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Abstract

It is widely believed that given the same labeling
budget, active learning (AL) algorithms like
margin-based active learning achieve better pre-
dictive performance than passive learning (PL),
albeit at a higher computational cost. Recent
empirical evidence suggests that this added
cost might be in vain, as margin-based AL can
sometimes perform even worse than PL. While
existing works offer different explanations in the
low-dimensional regime, this paper shows that
the underlying mechanism is entirely different in
high dimensions: we prove for logistic regression
that PL outperforms margin-based AL even for
noiseless data and when using the Bayes optimal
decision boundary for sampling. Insights from
our proof indicate that this high-dimensional
phenomenon is exacerbated when the separation
between the classes is small. We corroborate
this intuition with experiments on 20 high-
dimensional datasets spanning a diverse range
of applications, from finance and histology to
chemistry and computer vision.

1. Introduction

In numerous machine learning applications, it is often
prohibitively expensive to acquire labeled data, even when
unlabeled data is readily available. For instance, consider
the task of inferring the sleep quality of a patient from
data collected during usual health checks (e.g. EEG, EKG,
blood tests etc). To get a high-precision label for this
task, patients need to spend a night in a sleep lab, which
is expensive and time-consuming. Therefore, the labeled
dataset that we can collect cannot be too large. However,
a large unlabeled set of medical records of similar patients
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is available and can potentially be leveraged for the task.
Active learning algorithms aim to reduce labeling costs, by
collecting a small labeled set that still results in a model
with good predictive performance.

A popular family of active learning algorithms is margin-
based active learning (M-AL) (Scheffer & Wrobel, 2001;
Balcan et al., 2007; Ducoffe & Precioso, 2018). This
paradigm proposes to alternate between (i) training a pre-
diction model (e.g. logistic regression, deep neural network)
on the currently available labeled set; and (ii) augmenting
the labeled set by acquiring labels for the unlabeled points
that lie close to the decision boundary of the model. M-AL
is closely related to strategies like uncertainty sampling
(Lewis & Gale, 1994), entropy sampling (Settles, 2009),
or softmax sampling for neural networks.

Numerous prior works have documented the success of M-
AL in low dimensions (Tong & Koller, 2001; Schein &
Ungar, 2007; Yang & Loog, 2018; Schohn & Cohn, 2000).
As it is evident in Figure 1, in the regime where the query
budget is large (i.e. ny > d), M-AL achieves low test error
with a lot less labeled data than passive learning (PL, i.e.
uniform sampling). This is in line with the intuition about
M-AL developed in prior works. At the same time, the
figure reveals that in the low-sample regime (i.e. ny < d)
M-AL “fails” — that is, it leads to worse predictive error than
PL. This regime is much less studied in the AL literature.'

In this paper, we characterize theoretically and empirically
the settings that lead to the failure of M-AL for high-
dimensional logistic regression. We rule out two likely
causes for this phenomenon. First, it is known that, in
low dimensions, M-AL does not improve upon the sample
efficiency of PL when the Bayes optimal model has high
error (Mussmann & Liang, 2018). Second, several works
(Huang et al., 2014; Sener & Savarese, 2018; Hacohen
et al., 2022) argue that M-AL can fail due to the cold start
problem: using only a small labeled set, one cannot obtain
a meaningful decision boundary to be used for sampling.

Perhaps surprisingly, for high-dimensional problems with
a low labeling budget, M-AL underperforms PL evern when
(1) the Bayes error is zero; and (ii) one uses the distance to

!"The work of Zhang (2018) also focuses on high-dimensional
data, but with the purpose of improved computational efficiency.
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Figure 1: Left: In the low-dimensional regime (n, > d) M-AL achieves low test error with fewer labeled samples than PL. However, in
the high-dimensional regime (n, < d, see zoomed-in insets), M-AL fails. Oracle M-AL exhibits the same failure in high dimensions,
despite performing well for large query budgets, thus ruling out the cold start problem as a cause for this phenomenon. Right: Increasing
the seed set size necd reduces the gap between Oracle M-AL and PL. See Appendix G.3 for more datasets.

the Bayes optimal decision boundary for sampling (referred
to as oracle margin-based active learning or Oracle M-AL).
Our experiments reveal the failure of M-AL for logistic
regression on a wide variety of datasets, a subset of which
are presented in Figure 1 (a few works make a similar
observation for neural networks (Sener & Savarese, 2018;
Hacohen et al., 2022; Sorscher et al., 2022)). This failure of
M-AL occurs only in the low-budget regime (see zoomed-in
insets in Figure 1), which coincides with the scenario in
which AL is often employed in practice (i.e. high labeling
costs). Since prior explanations do not apply to the setting
that we consider (high-dimensional, noiseless), to date,
there exists no result that sheds light on this failure case.
Our contributions in this paper are as follows:

1. We observe that M-AL performs worse than PL for
logistic regression on numerous high-dimensional
datasets from different application domains (e.g. finance,
chemistry, histology).

2. We prove non-asymptotic error bounds for logistic re-
gression that directly imply worse performance of M-AL
compared to PL — even when using Oracle M-AL (Sec-
tion 3) and for data distributions with noiseless labels
(truncated Gaussian mixture and Gaussian marginal).

3. Distinct from the low-dimensional intuition (Mussmann
& Liang, 2018), our proof suggests that in high
dimensions M-AL benefits from a large separation
margin between the classes. We confirm this intuition
experimentally for logistic regression on 15 real-world
datasets (Section 4).

Our results reveal that for high-dimensional data, margin-
based AL is not only more computationally costly compared
to passive learning, but often provably less effective as well.
Our paper hence suggests an important avenue for future
work: identify active learning algorithms that are provably
consistent and substantially outperform passive learning
in high-dimensional and low-budget settings.

Algorithm 1 Margin-based active learning

Input: Seed set Dsc.q, unlabeled set D,,, budget ng,
distance function Dist, loss function £
Result: Prediction model f(-;6)
,Z?l < Dseed
0 argming 75— 3, ep
for n € {|Dsceal + 1,...,n¢} do
Tquery = argmin, ., Dist(x; é)
Yquery < AcquireLabel(Tquery)
pl Dy U {(@query Yauery) }5 D <= D \ {@query }
0 + argmin, ﬁ (e pyen, LUf(@30),y)
end for .
return f(-; 0)

L(f(x;0),y)

seed

2. Active learning for classification

We now introduce the active learning framework that we
consider throughout this paper.

Our high-level goal is to train a binary classifier that
predicts a label y € {—1,1} from covariates = € R%, where
(z,y) ~ Pxy. More specifically, we seek parameters
6 € © such that the classifier + — sgn (f(x;0)) achieves
a low population error Err(f(-;0)) = E(zy)~pyy 1y #
sgn(f(x;0))]. In practice the population error is not avail-
able, and hence, one can instead minimize the empirical
risk defined by a loss function £ on a collection of labeled
training points § = arg min, D1 2 (wyyen, L(F(230),y).
The goal of active learning is to find a good set Dy which
induces a 6 that generalizes well.

Collecting the training set via margin-based AL. We
consider standard pool-based active learning like in Algo-
rithm 1 and assume access to a large unlabeled dataset D,,
of size n,. At first the labeled set D, consists of a small
seed set Dgeeq containing ngeeq i.1.d. samples drawn from
the training distribution. At each querying step n, we first
sample and label the unlabeled point that is closest to the
decision boundary of the trained classifier according to dis-
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tance function Dist(x;6) € [0,00)? and add it to the la-
beled set. Then we train a classifier on the resulting labeled
set.> These querying steps are repeated until we exhaust the
labeling budget, denoted by n, (we use labeling or query
budget interchangeably). Moreover, we define the seed set
proportion p := 2=t which effectively captures the fraction
of labeled points sampled via uniform sampling. Note that
p = 1 corresponds to passive learning.

Oracle vs empirical M-AL. In practice, new queries are
selected using a classifier trained on the currently available
labeled data, as described in the paragraph above. We re-
fer to this strategy as empirical M-AL. We also consider a
setting that could potentially be more beneficial for M-AL,
namely using the Bayes optimal classifier for sampling at
every querying step (i.e. using 6* instead of 6 in the first
step of the for loop in Algorithm 1). We call this strategy
oracle M-AL and elaborate on how it compares to empirical
M-AL in Section 3.

Intuition behind margin-based AL. Intuitively, in low
dimensions (i.e. d < ny), M-AL behaves like binary search
(Cohn et al., 1994), and hence, needs significantly fewer
samples to find the optimal decision boundary. Intuitively,
in low dimensions, sampling based on the margin of the
Bayes optimal classifier (i.e. oracle M-AL) is expected
to further improve the sample complexity of M-AL for
noiseless data (see Section 3.3). Finally, note that M-AL
is often equivalent to uncertainty sampling (Lewis & Gale,
1994). For instance, for binary linear predictors under the
logistic noise model, the uncertainty is proportional to the
distance between x and the decision boundary determined
by 6 (Platt, 1999; Mussmann & Liang, 2018).

Two-stage margin-based AL. Similar to other theoreti-
cal analyses of active learning (Mussmann & Liang, 2018;
Chaudhuri et al., 2015) we modify Algorithm 1 slightly, and
develop the theory instead for a two-stage procedure: 1) we
obtain éseed using the initial small seed set; and 2) we use
9seed to select a batch of (1 — p)n, samples to query from
the unlabeled set. This two-stage process avoids the depen-
dence of the classifier at stage n on the unlabeled dataset.
Chaudhuri et al. (2015) argue that two-stage strategies are
asymptotically not worse than iterative strategies for MLE
estimators. Moreover, Mussmann & Liang (2018) show that
theoretically analyzing this two-stage strategy can reveal
insights about iterative active learning strategies that are
confirmed by experiments on real-world data. In our set-
ting as well, experiments with the two-stage strategy follow
closely the same trends as iterative M-AL (see Figure 2).

’In Section G.8 we discuss the implications of our results to
strategies that combine a diversity and a margin-based score (e.g.
Brinker (2003)).

3For the theoretical analysis of M-AL we use the same modifi-
cation of Chaudhuri et al. (2015); Mussmann & Liang (2018) to
slightly change this procedure (see Section 3.4).
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Figure 2: Two-stage M-AL (which we analyze in Section 3.4)
is on-par or better than iterative M-AL (Algorithm 1). Data is
drawn from the truncated mixture distribution from Section 3.2,
with o € {2,5},0 = 3 and d = 1000. Shaded areas indicate
standard deviations over 5 runs.

3. Theoretical analysis of margin-based active
learning in high dimensions

In this section we give rigorous intuition for the failure of
M-AL for high-dimensional logistic regression. In particu-
lar, we prove that two-stage M-AL is less sample efficient
than PL. Since two-stage M-AL is empirically on-par or
better than iterative M-AL in the setting that we consider
(Figure 2), our theory gives insights into the failure of the
strategy in Algorithm 1. To rule out the cold start prob-
lem as a potential cause of this phenomenon, we prove that
M-AL also fails when using the Bayes optimal decision
boundary for sampling (oracle M-AL), a strategy that is
more favorable than M-AL in low-dimensions.

3.1. Logistic regression and the max-/>-margin solution

We consider linear models of the form f(z;60) = (0, x) with
0 in a fixed-norm ball and minimize the logistic loss, i.e.
L(z,y) =log(1 + e~ *¥). We note that for linearly separa-
ble data, minimizing the logistic loss with gradient descent
recovers the max-/,-margin (interpolating) solution (Soudry
et al., 2018; Ji & Telgarsky, 2019). The generalization be-
havior of this interpolating estimator has been analyzed
extensively in recent years in different contexts (Bartlett
et al., 2020; Javanmard & Soltanolkotabi, 2020; Muthuku-
mar et al., 2021; Donhauser et al., 2021). In what follows,
we refer to the max-{5-margin classifier trained on a labeled
dataset acquired (i) via uniform sampling (ngeq = 7¢) as
éum ¢ and (i1) via oracle and empirical M-AL respectively
as é07'ozcle and émargin'

3.2. Data distribution

We now introduce the family of joint data distributions P
for our theoretical analysis that includes distributions where
the covariates follow a Gaussian or mixture of truncated
Gaussians distribution. These distributions can adequately
approximate data generated in many practical applications
(Bouguila & Fan, 2019) and have often been considered in
theoretical analyses of machine learning algorithms (Tsipras
et al., 2019; Li et al., 2020; Frei et al., 2022).
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Noiseless and balanced observations. Recall that for lin-
ear classifiers, the intuitive reason for the effectiveness of
M-AL sampling is that after only a few queries, it selects
points in the neighborhood of the optimal decision boundary.
Notice that this region is where the label noise is concen-
trated, for a Gaussian mixture model. Therefore, M-AL
is prone to query numerous noisy samples. We wish to
show the failure of M-AL even in the most benign setting.
Hence, we assume a noiseless binary classification prob-
lem where the Bayes error vanishes, i.e. Err(6*) = 0 for
some 6* unique up to scaling and in this section we set
[|6%]|2 = 1.* More precisely, we assume that the joint distri-
bution P is such that the labels y = sgn((6*,z)) € {—1,1}
with 8* € R?. For ease of exposition, we assume without
loss of generality that 6* = e; = [1,0,...,0]; if % # e;
we can rotate and translate the data to get * = e; (see
Appendix A.1 for more details). We can then rewrite the
covariates as * = [z1, Z] to distinguish between a signal
r1 € R and non-signal component Z € R?~!. Further, to
disentangle from phenomena stemming from imbalanced
data, we consider a distribution with equal class proportions
in expectation (see Appendix A.2 for a discussion).

