughness metric B are
respectively calculated as

L =
I(y)

RootMeanSquare({yi+1 − yi}i)
,

B =
I(y)

RootMedianSquare({yi+1 − yi}i)

where I(y) = sign(argmaxi yi − argmini yi)(maxi yi −mini yi).

In Figure 9 we sample the five top seeds for the breakthroughness and linearity metric respectively
for count (above) and addition (below).
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(a) Count.

(b) Addition.

Figure 9: Top five seeds according to breakthroughness and linearity metrics. Definitions for the
two metrics are given in Appendix B, with resulting seeds plotted for (a) count and (b) addition.

C ADDITIONAL SYNTHETIC EXPERIMENTAL RESULTS

C.1 COUNT: AN INSTANCE OF U-SHAPED SCALING

We next consider the counting task (Section 2.1), which also exhibits bimodally-distributed per-
formance (see Appendix Figure 12) but yields a very different scaling effect: a U-shaped curve.
Figure 10 reveals this peculiar phenomenon in the mean accuracy scaling curve, when holding depth
fixed. This curve is not simply a result of the summary statistic chosen, as it is mirrored by the
evolution of the distributions as a whole according to their W2 distance in Figure 11.

U-shaped scaling has been observed in LMs, but its causes are not currently well-understood. When
the Inverse Scaling Prize (McKenzie et al., 2022) solicited tasks which exhibit inverse scaling trends—
performance decreasing with scale—for large models, Wei et al. (2023) revealed that the majority
of awarded tasks actually exhibit U-shaped scaling after considering even larger models. Treating
the counting task as a concrete instance of U-shaped scaling at small model scales, we find that this
unusual trend is still underscored by monotonic continuous changes in the performance distribution.
Indeed, Figure 10 (c) shows that although the trend in the mean across all runs is U-shaped curve, the
mean of the “successful” runs—those achieving at least 50% accuracy—still improves monotonically
when increasing width. The observation of inverse scaling is, instead, due to changes in the probability
of success (bottom left). Even when inverse scaling is in effect across a performance distribution, the
performance of successful runs may exhibit more conventional responses to scale.

C.2 ADDITIONAL EXACT MATCH ACCURACY HISTOGRAM PLOTS

Our plots in the main paper fixed test length 40 for addition (Figure 2). In Figure 12 we show
analogous histograms for a fixed test length of 60 on the count task. We note that unlike addition,
the mode corresponding to failing runs disappears at the highest widths and depths ran, indicating a
difference in task difficulty affecting the random variation distribution.

In Section 2.5, we posit that the performance distribution becomes bimodal at the minimum capacity
required by the task. For example, Figure 13 shows that, regardless of width, models with a fixed
depth of 1 layer are unable to length generalize on the count task, despite achieving near-perfect
accuracy in-distribution.
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Figure 10: Summary statistics for length generalization (count task). Models tested at length 60,
scaling width (with fixed depth 4) and depth (with fixed width 4) independently. The trend for fixed
depth (scaling width) exhibits a U-shaped curve for the mean across all runs (b); however, the mean
of successful runs (defined as >50% EM accuracy) (d) still improves continuously.
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Figure 11: Changes in random variation (count task). Wasserstein-L2 distance of each scale’s
performance distribution relative to the largest scale, scaling depth and width independently. The dis-
tribution changes slowly between intermediate model scales, but changes suddenly at the nadir of the
U-shaped curve in Figure 10. We mark the emergence of bimodality at the last scale before multiple
peaks appear, and the mode breakthrough at the last scale before successful length generalization
becomes marginally more likely than failure.

C.3 ADDITIONAL CONTINUOUS METRIC PLOTS

In Section 2.4 we have seen seen that the addition histograms are bimodal in exact match accuracy
(Figure 2) and confirmed that the bimodal random variation distribution persists when viewing
a continuous performance metric (Figure 4). We can consider another continuous metric, which
corresponds to the minimum probability assigned to a token for each sample in the test length
generalization dataset:

minprob(f,X) =
1

|X|
∑
x∈X

min
i<|x|

Pf [xi|x0...i−1] (2)

We consider the average minimum probability (and analogously average maximum loss) in the
sequence because errors are rare, and thus averaging across the sequence obscures generalization
failures. However, as the model improves, the lowest-probability token may shift, but this transition
is still continuous, not abrupt. Thus, unlike 0/1 accuracy, this metric also avoids threshold effects
and better reflects gradual improvements in length generalization, similar to the continuous error
metric. We plot the resulting histograms of this metric in Figures 15 and 16 for addition and count
respectively. We note that bimodality persists for both tasks, particularly for addition; in particular,
stronger bimodality exhibited in the accuracy histograms corresponds to stronger bimodality in the
probability histograms.
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Figure 12: Random variation in length generalization (count task). Histograms of exact match
accuracy on length 60 sequences when independently scaling (a) width and (b) depth.

