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ABSTRACT

Knowledge graphs (KGs) have emerged as a powerful framework for representing
and integrating complex biomedical information. However, assembling KGs from
diverse sources remains a significant challenge in several aspects, including entity
alignment, scalability, and the need for continuous updates to keep pace with sci-
entific advancements. Moreover, the representative power of KGs is often limited
by the scarcity of multi-modal data integration. To overcome these challenges,
we propose Know2BIO, a general-purpose heterogeneous KG benchmark for the
biomedical domain. Know2BIO integrates data from 30 diverse sources, capturing
intricate relationships across 11 biomedical categories. It currently consists of
~219,000 nodes and ~6,200,000 edges. Know2BIO is capable of user-directed
automated updating to reflect the latest knowledge in biomedical science. Further-
more, Know2BIO is accompanied by multi-modal data: node features including
text descriptions, protein and compound sequences and structures, enabling the
utilization of emerging natural language processing methods and multi-modal
data integration strategies. We evaluate KG representation models on Know2BIO,
demonstrating its effectiveness as a benchmark for KG representation learning
in the biomedical field. Data and source code of Know2BIO are available at
https://anonymous.4open.science/r/Know2BIO/.

1 INTRODUCTION

A knowledge graph (KG), represents entities as nodes and their relations as edges, commonly referred
to as "triples" (h, r, t), where a head entity (h) is connected to a tail entity (t) by a relation (r).
There is an increasing presence of using KGs to represent the data in knowledge bases (KBs). In
biomedical science, KBs capture knowledge in domains such as omics (e.g., genomics (Cunningham
et al. (2021); Seal et al. (2022); O’Leary et al. (2015); Sayers et al. (2021)), proteomics (Bateman et al.
(2022); Fabregat et al. (2013); Szklarczyk et al. (2018)), metabolomics (Powell & Moseley (2022);
Jewison et al. (2013); Wishart et al. (2021))), pharmacology (e.g., drug designs (Wishart et al. (2017);
Kanehisa et al. (2016); Davis et al. (2022), drug targets Wishart et al. (2017); Zhou et al. (2021)),
adverse effects (Giangreco & Tatonetti (2021); Kuhn et al. (2015))), physiology (e.g., biological
processes (Carbon et al. (2020); Kanehisa et al. (2016); Fabregat et al. (2013)), and anatomical
components (Haendel et al. (2014); Mungall et al. (2012); Lipscomb (2000); Bastian et al. (2020)),
playing a vital role in advancing biomedical research and data science .

This knowledge has been employed by predictive algorithms to discover new biomedical knowledge
(e.g., protein interactions, pathogenic genetic variants). To enable this knowledge discovery, task-
relevant data must be integrated from multiple sources such as drug-relevant data in KGs for predicting
drug targets (Ioannidis et al. (2020); Yan et al. (2021); Mayers et al. (2022); Himmelstein et al.
(2017); Zong et al. (2022); Su et al. (2023)) and clinically-relevant data in KGs to predict clinical
characteristics indicative of pathogenesis (Santos et al. (2022); Gao et al. (2022); Chandak et al.
(2023); Liang et al. (2022)). However, this data integration has posed challenges, resulting in KGs
which insufficiently represent biomedicine, are unsuited for new tasks, and do not keep pace with
biomedical advancements.
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Predictive algorithms for KGs include KG representation learning models. These models learn
low-dimensional embeddings to capture the contextual information of entities and their relationships.
Existing models can be categorized into five main types: 1) Translation-based models represent
relations between entities as translations in the embedding space (Bordes et al. (2013); Wang et al.
(2014); Lin et al. (2015); Ji et al. (2015)). 2) Bilinear models utilize bilinear forms to capture the
interactions between entities and relations in the embedding space (Yang et al. (2014); Kazemi &
Poole (2018)). 3) Neural network-based models utilize deep neural networks to learn representations
of entities and relations (Socher et al. (2013); Dong et al. (2014); Dettmers et al. (2017); Nguyen et al.
(2017)). 4) Complex vector-based models utilize complex vector spaces (Trouillon et al. (2016); Sun
et al. (2018); Chami et al. (2020)). Lastly, 5) Hyperbolic space embedding models utilize hyperbolic
space which represents hierarchical structures with minimal distortion (Balazevic et al. (2019); Chami
et al. (2020)). Each of these model categories are detailed in the Appendix B.

