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Abstract

Table Question-Answering involves both un-001
derstanding the natural language query and002
grounding it in the context of the input table to003
extract the relevant information. In this context,004
many methods have highlighted the benefits005
of intermediate pre-training from SQL queries.006
However, while most approaches aim at gen-007
erating final answers from inputs directly, we008
claim that there is better to do with SQL queries009
during training. By learning to imitate a re-010
stricted portion of SQL-like algebraic opera-011
tions, we show that their execution flow pro-012
vides intermediate supervision steps that allow013
increased generalization and structural reason-014
ing compared with classical approaches of the015
field. Our study bridges the gap between seman-016
tic parsing and direct answering methods and017
provides useful insights regarding what types018
of operations should be predicted by a genera-019
tive architecture or be preferably executed by020
an external algorithm.021

1 Introduction022

The field of Table Question Answering (QA),023

which encompasses complex content manipula-024

tion tasks like projection, sorting, grouping, and025

aggregation, presents considerable challenges for026

Natural Language Processing (NLP). Its complex-027

ity and growing relevance across diverse sectors,028

from business to academic research, have attracted029

widespread attention. This domain has evolved030

quickly with the rise of Pretrained Language Mod-031

els (PLMs), but this field remains challenging for032

current models (Jin et al., 2022).033

Former studies focused on Semantic Parsing034

(SP) techniques tailored for well-structured and035

clean table data, as highlighted in (Shi et al., 2020).036

However, real-world scenarios often involve het-037

erogeneous resources, for example combining both038

numerical and textual content in some cells, like039

in WikiTableQuestions (Pasupat and Liang, 2015).040

Among the proposed solutions, (Liu et al., 2021) 041

tried to generate directly the answer and therefore 042

bypass the generation of logical forms. Despite this 043

advantage, these methods exhibit limitations, par- 044

ticularly when executing numerical operations (e.g. 045

computing a mean, counting). To cope with this, 046

a natural solution is to propose hybrids that stand 047

as intermediary solutions between semantic pars- 048

ing and direct generation. For instance, (Herzig 049

et al., 2020; Zhou et al., 2022b) have combined 050

basic table selection methods (e.g. selecting rows 051

and columns, or cells) before computing aggre- 052

gations or performing basic numerical operations. 053

However, they often fail to address intricate queries 054

necessitating the synthesis of diverse table views 055

and interactions because of the limited expressivity 056

of their underlying algebra. 057

In this work, we propose to study the continuum 058

between semantic parsing-based and direct gener- 059

ative methods, to leverage the strengths of both. 060

Going beyond previous works, we propose a novel 061

framework that facilitates reasoning over hetero- 062

geneous table resources. This framework relies 063

on the definition of an algebra over tables inspired 064

by relational algebra. Based on this algebra, each 065

question in natural language and its correspond- 066

ing table can be translated into a computational 067

graph. By varying a cut-off criterion that speci- 068

fies which part of the graph should be computed 069

directly by the model (i.e. direct generation) and 070

which one should be computed outside of it (i.e. 071

semantic parsing), we can study different trade-offs 072

and their effect in terms of effectiveness. Beyond 073

a stronger interpretation of the user query in the 074

context of the table compared to semantic parsing- 075

based (SP) methods, our framework addresses the 076

common execution challenges associated with SP 077

methods, which require clean tables to allow full 078

SQL execution. Our approach predicts operators 079

with associated "clean" operands from the input, 080

thanks to the generation ability of the Transformer 081
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architectures.082

To learn our model, we leverage a pre-training083

procedure (Pruksachatkun et al., 2020; Geva et al.,084

2020; Yu et al., 2020) that helps neural architec-085

tures to manipulate tabular data, before dealing086

with complex Table QA tasks, by first learning to087

generate from SQL queries rather than from natural088

language. We then perform experiments showing089

that our model performs as well as state-of-the-art090

models relying on much more sophisticated train-091

ing procedures. More importantly, we show that092

for some intermediate cut-off levels, our approach093

allows us to better generalize and is more robust094

compared to direct answer methods, which are usu-095

ally limited in their structural reasoning capacities.096

2 Related Work097

2.1 Table Question Answering Architectures098

Table question answering is a very active field099

with many recent developments. This ranges100

from specifically designed transformer architec-101

tures, with sparse (Eisenschlos et al., 2021) or bi-102

ased (Golchin and Surdeanu, 2023) attention matri-103

ces that capture table structures, or specialized table104

embeddings as in TUTA (Wang et al., 2021) and105

GENTAP (Shi et al., 2022), to large Language Mod-106

elds (LLMs) that leverage in-context learning to107

deal with table structures (Chen, 2022; Cheng et al.,108

2022; Wang et al., 2024). While our study, orthogo-109

nal to these directions, could be applied in the con-110

text of any family of architectures including LLMs,111

e.g. fine-tuned using low-rank adaptation (Hu et al.;112

Dettmers et al.), we chose to build on compact ar-113

chitectures, based on reasonably-sized pre-trained114

language models (PLMs) such as BERT or BART,115

as considered in popular recent works TAPEX (Liu116

et al., 2021) or OmniTab (Jiang et al., 2022). Be-117

yond scalability, such architectures, which do not118

require specific prompt design that could bias con-119

clusions, offer easier comparison opportunities.1120

Finally, we believe that our developed approach,121

which consists of predicting and using external122

programs as tools when generating answers, e.g.123

in the vein of Toolformer (Schick et al.), are still124

fully valuable in the context of LLMs, providing125

increased inference speed and stability. Our work126

is a step into showing how tools can be used with127

1We also note that it has recently been shown in a broader
context that LLMs are usually contaminated by evaluation
benchmarks (Golchin and Surdeanu, 2023), which could alter
the results of our study.