We obtain a family of joint distributions satisfying these
conditions by sampling y € {+1, —1} each with probabil-
ity one half, and then sampling from the class-conditional
distribution defined by P, = Nyunc(yp, 0%, y) and
Pijy = N(0,14-1), where Niypunc(yp, 0, y) denotes the
truncated Gaussian distribution with support (—o0,0) if
y = —1 and, respectively, support (0, c0) if y = 1. The pa-
rameters p, 0 > 0 denote the mean and standard deviation
of the non-truncated Gaussian.

Gaussian marginals. Further note that by setting ¢ = 0,
we recover the marginal Gaussian covariate distribution
(also known as a discriminative model) — a popular distri-
bution to prove benefits for active learning (Beygelzimer
et al., 2010; Hanneke, 2013), as both supervised and semi-
supervised learning require large amounts of labeled data to
achieve low prediction error, even given infinite unlabeled
samples (Scholkopf et al., 2012).

Mixture of truncated Gaussians. For p > 0, the
marginal covariate distribution is a mixture of two trun-
cated Gaussians. Each truncated component has standard
deviation o, < ¢ and mean

d(—p/o)

—op/e)

pier = Elyz] =p+o

where p and o determine the non-truncated Gaussian, and
¢ and ® denote the pdf and the CDF of the standard normal
distribution, respectively.

“Note that similar results can also be derived for noisy data.

3.3. Warm-up: M-AL versus PL in low dimensions
Before we introduce our main results, we discuss why we
expect M-AL to outperform PL for this family of prediction
problems. In low-dimensions, Mussmann & Liang (2018)
show that M-AL requires significantly fewer samples than
PL to achieve the same test performance for distributions
with vanishing Bayes error — this corresponds to noiseless
data. Moreover, in low dimensions and for noiseless data,
oracle M-AL further improves the sample complexity,
as implied, for instance, by the results in Chaudhuri
et al. (2015) (see Appendix A.4.2 for further discussion
and an illustrative 1D example). Indeed, experiments
on real-world tabular (Figure 1) or image data (Sener &
Savarese, 2018) also confirm that oracle M-AL outperforms
M-AL for large labeling budgets. However, we show in the
following sections that these intuitions do not transfer to
the low-sample regime. Oracle M-AL has not been studied
in this setting, prior to our work.

3.4. Main result for high-dimensional M-AL

In this section we present theorems that rigorously prove
how logistic regression with margin-based AL leads to
worse classifiers in the high-dimensional setting (i.e. ny, <
d) where most samples are acquired with M-AL (i.e. p < 1)
— a phenomenon observed on real-world data in Figure 1-
Right. Moreover, we discuss an insight that directly follows
from the proof intuition: if many samples in the unlabeled
dataset are close to the optimal decision boundary (i.e. small
/o ratio), the error gap between M-AL and PL increases.
We confirm this intuition on real-world data in Section 4.5.

First, we state the assumptions under which our results hold
for high-dimensional active learning.

Assumption 3.1. Let n, be the labeling (or query) budget
and n,, the unlabeled set size. Assume that n, < n, and
d > ny. Moreover, consider the distribution described in
Section 3.2 with /o < 2, and let D4 and D,, be datasets
drawn i.i.d. from these joint and the marginal distributions,
respectively.

Our main results provide lower bounds on the gap between
the population error resulting from M-AL versus PL (i.e.
uniform sampling). We first state a theorem characterizing
this gap for oracle M-AL and refer to Appendix B for the
formal statement and proof.

Theorem 3.2 (informal). Consider the setting introduced
in Assumption 3.1. Then there exist universal constants
0 < c1,e € 1andt,co > 0 such that with probability
larger than 1 — e=°2°/2 it holds that:

Err(éoracle) *E’""(éum'f) >V, (aggzcle) Vo (alftjns;f) )

where ¥, , is a strictly increasing function, defined in Sec-
tion B.1, and
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Figure 3: Theoretical population error lower bounds for oracle M-AL and upper bounds for PL in Theorem 3.2 on the truncated Gaussian
mixture model. (a) For large d/n, the lower bound of Theorem 3.2 on the error of oracle M-AL is much larger than the upper bound on
the error of PL for fixed nseea = 10 and p1/0 = 1. (b) The lower bound on the error is smaller when the seed set proportion p and the ratio
u/o are increasing, for fixed d = 1000 and n, = 100. (c) Intuition for the failure of M-AL in high dimensions. The classifier assigns
higher weight to the non-signal dimension when trained on the yellow points close to the optimal decision boundary.
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In particular, if p < d for 0 < § < 1/2, then

Err(8oracie) — Err(Qunif) > 0.

Note that ¥, ,; is similar to the cumulative distribution func-
tion of the Gaussian distribution (see Appendix B.1 for the
exact definition and more details).

A similar result can be proved for two-stage margin-based
active learning. We state the theorem informally and defer
the formal statement and proof to Appendix B.

Theorem 3.3 (informal). Consider the setting introduced
in Assumption 3.1 and further assume that o > 1. Then
there exist universal constants 0 < c¢1,€ < 1l andt,co >0
such that with probability larger than 1 — e=°2t"/2 it holds
that:

Err(émargin)_Err(éunif) >V, . (aﬁzrgm)_\lluﬁ (aﬁff) )

UB .
where V,, , Qi AS i1 Theorem 3.2 and

d—1
a8 . — ooV -1
margin log n 1+e)(d—1 ’
M pCuccat(i=p) (et 82 Y HFED)

with |ty — Ciseed| < totr(png)*l/g. In particular, for small
fixed constants cs, cq,cs > 0if png < cs, and

d_1\¢
ftr > Cq () (log ) */® +
prve
Cseed
1/6 ’
Hir — (pfztﬁ/z - (%) (logn,, )1/3
then Err(émm«gm) — Err(éum-f) > 0.
The proof shares the same intuition and key steps as the
proof of Theorem 3.2 and differs only in certain techni-
calities that arise from estimating the classifier 05ccq. In

toyy
(pne)t/?’

p<cs

particular, we additionally need to assume that the mean i,
is large enough such that the classifier trained on the seed
set has non-trivial prediction error. Note that it is possible
to obtain a large p;, even for the marginal Gaussian case
when i = 0, by choosing a large ¢ in Equation (1).

3.5. Proof sketch and interpretation

In this section we present the intuition behind the proofs
of the theorems and discuss the insights revealed by the
theory. For simplicity, we focus primarily on Theorem 3.2
for which the phenomenon is more pronounced. We note
that the same arguments hold for the setting in Theorem 3.3.

Discussion of assumptions. We now discuss the condi-
tions needed for the theorems. Observe that if the ratio /o
is large, then even PL achieves low error. Hence, we as-
sume settings where p/o < 2, which also cover real-world
datasets that contain ambiguous samples that lie near the
optimal decision boundary. If i/o < 2 then the covariate
distribution has sufficient density in the neighborhood of
the optimal decision boundary. Hence, with high probabil-
ity, the labeled data acquired with M-AL lies in this region,
leading to an estimator with high population error. Finally,
a small seed set proportion p allows for sufficiently many
active queries, and is common in situations that employ AL.
We refer to Appendix A for further arguments supporting
the practical relevance of the setting.

Proof intuition. Figure 3c illustrates the intuition behind
the failure of M-AL in high dimensions using a 2D cartoon.
We depict the samples chosen by oracle M-AL (yellow),
which lie close to the optimal decision boundary (vertical
line) and the points selected by uniform sampling (blue),
which are farther away from the optimal decision boundary.
Note that for both sampling strategies, the selected samples
are far apart in the non-signal direction. More specifically, in
high dimensions the large distance in the non-signal compo-
nents T is a consequence of sampling & from a multivariate
Gaussian. It follows from these facts that the max-£2-margin
classifier trained on the samples near the optimal decision
boundary (yellow dotted) is more tilted (and hence, has
larger population error) than the one trained on uniformly
sampled points that are further away (blue dashed).
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Interpretation of theoretical results. Theorem 3.2 char-
acterizes when the population error gap between oracle
M-AL and PL is positive: for small labeling budgets (lead-
ing to a large d/ny ratio), for a small seed set proportion
(p < 1) and for sufficiently many unlabeled samples near
the Bayes optimal decision boundary (implied by u/o < 2).
In particular, in the regime d/ny; — oo that implies € — 0
(as argued in Appendix B.2), we can observe how for small
p ~ 0, it holds that o5 . > aUB as 0 < ¢; < 1. In turn,
olB . > aUB implies Ert(Qoracte) — Ext(Quni £) > 0 since
VU, o is strictly increasing. In Figure 3 we depict how the
error bounds, and hence the gap in Theorem 3.2, depend on

the three quantities p, d/n, and pu/o.

In Figure 3a, we show the dependence of the bound in The-
orem 3.2 on ny (and hence, d/ny), for fixed ngeeq = 10,d =
1000 and p1/0 = 1. If the query budget n, and the ratio p
are small (the middle region of the plot on the horizontal
axis), we have a large error gap between oracle M-AL and
PL. This phenomenon is inherently high-dimensional and
stops occurring for large sample sizes ny (the right part of
the figure). We also identify these regimes in experiments
on real-world data in Section 4.4. In Appendix E, we show
more evidence that the theoretical bounds closely predict
the values from simulations. Note that the bounds are loose
for extremely small budgets (left part of the figure).

In Figure 3b, we vary the seed set size ngeq (and hence,
the ratio p), for fixed ny, = 100,d = 1000. We observe
that increasing the seed set proportion p reduces the error
of oracle M-AL (note that p = 1 corresponds to PL). We
highlight that the dependence of the error on the ratio p is not
due to the decision boundary used for M-AL becoming more
meaningful for larger p, as conjectured by some prior works
(Huang et al., 2014; Sener & Savarese, 2018): in our case,
we sample using the Bayes optimal decision boundary at
every querying step. Instead, Theorem 3.2 captures another
failure case of M-AL, specific to high-dimensional settings.

Moreover, Figure 3b also illustrates the dependence of the
error lower bound on the ratio 11/, for oracle M-AL. In
Theorem 3.2, the distribution-dependent ratio ;1/o enters
the bounds via the quantity c¢; which is strictly increasing
in p/o (the exact dependence of ¢; on /o is presented in
Lemma B.9 in Appendix B). For small p/0, the error gap
between oracle M-AL (p < 1) and PL (p = 1) is large.

Finally, this phenomenon is caused by choosing to label sam-
ples close to the Bayes optimal decision boundary, which
are, by definition, the points queried with oracle M-AL.
This suggests that, perhaps surprisingly, oracle M-AL ex-
acerbates this high-dimensional phenomenon. Indeed, as
evident from comparing the bounds in Theorems 3.2 and 3.3,
oracle M-AL performs even worse than M-AL that uses the
margin of an empirical estimator 6. We confirm this intu-
ition on real-world datasets in Appendix G.2.

4. Experiments

In this section, we provide extensive experiments to in-
vestigate the ineffectiveness of low-budget margin-based
sampling on high-dimensional real-world data. In particular,
we train logistic regression with oracle and empirical M-AL
on a wide variety of tabular datasets.

4.1. Datasets

We select binary classification datasets from OpenML (Van-
schoren et al., 2013) and from the UCI data repository (Dua
& Graff, 2017) according to a number of criteria: i) the data
should be high-dimensional (d > 100) with enough samples
that can serve as the unlabeled set (n,, > max(1000, 2d));
ii) linear classifiers trained on the entire data should have
high accuracy (which excludes most image or text datasets).
A total number of 15 datasets satisfy these criteria and cover
a broad range of applications from finance and ecology to
chemistry and histology. We provide more details about the
datasets in Appendix F.1.

Like in Section 3, we wish to isolate the effect of high-
dimensionality, and hence, we balance the two classes by
subsampling the majority class uniformly at random. Thus
we remove confounding effects stemming from applying
M-AL on imbalanced data (Ertekin et al., 2007). In addition,
we mimic the noiseless setting considered in Section 3 using
the following procedure: after fitting a linear classifier on the
entire dataset, we remove the training samples that are not
correctly predicted and use the subsequent smaller subset as
the new dataset. We show that, even in the more favorable
noiseless setting, M-AL is less efficient than PL in high
dimensions. Experiments on the original, uncurated datasets
presented in In Appendix G.1 reveal a similar trend.

4.2. Methodology

We split each dataset into a test and training set. In all
experiments, we sample a labeled seed set Dg..q of fixed
Size Ngeeq = 6 from the training set (see Appendix G.7
for experiments with larger ns.q). The covariates of the
remaining training samples constitute the unlabeled set D,,.

In practice, one seeks to find the sampling strategy that per-
forms best for a fixed seed set D4 and labeling budget ny.
To provide an extensive experimental analysis, in this work
we compare M-AL (Algorithm 1) and PL over a large num-
ber of configurations of (Dgccq,n¢). We repeatedly draw
different seed sets uniformly at random (10 or 100 draws,
depending on the experiment) and consider all integer val-
ues in [ngeed, d/4] as the labeling budget ny, where d is the
ambient dimension of the dataset.’

At each querying step, we use L-BFGS (Liu & Nocedal,

>The value d/4 is chosen only for illustration purposes. Since
for the real-sim dataset d > 20, 000, we set the maximum labeling
budget to n, = 3,000 < d/4 for computational reasons.
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Figure 4: Top: The probability that the test error is lower with PL than with M-AL, over 100 draws of the seed set. PL outperforms M-AL
for a significant fraction of ng € [neq, d/4] (i.e. warm-colored regions). See Appendix G.4 for more precise numerical values. Bottom:
Largest gains and losses in test error of M-AL versus PL, over 100 draws of Dsccq. Box plots show distribution over ng € [nseed, Mansition]-
The sporadic gains of M-AL over PL are generally lower (to left of dashed line) or similar to the losses in test error that it can incur.