Biomedical KG construction demands several technical considerations: (1) Entity representation:
Different knowledge sources may represent the same entities differently necessitating accurate
alignment to avoid redundancy and false information (Zong et al. (2022)). (2) Continuous knowledge
updates: Biomedical science evolves rapidly. As a result, the one-time efforts to assemble a KG
can quickly fall behind the latest biomedical knowledge, hindering biomedical discovery and real-
world benchmarking. Thus, it is essential to establish mechanisms to keep the KG up-to-date. (3)
Representative power: Although biomedical KGs are inherently incomplete due to gaps in biomedical
knowledge, existing KGs fail to capture known biomedical knowledge. Furthermore, these KGs are
scarcely supplemented with other data modalities such as molecular sequences, molecular structures,
or natural language descriptors which can be combined with other representation learning methods
such as language models.

Therefore, we propose a comprehensive and evolving general-purpose KG: Knowledge Graph Bench-
mark of Biomedical Instances and Ontologies (Know2BIO). Know2BIO represents the biomedical
domain more comprehensively than popular biomedical knowledge graph benchmarks; it is larger
(219,000 nodes, 6,180,000 edges), integrates data from more sources (30 sources), represents 11
biomedical categories, and includes biomedically-relevant edge types not present in other KGs
(e.g., anatomy-specific gene expression, transcription factor regulation of genes). Not only is its
data more up-to-date, but unlike others, it can be automatically updated to reflect the most recent
biomedical knowledge obtained from its data sources. By representing the latest scientific knowledge,
Know2BIO defines a better real world learning task for graph learning methods and provides a
greater opportunity for biomedical knowledge discovery. Additionally, Know2BIO enables methods
development at the forefront of graph learning: its instance and ontology views enable multi-view
learning tasks; its multi-modal node features (e.g., natural language descriptors, chemical sequences,
protein structures) enable multi-modal learning and data integration strategies (Wan et al. (2018);
Zong et al. (2019); Luo et al. (2017); Huang et al. (2020)), as well as advanced NLP techniques such
as language models (Huang et al. (2019); Lee et al. (2019); Rives et al. (2019); Heinzinger et al.
(2019)). By providing a comprehensive KG that can reflect—in perpetuity—the latest biomedical
knowledge, Know2BIO serves as an excellent benchmark to evaluate a variety of KG representation
learning models under various scenarios (e.g., biomedical use cases, ablation studies, multi-modal
data).

We extensively evaluate 13 KG representation models from the 5 aforementioned categories on a
KG-wide link prediction task (predicting missing nodes in triples). We find that the complex and
hyperbolic models perform better than translation and bilinear models in the ontology view and to a
lesser extend in the instance view due to its greater denser and diversity. Our contributions are as
follows:

• Know2BIO is a general purpose heterogeneous KG representing a diverse array of informa-
tive biomedical categories covering real-world data

• Know2BIO can be automatically updated, reflecting the latest biomedical knowledge

• Know2BIO enables multi-modal learning strategies by including node features such as
natural language text descriptors; sequences for proteins, compounds, and genes; structures
for proteins and compounds.

• Know2BIO enables multi-view learning by including and specifying two views of the KG
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• Benchmarking of KG representation learning methods is performed on our KG across 13
different models for 3 spaces: Euclidean, complex, and hyperbolic.