structured data like tables, which can be transferred 128

to LLMs in future works. 129

In the following, we focus on differences be- 130

tween table question answering approaches regard- 131

ing their output strategies, which is more strongly 132

related to the study of this paper. 133

2.2 Output Strategies in Table QA 134

Table Question-Answering models can be distin- 135

guished on their answer generation, which is either 136

a formula operating on the table (semantic parsing) 137

or a direct answer (direct generation), or a hybrid 138

of both. 139

Semantic Parsing Semantic parsing aims to 140

transform natural language into executable queries, 141

primarily SQL. Sketch-based models decomposed 142

SQL query construction by breaking down and clas- 143

sifying query components, enhancing structured 144

SQL generation (Jin et al., 2022). Generation- 145

based methods like RAT-SQL (Wang et al., 2019) 146

directly produce SQL queries using an encoder- 147

decoder architecture that considers both the ques- 148

tion and the table context for generation. Under 149

weak supervision, (Min et al., 2019) optimize the 150

probability of the correct answers over a set of pos- 151

sible latent representations, facilitating the model’s 152

ability to infer correct responses without explicit 153

answer mappings. Another stategy is to use rein- 154

forcement learning where the execution result is 155

used as rewards to train models (Zhong et al., 2017). 156

Despite SQL’s effectiveness in QA over tables (Shi 157

et al., 2020), its limitations with non-database ta- 158

bles and question translation are a major drawback. 159

Our approach seeks to transcend these bounds by 160

introducing a logical form independent of the table 161

during execution. 162

Direct Answer Generation In contrast to seman- 163

tic parsing, direct answer generation produces final 164

answers, bypassing the step of converting ques- 165

tions into formulas. This directly addresses the 166

limitations of SQL-based systems, enabling the 167

processing of various table formats. For instance, 168

(Mueller et al., 2019) use a GNN-based encoder 169

to encode the table structure and a decoder to out- 170

put the answers conditioned on the graph and the 171

query. An additional benefit of this method is 172

its compatibility with advanced data augmenta- 173

tion techniques (Eisenschlos et al., 2020). This 174

includes transformations from SQL to its result as 175

in TAPEX (Liu et al., 2021), or from Excel for- 176

mula to its execution as in FORTAP (Cheng et al., 177
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Date Games Yards Team

1983 16 1,808 Los Angels
Rams

1984 16 2,105 Los Angels
Rams

Career 146 13,256

1993 4 91 Atlanta
Falcons

...

Question : The player's career spanned less than 20
years ?

Answer : True

Answer : 1993

(a) Extractive

Column cells 
Selection

Aggregations 

Max

Error Explanation

struggles with Complex,
multi-aggregation

queries.

1993 .. 1983

Answer : None

(b) SQL-Queries

SQL Generation

Error Explanation

invalid input syntax for
type integer: 'Career'

select ( select max ( Date ) - min ( Date ) from
w ) < 20

Answer : False

(c) Direct Answer Generation

Error Explanation

Limited Numerical
Reasoning in
Transformers

Table

query

Encoder  < 20 || - || max || 1983  | ... | 1993 || min
|| 1984 | ... | 1993 ||

Decoder

clean data
during

decoding True

Exec

P1

P2

max

min

< 20

Not
Exec

Graph Answer
P1

P2

d) Partial execution
(ours) Logical Form answer

Figure 1: Overview of the different approaches for Table QA and their limits (a-c), along with our proposition (d)