1989) to train a linear classifier by minimizing the average
logistic loss on the labeled dataset collected until then. Ap-
pendix G.6 shows the same high-dimensional phenomenon
for £1- or ¢5-regularized classifiers.

4.3. Evaluation metrics

We compare margin-based active learning and passive learn-
ing with respect to two performance indicators. On the one
hand, we measure the probability that PL leads to a smaller
test error than M-AL. The probability is over repeated trials
with different seed samples. We compute this probability
for each labeling budget n; € [ngeq,d/4]. On the other
hand, we wish to quantify the magnitude of the failure of
M-AL. We compare the most significant gains of M-AL
with its most significant losses across small query budgets
for which PL outperforms M-AL with high probability.
In particular, we focus on query budgets smaller than the
dataset-dependent transition point Nansitions Where Nyransition
is the largest query budget ny € [Nseeq, d/4] for which the
probability of PL outperforming M-AL exceeds 50%. If no
such budget exists, Nynsiion = d/4. For each query budget
size ng € {Nseed; -++» Niransition +» W€ then compute the gap be-
tween the test error obtained with M-AL and with PL, over
100 draws of the seed set. For every labeling budget ny, we
report the largest loss of M-AL (i.e. 9?”‘ percentiles over the
draws of Dyeeq Of the error gap Err(6pargin) — Ert(Ouniy))
and the largest gain of M-AL (i.e. 95" percentiles of the

error gap Err(0yni ) — Err(0,,4rgin)). Then, we depict the
distribution of these values of extreme losses/gains over
ng € {Nseeds -+ Neransition }- 11 Appendix G.3 and G.5, we
present more evaluation metrics (e.g. the dependence of the
test error on the budget n,), which provide further evidence
that M-AL fails to be effective in high dimensions.

4.4. Main results

In Figure 4-Top we show the probability (over 100 draws
of the seed set) that PL leads to lower test error than M-AL.
The observations match the trend predicted by our theo-
retical results (see Theorem B.4): decreasing the seed set
ratio p (here, by increasing the budget n, along the y-axis)
leads to a higher probability that PL outperforms M-AL.
Analogous to the discussion in Section 3.5, we observe
two regimes: for small query budgets ny, M-AL performs
poorly with probability larger than 50% (warm-colored
regions). This regime spans a broad range of budgets
Ny € [Nseed, d/4] for most datasets. In the second regime,
M-AL eventually outperforms PL for large query budgets.®

Furthermore, Figure 4-Bottom shows that in 9 out of 15
datasets, the median (over budgets ny € [Ngeed, Transition)) OF
the largest gain of M-AL is lower than the median loss it can
incur, compared to PL. Intuitively, this indicates that even

SThe riccardo dataset is particularly challenging for M-AL and
needs more than d/4 labeled samples to close the error gap to PL.
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Figure 5: Increasing the separation between the classes in the unlabeled dataset improves the performance of M-AL. Removing the 25%
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(i.e. lighter colors), and even on challenging datasets like riccardo (right).

in the unlikely event that M-AL leads to better accuracy,
the largest gains we can achieve are lower than the poten-
tial losses. While the severity of the phenomenon varies
with the dataset, we can conclude after this extensive study
that margin-based AL cannot be used reliably when the
dimension of the data exceeds the size of the query budget.

Finally, recall that in Section 3 and in Figure 1 we show the-
oretically and empirically that using the margin of the Bayes
optimal classifier exacerbates the failure of M-AL in high
dimensions. In fact, oracle M-AL performs consistently
much worse than both PL and vanilla M-AL in experiments,
as indicated in Appendix G.2.

4.5. Verifying trends predicted by theory for M-AL

The intuition developed in Section 3 suggests that the perfor-
mance of M-AL in high dimensions may improve for: i) a
larger separation margin between classes (modeled by p/o
in the theorems); or ii) a larger seed set (leading to a larger
ratio p = ngeea/ne). We test whether these insights also
underlie the phenomenon observed in real-world datasets.

First, we investigate the role of the separation margin. We
train a linear classifier on the full labeled dataset. Then,
we artificially increase the distance between the classes by
removing the 25% or 50% closest samples to the decision
boundary determined by the classifier trained on the entire
dataset. Indeed, we confirm that removing the 25% or 50%
most “difficult” samples improves the performance of M-AL
significantly as we show in Figure 5, which is in line with
the findings of Sorscher et al. (2022). In particular, after
removing the points close to the Bayes optimal decision
boundary, M-AL outperforms PL even on riccardo, the
most challenging dataset in our benchmark for AL.

Further, we analyze the impact of a larger seed set size
on the performance of M-AL. For a fixed labeling budget
nyg, INCreasing ngeeq corresponds to a larger ratio p, which
leads to a smaller gap in error between M-AL and PL as we
explain in Section 3: Indeed, we observe that larger seed set
sizes can lead to more effective margin-based AL both on

synthetic experiments in Figure 8 and on real-world data in
experiments presented in Appendix G.7.

4.6. Other AL methods in high dimensions and
potential mitigations

AL strategies effectively equivalent to M-AL. Finally,
we note that the same failure case occurs for other algo-
rithms, such as margin-based active learning (Scheffer &
Wrobel, 2001; Ducoffe & Precioso, 2018; Mayer & Timo-
fte, 2020) or entropy sampling (Settles, 2009), since they
effectively sample the same points as M-AL.

Combining informativeness and representativeness.
Recall that, by definition, varying the ratio p modulates
the fraction of the labeling budget selected with margin-
based sampling, with p = 1 corresponding to PL. Another
way to interpolate between M-AL and PL is via a strategy
that combines informativeness (via margin-based sampling)
and representativeness (via uniform sampling), as proposed
by Brinker (2003); Huang et al. (2014); Yang et al. (2015);
Gal et al. (2017); Shui et al. (2020); Farquhar et al. (2021)
We analyze an e-greedy scheme that also falls in this fam-
ily of AL algorithms: at each querying step, we perform
margin-based sampling with probability 1 — e and uniform
sampling with probability e. In Appendix G.8 we provide
evidence that PL continues to surpass AL for a large fraction
of the labeling budgets, even when using the e-greedy strat-
egy. The intuition for the failure of these algorithms in high
dimensions is the same as the one presented in Section 3.

AL with no margin-based sampling. Could it be that
AL algorithms not relying on any form of margin-based
score, such as Sener & Savarese (2018); Gissin & Shalev-
Shwartz (2019); Hacohen et al. (2022), mitigate this high-
dimensional phenomenon? Indeed, we show experimentally
in Figure 21 that coreset-based AL (Sener & Savarese, 2018)
outperforms M-AL with high probability in real-world ap-
plications. However, compared to PL, the coreset method is
still often worse (Figure 22), that is, the high-dimensional
phenomenon outlined in Section 3 still persists to a large
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extent. In particular, no mechanism prevents the coreset
strategy from selecting points close to the Bayes optimal
decision boundary. As highlighted in Figure 5, selecting
these “difficult” samples can hurt the performance of AL.

Discussion on mitigations. Figure 5 suggests that M-AL
constrained to points far enough from the Bayes optimal
decision boundary might outperform PL in high dimensions.
As the Bayes optimal predictor is not available during train-
ing, the closest derived mitigation strategy would be to not
allow selecting the points closest to the decision boundary
determined by the empirical estimator g (instead of the op-
timal 6*). We find that this mitigation strategy does not
help to alleviate the negative effect of M-AL, as it does not
effectively remove all the difficult points from the set of
query candidates. We regard it as important future work to
investigate whether an AL strategy can be provably effective
in high-dimensional settings similar to ours.

5. Discussion and future work

In this work we show theoretically and through extensive
experiments that active learning, and in particular margin-
based sampling, performs worse than uniform sampling
for linear models in high dimensions. While we focus on
logistic regression and the max-f-margin solution, we con-
jecture that the same intuition outlined in Section 3 holds
for other linear predictors like lasso- or ridge-regularized
estimators, as indicated by experiments in Appendix G.6.

Moreover, this phenomenon is more general and also occurs
for complex non-linear models like deep neural networks.
Our experiments suggest that M-AL performs poorly in the
context of deep learning on a number of different image clas-
sification tasks (see Appendix H), corroborating previous
findings by Sorscher et al. (2022); Hacohen et al. (2022).
We leave as future work an investigation of whether the
insights revealed by our analysis of linear models transfers
to non-linear predictors like deep neural networks.

Furthermore, for practical purposes, an important question
for future work is whether it is possible to construct a
strategy that improves upon uniform sampling in high
dimensions. Based on Figure 5, we believe that imposing
certain conditions on the distributions (e.g. vanishing
mass close to the decision boundary) could allow for
improvements via active learning.
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A. Discussion of assumptions for the theory

In this section we motivate some of the assumptions made in Section 3. We argue why these assumptions are not too
constraining and are applicable to a wide variety of practically relevant settings.

A.1. Extension to arbitrary Bayes optimal classifier

In Section 3 we introduce the data distribution and consider noiseless labels determined by a Bayes optimal classifier that
takes the form 6* = [1,0,...,0] € S%~!, without loss of generality. We stress that we only make this choice to ease the
exposition and make the intuition behind the high-dimensional phenomenon more clear. The distinction between the signal
and non-signal components is merely used to make it easier to grasp why this high-dimensional phenomenon occurs. All the
arguments in our proofs hold true for arbitrary Bayes optimal classifiers, including a possibly rotated 6*. A simple way to
see this is to notice that the intuition in Figure 3c holds true even if we apply a rotation to the data and to 6*: M-AL still
tends to sample points close to the Bayes optimal decision boundary (unlike PL), and hence, the classifier trained on this
labeled set will likely be very tilted compared to 6*.

A.2. Balanced data assumption

In imbalanced classification problems, it is known that margin-based active learning tends to sample a more balanced
labeled set than uniform sampling (Ertekin et al., 2007). As a consequence, the classifiers trained on these more balanced
labeled data tend to have better predictive performance. This phenomenon occurs both in the low-dimensional and in the
high-dimensional regimes.

In our analysis, we want to disentangle effects caused by data imbalance (as the one described in Ertekin et al. (2007)) from
phenomena specific to the high-dimensional regime. Therefore, we consider balanced data for most of our analysis. In
Appendix G.1 we also provide experiments on imbalanced tabular data and see that the failure of M-AL in high dimensions
still occurs, albeit at a lesser extent. We confirm in our experiments that even in this very low sample regime, M-AL tends to
select a more balanced labeled set.

A.3. Gaussian mixture models

As we argue in Section 3.2, GMMs are known to model well data generated in numerous practical applications (Bouguila &
Fan, 2019), and hence, have often been studied in theoretical analyses of machine learning algorithms (Tsipras et al., 2019;
Li et al., 2020; Donhauser et al., 2021). Note that the GMM assumption is not critical for the proofs and similar results can
be obtained for other more general distribution families (e.g. sub-exponential)

A.4. M-AL fails even in beneficial settings

In this work we characterize a failure of margin-based active learning. In order to show the extent of this failure case, we
wish to prove that it occurs even in scenarios that are believed to be beneficial for active learning. In particular, we consider
data with noiseless labels and show that the failure occurs not only for regular M-AL (Algorithm 1), but even for M-AL that
uses the margin of the Bayes optimal classifier for sampling.

A.4.1. NOISELESS DATA

M-AL tends to select points that are close to the Bayes optimal decision boundary. For many label noise models (e.g. logistic
noise) this is exactly the region of the input space where the noisy data is concentrated. This observation is also true for
many practical applications, for instance when label noise is caused by ambiguities between the classes (e.g. an image that
could be assigned either the class “wolf” or “dog” because the object is not clear). Therefore, M-AL tends to be vulnerable
to wasting the limited query budget on acquiring labels that are likely to be incorrect. In contrast, PL. samples uniformly
from the data distribution and may be able to overcome this issue.

We want to ensure that the failure that we study in this paper is not linked to the propensity of M-AL to select noisy samples
for labeling. Hence, we consider noiseless data in our analyses. Having said that, we point out that our results can be readily
extended to settings with label noise and would lead to a more severe failure of M-AL.

12
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A.4.2. ORACLE M-AL VERSUS EMPIRICAL M-AL

Since we specifically analyze the failure of M-AL in the low-sample regime, one could argue that this drop in performance
is due to the cold start problem: we sample queries using a classifier trained on very few labeled points (Huang et al., 2014;
Sener & Savarese, 2018; Hacohen et al., 2022). To rule out this explanation, we show that we identify the same failure for
oracle M-AL that uses the Bayes optimal classifier for sampling. In this section we argue why oracle M-AL performs better
than M-AL with an empirical classifier in low dimensions. This good performance of oracle M-AL justifies our choice to
study it in high dimensions as well. However, we find that in this latter regime, oracle M-AL fails even more severely than
M-AL as we explain in Section 3.

In practice, active learning algorithms use a subjective notion of what the informative samples are, connected to the current
empirical predictor that can be trained on the labeled data collected so far. However, the optimal sampling strategy may
depend on the Bayes optimal classifier, which, of course, is unknown in practical applications. For instance, it follows from
results in Chaudhuri et al. (2015) that a strategy akin to oracle M-AL is optimal in the context of maximum likelihood
estimators in low dimensions.

We now present another intuitive way to see why oracle M-AL is expected to need significantly fewer labeled samples in low
dimensions, compared to M-AL. Consider the simple setting of learning thresholds in 1D (i.e. functions f : [0,1] — {0,1}
of the form fi(x) = 1[x > t]). Assume the covariates are distributed uniformly in [0, 1] and that the labels are noiseless, i.e.
there exists ¢* such that y = 1[z > ¢t*] for any = € [0, 1].