2 RELATED WORKS

2.1 BIOMEDICAL KNOWLEDGE GRAPHS

Several biomedical KGs have been released in recent years. Hetionet ((Himmelstein et al. (2017))
has been applied to predict disease-associated genes and for drug repurposing but is now relatively
small and less up-to-date. Amazon’s DRKG (Ioannidis et al. (2020)), has twice as many nodes,
though it has has a narrow focus on COVID-19 drug repurposing. The Mayo Clinic’s BETA (Zong
et al. (2022) )is a benchmark for predicting drug targets, but it is largely composed of older data from
Bio2RDF (Belleau et al. (2008)) and its size is quite inflated due to unaligned nodes. PharmKG
(Zheng et al. (2020)) includes non-graph data modalities for node features (e.g., gene expression,
disease word embeddings), but it is relatively small and only has 3 node types (Zheng et al. (2020)).
The iBKH KG (Su et al. (2023)) represents the general biomedical domain, and although it is larger,
over 90% of its nodes are molecule nodes linked to drug compounds. CKG (Santos et al. (2020)) is a
massive KG for clinical decision support, integrating experimental data, publications, and biomedical
KBs; however, the text mined data potentially introduce additional uncertainty, compared to carefully
curated findings from biomedical KBs and its size may be intractable. Open Graph Benchmark
(OGB) (Hu et al. (2020)), a collection of KG benchmarks has a biomedical KG, ogbl-biokg, but
it only includes 5 biomedical categories and is limited in size. Although OpenBioLink (Breit
et al. (2019)), is large and high-quality and was intended to be updated, but like all other such KGs
benchmarks, it has not been continually updated. The COVID-19 KG (Wise et al. (2020)) introduces
a heterogeneous graph for visualizing complex relations in COVID-19 literature. HKG-DDIE
(Asada et al. (2022)) proposes a method to extract drug-drug interactions by integrating diverse
pharmaceutical KG data with corpus text and drug information.

In sum, incomplete entity alignment, restricted focuses, and data that is uni-modal and single-view
hamper existing biomedical KG utility for real-world benchmarking and biomedical discovery. Table
1 summarizes statistics of these KGs together with the Know2BIO proposed in this paper.

Table 1: An overview of heterogeneous biomedical KG

Dataset #Entities (millions) #Relations (millions) #Node types #Edge types #Source databases
BETA 0.95 2.56 3 9 9
CKG 16.0 220.0 36 47 15
DRKG 0.097 5.87 13 17 6
Hetionet 0.047 2.25 11 24 29
iBKH 2.38 48.19 11 18 17
OGB:biokg 0.093 5.09 5 6 /
OpenBioLink 0.184 9.30 7 30 16
PharmKG 0.188 1.09 3 29 6
COVID-19 KG 0.336 3.33 5 5 1
HKG-DDIE 0.021 2.75 5 8 5
Know2BIO 0.219 6.18 16 108 30

2.2 KNOWLEDGE GRAPH BENCHMARKING

There have been several widely used general domain KG benchmarks that propelled the development
of many KG representation learning models. One of the most widely-used KG benchmarks is
FB15K(Bordes et al. (2013), a dense general purpose KG derived from Freebase. YAGO (Tanon
et al. (2020) is another widely used high-quality KB covering general Wikipedia-derived ontological
and instance knowledge about people, places, movies, and organizations. DBpedia (Lehmann et al.
(2015)) is a similar popular KG of Wikipedia data. CoDEx (Safavi & Koutra (2020)) also uses
Wikidata and Wikipedia data for link prediction. Other benchmark initiatives such as OGB and
TUDataset host multiple benchmark datasets from various domains and of various scales (Hu et al.
(2020; 2021); Morris et al. (2020)). They cover citation networks, commercial products, small
molecules, bioinformatics, social networks, and computer vision. Although these KGs can work well
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in their own domain, performance on non-biomedical data often does not generalize to the biomedical
domain. To address challenges from biomedical science, rigorous general purpose biomedical KG
benchmarks must be employed, motivating Know2BIO.

3 KNOW2BIO KNOWLEDGE GRAPH

We propose a general-purpose biomedical KG, Know2BIO which represents 11 biomedical categories
across 16 node types, totaling 219,169 nodes, 6,181,160 edges, and 30 unique pairings of node types
across 108 unique edge types. Most node pairs have 1-2 edge types, while compound-to-protein edges
have 51 unique edge types. Compound-to-compound edges are the most numerous, at 2,902,659
edges.

Table 2: Scale and average degree of each biomedical category.

Biomedical Category Total nodes Total edges Average node degree
Anatomy 4,960 226,630 45.7
Biological Process 27,991 209,959 7.5
Cellular Component 4,096 96,239 23.5
Disease 21,842 419,338 19.2
Compound 26,549 3,561,235 134.1
Drug Class 5,721 10,859 1.9
Gene 28,476 1,757,428 61.7
Molecular Function 11,272 85,779 7.6
Pathway 52,215 467,420 9.0
Protein 21,879 1,937,114 88.5
Reaction 14,168 236,113 16.7

Total 219,169 6,181,160 -

Node features, i.e., data from additional modalities, are provided separate from the KG, enabling
users to integrate and embed such data with different models and feature fusion strategies of their
choosing. These node features include DNA sequences for ~22,000 gene nodes, amino acid sequences
for ~21,000 protein nodes, the SMILES sequence of ~7,200 compound nodes (sequences which
can be turned into graphs/structures), structures for ~21,000 protein nodes, and text descriptors for
~208,500 nodes.