2021). However, a notable challenge for transform-178

ers in this domain is handling numerical reasoning179

queries effectively (Zhou et al., 2022a).180

Hybrid Methods Hybrid methods extract perti-181

nent tokens from tables to create responses, typ-182

ically employing an aggregator to associate with183

and route these tokens to a specifically designed184

executor. TAGOP (Zhu et al., 2021) uses sequence185

tagging for extracting relevant cells and a classi-186

fier for assembling them into coherent symbolic187

reasoning programs. TAPAS (Herzig et al., 2020)188

employs a classifier layer at the end of a BERT-189

like encoder for selecting content from tables and190

determining the aggregation operation to apply to191

it. These methods have good numerical abilities,192

but however, unlike other output strategies, they193

have limited expressiveness and struggle with com-194

plex multi-aggregation queries (Herzig et al., 2020).195

Our proposed supervision using intermediate logi-196

cal form addresses this issue by enabling complex197

multi-aggregation representations.198

3 Model199

The goal of Table QA is to find the answer A given200

a natural language question q posed on a table T .201

In this section, we first describe the algebra that we202

use to represent an SQL query. We then describe203

how to translate formulas using this algebra into204

different sequences that depend among other things205

on the desired level of granularity.206

3.1 Tabular algebra207

In this section, we describe the algebra, inspired by208

the relational one (Codd), that we use to represent209

any operation on tables. 210

Structures Table Question Answering is the task 211

of finding an answer A from a table T ∈ T , where 212

T =
(
(xr,c)c=1...NT

col

)
r=1...NT

row

is a matrix of val- 213

ues xr,c, which can be numbers or strings. Differ- 214

ently from relational algebra, we view tabular data 215

as a sequence of tuples which we suppose to be 216

ordered. A table can have a header, which corre- 217

sponds to a sequence of column names c1 . . . cNT
col

. 218

When no header is given, each ci corresponds to 219

the column index, and hT = {ci}
NT

col
i=1 stands as the 220

set of column names from T . Views on the origi- 221

nal table, that correspond to results from algebraic 222

operations, are also considered as table T ∈ T . 223

Classically, tables only include atomic val- 224

ues. To cope with set aggregations (i.e., in- 225

volving a group-by operation), we also manip- 226

ulate group-by tables G ∈ G, where G = 227(
(gr,c)c=1...NG

col

)
r=1...NG

row

, with each component 228

gr,c corresponding to a set of values. We 229

also note columns boolean matrices as B = 230

(br,1))r=1...NB
row

, with br,1 ∈ {0, 1}. 231

Operators Table 1 describes the different opera- 232

tors that we use to manipulate tables T or group-by 233

tables G, whose behavior can be conditioned on 234

parameters (e.g. “order by” can be ascending or 235

descending). These operators follow roughly stan- 236

dard relational algebra operators and cover a broad 237

range of SQL queries. A notable difference with 238

classical relational algebra, which was dictated by 239

the fact we want to further decompose operations 240

for analysis purposes, is the fact that the selection 241
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Operation Function Definition Parameters Description
Projection P : T → T J = {ci}i∈1...k Extracts k columns from a table T,

specified by their names J ⊆ hT .
Comparison C : T ∪ G × T → B c ∈ {>,<, ..} Compares T1 ∈ T ∪ G with T2 ∈ T using c.

T2 either has the same number of rows as T1

or only 1 that is broadcast to fit T1.
Having H : G ×B → G - Selects from G where B is true,

with NB
rows = NG

rows.
Group By GB : T → G J = {ci}i∈1...k Groups elements in T with equal

values from columns in J ⊆ hT .
Aggregation A : T ∪ G → T f ∈ {sum, avg, ..} Aggregates T using function f .
Operator OP : T × T → T o ∈ {+,−, ∗, ..} Performs the term-wise operation o on

two tables T1 ∈ T and T2 ∈ T .
Order By OB : T → T d ∈ {asc, desc} Orders table T by criterion with direction d.
Limit L : T → T k ∈ N Selects top k elements from T .
Selection S : T ×B → T - Selects from T where B is true,

with NB
rows = NT

rows.

Table 1: Algebra to manipulate tabular data. See section 3.1 for notations.

operation simply corresponds to a filter given a col-242

umn of boolean values produced by a separated243

comparison operator and that the order of tuples244

is used for comparisons (e.g. >, <) and operations245

(e.g. +, -).246

Translating from SQL to our algebra is straight-247

forward. We rely on the SQLGlot library2 to248

obtain a parse tree from any SQL query. This249

parse tree is then translated into a computational250

graph. Each node n of this graph is denoted as251

ϕ (xn, [n1, . . . , nK ]) where xn is either a table in252

T , a group-by table in G or an operator in O (an253

operator is both the operation, e.g. "limit", and254

its parameters, e.g. k). In the case of operators,255

n1, . . . , nK correspond to the arguments of the op-256

erators, i.e. other nodes in the computation graph257

corresponding to its operands, and xn(.) the appli-258

cation of the operator on the corresponding list of259

child nodes. By abuse of notation, in the following260

we note n = ϕ (xn, [n1, . . . , nK ]) ∈ X , with X a261

given set, to denote xn ∈ X .262

3.2 Partial Execution of the computational263

graph264

Now that we have defined the data and the alge-265

bra, we can present how this can be leveraged266

to produce various representations. For this, we267

rely on a graph transduction function v operat-268

ing recursively on any node n of the graph. That269

2https://github.com/tobymao/sqlglot

is, given a set of operators O∗ we allow to be 270

executed, v(n) = ϕ(xn(v(n1), . . . , v(nK))) if 271

xn ∈ O∗ ∧ ∀i ∈ 1 . . .K, v(ni) ∈ T ∪ G, and 272

v(n) = n otherwise. In other words, we execute 273

from any leaf to the root of the computational tree 274

every allowed operation in O∗ until execution is 275

blocked (because xn not in O∗ or one of its depen- 276

dencies cannot be executed). 277

The computation graph can hence be partially ex- 278

ecuted through this transformation v, allowing for 279

flexible handling of SQL operations, by applying v 280

on the root node. 281

3.3 Linearizing the Graph 282

As the computational graph must be generated se- 283

quentially, we need to define how to transform it 284

into a sequence of tokens, i.e. how to linearize it. 285

To do so, we use a linearization function that we de- 286

note l, which takes a node n = ϕ (xn, n1, . . . , nK) 287

in input and returns a sequence of tokens. 288

In the case of tables (i.e., when xn ∈ T ∪G), we 289

use a simple markup where we separate rows with 290

the symbol “|” and columns with a comma “,”. In 291

the case of operators, i.e. xn ∈ O, the linearization 292

l corresponds to the name of the operator followed 293

by its parameters. For instance, the sequence LIMIT 294

1 corresponds to the limit operator with 1 as its 295

parameter. 296

For operator nodes, we define various lineariza- 297

tion schemes depending on the order (pre- or post- 298
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order) and the usage of aliases to avoid duplicat-299