We know from standard results in learning theory that uniform sampling requires O(1/¢) labeled samples to reach error at
most €. Balcan et al. (2007) prove that M-AL needs a much smaller labeled set of only O(log(1/¢)) to achieve the same test
error. In contrast, oracle M-AL requires only O(1) labeled samples to achieve the same performance: we only need to select
the samples closest to the Bayes optimal decision boundary until we acquire points from both classes.

This intuitive argument can be extended to dimensions larger than 1 as well. Empirical observations like the one in Sener &
Savarese (2018) corroborate this intuition: oracle M-AL outperforms M-AL in the context of neural networks trained on
image data.

It is important to note that in the discussion in this section we rely on a labeling budget much larger than the dimensionality.
Prior to our work, the behavior of oracle M-AL has not been studied in the low-sample regime. Therefore, it is justified to
ask how oracle M-AL behaves in the high-dimensional regime.

B. Formal statements and proofs of the main results

In this section we state and give the proofs of the main results. We first discuss some preliminaries regarding the mixture of
truncated Gaussians distribution after which we state the formal results and the proofs.

B.1. Properties of a mixture of truncated Gaussians

Recall that we consider data drawn from a multivariate mixture of two Gaussians, and we partition the covariates into
noise dimensions & € R?~1 sampled according to Pz = N(0,I;_1) and a signal dimension z; € R. As detailed in
Section 3.2, the signal z; is drawn from a univariate mixture of two Gaussians with means —y and p for © € R and standard
deviation o > 0. The components correspond to one of two classes y € {—1, 1}, and they are truncated such that the data is
noiseless. We denote the univariate truncated Gaussian mixture distribution by Prgym (14, o) and observe that it determines,
by definition, the joint distribution P, . To state the formal theorems, we now discuss some properties of the univariate
distribution Prgmm (14, o) that will also be used throughout the proofs in this section.

Mean and standard deviation of a univariate truncated Gaussian. For completeness, we now introduce the known
formulas for the mean and standard deviation of a truncated Gaussian random variable. A positive one-sided truncated
Gaussian distribution is defined as follows: we restrict the support of a normal random variable with parameters (u, o) to the
interval (0, c0). Clearly the mean of the univariate truncated Gaussian is slightly larger than p and the standard deviation
slightly smaller than o. Let ¢ be the probability density function of the standard normal distribution and denote by & the
cumulative distribution function. Then we find that the mean of a positive one-sided truncated Gaussian distribution is

oé(—p/o)
1= ®(-p/0)
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and the standard deviation is given by

. u ' (j)(fu/cr) B Qs(*/u/g ’
Ot = (1 o 1—d(—p/o) <1—<I>(—u/0)) )

Error of a linear classifier. We now derive the closed form of the population error of a linear classifier evaluated on
data drawn from a distribution with P,;, = Premm(u, o) and Px|y N(0,I;_1). Consider without loss of generality a

classifier induced by a vector 8 € R?, with 6 = [1, af], where ||0||2 = 1. We use the notation () to denote the a-parameter
of § = [1, af)]. By definition, the error of a classifier § = [1, af] is given by

d
Errg_1(0) =P [y(0,z) < 0] =P lyaZévxi < —yxll

(=)
02 az didt =V, , 3
27Ta0(1 — p,/o' / / 2 e 2 I (a) (3)

where we use the fact that the sum of Gaussian random variables is again a Gaussian random variable, and hence, y 2?22 0;xz;
is normally distributed with mean zero and standard deviation «. For the final identity, since all coordinates are independent,
we use the known formula for the probability density function of a truncated Gaussian.

Note that the expression in Equation (3) can easily be approximated numerically. Moreover, note that ¥, , resembles the
cumulative density function of a standard normal random variable, as illustrated in Figure 6b: it grows exponentially in
for small values of «, and approaches its maximum asymptotically. For convenience we state two properties of the error
function ¥, ,:

1. ¥, , is a monotonically increasing function of .

2. ¥, - is monotonically decreasing in p.

Therefore, for fixed distributional parameters ;. and o, we have that « fully characterizes the error of the classifier. Hence,
proving a gap between the values of o obtained with margin-based sampling and with uniform sampling is sufficient to
show a gap in the population error.

B.2. Formal statement of Theorem 3.2
In this section, we state the formal version of Theorem 3.2. The proof of the theorem can be found in Section B.4. We start

with formally introducing the setting and assumptions. Thereafter, we state the theorem that compares oracle M-AL with PL.

Setting. We look at the same setting as in Section 3, namely pool based active learning with margin-based sampling
strategies. We consider the typical setting where we start with a small labeled dataset Dg..q Of ngeeq Samples and a large
unlabeled dataset D,, with n,, samples all i.i.d. drawn from the truncated Gaussian distribution. We denote by p = "nld the

fraction of samples we query using uniform sampling. Recall that we define éum r and éoracle as the classifiers obtained
after querying (1 — p)n, samples either uniformly or with oracle M-AL, respectively.

We now introduce some assumption on the setting. In practice, an unlabeled dataset is available that is much larger than
the number of queries. Moreover, most real-world datasets contain some hard examples that are difficult to classify even
by human experts. The equivalent synthetic counterpart is the existence of unlabeled samples close to the Bayes optimal
decision boundary. Finally, we consider high-dimensional settings, where the dimensionality is larger than the labeling
budget. To state our theorem formally, we make these conditions precise in the following assumption.

Assumption B.1. We assume that n,, > max(103n,,10°), /o < 2and d — 1 > ny.

With Assumption B.1, we are now ready to state the theorem.

14
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Theorem B.2 (Oracle margin-based sampling). For a small constant ¢ > 0 independent of the dimension and under
Assumption B.1, it holds with probability at least 0.99(1 — 2¢=t"/2)5(1 — e=cd/ne) that:

Err(Oorace) — E”’(Gunif) >V, (O‘LB ) — \I/u,d(auyrgf)v

oracle

where

d—1 2t d—1
W E= =1t
ng Ve nyg
VB LB —1

T e — tong e e+ Lo (pne) %) + (1= p)6.059 - 1027,

We note that agﬁ‘f, agrlzcle are upper and lower bounds of a(éum- ¢) and a(éomcle), respectively. The term (1 — e—cd/ ne)
lower bounds the probability that all points of each sampling strategy are support points (see Lemma B.8 for the explicit
probability) — in particular, as the ratio n% grows, this probability grows. Another consequence of Theorem B.2 is that
for high-dimensional data (i.e. d > ny,) and for a small ratio of uniformly sampled seed points p < 1, it holds with
high probability that Err(éomcle) - Err(éum 7) > 0. We state this observation precisely in Corollary B.3 and prove it in
Section D.3. To state the corollary, we first define a quantity that is independent of the dimension. Denote by M, 41 the
denominator of a8, i.e. Myracie = p(per + to(pne) ~?) 4+ (1 — p)6.059 - 10724, Note that My,qere < fiir. We

are now ready to state the corollary.

Corollary B.3. Under the same assumptions and with the same probability as in Theorem B.2 it holds that Err(0oracie) —

Err(Qunif) > 0if

d -1 ? 1 1 + \/i tO’t
>4 1+M01’ace+t+ t(4n 1/2) s < = — T .
" < l ) g 2 2 ety

The condition on p ensures that enough samples are queried using oracle M-AL such that the difference to passive learning
is large enough.

We obtain the first informal statement in Theorem 3.2 directly from Theorem B.2 by choosing

1/2
Ty 2tn,
1+t 1

€ = Imnax

4)

and the constants ¢y, co correspondingly. The second statement then follows from Corollary B.3.

B.3. Formal statement of Theorem 3.3

In this section, we state the formal version of Theorem 3.3 which shows an error gap between passive learning and active
learning using the margin of the empirical classifier 6. Before we state the theorem, we first discuss two-stage margin-based
sampling, a slight modification of Algorithm 1.

Two-stage margin-based sampling. We consider the same modification of the margin-based sampling procedure as
(Chaudhuri et al., 2015; Mussmann & Liang, 2018). Instead of the iterative process of labeling a point and updating the
estimator é we use a two-stage procedure: 1) we obtain éseed using the initial small seed set; and 2) we use éseed to select a
batch of (1 — p)n, samples to query from the unlabeled set. Without this two-stage strategy, the estimator 0 at a certain
iteration is not independent of the unlabeled set, which makes the analysis more challenging, as also noted by (Mussmann
& Liang, 2018). Moreover, Chaudhuri et al. (2015) show that a two-stage strategy similar to ours achieves the optimal
convergence rate in the context of maximum likelihood estimators, and hence, it is no worse than the iterative procedure in
Algorithm 1. We stress that we do not need this simplification for the analysis of oracle M-AL, since with this strategy the
queried points are independent of the estimators 6. Moreover, the two-stage procedure is necessary only for one step of the
proof highlighted in Section C.2.

We now state the main theorem for empirical M-AL:
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Theorem B.4. For a small constant c > 0 independent of the dimension and under Assumption B.1 with o > 1, it holds
with probability at least 0.99(1 — 2e~*/2)%(1 — e=¢4/"¢) that:

Err(Omargin) — Err(Ounif) 2 .o (Qnargin) = Yo (Cunig)

margin

where a,ﬁgf is defined as in Theorem B.2 and

s ,/dn;;—\/QIOgnu—l—t

Xnargin = Tlogn de14ot 1/4 -1,
pcseed + (1 - p) 0061ut, + Tﬁ(;‘ (7ﬂ) 4t

PN

with Cseeq a constant that satisfies

—1/2

—-1/2
Htr — tatrnseed < Cseed < Htr + toyn /

seed *

Theorem B.4 gives a high probability bound for the error gap between passive learning and two-stage empirical margin-
based sampling. As before, we state precise conditions when this gap is positive in Corollary B.5 and provide the proof in
Section D.4. Similarly as for Corollary B.3, we first define a quantity. Let M, 4gin be the denominator of ak';rgm and recall
that Mp,qrgin << ey if the max-£o-margin classifier of the seed set D,..q has reasonable accuracy.

Corollary B.5. Under the same assumptions and with the same probability as in Theorem B.4 it holds that Err(0yracie) —

Err(Qunif) > 0 if the following conditions are satisfied:

1. (high-dimensional regime) “=% > 4 (\/210g 1y + 1 + Margin +t + Vt(4ne) 71/%).

1/6
2. (large signal-to-noise ratio) piy > (%) (log ny )V/3 + Lo

(pne)t/2:
3. (numerous margin-based queries) p < 2Csced 75 .
0.878p¢y — —7tr o — (4=1Eeet ) P log n, ) 1/3 -t
(png)1/? P

The second condition is necessary to ensure that the classifier éseed trained on the seed set has non-trivial error. Like in
Section B.2, the third condition guarantees that the influence of the uniformly sampled seed set is reduced. To get an explicit
condition on p on the right hand side, we note that pny, > 2 by definition.

Furthermore, similar to Section B.2, the term (1 — e—cd/ne ) lower bounds the probability that all points are support points
for each of the two sampling strategies. The explicit expression for this probability can be found in Lemma B.8.

Finally, observe that Theorem B.4 and Corollary B.5 are together the formalization of Theorem 3.3. More specifically, by
setting € similar as in Equation (4) and considering large d/n,, we find the informal statement.

B.4. Proofs of Theorems B.2 and B.4

Recall that, without loss of generality, we consider predictors 6 = [1, af)], with ||A||; = 1, which makes the population error
of 6 be a strictly increasing function of «v. Therefore, to prove Theorems B.2 and B.4 we derive bounds on « for uniform and
oracle/empirical margin-based sampling. We split the proof into three main steps. In the first step we bound the a-parameter
of the max-/5-margin classifier of a dataset obtained using an arbitrary sampling strategy. The bounds we obtain are a
function of certain geometric quantities that we introduce in this section. The second step then bounds these geometric
quantities for the specific sampling strategies that we are interested in. Lastly, in the third step we develop these bounds
further for the special case of a mixture of truncated Gaussians. Our results also hold for a marginal Gaussian distribution
that is usually analyzed in the active learning literature (Hanneke, 2013).

We would like to reemphasize that we focus on separable data, a setting that benefits active learning. As described in
Section 3.2, we consider a Bayes optimal predictor 8* with vanishing population error and choose without loss of generality
0* = e; = [1,0,...,0] € R.7 We can write the covariates as = [r1, 7], where we explicitly separate the coordinates of

"If §* # e1, we can rotate and translate the data in order to get * = e;.
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x into a signal #; € R and non-signal component # € R?~!. The marginal distribution of the covariates takes the form
Px =Py, - Pz, where Pz = N (&;0, I4_1) is the distribution of the non-signal dimensions.

We point out that the first two steps of the proof of Theorems B.2 and B.4 hold for any arbitrary distribution P, . If the
joint distribution P, is a univariate mixture of truncated Gaussians, then P,,, = Prgmm (i, o), which in turn corresponds
to a marginal Gaussian for y — 0.

Step 1: Characterizing 6 for arbitrary sampling strategies. To state the key lemma that characterizes the max-/o-
margin solution 6 for any labeled dataset D, C R% x {—1 , 1} of size ng, we first introduce three geometric quantities. Recall
that we consider classifiers of the form 6 = [1, af] with ||| = 1. We denote the max-,-margin of Dy in the last d — 1
coordinates by 7, and write:

¥ = max min i,é. 5
7=n “w)emm ) Q)

Note that 7 is in fact the maximum min-¢5-margin of Dy in the last d — 1 coordinates. Similarly, the maximum average-£5-
margin of Dy in the last d — 1 coordinates is defined as

1 _
Yavg = Max — Z y(Z, 0). (6)

fesd—2 Ty
(z,y)€D,

Lastly, we define the average distance to the decision boundary of the optimal classifier induced by 6* as

Z Y.