3.1 KNOWLEDGE GRAPH CONSTRUCTION

To construct our KG, we integrate data from 30 data sources spanning several biomedical disciplines
(Table 3, Appendix A). We carefully selected data sources and aligned the provided data. Alignment
entailed mapping data identifiers (IDs) to common IDs through various intermediary resources. This
is critical because data sources frequently use different IDs to represent the same entity (e.g., gene
IDs from NCBI/Entrez, Ensembl, or HGNC). However, this process can be circuitous. For example,
to unify knowledge on compounds and the proteins they target (i.e., Compound (DrugBank ID)
-targets- Protein (UniProt ID)) taken from the Therapeutic Target Database (TTD), the following
relationships are aligned: Compound (TTD ID) -targets- Protein (TTD ID) from TTD, Protein (TTD
ID) -is- Protein (UniProt name) from UniProt, and Protein (UniProt name) -is- Protein (UniProt ID)
from UniProt. This creates Compound (TTD ID) -targets- Protein (UniProt ID) edges. But to unify
this with the same compounds represented by DrugBank IDs elsewhere in the KG, the following
relationships are aligned: Compound (DrugBank ID) -is- Compounds (old TTD, CAS, PubChem, and
ChEBI IDs) from DrugBank (4 relationships), and Compounds (CAS, PubChem, and ChEBI) -is-
Compound (new TTD) from TTD (3 relationships). Appendix C and out GitHub1 provide details on
Know2BIO’s unique relations between entity types.

Relationships are also backed by varying levels of evidence (e.g., for STRING’s protein-protein
associations and DisGeNET’s gene-disease associations). To select appropriate evidence requirements
for inclusion in our KG, we investigated how confidence scores are calculated, what past researchers
have selected, KB author recommendations, and resulting data availability2. Many manually-curated

1https://anonymous.4open.science/r/Know2BIO/dataset/create_edge_files_
utils

2https://anonymous.4open.science/r/Know2BIO/dataset/create_edge_files_
utils/README.md
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sources did not provide confidence scores (e.g., GO, DrugBank, Reactome) and are ostensibly
high-confidence sources which were not filtered by confidence.

Table 3: Data Sources for Know2BIO’s Biomedical Categories
Biomedical Category # Data Sources Data Sources Original Identifiers Identifier(s) Aligned To

Anatomy 4 Bgee (Bastian et al. (2020), PubMed, MeSH(Lipscomb (2000)),
Uberon (Haendel et al. (2014); Mungall et al. (2012)) MeSH ID, MeSH tree number MeSH ID, MeSH tree number

Biological process 1 GO (Carbon et al. (2020); Ashburner et al. (2000)) GO GO

Cellular component 1 GO GO GO

Compounds/Drugs 11

DrugBank (Wishart et al. (2017)), MeSH, CTD (Davis et al. (2022)),
UMLS (Bodenreider (2004)), KEGG (Kanehisa et al. (2016)),
TTD (Zhou et al. (2021)), Inxight Drugs (Siramshetty et al. (2021)),
Hetionet (Zhu et al. (2019)), PathFX (Wilson et al. (2018)),
SIDER (Kuhn et al. (2015)), MyChem.info (Lelong et al. (2021))

DrugBank, MeSH ID, UMLS, UNII, ATC, KEGG Drug,
KEGG Compound, PubChem Substance (Kim et al. (2022)),
PubChem Compound (Kim et al. (2022)),
CAS (Jacobs et al. (2022)), InChI (Heller et al. (2015)),
SMILES (Weininger (1988)), ChEBI (Hastings et al. (2015)),
TTD (two versions)

DrugBank, MeSH ID

Disease 14

PubMed, MeSH, DisGeNET(Piñero et al. (2021)),
SIDER, ClinVar(Landrum et al. (2019)), ClinGen (Rehm et al. (2015)),
PharmGKB(Gong et al. (2021)), MyDisease.info(Lelong et al. (2021))
PathFX, UMLS, OMIM, Mondo, DOID(Schriml et al. (2021)), KEGG