ing the same information (the graph is a directed300

acyclic graph, but there can be different paths be-301

tween two nodes since results might be re-used).302

Pre-order vs post-order We can either use a303

pre-order linearization scheme where the operator304

appears before its operands: lpre(n) = l(xn) ⊕305

⊕i(|| ⊕ lpre(ni)) or a post-order one: lpost(n) =306

⊕i(|| ⊕ lpost(ni)) ⊕ || ⊕ l(xn) In both cases,307

’||’denotes a separator token and ⊕ concatenation.308

Using aliases In the above linearizations, re-used309

results will be linearized several times. This hap-310

pens frequently with queries with some aggrega-311

tion. The problem is that this can result in longer312

sequences, which in turn might be harder to gener-313

ate. To tame this problem, we associate each node314

with a given alias the first time it is linearized (e.g.315

N13) and use this reference instead of its lineariza-316

tion in subsequent occurrences (see appendix A.1.1317

for details).318

Finally, tables are linearized either before or after319

the operators. After some preliminary experiments,320

we chose this to make the grammar of the sequence321

more regular for a transformer (not mixing opera-322

tors and content).323

4 Experiments324

4.1 Dataset and Evaluation Metrics325

In our experiments, we used the WikiTableQues-326

tions (WTQ) dataset (Pasupat and Liang, 2015),327

the only dataset that fulfills all predefined crite-328

ria for our study: It is characterized by its pro-329

vision of complex numerical reasoning questions,330

tables with missing information, mixed cell types331

(e.g. text and numbers), and availability of SQL332

supervision. The SQL annotations supplied by333

SQuALL (Shi et al., 2020) enable the coverage334

of approximately 80% of the questions from the335

WTQ, in the training and validation sets only.336

Results are reported using the Denotation Accu-337

racy (DA) metric as our primary evaluation crite-338

rion. DA checks if the execution of the predicted339

answer is equal to the target answer. When the340

answer is a list of results, DA disregards the or-341

der (i.e. set equality). We decomposed this metric342

into two categories: the Strict Denotation Accu-343

racy (SDA), which is the traditional one used, and344

the Flexible Denotation Accuracy (FDA), which345

compares results after removing units (years, $, kg,346

etc.). The choice to employ both SDA and FDA347

stems from our dependence on external tools’ APIs 348

for execution. As a result, our execution outcomes 349

are unit-less, and using SDA would hide the im- 350

provements brought by our model – note that we 351

could extend our method to generate an arbitrary 352

sentence containing the result in future works. 353

4.2 Inputs and outputs 354

The query encoding is straightforward but table en- 355

coding presents a challenge due to its inherent struc- 356

ture. We follow TAPEX and OmniTAB (Liu et al., 357

2021; Jiang et al., 2022), and represent the trans- 358

formed table as T ∗ = [HEAD], c1, ..., cN , [ROW], 359

1, r1, [ROW], 2, r2, ..., rM . The tokens [HEAD] and 360

[ROW] delimit the table’s header and row sections, 361

respectively, with subsequent numbers indicating 362

row indices. Additionally, we use a vertical bar | 363

to delineate headers or cells in separate columns. 364

We then concatenate the query with the linearized 365

table as the input of the encoder. 366

Outputs in our model correspond to linearized 367

computational graphs. We considered 42 experi- 368

mental conditions. First, we use one of the follow- 369

ing seven sets of operators as O∗: (P) Only projec- 370

tion operators; (+C) P with comparison operators; 371

(+S) +C with selection operators; (+GB+H) +S 372

with group-by and having; (+A) +GB+H with ag- 373

gregations; (+OP) +A with operators; (Full) with 374

all operators, i.e. as TAPEX (Liu et al., 2021). Sec- 375

ond, we used six possible linearizations: pre-order, 376

post-order, and pre/post-order-alias-start/end. Ex- 377

amples of different linearizations, with different 378

partial executions, are given in the appendix A.1, 379

tables 5, 6, 7 and 8. 380

4.3 Training pipeline 381

Our training methodology employs a standard 382

sequence-to-sequence (seq-2-seq) framework, with 383

BART as the backbone architecture (Lewis et al., 384

2019). We use the TAPEX (Liu et al., 2021) check- 385

point to initialize our parameters and follow the 386

proposed pre-training procedure, as preliminary ex- 387

periments have shown improved results. Following 388

TAPEX (Liu et al., 2021), this process is divided 389

into two distinct stages where we maximize the like- 390

lihood of the linearized relational formula (section 391

3.1): (i) We pre-train the model to translate SQL 392

queries into our logical form. This step is crucial 393

for adapting the model to understand the structure 394

and semantics of SQL queries in the context of our 395

logical representation; (ii) we fine-tune our model 396

using natural language questions instead of SQL. 397
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Our additional hyper-parameters only correspond398