0 0.50 1
EM Accuracy

0.0

0.5

1.0

Fr
ac

tio
n 

of
 R

un
s Width = 2 Heads

0 0.50 1
EM Accuracy

Width = 4 Heads

0 0.50 1
EM Accuracy

Width = 8 Heads

0 0.50 1
EM Accuracy

Width = 12 Heads

0 0.50 1
EM Accuracy

Width = 16 Heads

Test Length=30 (in-distribution) Test Length=60 (out-of-distribution)

Figure 13: Histograms for EM accuracy when fixing depth to be one layer (count task). We
plot the random variation distribution at test length 30 (blue, i.e. in-distribution) and test length 60
(orange, i.e. out-of-distribution). While all model seeds obtain near perfect accuracy in-distribution,
all model seeds fail to length generalize at this depth.

In Figure 17, we plot the analogous KDE plot of the loss-based error metric for the count task. For
count, we note that the mode corresponding to ‘failing runs’ when looking at accuracy or probability
is more diffuse compared to addition. However, we claim that stronger bimodality in the original
accuracy/probability plots in Figures 12 and 16 is still associated with stronger bimodality in the loss
plots. For the addition task, the scales exhibiting the strongest bimodality in accuracy and probability
are for width 4 and 8 (in the case of fixed depth) and depth 2 and 4 (in the case of fixed width), and
these are also the most strongly bimodal loss KDE distributions. For the count task, even the most
strongly bimodal setting (fixed width, with depth 2) has a low probability of failure ( 25%), but still
produces a visible wide peak elevated over the long tail of the loss distribution.

Finally, Figure 14 provides a copy of Figure 8 with both accuracy and NLL loss comparable for
easy contrast. We note that high-performance clusters are distinguishable in both accuracy and loss,
but the thresholded accuracy conceals low-performance clusters which are visible in the continuous
distribution.

D ADDITIONAL LANGUAGE MODEL RESULTS

D.1 MMLU RESULTS ON QWEN2.5-1.5B

We repeat the same MMLU experiment (Section 3.1) on Qwen2.5-1.5B and we include results in
Figure 18. Due to computation limit, for each data mixes, we train on 20 random seeds. Similar to
Figure 14. models yields the same bimodal distribution in accuracy metrics as well as multi-modal
distribution in continuous metric (NLL).
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Figure 14: KDE approximations of performance variation on the MMLU test set. Provided for
contrasting accuracy and continuous NLL loss. Top: Approximate distribution of accuracy metrics.
Bottom: Approximate distribution of KDE metrics, copied from Figure 8.
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Figure 15: Histograms of the minimum probability of any token in each sequence, averaged
across sequences (addition task). Metrics are calculated by Equation 2. The bimodal nature of the
random variation distribution persists even when using this continuous metric, analogous to Figure 4.
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Figure 16: Histograms of the minimum probability of any token in each sequence, averaged
across sequences (count task). Random variation still leads to bimodal performance distributions,
even using this continuous performance metric.
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Figure 17: Random variation in continuous length generalization error (count task). Kernel
Density Estimation (KDE) of loss-based error metric (Equation 1) distribution across model runs. At
scales where the EM accuracy distribution is most strongly bimodal, we see that the KDE places the
most density at areas of high loss.
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Figure 18: Accuracy and NLL loss for Qwen2.5-1.5B MMLU experiments. We train last-layer
reinitialized Qwen2.5-1.5B on data mixes with different ratios of the target task (MMLU). Top:
Distribution of accuracy metric. Bottom: Distribution of NLL loss metric.

D.2 CSQA LM RESULTS

In addition to MMLU task, we also reproduce the same data mix experiment on CommonsenseQA
(CSQA; Talmor et al., 2019) task and we include the result in Figure 19. Models yields the same
qualitative behaviors as the MMLU task observed in Figure 6.
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Figure 19: Violin plots of last-layer reinitialized Qwen2.5 models on the CSQA benchmark. The
same behavior observed in MMLU in Figure 6 is reproduced on CSQA as well.
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