MeSH ID, MeSH tree number, UMLS, DOID, KEGG,
OMIM(Amberger et al. (2018)), Mondo(Vasilevsky et al. (2022)) MeSH ID, MeSH tree number

Drug Class 1 ATC ATC ATC

Genes 9
HGNC, GRNdb (Fang et al. (2020)), KEGG, ClinVar, ClinGen,
SMPDB (Jewison et al. (2013)) DisGeNET (Piñero et al. (2021)),
PharmGKB (Gong et al. (2021)), MyGene.info (Lelong et al. (2021))

Entrez, Ensembl (Cunningham et al. (2021)),
HGNC (Seal et al. (2022)),Gene name Entrez

Molecular function 1 GO GO GO

Pathways 3 Reactome(Fabregat et al. (2013)), KEGG, SMPDB Reactome, KEGG, SMPDB Reactome, KEGG, SMPDB

Proteins 6 UniProt (Dogan (2018); Bateman et al. (2022)), Reactome, TTD
SMPDB, STRING, HGNC UniProt, STRING (Szklarczyk et al. (2018)), TTD UniProt

Reactions 1 Reactome Reactome Reactome

The discrepancy between the number of biomedical categories (11) and node types (16) was due
to complexities in the data identifiers. There are two node types for compounds, DrugBank IDs
and MeSH IDs, because an incomplete amount of such identifiers could be aligned. (Overall, the
compound identifier alignment process was the most arduous mapping.) Instead of merging the
aligned nodes and discarding the significant number of unaligned nodes, we retained the two node
types, mapping ~nine other compound identifiers to those two. There are three node types for
biological pathways because, after attempting to align pathways (e.g., via comparing pathways’
genes, proteins, and names), pathways from the three pathway ontologies could not be aligned—even
by loose definitions. This is understandable because pathway definitions are partially subjective based
on the human biocurators’ focuses (e.g., SMPDB focuses on small molecule drug pathways). There
are two node types for anatomy. One node type, MeSH ID, is an instance of an anatomy which could
be categorized under multiple branches in an ontology, while the other, MeSH tree number, is an
anatomical category unique to one point in an ontology. There are two such node types for disease as
well, for the same reason and of the same identifiers. They were employed to take advantage of the
instance and ontology view.

Despite the arduous nature of integrating the data, users can easily run the scripts we provide on our
GitHub3 to automatically obtain and integrate the data from the latest versions of the data sources.
(Note that due to access requirements, users must create free accounts for DrugBank, UMLS, and
DisGeNET, and then manually download two files into the input folder. After that, all scripts can be
run to obtain and integrate data from these and the ~27 other sources.)

3.2 DUAL VIEW KNOWLEDGE GRAPH

Often, a node in a KG may represent an entity in the instance view (e.g., a specific compound such
as ibuprofen) or a concept in the ontology view (e.g., a compound category such as cardiovascular
system drugs). The relations in the instance view can be interactions, associations, and other edges
that relate objects to one another. Relations in the ontology view are typically hierarchical and relate
how one concept is a sub-concept of another. Although jointly learning embeddings of these separate
views can inform and improve performance on downstream tasks such as link prediction (Hao et al.
(2019); Iyer et al. (2022); Hao et al. (2020)), most KG representation learning methods fail to take
advantage of this potential.

To enable multi-view learning, Know2BIO includes both views. For example, the instance view
includes edges describing protein-drug interactions, while the ontology view includes functional
information for proteins (e.g., pathway ontologies). The two views are connected by bridge nodes.
Together, the two views and bridge nodes form the whole view of the KG (Figure 1).

3https://anonymous.4open.science/r/Know2BIO/dataset
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Figure 1: Schema of Know2BIO.

Blue nodes represent instance entities, red nodes represent bridge entities, and orange nodes represent concepts.
The orange nodes are structured in a hierarchy to represent the ontology (i.e., concept hierarchies).

4 BENCHMARKING KNOW2BIO

4.1 DATASETS

We comprehensively evaluate Know2BIO from thtee views: ontology, instance, and whole views.
Bridge nodes connect the ontology and instance views and are only evaluated as part of the whole
view. The resulting KG from Section 3 was split into a train and test KG using the GraPE package
(Cappelletti et al. (2021)). All connected components with greater than 10 nodes were included in
the train/test/validation split. To ensure connectivity of the train KG, the training set included the
minimum spanning tree of each component, with up to 20% of remaining edges split evenly between
test and validation. Table 4 provides the exact data splits.