the choice of operators in O∗ from the validation399

set, as discussed below.400

4.4 Overall performance401

In this section, we compare our model with the402

state-of-the-art ones, on the test split of the WTQ403

Dataset. Results are shown in Table 2, distin-404

guishing between those employing fine-tuning tech-405

niques from BART-like architectures and those con-406

sidering in-context learning of LLMs, using spe-407

cific prompting strategies. We report SDA as well408

as FDA for the model for which we reproduced409

the results. We report in table 2 the results of the410

best-performing set of operators we experimented,411

namely O∗ = {P,C, S}, as well as our ensemble412

model that leverages various granularities O∗.413

We can first note that prompting approaches414

based on LLMs, including the cutting-edge chain-415

of-thought method (Wei et al., 2022), demonstrate416

superior performance without necessitating model417

adaptation. At the other end of the spectrum, the se-418

mantic parsing baseline SQuALL does not perform419

well, especially if tables are not manually cleaned420

up (dropping from 54.3 to 27.2 for FDA), while421

other methods do not require this costly cleaning422

step. Our models showcase notable achievements,423

with our best one (selected on the validation set)424

reaching an FDA of 61.4%. This is comparable to425

OmniTab which relies on sophisticated data aug-426

mentation techniques. We can even increase to427

66.3% when leveraging ensemble methods (see428

section 4.7). We also show later that besides ob-429

taining state-of-the-art results (for similarly sized430

architectures), our models are also more robust.431

4.5 Sensitivity over questions types432

In table 3a, we show the performance for different433

query types, distinguished by whether they contain434

operators such as Projection, Comparison, Selec-435

tion, Group By, Order By, Aggregation, Operator,436

and Limit. Note that queries containing a group-by437

are limited (30), and hence results reported in this438

column should be taken with care.439

Among existing models, Omnitab has the440

strongest performance, showing the importance441

of its data augmentation techniques compared to442

Tapex, especially for complex operators such as443

group by and operators. Tapas does perform worse444

on these query types, which shows the limits of445

its aggregation methodology based on column/row446

selection.447

Table 2: Comparison of Model Performance

Model SDA FDA
Fine-Tuned BART-like Models

TABERT (Yin et al., 2020) 52.3 -
MATE (Eisenschlos et al., 2021) 51.5 -
TableFormer (Yang et al., 2022) 52.6 -
GRAPPA (Yu et al., 2020) 52.7 -
DoT (Krichene et al., 2021) 54.0 -
REASTAP (Zhao et al., 2022) 58.6 -
TaCube (Zhou et al., 2022a) 60.8 -
TAPAS (Herzig et al., 2020) 48.8 50.2
TAPEX (Liu et al., 2021) 55.5 57.9
OmniTab (Jiang et al., 2022) 61.8 62.1

Prompt-based LLMs
ChatGPT (Cheng et al., 2022) 43.3 -
Codex (Ye et al., 2023) 47.6 -
StructGPT (Cheng et al., 2022) 48.4 -
Codex-COT (Chen, 2022) 48.8 -
Binder (Cheng et al., 2022) 64.6 -
LEVER (Cheng et al., 2022) 65.8 -
DATER (Cheng et al., 2022) 65.9 -
Chain-of-Table (Wang et al., 2024) 67.3 -

Semantic parsing on test with cleaned tables
SQuALL (Shi et al., 2020) 50.4 54.3

Semantic parsing on test tables
SQuALL (Shi et al., 2020) 23.2 27.2

Our models
+P+C+S 59.0 61.4
Ensemble 63.3 66.3

Among our models, PCS exhibits the best overall 448

performance (as on the test set), thanks to its robust 449

handling of query types. Surprisingly, it however 450

performs worse on group-by queries compared to 451

models that include GB in O∗. We suppose that 452

this might be due to the variance due to the lim- 453

ited number of queries of that type. Finally, our 454

model exhibits a pattern where simpler operators 455

(projection, comparison, selection) are better han- 456

dled when generated directly, while others (order 457

by, aggregation, operators) do benefit from being 458

executed externally. 459

Finally, table 4 presents the performance of mod- 460

els with respect to the complexity of the query, as 461

measured by the number of operators in the original 462

computational graph. OmniTab and our models (es- 463

pecially +GB+H) demonstrate resilience with rela- 464

tively stable performance across operation ranges. 465

Tapex and Tapas, however, show a decline in perfor- 466

mance as complexity increases, with Tapas notably 467
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Table 3: Performance (FDA) of models on the validation set, grouping results per type of query, for the models
based on pre-order linearization (no alias). The column ALL reports FDA averaged over validation queries. Best
results are in bold.

Model Projection (ALL) Comparison Selection Group By Order By Aggregation Operator Limit σ

# 500 367 363 30 151 206 75 153
Tapas 52.6 51.8 52.3 16.7 53.0 43.7 30.7 52.3 13.5
Tapex 55.2 55.9 56.5 50.0 60.9 38.8 44.0 60.8 7.9
Omnitab 58.8 59.7 59.8 56.7 61.6 47.1 45.3 60.8 6.4
P 44.6 40.9 41.3 40.0 49.7 43.7 28.0 49.0 6.8
+C 51.6 50.1 50.7 23.3 48.3 50.0 38.7 47.7 9.7
+S 58.6 58.0 58.4 40.0 58.3 52.4 52.0 57.5 6.4
+GB+H 57.8 57.8 58.4 23.3 57.0 49.5 49.3 56.2 11.8
+OB 57.6 57.5 57.8 53.3 58.9 51.5 50.7 58.2 3.3
+A 58.0 57.8 58.4 56.7 62.2 47.1 49.3 61.4 5.4
+OP 56.6 57.8 58.4 50.0 60.3 46.1 42.7 60.1 6.8

(a) Using validation data – the row # contains the number of matching queries (see Section 4.5)

Model Projection (ALL) Comparison Selection Group By Order By Aggregation Operator Limit σ