(»ny)Gth

We now state the lemma that bounds the parameter o of the max-f5-margin classifier trained on an arbitrary labeled set. We
provide the proof of the lemma in Section C.1.

Lemma B.6 (Bound on the max-/>-margin classjﬁer for active learning). Let Dy bg a labeled set such that all samples are
support vectors of the max-{o-margin classifier 0 of Dy. Then the a-parameter of 6 is bounded as follows:

l_1<a<7avg

d* d*

Once equipped with Lemma B.6, the next step is to derive bounds on ¥, Y44 and d* for uniform and oracle/empirical
margin-based sampling.

Step 2: Bounding d*, 7 and 7,4 for specific sampling strategies. In this step, we derive concrete bounds for the key
quantities in Lemma B.6 for specific sampling strategies, namely uniform and oracle/empirical margin-based sampling. For
this purpose we introduce further geometric quantities that now also depend on the seed set Dieeq- First, we denote by d7
the maximal distance of the newly sampled queries to the decision boundary of the Bayes optimal classifier 6*:

dy = max Y.
(zay)EDE\Dseed

Furthermore, let Gseed be the parameter vector of the max-¢5-margin classifier of the seed set with «- parameter seed. We
define d as the maximal distance of the newly queried points to the decision boundary determined by Oseea:

(Bsecas )|

max -
(2,y) €D\ Dsced ||0566dH2
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Lastly, we define C..q as the average distance to the decision boundary of 6* of the samples in the seed set:

1
n Yyry.
seed (zay)epseed

Cseed =

Finally, recall that in pool-based active learning one has access to an unlabeled set D,, drawn i.i.d. from Px and a small
labeled seed set Dgeoq Where the covariates are drawn i.i.d. from Pxy. We collect a labeled set D, that includes the
uniformly sampled Dg..q and (1 — p)n, labeled points whose covariates are selected from D,, according to a sampling
strategy. We are now ready to state the following lemma, which bounds the quantities that show up in Lemma B.6, namely
d*, 7 and 74.¢. The proof of the lemma is presented in Section C.2.

Lemma B.7 (Bounds on d*, ¥ and 4.4). Consider the standard pool-based active learning setting in which we collect a
labeled set Dy and assume ny < d — 1 < n,, where ng = |Dy| and n,, = |D,,|. Then, the following are true:

1. If Dy is collected using uniform sampling, then with a probability greater than 1 — 2e=t"/2, it holds that

d*l+ 2t 7
nyg NG

1 -
d* = - Z YT1, Yavg <
‘ (z,y)€ED,

2. If Dy is collected using oracle margin-based sampling, then with probability greater than 1 — 2e=t"/2 it holds that

d—1

Ny

—1-t. ®)

d* < pChseed + (1 — ,o)dg7 g >

3. If Dy is collected using two-stage empirical margin-based sampling, then with probability greater than (1 — 2e=t"/ 2)2

it holds that

i

R /d—1
dr < Pcseed + (1 - P)(dq + V 2053eed IOgnu + t)a :}/ > T Y, QIOgnu -1-t (9)
0

Plugging these bounds into the result of Lemma B.6, we find high-probability bounds on the a-parameter of each of these
three sampling strategies. As explained in Section B.4, these bounds hold for any arbitrary joint distribution of the signal
component and the label, P, . In what follows we derive the bounds on « further for a mixture of truncated Gaussians.

Step 3: Bounding d*, d7, (iq, Qseeds Cseeq and the probability that all samples are support vectors for a mixture of

truncated Gaussians. In order to use Lemma B.7 to prove the theorem, we first derive the probability that all samples
in Dy are support points for Py,, = Prgymm(i, o) for uniform and oracle/empirical margin-based sampling. This result is
summarized in Lemma B.8 (see Appendix C.3 for the proof).

Lemma B.8 (All samples are support points). Let Dy be a dataset of ny < d— 1 samples drawn via either uniform sampling,
margin-based sampling or oracle margin-based sampling from a large unlabeled dataset. The unlabeled data is drawn i.i.d.
from the multivariate mixture of truncated Gaussians distribution. Then, for a constant ¢(f,, 04, 1y) > 0 independent of d

and ny it holds with probability larger than 1 — 2¢~(V (d=1)/ne=v1og =9 that all samples in Dy are support points of the
max-{o-margin classifier of Dy.

Next, we bound d;, (fq, Qgeed aNd Cseeq Which finalizes the proof. We note that for uniform sampling, d* is the average of ny
i.i.d. samples from a one-sided truncated Gaussian, which is a sub-Gaussian random variable with mean i, and standard
deviation oy,.. Hence, with probability larger than 1 — 2¢=t°/2, it holds via Hoeffding’s inequality that

d* >y — toym, 2. (10)

By the same argument it holds with probability greater than 1 — 2¢=t"/2 that

—1/2
Cseed < ftr + tatrnseecl/ . (1m)
To bound the remaining quantities, we treat each of the three sampling strategies separately.
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(a) Uniform sampling. Plugging the bounds on d* (Equation (10)) and 74,4 (Lemma B.7) into Lemma B.6 and multi-

plying the independent probability statements yields the expression of the upper bound aUB. > «(6,,,,;7) that appears in
Theorems B.2 and B.4.

(b) Oracle margin-based sampling. We now bound d; using the following lemma which we prove in Section D.1.

Lemma B.9 (Bound on d;). Let D, and Dgecq be the unlabeled set and the labeled seed set, respectively, with covariates
drawn i.i.d. from the multivariate mixture of truncated Gaussians distribution. Then, with probability larger than 1 — eftz,
we have that

dy <o (@71 ((H2n0) 2 4+ (1= p)ne/na) (1= D(—p/)) + D(—p/o)) ) + s

Moreover; if n,, > max(10°,10%n,) and j1/o < 2 then with probability greater than 0.99

dy < 6.059 - 1072 gy,

We now argue that the conditions required for Equation (B.9) to hold are not too restrictive. Indeed, it is standard in practical
active learning settings that the unlabeled set is orders of magnitude larger than the labeling budget. Moreover, in most
real-world datasets there exist ambiguous samples, close to the optimal decision boundary, which can be be difficult to
classify even for human experts. The condition x/0 < 2 ensures that that is the case in our setting as well, with high
probability.

Invoking the probability bound in Lemma B.8, plugging the bounds on Cj..q (Equation (11)), 4 (Lemma B.7) and d;

(Lemma B.9) into Lemma B.6 gives the expression for lower bound agfmle < a(foracie) that appears in Theorem B.2.
Invoking all the probability statements involved and combining this result with the previous derivation of aUB. finishes the

unif
proof of Theorem B.2.

(c) Two-stage margin-based sampling. For bounding ch we can use a similar technique as in Lemma B.9, if we assume
further that o > 1. This condition ensures that, with high probability, there exist examples with a high signal component for
any i > 0. The following lemma states the bound on d, (see Section D.2 for the proof).

Lemma B.10 (Bound on ch). Let D,, and Decq be the unlabeled set and the labeled seed set, respectively, with covariates
drawn i.i.d. fgom the multivariate mixture of truncated Gaussians distribution. If o > 1 then it holds with probability larger
than 1 — e~ that

dy <o (@71 ((#2n) 2 4+ (1= p)ne/ma) (1 = @(=p/f)) + @(~p/a)) ) + 1.
Moreover; if n, > max(10°,10%n,) and j1/o < 2 then with probability greater than 0.99

dy < 6.059 - 1072z,

Using Lemma B.10, we now derive an upper bound on aieeq. We note that the seed set is drawn i.i.d. from the data distribution.
Hence, we can use the bound for uniform sampling of Lemma B.6 and set Dy = Dgeq to arrive at tieed < Yavg/d*. By a
similar argument, we use the bound of Equation (10) to lower bound Cs..q and we obtain that Cseeq > figr — totr(png)*l/ 2,

1/2
Then, by Lemma B.7, we have that Y4, < (i;/l + (mjﬁ) with probability greater than 1 — 2e~"/2. Note that

if all uniform samples are support points of the max-¢5-margin classifier, then all samples in the seed set are as well
for the max-/5-margin classifier of the seed set. Putting everything together, we find that, with probability greater than

(1 —2¢7°/2)2, it holds that

d—1 ot 1/2 toy. \7*
seed < — . 12
(lseed = < o (pne)1/2> (‘” (Pnz)l/z) (12

Plugging the bounds on C..q (Equation (11)), ¥ (Lemma B.7) , ageeq (Equation (12)) and ch (Lemma B.10) into Lemma B.6
gives the expression for the lower bound a2 ;.
statements involved and combining this result with the previous derivation of «

< a(bmargin) that appears in Theorem B.4. Invoking all the probability

UB
unif

finishes the proof of Theorem B.4.
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C. Proofs of main Lemmas

In this section, we provide proofs for the lemmas needed to prove the main theoretical results presented in Section B.

C.1. Proof of Lemma B.6

Recall that we can consider parameter vector that are normalized such that
0=1,00],
for some @ > 0 with |||, = 1. Further, recall that we decompose covariates as x = [x1, Z]. For convenience of notation,

we define a = n% Z(I’ V)ED, y(0, T), namely the average margin in the d — 1 noise dimensions Z of points in the dataset D,.

From the conditions of the lemma we have that all points in D, are support points. Since, the distance to the decision
boundary induced by 6 is the same for all support points, we can write the max-/5-margin -y as the following average:

1 ~ 1
= (y:cl + ozy(@,i”)) - (d"+aa).
101|212 (2.9)eDs V14 a2

Maximizing over «, we find that the max-¢s-margin classifier 6 is determined by the following a-parameter:

a a
o= =

FE Z(ZE,y)EDg yml d*

Hence, the max-£5-margin classifier can be written as 6 = {1, d%é} and the margin is given by v = Vd** + a2.

Now we prove that we can use the maximum average-{>-margin 7,4 and the max-f,-margin 7 in the d — 1 noise coordinates
to sandwich @ as follows: J4ug > @ > /72 — d**.

The first inequality follows directly from the definition of the maximum average-{>-margin 7,4 in Equation (6). We
now prove the second inequality. Let Oym be the max-/o-margin classifier in the d — 1 noise coordinates, with
HéMMHg = 1. By the definition of O, it holds that y(éMM, Z) > 4. Moreover, consider the classifier determined
by 0 = [min(, y)ep, Y21, '79~MM] € RY. Since the max-/,-margin +y is maximal it holds that

2
v > min yi6, z) > < min y:c1> +72.
T (@yepe 0]l T (z,y)€D,

Using that v = v/ d** + a2, and solving for a, we find that

~ . 2
a \/72 + (ming y)ep, y21)” —
o= — > a >

_17

=

which concludes the proof.

C.2. Proof of Lemma B.7

Lemma B.7 consists of three statements: a lower bound on the value of o for margin-based sampling and for oracle
margin-based sampling, and an upper bound on « for passive learning.

Recall that by Lemma B.6 we have that for a labeled set D, collected through any sampling strategy, the c-parameter of the
max-{o-margin classifier of Dy is lower and upper bounded by
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where d* = i Z(w y)eD, YL1- To prove Lemma B.7, we apply Lemma B.6 and bound ¥, 7,4 and d* for each sampling
strategy separately.

C.2.1. KEY MARGIN RESULTS

To prove Lemma B.7 we need to bound the /5-margin in the d — 1 noise coordinates of a dataset. In this section we give
high probability bounds for the /2-margin, which hold if the conditions of Lemma B.7 are satisfied, i.e. the max-£2-margin
classifier exists.

Lemma C.1 (Bounds for margins v, Yaug.). Let D be a dataset of size n < d with i.i.d. inputs x ~ N (0, 14) and arbitrary
labels such that the max-£o-margin solution exists. Then it holds with probability at least 1 — 2e"/2 that

o the maximum average-{o-margin Yo.q of D is upper bounded by

S
[\
~

’chg S + —. (13)

o the max-Ua-margin v of D is upper and lower bounded by

d d
\/71t§7§\/7+1+t. (14)
n n

Let D be a labeled dataset of size n < d where {x : (x,y) € D} is an arbitrary subset among n,, i.i.d. samples x ~ N (0, 14)

with arbitrary labels such that the max-{o-margin solution exists. Then, with probability at least 1 — e /2,

o the max-{y-margin vy of D is upper and lower bounded by

d d
\/;—\/ﬂognu—l—tgvﬁ\/;+\/2lognu+1+t. (15)

The proof of the lemma can be found in Section C.4.

C.2.2. PROOF OF LEMMA B.7

We now use Lemma C.1 to prove Lemma B.7. We do so by replacing D in Lemma C.1 by the set D, := {(Z,y) : (z,y) €
Dy, where © = [x1, Z]}, where Dy is collected with one of the three sampling strategies that we consider. By the conditions
of Lemma B.7 we have that the max-/£>-margin solution exists.

Uniform sampling

For uniform sampling, Lemma C.1 directly yields the upper bound for 7,.,4: it suffices to replace 4.4 With Y4,4 to arrive to

d—1 2t
a—l 4 2t

arrive at Ygug < e N

which proves Equation (7).

Oracle margin-based sampling

Bound for 5. We now argue that the set Dy := {(,) : (z,y) € Dy, where z = [z, #]} satisfies the assumptions of
Lemma C.1 when Dy is collected with oracle M-AL. The bound on 7 then follows directly. Note that oracle M-AL queries
the (1 — p)ny closest points to the optimal decision boundary. Importantly, the Bayes optimal classifier is independent of the
d — 1 noise coordinates of the covariates. Therefore, 75@ selected with oracle M-AL is drawn i.i.d. from a standard normal
distribution, and hence, satisfies the conditions of Lemma C.1.