Table 4: Summary statistics of Know2BIO ’s different views: number of nodes, relation types,
training set triples, validation set triples, test set triples, and total triples

Number of entities Type of relations Train Valid Test Total
Ontology 68,314 5 93,056 8,368 8,367 109,827
Bridge 102,111 29 366,780 45,748 45,748 475,779
Instance 145,445 76 3,320,385 415,050 415,050 5,595,554
Whole 219,169 108 3,780,221 469,166 469,165 6,181,160

4.2 EXPERIMENTS

Evaluation Tasks To failry compare and benchmark different types of models on Know2BIO, we
adopt the commonly used link prediction task. This is the task of predicting a missing node (h/t) in
a triple (h, r, t). Given the potentially vast number of entities in a KG, simply predicting a single
most likely candidate does not provide a comprehensive evaluation metric. Consequently, models
typically rank a set of candidate nodes in the KG. For each test triple (h, r, t), h/t is substituted with
candidate entities in the KG. The model computes the scores of candidate entities and ranks them
in descending order. We employ the Hits@k and MRR (mean reciprocal rank) evaluation metrics.
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Hits@k quantifies the proportion of correct entities that are present within the initial k entities of the
sorted rank list. MRR computes the arithmetic mean of the reciprocal ranks.

Experiment Setup As hyperparameter tuning has been demonstrated to strongly impact model per-
formance and enable fair comparisons between models, (Bonner et al. (2021)). we performed
hyperparameter tuning with beam search on the batch size (512, 1024, 2048), learning rate
(1e−4,5e−4,1e−3,1e−2,1e−1), and negative sampling ratio (None, 5, 25, 50, 100, 125, 150, 250).
We fix the maximum training epoch to be 1000 and early stopping patients to 5 epochs. Early
stopping ensures that the models are sufficiently trained and avoids overfitting. Negative samples are
constructed by replacing a positive triple’s tail with a random node from the entire knowledge graph.
We utilize the Adam optimizer (Kingma & Ba (2014)) for Euclidean and hyperbolic models and
SparseAdam for complex space models. SparseAdam is an Adam variant designed to handle sparse
gradients and work efficiently with dense parameters. For testing, metrics are calculated by averaging
the prediction performances on both heads and tails. Predictions are filtered by edge types’ respective
node types. All the models’ hidden sizes are set to 512 to ensure a fair comparison. All experiments
are performed on 2 servers with AMD EPYC 7543 Processor (128 cores), 503 GB RAM, and 4
NVIDIA A100-SXM4-80GB GPUs. To ensure reproducibility and make Know2BIO accessible to the
computer science and biomedical community, complete training, validation, and testing configuration
files are available in Know2BIO’s repository4.

4.3 RESULTS

We benchmark Know2BIO’s ontology, instance, and whole views—not just a single view (Chang et al.
(2020))—with models from Euclidean, complex, and hyperbolic spaces. Models are categorized into
complex space, hyperbolic space, and Euclidean space models. Euclidean space models are further
categorized into distance-based (Euclidean distance similarity) and semantic-based (dot similarity)
models. For researchers unfamiliar with models’ mechanisms, in Table 12 we detail their scoring
functions (Nguyen (2020); Ji et al. (2020)).

Ontology View The ontology view of Know2BIO is characterized by a tree-like structure with 5
relation types, much less than the 76 types in the more densely connected instance view (Table 4).
This scarcity of neighboring information makes modeling Know2BIO’s ontology view non-trivial.
Such properties enable researchers to better evaluate their models’ capacity to capture biomedical
knowledge in a hierarchical manner. Such hierarchical relations are best modeled by hyperbolic space
models(Chami et al. (2020)) which outperform Euclidean and complex space models on average
(Table 5, 6).