Tapas 42.6 41.7 42.2 16.7 38.4 37.9 18.7 37.9 10.6
Tapex 43.4 43.0 43.5 43.3 44.4 35.4 29.3 44.4 5.5
Omnitab 45.4 44.7 44.9 36.7 42.4 39.3 30.7 42.5 5.1
P 43.2 39.8 40.2 36.7 45.0 44.2 28.0 44.4 5.7
+C 49.0 46.3 46.8 23.3 45.7 48.5 38.7 45.1 8.5
+S 53.6 51.0 51.2 40.0 49.0 51.9 50.7 48.4 4.2
+GB+H 51.6 49.6 50.1 23.3 45.0 49.5 48.0 44.4 9.2
+OB 50.6 50.7 51.2 40.0 43.7 48.1 46.7 43.1 4.1
+A 47.2 46.0 46.6 50.0 45.7 41.8 40.0 45.1 3.1
+OP 47.8 47.7 48.2 50.0 45.7 43.2 30.7 45.8 6.1

(b) Using validation data with random permutations of each column (see Section 4.8)

struggling in the 8+ operation category showing468

the limit of extractive methods.469

4.6 Comparing linearization methods470

In figure 2, we show the impact of the linearization471

on the performance of the models. We can first472

observe that differences between our model vari-473

ants decrease as most of the computational graph474

is executed, which was expected. Contrary to our475

expectations, however, using aliases has a negative476

impact, especially when they are more used (+P477

to +P+C+S), which shows that having too many478

aliases is problematic when generating a relational479

formula. When using aliases, putting the tables af-480

ter the operators did somehow improve the results.481

We think that these results might change with bet-482

ter training procedures (e.g. data augmentation483

with perturbations): we observed that models using484

aliases were more robust, but their overall perfor-485

mance was nevertheless below that of non-aliases486

ones. Finally, we observe that there is a granularity487

level (+P+C+S) that achieves the best performance,488

corresponding to cases where only basic table se-489

lection is performed; moreover, this level is less 490

prone to overfitting as discussed in Section 4.8. 491

4.7 Ensembling 492

Figure 3 illustrates the results that we obtained 493

using different ensembling combinations. The en- 494

semble prediction is given by a majority vote. In 495

case of ties, we use the validation FDA to weights 496

the votes. We experimented with two ensembling 497

settings: going from semantic parsing models to 498

full execution, or in the opposite direction, i.e. from 499

full execution to semantic parsing. 500

First, performance improves whatever the en- 501

sembling method. This improvement can be ex- 502

plained with the analysis presented in Table 3b, 503

where we analyzed the performance depending on 504

the operators composing the computational graph. 505

While certain models excel in specific types of op- 506

erations, others may show superiority in different 507

areas. Such diversity among the models is impor- 508

tant for ensembling. 509
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Figure 2: Evolution of FDA (test set) for different model
variants.

4.8 Sensitivity over table column cells510

perturbations511

Transformers architecture can easily overfit, espe-512

cially in the case of a dataset like WTQ. To measure513

the importance of overfitting, we use the valida-514

tion set (since the test set has no associated SQL515

queries) and perform random perturbations, i.e. we516

permute rows within each column. To avoid prob-517

lems relative to the maximum length of the input,518

we ensure those perturbations only affect the parts519

present in the input of the transformer – all mod-520

els would have been affected, and this would have521

reduced the sensibility of our measures.522

Results are shown in table 3b using a pre-523

order (no alias) linearization (our best linearization524

method). We observe that perturbation strongly525

affects even the best-performing approaches, as526

OmniTAB performance lowers from 58.8 to 45.4527

(-13.4), Tapex from 55.2 to 43.4 (-11.8), and Tapas528

from 52.6 to 42.6 (-10.0). Our models are much529

less impacted. For instance, our best-performing530

Table 4: Performance (FDA) with respect to the number
of operators

Model 1-4 4-8 8+
Tapex 65.5 44.3 55.2
Tapas 66.5 49.0 32.4
Omnitab 65.0 54.2 55.2
+P 53.2 42.2 32.4
+C 61.1 46.4 42.9
+S 67.0 53.7 51.4
+GB+H 67.5 49.5 54.3
+OB 63.6 52.6 55.2
+A 65.0 53.1 57.1
+OP 63.1 50.0 56.2

Figure 3: Evolution of FDA (test set) depending on the
number of model variations in the ensemble. We either
add models to the ensemble starting from the left (green)
or the right (blue).

approach (PCS) decreases its performance from 531

58.6 to 53.6 (-5.0), and beats the best baseline, Om- 532

nitab, by a large margin (53.6 vs 45.4), showing 533

that data augmentation is less effective in prevent- 534

ing overfitting than generating formulas combining 535

content and relational operators. 536

Among our models, we note that the lesser the 537

amount of executed parts in the computation graph, 538

the lower the decrease. As some models were ini- 539

tially more performant than others, we can note that 540

the "P+C+S" model is the most effective one, with 541

an average FDA of 53.6. Finally, we can see that 542

the impact on some operators (e.g. group by, limit, 543

comparisons) is even higher for models where most 544

or all of the computational graph is executed. 545

5 Conclusion 546

We explored the realm between semantic parsing 547

and direct output generation for table QA, show- 548

ing that PLMs can leverage an appropriate level of 549

granularity where basic table manipulations (clean- 550

ing, selection) can be handled by the transformer it- 551

self while higher-level operations (e.g. aggregation, 552

arithmetic) are better handled by dedicated tools. 553

We showed that a model, appropriately trained, 554

achieves a high performance compared to state- 555

of-the-art, and that, more importantly, most PLMs 556

baselines are prone to overfitting (by using a sim- 557

ple permutation of table cells), while our method is 558

much less affected and beats the best baseline, Om- 559

niTab, by a wide margin. Future works will include 560

more sophisticated training procedures, a sparse 561

attention mechanism to cope with long tables such 562

as LLMs, and more in-depth error analysis. 563
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6 Limitations & Risks564