Since, we have that d > n — 1 and we consider linear classifiers with an intercept at the origin, the max-{5-margin classifier
always exists. Therefore, we are in the conditions of Lemma C.1 and we get that ¥ > /(d — 1)/n; — 1 — t with probability

greater than 1 — 2¢=/2,
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. o . see o 1 .
Bound for d*. Next, observe that using the definitions of p = "ﬂ—ed and Cyeeq = o Z(w,y)epmd YT We can write

1 1
dr=— == Csee -
D S RS D Y
(z,y) €D, (z,9)€EDe\Dsced
1
= pCseed + (1 - 0)7 Z Yyry S pCseed + (1 - P)d;

Ng — Ny
‘ e (2.4) €D\ Dacea

where the inequality follows from the definition of d;; := max; y)ep,\D,.., Y21 This concludes the proof of the inequalities
in Equation (8).

Empirical margin-based sampling

Bound for 4. We argue now that 7 corresponds to v in Equation (15). In particular, since the inequalities in Equation (15)
hold for any subset of D,,, they also hold for the set D, collected with empirical margin-based sampling. Therefore, we
find that with probability greater than 1 — e /2, the max-{y-margin in the d — 1 noise coordinates is lower bounded by
V(d—=1)/ng—+/2logn, —1—1t.

Bound for d*. We stress that this is the only step in the entire proof of Theorem B.4 where we use the two-stage margin-based
sampling procedure (instead of the iterative process described in Algorithm 1).

As in the case of oracle margin-based sampling, the key is to derive a bound for m Z(z,y)em\Dmd yx1. Recall that

O sood = 1, aseedéseed] with ||§Seed\|2 = 1 is the max-£>-margin classifier of Dg,.q. Further, due to the two-stage procedure,

Oseceq 18 independent of all the samples in the unlabeled dataset. Using this fact together with the union bound and that

the labels are independent of the d — 1 last coordinates, we find that max(, ,yep, Oseed (Osced, YT) < v/20seeq lOgny, + T

Therefore, together with the definition of dq, we have that with probability greater than 1 — 2e7t7/2:

1 1 o ~ B
Z Yy, = — Z y(eseed; CC> - O5seed<eseed7 y.’17>

ne—n Ng—n
0 seed 0 seed (z,9) €D\ Dsced

(z1y)€D€\Dseed
< ch 4+ v/ 20seeq logn, +t,
from which the bound for d* in Equation (15) follows.
C.3. Proof of Lemma B.8

We now prove this lemma for oracle margin-based sampling. The result for the other strategies follows a nearly identical
argument if we use the respective bounds on 7 as in Lemma C.1.

Recall that, by definition, all support points have the same ¢5-distance to the decision boundary of the max-£-margin
classifier, denoted by . Clearly, the max-/5-margin of D, is lower bounded by the max-{s-margin in the last d — 1
coordinates, i.e.

Y27 (16)

Now, let Dy C D, be the subset containing all support points, then by Lemma B.6, the normalized max-¢5-margin classifier
can be written as follows:

oL [01,a]

\/ 02 + a2
with @ > /52 — 02 where ||0]|; = 1 and we use the notation 0; = IDill > (zy)ep, 1. Therefore, it holds that

v = y(é, ) > \/é% + 42 =qforall (z,y) € D;. After rewriting it follows that D, C Dy, if the following condition is
satisfied:

max_ Jy(0, %) < +* — ybia1. (17)
(ZL’,y)E'Dg
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We now take steps to give a more restrictive sufficient condition that implies the one in Equation (17), and hence, also
implies that D, C D,. For an arbitrary pair (x,y) € Dy \ Dsecq the following inequality holds with a probability larger
than 1 — 2e~t"/2;

PO TP
¥° —ybhrr =5 —ybiay

Z ;5/2 - yél (,U/tr + tUtr)
where inequality (i) follows from Equation (16) and (ii) holds as dj < i, and the concentration bound in the first coordinate

of uniformly sampled queries. Now, note that 0, < ttr + to = c(ugr, otr). Hence, for all samples in Dy \ Djeeq to be
support points it is sufficient that the following holds:

max o] é,i“ < A% — c(per, o4r) .
(m,y>em\meedw< ) <A = cper, oer)

Since 7 is distributed according to a multivariate standard Gaussian and ||f]|o = 1, we know that

max y(0,%) < \/2logng +t,

(I,y) GD(\Dseed

with probability at least 1 — 2e—t°/2, By combining Equations (C.3) and (C.3), we get that Dy \ Dseeq C D with probability
~ o~ ~_ 2
at least 1 — 2¢~0-3(F=&ur00n)* 37 =V2Iogm0)” for 4 constant & independent of n and d.

Moreover, by Lemma C.1 we have that ¥ > ,/ n% — 1 —t. Hence for a constant 0 < ¢&(fu,-, o4,-) independent of n and d, we

~ 2
have that Dy \ Dseeq C Dj, with a probability greater than 1 — 26_0'5( v d/ne=v2Zlog W_c) )

C.4. Proof of Lemma C.1

We now prove Lemma C.1 which bounds the maximum average- and min-/>-margin of a dataset D. The data is either
drawn i.i.d. from a multivariate standard normal, or consists of an arbitrary subset of a larger dataset drawn i.i.d. from a
multivariate standard normal.

C.4.1. BOUND FOR THE MAXIMUM AVERAGE-{5-MARGIN FOR I1.I.D. STANDARD NORMAL DATA

The maximum average-{>-margin can be written as

1
Yavg = Max — Z y(0, )

d—
fcSd—1 n(z,y)eD
= max 9—1 Z yry + +@ Z x
pesist 1 n Yrq
(z,y)eD (z,y)eD

max (0, z),

1
T V/ngesi—

where in the last equation z is a d-dimensional vector distributed according to a standard Gaussian (note that we consider
the samples in D to be random variables). By Cauchy-Schwarz, the maximum is found by setting § = z/||z||2. Using

Chernoff’s bound, we find that ||z||2 < 1/d(1 + ) with probability larger than 1 — 2¢~4°/8_ Multiplying by 1 /+/n yields
the result in Equation (13).

C.4.2. BOUND FOR THE MAXIMUM MIN-{5-MARGIN

The proof of Equations (14) and (15) consists of two parts. We first upper and lower bound the max-/{s-margin ~ by the
scaled maximum and minimum singular values of the matrix Z € R¥*™ whose columns are given by yz for (x,y) € D.
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Then, we use matrix concentration results to bound these singular values for the two different cases that correspond to
Equations (14) and (15).

Step 1: Bounding the max-/>-margin. We use the upper and lower bounds on the extremal singular values of the data
matrix to derive upper and lower bounds on the max-£2-margin of the dataset.

The existence of a max-f,-margin solution implies that there exist vectors # € S?~! and v € R™ such that ZT0 = v

with v > ¢l,, element-wise for a ¢ > 0. For any § € S9!, we know that || Z 70| < sy (Z). The (minimum) margin

is equivalent to ¥ = maxy ¢ such that v > c1,, and hence ||v||2 > /n7. Since ||[v]l2 = |ZT0]| < Smax(Z), we readily
Smax(Z)

have v < o We now prove the lower bound. Note that as Z € R?*" is a random matrix of standard normal random

variables with n. < d, it has almost surely a rank of n. Hence, there exists a 6’ € R< such that ZT6’ = 1,,¢ > 0. Moreover,
the smallest non-zero singular value of Z " equals the smallest singular value of its transpose Z. Therefore, using the fact
that any vector 6’ in the span of eigenvectors corresponding to non-zero singular values satisfies || Z6||2 > smin(Z) and the
existence of a solution ¢’ for Z 6" = c1,, > 0, we have that there exists a §’ with ||§’||2 = 1 in the span of the eigenvectors
corresponding to non-zero singular values of Z " such that

1
5> min [Z70]; > smin(Z)

jeln] = No

Step 2: Bounding the singular values of Z. It remains to bound the maximum and minimum singular values of Z for
the two different scenarios considered in Lemma C.1.

(i) For i.i.d. samples: To prove the i.i.d. case in Equation (14), we use the following set of inequalities on the maximal and
minimal singular values of any random matrix M € R*™ with d > n and i.i.d. standard normal entries:

Vd = /n—t < spin(M) < smax (M) < Vd + /n+ 1. (18)

These inequalities hold with probability greater than 1 — 2e=t°/2 (see e.g. Corollary 5.35 in Vershynin (2010)). Recall
that the columns of the matrix Z are given by yz for z € N'(0, 1) and arbitrary y. Therefore, Z is a matrix with standard
normal entries, which concludes the proof of Equation (14).

(ii) For an arbitrary subset of n samples from D,: Let M, € R%*™ be a random matrix with i.i.d. standard Gaussian
entries with n,, > n. We define the set of data matrices corresponding to all possible subsets of columns of M,, of size n:

0 := {M € R¥™ . columns of M are a subset of the columns of M,,}.

< nn

In order to account for arbitrary subsets, we use the union bound over the cardinality of the set |©] = m = 0 ny! o

ny,—n)ln! —
Hence, we obtain:

P [Jr\rflgésmax(M) > (y/2logn, + 1)vn + \/8—&-15}
< mP[smaX(M) > (\/210gnu + 1) Vn + \/g—i-t}.

Using Equation (18) then yields

mP Smax(M) > ( /9 log 1y + 1)\/5_’_ \/&4— t:| < elonge—(\/inognru+t)2/2
— elog(m)+log(2)—nlog(ny)—v2logn, vVn—t*/2
< €7t2/2.
This proves the upper bound on the maximum singular value of an arbitrary subset of n columns of M,,, where M, € R4*™u

with standard normal entries. Plugging this result into v < S"L\/%Z) allows us to bound the max-¢5-margin of D. Observe that

by symmetry of the random variable, the same derivation holds for the minimal singular value as well. This concludes the
proof of the inequalities in Equation (15).
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D. Technical Proofs
D.1. Proof of Lemma B.9

Define ny := (1 — p)n, to be the number of queries made with margin-based sampling. Recall that dy is defined as the
distance to the decision boundary determined by 6* of the nfzh closest sample from the unlabeled dataset. Note that the
unlabeled dataset is drawn i.i.d. from the mixture of truncated Gaussians distribution described in Section 3.2. Let =, be the
nfzh closest sample to the decision boundary determined by 6*. Let ®;,. denote the cumulative distribution function of a
Gaussian with mean y and standard deviation o truncated to the interval (0, co):

q)tr (t) -

We find that for some ¢ > 0 the following holds:

ng—1 n
P[d; < t] =1- Z ( ;)‘I)t'r(t)i(l _ (I)tr(t)nufi).

i=1

Using Hoeffding’s inequality, we can bound the probability as

Plat <] > 1— e 2ma@ud-n/nu)?

After the change of variable £ = ®;,! (\/th + qu) we arrive at:

Pld} < @M (£/vV/2n4 + ng/nu)] > 1 — et

Now plugging in the definition of the inverse of the CDF of the positive-sided truncated Gaussian yields that, with probability
of at least 1 — e‘tz, the following holds:

d;<a(<1>_1(<\/2tTu+ZZ) (1—@(—5))+q>(—5)>)+u. (19)

Observe that the right-hand side of Equation (19) is monotonically increasing in % and Z—“ From the assumptions required

for Lemma B.9 we have that Z—“ << 1073 and % < 1075, Fixing t such that the probability is 0.99, we can further
write the upper bound as follows: '

(o (o () o () o

where c is a small positive constant that depends on ¢ and which can be computed numerically for fixed ¢. For convenience,
we define 5 := £. Then, using the formula for /1;,- from Equation (2) we arrive at:

G 1o gy @020

©(-B))+B _ B+ (c(1-D(=B)) +2(-5))
it -2 (=p) '

B
¢ (=h) B+ 2555

+
+

Taking the derivative and an algebraic exercise shows that the right-hand side is an increasing function of 3. Hence, we can
plug in the numerical value of ¢ and the condition 5 = /o < 2 to find the desired upper bound and conclude the proof.
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D.2. Proof of Lemma B.10

Define ng := (1 — p)n, to be the number of queries made with margin-based sampling. Recall that dq is defined as the

distance to the decision boundary determined by éseed of the ngh closest sample from the unlabeled dataset. Note that the

unlabeled dataset is drawn i.i.d. from the mixture of truncated Gaussians distribution described in Section 3.2. Let x4 be the

nflh closest sample to the decision boundary determined by 0sccq and define p; = P| <éseed, x)| < t] for a sample x drawn

from the multivariate mixture of truncated Gaussians distribution and a constant ¢ > 0. Clearly

ng—1
3 N\ 4 N —i
Pld, <t]=1- ) (i>pt(1—pt) v
i=1

Using Hoeffding’s inequality, we can bound the probability as

Pld, < t] > 1 — ¢~ 2mu(pimna/n)?”,

Now using the definition of the mixture of truncated Gaussians distribution and recalling that éseed =1, aseedéseed], we
find that

Pt = P |:‘331 + aseed<9~seed>j>‘ < t\/m} .

We note that (0sccq, Z) is distributed according to a standard normal and z; according to a mixture of univariate Gaussians
truncated at 0 with mean yu and variance o2. Denote by ®;,. the cumulative distribution function of the truncated Gaussian

distribution. Then x; < ¢ with probability ®;,.(¢). If o > 1, then Pz < t| < P[(fsced, ) < t] forall t > 0. In that case,
we find that

pe < Pllzy| < 1.

Hence, we can take p = P [|x1| < t] as an upper bound and use the derivation in the proof of Lemma B.9 from Equation (D.1)
onwards.