Our models have not been trained with data aug-565

mentation, which would help them to make them566

more robust – even if other models could benefit567

from it (e.g. Tapex or Tapas), we hypothesize that568

it would have an even bigger impact on our model569

(The best baseline, OmniTab, was already trained570

with augmented data). Experimenting with more571

datasets would also have strengthened our results.572

However, as for all works on Table QA, WikiTable-573

Question is still a resource of reference.574

We did not compare thoroughly our results with575

LLMs but did report the results from the origi-576

nal papers. However, the gap between the best-577

performing LLMs and our model is not that high,578

showing the potential benefit of using partially ex-579

ecuted formulas. Future works could include the580

fine-tuning of LLMs with our proposed supervi-581

sion.582

Risks involved in this research are similar to583

those incoming from any NLP research, as an au-584

tomatic understanding of data can be used ma-585

liciously, e.g. leaking confidential information586

from tables. However, this work focuses on an587

exploratory study of learning abilities, which is588

dedicated to the scientific community only.589
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A Appendix 748

A.1 Linearization 749

A.1.1 Using aliases 750

In the case of pre-order, we denote the alias for 751

node n with αn and use the following linearization: 752

lpre(n) =


l(xn)⊕i αni ⊕ αn ⊕i l

c
pre(ni)

if x ∈ O
∅ else

753

where ∅ denotes the empty sequence and lc is ei- 754

ther empty – if the operator has already been lin- 755

earized – or || ⊕ lpre(ni) if not. Note that the order 756

of linearization is important, but to avoid more 757

complicated notations we do not make it explicit 758

here. 759
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O∗ Logical Form Graph

{P}

Limit 1 || OB desc || GB || WHERE || newtongrange |
.. | fauldhouse || IN ’fauldhouse’, ’newtongrange’ ||
newtongrange | .. | fauldhouse || WHERE || newton-
grange| .. | fauldhouse || IN ’fauldhouse’, ’newton-
grange’ || newtongrange| .. | fauldhouse || COUNT
|| GB || WHERE || newtongrange| .. | fauldhouse ||
in ’fauldhouse’, ’newtongrange’ || newtongrange| .. |
fauldhouse || WHERE || 1 | .. | 7 || IN ’fauldhouse’,
’newtongrange’ || newtongrange | .. | fauldhouse ||

{P, C}

Limit 1 || OB desc || GB || WHERE || newtongrange | ..
| fauldhouse || t | f | .. | t | t || WHERE || newtongrange|
.. | fauldhouse || t | f | .. | t | t || COUNT || GB ||
WHERE || newtongrange| .. | fauldhouse || t | f | .. | t |
t || WHERE || 1 | .. | 7 || t | f | .. | t | t ||

{P, C, S}

Limit 1 || OB desc || GB || newtongrange | fauldhouse |
fauldhouse || newtongrange | fauldhouse | fauldhouse
|| COUNT || GB || newtongrange | fauldhouse | fauld-
house || 1 | 2 | 7 ||

{P, C, S, GB,
H}

Limit 1 || OB desc || fauldhouse„ fauldhouse | new-
tongrange || COUNT || 2„ 7 | 1 ||

{P, C, S, GB,
H, OB}

Limit 1 || OB desc || fauldhouse„ fauldhouse | new-
tongrange || COUNT || 2„ 7 | 1 ||

{P, C, S, GB,
H, OB, A}

Limit 1 || fauldhouse„ fauldhouse | newtongrange ||

Full fauldhouse

Table 5: Example of Pre-order linearization for the query "SELECT East Region FROM w WHERE East Region
in (’fauldhouse’, ’newtongrange’) GROUP BY East Region ORDER BY COUNT ( id ) DESC LIMIT 1" Natural
Language question ="’which team has made the roll of honour more times in the east region south division:
fauldhouse or newtongrange ?’"
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O∗ Logical Form Graph

{P}

newtongrange | .. | fauldhouse || IN ’fauldhouse’,
’newtongrange’ || 1 | .. | 7 || WHERE || newtongrange|
.. | fauldhouse || in ’fauldhouse’, ’newtongrange’ ||
newtongrange| .. | fauldhouse || WHERE || GB ||
COUNT || newtongrange| .. | fauldhouse || IN ’fauld-
house’, ’newtongrange’ || newtongrange| .. | fauld-
house || WHERE || newtongrange | .. | fauldhouse ||
IN ’fauldhouse’, ’newtongrange’ || newtongrange | ..
| fauldhouse || WHERE || GB || OB desc || Limit 1 ||

{P, C}

t | f | .. | t | t || 1 | .. | 7 || WHERE || t | f | .. | t | t
|| newtongrange| .. | fauldhouse || WHERE || GB ||
COUNT || t | f | .. | t | t || newtongrange| .. | fauldhouse
|| WHERE || t | f | .. | t | t || newtongrange | .. |
fauldhouse || WHERE || GB || OB desc || Limit 1 ||

{P, C, S}

1 | 2 | 7 || newtongrange | fauldhouse | fauldhouse || GB
|| COUNT || newtongrange | fauldhouse | fauldhouse
|| newtongrange | fauldhouse | fauldhouse || GB || OB
desc || Limit 1 ||

{P, C, S, GB,
H}

2„ 7 | 1 || COUNT || fauldhouse„ fauldhouse | new-
tongrange || OB desc ||Limit 1 ||

{P, C, S, GB,
H, OB}

2„ 7 | 1 || COUNT || fauldhouse„ fauldhouse | new-
tongrange || OB desc ||Limit 1 ||

{P, C, S, GB,
H, OB, A}

fauldhouse„ fauldhouse | newtongrange || Limit 1 ||

Full fauldhouse

Table 6: Example of Post-order linearization for the query : "SELECT East Region FROM w WHERE East
Region in (’fauldhouse’, ’newtongrange’) GROUP BY East Region ORDER BY COUNT ( id ) DESC LIMIT 1".
Natural Language question ="’which team has made the roll of honour more times in the east region south division:
fauldhouse or newtongrange ?’"
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O∗ Logical Form Graph

{P}

N10 Limit 1 N8 || N8 ob desc N12 N22 || N12 gb
N7 N16 || N7 WHERE N24 N6 || N24 in ’fauldhouse
united’, ’newtongrange star’ N6 || N16 WHERE N24
N6 || N22 COUNT N34 || N34 GB N7 N26 || N26
WHERE N24 N33 ||| N6 newtongrange star| ... |
fauldhouse united || N33 1| 2| ... | 7 ||

{P, C}

N22 lImit 1 N10 || N10 OB desc N14 N13 || N14 GB
N1 N2 || N1 WHERE N8 N32 || N2 WHERE N8 N32
|| N13 count N11 || N11 GB N1 N12 || N12 WHERE
N8 N15 ||| N32 newtongrange star| fauldhouse united|
..| dalkeith thistle| fauldhouse united || N8 t| .. | t ||
N15 1 | .. | 6| ||

{P, C, S}

N11 Limit 1 N31 || N31 OB desc N29 N3 || N29
GB N4 N4 || N3 COUNT N6 || N6 GB N4 N5 |||
N4 newtongrange star| fauldhouse united| fauldhouse
united || N5 1| 2| 7 ||

{P, C, S, GB,
H}

N35 Limit 1 N38 || N38 OB desc N29 N27 || N27
COUNT N3 ||| N29 fauldhouse united„ fauldhouse
united| newtongrange sta || N3 2„ 7| 1 ||

{P, C, S, GB,
H, OB}

N22 Limit 1 N32 || N32 OB desc N36 N23 || N23
COUNT N38 ||| N36 fauldhouse united„ fauldhouse
united| newtongrange star || N38 2„ 7| 1 ||

{P, C, S, GB,
H, OB, A}

N37 Limit 1 N36 ||| N36 fauldhouse united„ fauld-
house united| newtongrange star ||

Full fauldhouse

Table 7: Example of pre-order with alias (tables at the end) linearization for query : "SELECT East Region FROM
w WHERE East Region in (’fauldhouse’, ’newtongrange’) GROUP BY East Region ORDER BY COUNT ( id )
DESC LIMIT 1" Natural Language question ="’which team has made the roll of honour more times in the east
region south division: fauldhouse or newtongrange ?’"
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O∗ Logical Form Graph

{P}

N24 newtongrange star| ..| fauldhouse united || N1 1|
2| ..| 7 ||| N3 Limit 1 N17 || N17 OB desc N10 N5 ||
N10 GB N11 N35 || N11 WHERE N4 N24 || N4 in
’fauldhouse united’, ’newtongrange star’ N24 || N35
WHERE N4 N24 || N5 COUNT N7 || N7 GB N11
N12 || N12 WHERE N4 N1 ||

{P, C}

N12 newtongrange star| .. | fauldhouse united || N16
t| t| .. | f| t || N27 1| .. | 7 ||| N28 Limit 1 N38 || N38
OB desc N5 N24 || N5 GB N13 N18 || N13 WHERE
N16 N12 || N18 WHERE N16 N12 || N24 COUNT
N7 || N7 GB N13 N8 || N8 WHERE N16 N27 ||

{P, C, S}

N22 newtongrange star| .. | fauldhouse united || N10
1| .. | 7 ||| N16 Limit 1 N4 || N4 OB desc N2 N29 ||
N2 GB N22 N22 || N29 COUNT N30 || N30 GB N22
N10 ||

{P, C, S, GB,
H}

N17 fauldhouse united„ fauldhouse united| newton-
grange star || N10 2„ 7| 1 ||| N37 Limit 1 N12 || N12
OB desc N17 N21 || N21 COUNT N10 ||

{P, C, S, GB,
H, OB}

N25 fauldhouse united„ fauldhouse united| newton-
grange star || N22 2„ 7| 1 ||| N2 Limit 1 N8 ||N8 OB
desc N25 N24 || N24 COUNT N22 ||

{P, C, S, GB,
H, OB, A}

N12 fauldhouse united„ fauldhouse united| newton-
grange star |||N10 Limit 1 N12 ||

Full fauldhouse

Table 8: Example of Pre-order alias (tables at the start) linearization with alias for "SELECT East Region FROM
w WHERE East Region in (’fauldhouse’, ’newtongrange’) GROUP BY East Region ORDER BY COUNT ( id )
DESC LIMIT 1", where natural Language question ="’which team has made the roll of honour more times in the
east region south division: fauldhouse or newtongrange ?’"
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