D.3. Proof of Corollary B.3

In Theorem B.2, let us denote the numerators of the expressions of a8

Similarly, we use the notation My qcre, Myni s for the denominators of a2 . and alB,, respectively. Since the function

V,,.o defined in Equation (3) is monotonic in «;, it follows from Theorem B.2 with high probability that oracle M-AL

; ing if ALB . — JYoracle=Moract Yunif _ . UB
performs worse than passive learning if o, = Jereg—erecc > Mons; = Ctunit: We observe that

and a5 bY Yoracte and Yunig, respectively.

Yoracle — Moracle Yunif Yoracle — Moracle Moracle
> — > .
Mo’racle Mum'f Yunif Munif

For an 7 € (0, 1) and using the expressions for v,,qcie and Yun; ¢ from Theorem B.2, we have that

2
(1 + Mopacte + t+my/2tn; 2)
>n <<= d—-1>ny

Yunif (1 - 7])2

Yoracle

Moreover, for n > Moracte we find that
AIu nif

—1/2 — —1/2
Moracte Lty > P(/Jtr + tUtT‘nsee(j/ ) + 6059(1 - p) - 10 2:ut"“ + tgtT’né / Ui
— t .
Munif " n

n >
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Yunif lf

Hence, by plugging in 7 = 0.5, we have that fprecte > Monss

d—1

g

2
>4 (1 +t+ Myracre + t(4n4)1/2> and

fiar > 2p(piar + torm]®) +2-6.059(1 — p) - 102y, + 2topen, /2.

Using p < 0.5 we arrive at
tO’tr(l _|_2p1/2)né—1/2

Htr >

1-2p
We now solve for p and find
1 1
< 1+ —---1),
VP ( T g )
with ¢ = 2/;:%. Using the fact that /p < % and ignoring negligible terms, we get the following bound on p

2 2 gy’

1 14+vV2 toy

which concludes the proof.

D.4. Proof of Corollary B.5

LB

Similar to Section D.3, let us denote in Theorem B.4 the numerators of the expressions of oy i, and B by Ymargin and

Yunif, respectively. Similarly, we use the notation M,,qrgin, Munis for the denominators of a][;";rgm and a8, respectively.
By Theorem B.4 margin-based sampling leads to a classifier with a lower test error than uniform sampling, if Oéln:grgin =
Ymargin—Mmargin Yunif __ . UB

2 = Qyppif-

Similar to the proof of Corollary B.3, we find that

Mmargin Moynir

Ymargin — Mmargin > Yunif Ymargin — Mm.argin > Mmargin

Mmargin o unif Yunif a Munzf .

Letn € (0, 1). Then it holds that

mar in_Mmar in d—1 d—1 _
Ymarg ILSN 1/—\/210gnu—1—Mma,«gm—t27]< + 2tn, 1/2>
i

'Yunif
d—1 d
:F—m_l_Mmarmn_tZﬁ(
T
d—1 \/m+1+Mmargzn+t+n\/W
> .

ne (1—n)

|
—_

S
~
AL
~
N——

—

Choosing n = 0.5 yields

d—1
>4 <\/210gnu + 14+ Mpargin +t+ t(4n4)—1/2> )

e

Similarly, we have that A/JIC%W;’"‘ < 7. Plugging in the expressions given in Theorem B.4, we find that
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Figure 6: For large d/n, the bounds of Theorem B.2 are close to tight. (a) The bounds in Theorem B.2 (dashed lines) show that M-AL
leads to lower test error compared to uniform sampling. The lighter color lines correspond to one of 3 runs with different draws of the
seed set, while the solid line indicates their mean. (b) The function ¥, () is monotonically increasing in . The markers show the
(a, Upy,0 (@) values corresponding to the query budgets indicated in figure (a). (c) By the bound in Theorem 3.3 (dashed line), the error
gap between M-AL and PL decreases as the proportion of seed samples grows.

_ 2logny, V2 ra-1 204t 1/4 toy,
C 1-— 6.059 - 1072 11y, o t - )
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Recalling the bound on Cl,.q4 in Equation (11), we find that if

d—1 20',5 t 1/6 1 tO’t
T > : 21 u /3 77”
fiir = ( P * P ) (2logn.) "+ (pne)t/?

then the following condition on p suffices in order to guarantee that alB, < aﬁgrgin:

1/6
087814y — e (pne) =12 — (u + Lt) (2logny,)'/? —t

pne pne

Cseed

p<

E. Synthetic experiments on the mixture of truncated Gaussians distribution

In this section, we give the experimental details to the synthetic experiments in Figures 3a and 3b. Further, we show
empirically that for large d/n, the theoretical bounds closely predict the experimental values. Lastly, we further empirically
discuss the dependency on the distributional parameters o and p of the truncated Gaussian mixture model for empirical
margin-based sampling.

E.1. Experimental details to Figures 3a and 3b

In both Figures 3a and 3b, we plot the theoretical upper and lower bounds of Theorem B.2 with n,, = 10°, t = 3 and
compute ¥, , by integrating using scikit-learn’s function ”dblquad”.

In Figure 3a, we set d = 1000, pt = 2, 0 = 2, Ngeeq = 10 and vary ny from ngeeq to 1000. On the other hand, in Figure 3b
we set d = 1000, o = 2 and vary the mean-parameter x in {1,2, 3} and the seed set size ngeeq in [1, ..., 7).

E.2. Verifying the bounds in Theorem B.2 on synthetic data

We now experimentally confirm the bounds in Theorem B.2. Recall that for large d/n, the bounds on 4 of Lemma C.1 are
tight. Therefore we consider two settings where d/ny is large.

First, in Figure 3a, we set d = 3k, n,, = 10°, 0 = 2 and 1 = 3. Then we vary ny from ngeeq to 100. We plot the results of 3
independent experiments for each setting along with the theoretical lower and upper bounds given in Theorem B.2. Observe
that the theoretical bounds closely predict both the test error of passive learning as well as the test error of oracle M-AL.
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Figure 7: (a) M-AL collects labeled sets with a smaller average margin in the signal component as o increases. (b) As the average
margin of a set acquired via M-AL is smaller for increasing o, the test error deteriorates, as predicted by Lemma B.7. The test error of
M-AL can even be larger than that of PL, for large enough o. We use d = 1000, i = 3 and n,, = 10° for all the experiments in this
figure. The shaded areas indicate one standard deviation bands around the mean error, computed over 5 random draws of the seed set.
Further, for completeness, in Figure 6b we also plot the function ¥, , with corresponding a-values from the setting in
Figure 3a. Observe that for small « the function ¥, , increases fast.

Lastly, in Figure 6¢, we set d = 10k,n, = 10°, p = 0, 0 = 3, ny = 60 and vary ngcq from 5 to 55. Observe that the
theoretical bound closely predicts the test error gap. Moreover, observe that the test error gap monotonically decreases in p
both experimentally and according to the theoretical bound.

Logistic regression implementation. In all synthetic experiments, we use the SGDClassifier of the Scikit-learn library
(Pedregosa et al., 2011) with the following settings: we set the learning rate to be a constant of 10~ and train for at least
10* epochs without regularization. Moreover, we set the tolerance parameter to 10> and the maximum number of epochs
to 10°. In all experiments, we consider regular margin-based sampling as defined in Algorithm 1.

E.3. Dependence on the standard deviation o and seed size n4.q for regular margin-based sampling

For completeness, we illustrate the dependence on the variance and the seed size of regular margin-based sampling with
following experiments. To simulate realistic settings, we set d = 1000, 1, = 10°, Ngeeq = 10, 0 = 3 and p = 3.

First, we perform a set of experiments to analyze the dependence on the variance ¢ and to also confirm to main intuition
empirically. We compute the average distance to the decision boundary of the ground truth 6* of a labeled set acquired via
M-AL and PL. Indeed, in Figure 7a we see that the average margin of M-AL decreases with increasing o. Moreover, we
note that M-AL indeed queries points close to the optimal decision boundary. In Figure 7b we observe that, as predicted by
Lemma B.7, the decrease of the average margin gap is directly correlated with an increase of the error gap between M-AL
and PL. Hence, our main intuition is also here empirically verifiable: M-AL queries points relatively close to the ground
truth, which causes in high dimensions the max-¢s-margin classifier to rely more on the non-signal components to classify
the training data.

Secondly, we perform a set of experiments to an analyze the dependence on the seed size ngq. In Figure 8, we see that
the test error gap between M-AL and PL closes slowly for an increasing seed size. However, we note that the gap remains
non-zero for all seed sizes up to d/4.

F. Experiment details for tabular data
F.1. Datasets

To assess how suitable margin-based sampling is for high-dimensional data, we conduct experiments on a wide variety of
real-world datasets. We select datasets from OpenML (Vanschoren et al., 2013) and from the UCI data repository (Dua
& Graff, 2017) according to a number of criteria. In particular, we focus on datasets for binary classification that are
high-dimensional (d > 100) and which have enough samples that can serve as the unlabeled set (n,, > max(1000, 2d)). We
do not consider text or image datasets where the features are sequences of characters or raw pixels as estimators other than
linear models are better suited for these data modalities (e.g. CNNs, transformers etc). Instead we want to analyze M-AL in
a simple setting and thus focus on datasets that are (approximately) linearly separable. Moreover, we discard datasets that
have missing values. Finally, we are left with 15 datasets that cover a broad range of applications from finance and ecology
to chemistry and histology. We provide more details about the selected datasets in Appendix F.1.
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Figure 8: Wesetd = 1000, p = 3 and n,, = 10°. The shaded areas indicate one standard deviation bands around the mean error,
computed over 5 random draws of the seed set. Observe that for increasing seed size the gap between M-AL and PL closes, but does not
vanish. Note that we study the high-dimensional regime and hence only consider seed sizes up to d/4. Therefore, seed size larger than d
may fully close the test error gap between AL and PL.

To disentangle the effect of high-dimensionality from other factors such as class imbalance, we subsample uniformly at
random the examples of the majority class, in order to balance the two classes. In addition, to ensure that the data is
noiseless, we fit a linear classifier on the entire dataset, and remove the samples that are not interpolated by the linear
estimator. This noiseless setting is advantageous for active learning, since we are guaranteed to not waste the limited labeling
budget on noisy samples. However, as we show later, even in this favorable scenario, the performance of M-AL suffers in
high-dimensions. For completeness, we also compare M-AL and PL on the original, uncurated datasets in Appendix G.1
and observe similar trends as in this section.

Dataset name d Training set size ~ Test set size ~ Majority/minority ratio  Linear classif. training error
a9 123 39074 9768 3.17 0.1789
vehicleNorm 100 78823 19705 1.00 0.1415
nomao 118 27572 6893 2.50 0.0531
santander 200 160000 40000 8.95 0.2188
webdata.wXa 123 29580 7394 3.16 0.1813
sylva_prior 108 11516 2879 15.24 0.0011
real-sim 20958 57848 14461 2.25 0.0027
riccardo 4296 16000 4000 3.00 0.0007
guillermo 4296 16000 4000 1.49 0.2536
jasmine 144 2388 596 1.00 0.1867
madeline 259 2512 628 1.01 0.3405
philippine 308 4666 1166 1.00 0.2445
christine 1636 4335 1083 1.00 0.1408
musk 166 5279 1319 5.48 0.0438
epsilon 2000 48000 12000 1.00 0.0947

Table 1: Some characteristics of the uncurated datasets considered in our experimental study.

More dataset statistics. Table 1 summarizes some important characteristics of the datasets. The datasets span a wide
range of applications (e.g. ecology, finance, chemistry, histology etc). All datasets are high-dimensional (d > 100) and
have sufficiently many training samples that will serve as the unlabeled set. The test error is computed on a holdout set,
whose size we report in Table 1. We also present the class-imbalance of the original, uncurated datasets and the training
error of a linear classifier trained on the entire dataset, which indicates the degree of linear separability of the data.

F.2. Methodology

We split each dataset in a test set and a training set. The covariates of the training samples constitute the unlabeled set. We
assume that the labels are known for a small seed set of size ns eq = 6 (see Appendix G.7 for experiments with larger seed
sets). For each experiment and dataset, we repeat the draw of the seed set 10 or 100 times, depending on the experiment.

For illustration purposes, we set the labeling budget to be equal to a quarter of the number of dimensions.® We query one
point at a time and select the sample whose label we want to acquire either via uniform sampling (i.e. passive learning) or
using margin-based sampling (i.e. active learning).

We use L-BFGS (Liu & Nocedal, 1989) to train linear classifiers by minimizing the logistic loss on the labeled dataset. In
Appendix G.6 we show that the same high-dimensional phenomenon occurs when using ¢; - or £5-regularized classifiers.

8Since the real-sim dataset has over 20,000 features, we set a labeling budget lower than d/4, namely of only 3,000 queries, for
computational reasons.
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Figure 9: Top: The probability that the test error is lower with PL than with M-AL, over 10 draws of the seed set. Data is
class-balanced, but potentially not linearly separable. Bottom: For the range of budgets where M-AL does poorly with high
probability, its sporadic gains over PL are generally similar or lower than the losses it can incur in terms of increased test
error. Data is class-balanced, but potentially not linearly separable.

G. Additional experiments on tabular data

G.1. Experiments on uncurated data

For completeness, in this section we provide experiments on the original, uncurated datasets. We distinguish two scenarios:
1) balanced data, but not necessarily linearly separable; and 2) possibly imbalanced and not linearly separable data. In both
cases, we use the same methodology described in Section 4 to plot the probability (over draws of the seed set) that the error
with PL is lower than with M-AL and the losses/gains of M-AL compared to PL.

Balanced, but non-linearly separable data. As indicated in Appendix F.1, not all datasets are originally linearly
separable. For clarity, in the experiments in the main text we curate the data such that a linear classifier can achieve vanishing
training error. This is provides a clean test bed for comparing margin-based and uniform sampling in high-dimensions.

In Figure 9 we keep the datasets class-balanced, but allow them to be potentially not linearly separable. We observe similar
trends as the ones illustrated in Figure 4 for the noiseless versions of the datasets.

Imbalanced and non-linearly separable data. Margin-based sampling brings about surprising benefits when applied on
high-dimensional imbalanced data. In particular, Figure 10 shows that for a broad range of query budgets margin-based
sampling leads to better test error than uniform sampling. For these experiments we did not alter the original datasets in any
way, and kept all the training samples.

These results reveal a perhaps unexpected phenomenon. When the unlabeled data is imbalanced (see Appendix F.1 for the
exact imbalance ratio of each dataset), M-AL tends to achieve better predictive performance compared to passive learning.
This phenomenon has also been previously observed by Ertekin et al. (2007).

G.2. Uniform sampling versus oracle margin-based sampling
In this section we provide the counterpart of Figure 4, but now we use the distance to the Bayes optimal decision boundary

for the active learning algorithm. Recall that for oracle M-AL we first train a classifier on the entire labeled dataset (this
estimator will act as a stand-in for the Bayes optimal predictor). Then we use the distance to the decision boundary
determined by this approximation of the Bayes optimal classifier to select points to query.
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Figure 10: Top: The probability that the test error is lower with PL than with M-AL, over 10 draws of the seed set. Data is
potentially class-imbalanced and not linearly separable. Bottom: For the range of budgets where M-AL does poorly with
high probability, its sporadic gains over passive learning are generally similar or lower than the losses it can incur in terms
of increased test error. Data is potentially class-imbalanced and not linearly separable.

Figure 11 reveals that the gap between M-AL and PL is even more significant when using the oracle margin, which is in
line with the intuition provided in Section 3. Oracle margin-based sampling will select samples close to the Bayes optimal
decision boundary (i.e. the yellow points in Figure 3c). Hence, the decision boundary of the classifier trained on the labeled
set collected with active learning will be tilted compared to the optimal predictor, as long as the query budget is significantly
smaller than the dimensionality.
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Figure 11: The probability that the test error is lower with PL than with oracle M-AL, over 10 draws of the seed set. Oracle
M-AL performs consistently worse than PL. (warm-colored regions).
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Figure 12: The test error using M-AL (with or without using the oracle margin) is often higher than what is achieved with
uniform sampling, for all the datasets that we consider.

G.3. Test error at different query budgets — more datasets

We compare the test error of PL and M-AL, similar to Figure 1, but for more real-world datasets. For margin-based sampling,
we use both the oracle margin and the margin of f(-; é) as shown in Algorithm 1. Figure 12 show that oracle M-AL
consistently leads to larger test error compared to passive learning on all datasets. In addition, using the distance to the
decision boundary determined by the max-/»-margin classifier also leads to worse prediction performance, in particular on
the high-dimensional datasets and for small query budgets. For illustration and computational purposes, we limit the query

budget to min (3000, d/4).

G.4. Another perspective on Figure 4

In Figure 4-Top we provide an overview of the gap that exists between M-AL and PL in high-dimensions. Here, we provide
a more detailed perspective of the same evaluation metric. Each panel in Figure 13 corresponds to one column in Figure 4.
The horizontal dashed line indicates the 50% threshold at which the event that M-AL performs better is equally likely to its
complement. Notice that in all figures the solid line starts at 0, since before any queries are made, both uniform sampling
and margin-based sampling yield the same test error, namely the error of the max-¢s-margin classifier trained on the seed set.
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Figure 13: The probability that M-AL performs worse than PL at different query budgets. The empirical probability is
computed over 100 draws of the initial seed set.

We note that the spikes in the lines in Figure 13 come from the fact that for different seed sets, M-AL may start to
underperform at different iterations. Hence, aggregating over several seed sets leads to the non-smooth lines in the figure.

In addition, in Figure 14 we summarize each of the panels in Figure 13 in a box plot that offers yet another perspective on
this experiment. Notably, the boxes are fairly concentrated for all datasets, confirming that the gap between the test error
with uniform and margin-based sampling stays roughly the same for any query budget ny € {nged, ..., d/4}. Note that here
the probability is over the draws of the seed set, and the box plots show percentiles of the distribution over query budgets for
each dataset.
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Figure 14: Box plot of the distribution of P(Err[PL] < Err[AL]) over query budgets n, € {nsceds, --., d/4}.

For these experiments we use the distance to the decision boundary determined by the estimator f(-; é) as shown in
Algorithm 1. In Figure 4-Bottom we show the largest gains and losses of M-AL for query budgets n, € {nseed, ---; Mransition }»
where nyansition 1 defined as the budget after which M-AL is always better than PL with probability at least 50%. In other
words, one can read Niansition Off Figure 13 as the leftmost point on the horizontal axis for which the solid line intersects the
horizontal dashed line. For datasets that never intersect the 50% dashed line, we take nynsiion = d/4 conservatively. This is
more advantageous for M-AL, as larger query budgets tend to lead to larger gains over PL.

G.5. Fraction of budgets for which active learning underperforms

An alternative to using the metric illustrated in Figure 4-Top and in Appendix G.4 is to instead compute the fraction of the
query budgets for which active learning performs worse than passive learning. In Figure 15 we present this evaluation metric
for all the datasets that we consider. The box plot indicates the distribution over 100 draws of the initial seed set. For all
datasets and with high probability over the draws of the seed data M-AL underperforms on a large fraction of the query
budgets between ngeeq and d/4.
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Figure 15: Fraction of the query budgets between neeq and d/4 for which the error with M-AL is worse than with PL. The
box plot indicates the distribution over 100 draws of the seed set (median, lower and upper quartiles).

Note that the fences of the box plots that almost cover the entire [0, 1] range are a consequence of having a large number
of runs (i.e. 100). The whiskers indicate the minimum and maximum values and they will be more extreme, the larger
the set over which we take the minimum/maximum is.
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G.6. Experiments with regularized estimators

The failure case of margin-based active learning that we discuss in this paper is not limited to the situation when we use
interpolating estimators. Indeed, as we show here, even regularization in the form of an {5 or ¢; penalty still leads to
classifiers with high test error when the data is collected using margin-based sampling.

We not that, in what follows, a small coefficient C' corresponds to stronger regularization, since we employ the scikit-learn
(Pedregosa et al., 2011) implementation of penalized logistic regression. Therefore C' — 0 implies the predictive error term
in the loss is ignored, while C' — oo leads to no regularization (note that unless otherwise specified, all results throughout
the paper are reported for the unregularized max-f5-margin classifier).

Figures 16 and 17 indicate that for strong enough regularization, the gap between the test error of M-AL and PL vanishes.
This outcome is expected since stronger regularization leads to a poorer fit of the data, and hence, classifiers trained on
different data sets (e.g. one collected with M-AL and another collected with PL) will tend to be similar. The downside
of increasing regularization is, of course, worse predictive performance. For instance, for an /1 penalty and a coefficient
of 0.01, the test error is close to that of a random predictor (i.e. 50%) an all datasets for both uniform and margin-based
sampling. For moderate regularization, there continue to exist broad ranges of query budgets for which M-AL underperforms
compared to passive learning.
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Figure 16: The probability that the test error is lower with PL than with M-AL, over 10 draws of the seed set. We use
an />-regularized classifier for both prediction and margin-based sampling. Note that smaller values along the x-axis
correspond to stronger regularization. If we regularize too much (e.g. for a coefficient of 0.01), the prediction error is poor
for both PL and M-AL, which explains the light-colored regions.
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Figure 17: The probability that the test error is lower with PL than with M-AL, over 10 draws of the seed set. We use
an /;-regularized classifier for both prediction and margin-based sampling. Note that smaller values along the x-axis
correspond to stronger regularization. If we regularize too much (e.g. for a coefficient of 0.01), the prediction error is poor
for both PL and M-AL, which explains the light-colored regions.
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G.7. Experiments with different seed set sizes

Our theory predicts that for a fixed labeling budget and an increasing see set size, the gap between the error with margin-based
sampling and uniform sampling vanishes.” We verify this insight experimentally in Figures 18 and 19. Our empirical
findings confirm the trend predicted by our theory: margin-based sampling leads to better performance for large seed set
sizes, but underperforms for small seed sets.

Perhaps surprisingly, the same trend occurs even for oracle M-AL. This is noteworthy, since prior work suggests that the
failure of margin-based sampling for small seed set sizes is due to the usage of a meaningless score: the distance to a
potentially very incorrect decision boundary obtained after training a predictor on the small seed set. Instead, our results
show that margin-based sampling fails even when using the Bayes optimal predictor, which highlights a novel failure case of
this sampling strategy.
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Figure 18: As predicted by our theory, increasing the seed size leads to improved performance when using M-AL to acquire
new labeled samples.

Note that if the seed set size matches the labeling budget M-AL is trivially equivalent to PL, since no queries are issued.
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P(Err[PL] < Err[Oracle M-AL]) - Oracle margin-based AL
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Figure 19: Surprisingly, increasing the seed set size also benefits oracle M-AL. This trend is not predicted by prior work and
underlines a novel failure case of M-AL for high-dimensional data.

G.8. Combining informativeness and representativeness

In this section we provide evidence that the shortcoming of margin-based sampling that we identify in this paper also extends
to other active learning strategies that try to balance exploration and exploitation. In particular, we focus on an e-greedy
strategy which selects points using margin-based sampling with probability 1 — ¢, and samples points uniformly at random
with probability e. Hence, this approach combines selecting informative samples via M-AL with collecting a labeled set that
is representative of the training distribution. This strategy resembles the works of Brinker (2003); Huang et al. (2014); Yang
et al. (2015); Gissin & Shalev-Shwartz (2019); Shui et al. (2020).

First, we note that for oracle M-AL, the e-greedy strategy is equivalent to simply selecting a larger uniform seed set, since
the queries are independent of each other when we use the oracle margin. Therefore, for a fixed query budget n,, the
e-greedy strategy with oracle M-AL is identical to regular oracle M-AL sampling where ngeq = € - ny. We conclude that
the results in Section G.7, and more specifically Figure 19, show that the e-greedy strategy performs worse than uniform
sampling when using oracle M-AL.
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Finally, we check whether the e-greedy strategy using the margin of the empirical predictor 6 is also detrimental compared
to passive learning. We notice in Figure 20 that for different values of e, active learning continues to perform worse than
passive learning. Varying e between 0 and 1 effectively interpolates between vanilla margin-based sampling and uniform
sampling.
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Figure 20: The probability that the test error is lower with uniform sampling than with an e-greedy sampling approach, over
10 draws of the seed set. The active learning strategy performs margin-based sampling, with probability 1 — € and samples
uniformly at random with probability e.

G.9. Coreset-based active learning

In this section we investigate whether the coreset-based sampling strategy proposed in Sener & Savarese (2018) can be a
viable alternative to margin-based sampling in low-sample regimes. We follow the same active learning methodology as
described in Section 4, but use the greedy algorithm from Sener & Savarese (2018) to select queries. We use the Euclidean
distance for our experiments.

Figure 21 shows that for a large fraction of query budgets, coreset-based active learning outperforms M-AL with high
probability (warm-colored areas). However, for some datasets (e.g. vehicleNorm, a9a, philippine), coreset-based sampling
can still lead to larger error than passive learning, as illustrated in Figure 22. We hypothesize that this behavior is due
to not constraining the queried points to lie far from the Bayes optimal decision boundary. Hence, the high-dimensional
phenomenon that we describe in Section 3 still occurs.
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Figure 21: Coreset AL (Sener & Savarese, 2018) sometimes outperforms M-AL with high probability (blue regions).
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Figure 22: On some datasets (e.g. vehicleNorm), PL outperforms coreset-based active learning in the low-sample regime.

H. Experiments on image datasets

In this section we describe our experiments on image datasets in which we explore the limitations of margin-based sampling
for low query budgets.

H.1. Experiment details

We consider three standard image datasets: CIFAR10 (Krizhevsky, 2009), CIFAR100 (Krizhevsky, 2009), SVHN (Netzer
et al., 2011). In addition to these, we also run experiments on a binary classification task for medical images (PCAM
(Veeling et al., 2018)) and on a 10-class task on satellite images (EuroSAT (Helber et al., 2017)). For prediction and for
the sampling strategy we use ResNet18 networks (He et al., 2016) and start from weights pretrained on ImageNet. The
sampling strategy consists in selecting the unlabeled point on which the trained prediction model has lowest confidence, as
indicated by the softmax outputs. We note that this uncertainty-based strategy is closely related to the margin-based strategy
that we use in binary classification problems.

To get a good estimate of the Bayes optimal classifier for Oracle M-AL, we train on the entire labeled training set for each
dataset until the training error reaches 0. We consider batch active learning, as usual in the context of deep learning, and
set the batch size to 20 (experiments with larger batch sizes lead to similar results). For each dataset, we start from an
initial seed set of 100 labeled examples and perform 50 queries. Hence, the largest query budget that we consider is of 1100
labeled samples. After each query step, we fine-tune the ResNet18 model for 20 epochs, and achieve O training error. For
fine-tuning we use SGD with a learning rate of 0.001 and momentum coefficient of 0.9.

Summary of results. As illustrated in Figure 23, AL leads to significantly larger test error compared to PL. This
phenomenon persists even when we use the Bayes optimal classifier (Figure 24). Moreover, the gains that the active
learning strategy can produce, are often dominated by the losses that it can incur. Note that for Figure 23-Bottom and
Figure 24-Bottom we take Nansition = 1100, namely the maximum query budget n, that we consider.
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Figure 24: Same experiment as in Figure 23, but this time using oracle M-AL. Similar to the logistic regression experiments,
M-AL leads to even worse error when using the Bayes optimal classifier for sampling, as predicted by our theory.

41