Table 5: Ontology View: Euclidean Space

Ontology View

Category Model Performance
MR MRR Hit@1 Hit@3 Hit@10

Distance

TransE 1323.58 0.0799 0.0186 0.0743 0.2103
TransR 1804.35 0.0813 0.0208 0.0746 0.2086

AttE 2038.19 0.2120 0.1302 0.2344 0.3799
RefE 1417.40 0.1836 0.1020 0.2013 0.3517
RotE 2174.07 0.2143 0.1343 0.2382 0.3755
MurE 1684.75 0.2094 0.1279 0.2310 0.3765

Semantic CP 6658.02 0.1499 0.0693 0.1692 0.3237
DistMult 6706.65 0.1520 0.0690 0.1747 0.3334

Instance View Know2BIO’s instance view is more densely connected than the ontology view,
providing more information for a node’s embedding. However, enhanced context advantages also
come at a price: the KG models need to represent more types of relations. Such properties enable
researchers to better evaluate their models’ capacity to capture the complex relations and structures in

4https://anonymous.4open.science/r/Know2BIO/benchmark/configs
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Table 6: Ontology View: Complex and Hyperbolic Space

Ontology View

Category Model Performance
MR MRR Hit@1 Hit@3 Hit@10

Complex RotatE 8703.68 0.1061 0.0580 0.1202 0.2022
ComplEx 9395.01 0.1342 0.0738 0.1504 0.2615

Hyperbolic
AttH 2151.64 0.2087 0.1253 0.2337 0.3788
RefH 1372.03 0.1801 0.0962 0.1989 0.3522
RotH 2272.63 0.2095 0.1287 0.2332 0.3722

biomedical knowledge graphs. Such relations are best modeled by the complex space models which
outperform Euclidean and hyperbolic space models on average (Table 7, 8).

Table 7: Instance View: Euclidean Space

Instance View

Category Model Performance
MR MRR Hit@1 Hit@3 Hit@10

Distance

TransE 1316.30 0.1171 0.0621 0.1259 0.2194
TransR 1299.94 0.1233 0.0728 0.1275 0.2218

AttE 725.61 0.1989 0.1400 0.2099 0.3116
RefE 792.09 0.1792 0.1233 0.1881 0.2841
RotE 794.64 0.1812 0.1250 0.1907 0.2871
MurE 783.26 0.1946 0.1372 0.2050 0.3028

Semantic CP 1427.38 0.0953 0.0481 0.0983 0.1827
DistMult 1434.64 0.0968 0.0499 0.0995 0.1832

Table 8: Instance View: Complex and Hyperbolic Space

Instance View

Category Model Performance
MR MRR Hit@1 Hit@3 Hit@10

Complex RotatE 1178.16 0.2157 0.1410 0.2337 0.3662
ComplEx 1601.89 0.1859 0.1131 0.2000 0.3335

Hyperbolic
AttH 841.83 0.1813 0.1250 0.1915 0.2872
RefH 859.59 0.1712 0.1173 0.1787 0.2728
RotH 874.41 0.1661 0.1112 0.1747 0.2687

Whole View In the ontology view, hyperbolic models perform best. In the instance view, complex
models perform best. Euclidean models lie in the middle on average, depending on the embedding
transformation strategy. To provide a balanced benchmarking scheme, we have created the whole
view by adding bridge nodes (Table 4), entities that connect the instance view to the ontology view
nodes. Table 9 and Table 10 show the evaluation of the whole view. For researchers using Know2BIO,
we recommend evaluation on at least the whole view, since it measures models’ capacities to capture
both conceptual knowledge (ontology view) and factual knowledge (instance view).

5 CONCLUSIONS

We have constructed and released a heterogeneous biomedical KG known as Know2BIO. This KG
integrates information across 30 biomedical KBs, totaling over 219,000 nodes in 11 biomedical
categories and 6,180,000 relationships. We evaluated representative KG models from Euclidean, com-
plex, and hyperbolic spaces, providing a performance benchmark for future models on Know2BIO.
Furthermore, we have developed an open-source framework for generating and updating a general
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Table 9: Whole View: Euclidean Space

Whole View

Category Model Performance
MR MRR Hit@1 Hit@3 Hit@10

Distance

TransE 1508.11 0.1008 0.0545 0.1063 0.1839
TransR 1542.63 0.1087 0.0657 0.1108 0.1907

AttE 805.07 0.1677 0.1119 0.1766 0.2741
RefE 854.55 0.1543 0.1027 0.1602 0.2513
RotE 857.33 0.1568 0.1051 0.1629 0.2535
MurE 846.02 0.1697 0.1154 0.1781 0.2717

Semantic CP 1594.40 0.0952 0.0483 0.0983 0.1827
DistMult 1584.33 0.0930 0.0451 0.0965 0.1823

Table 10: Whole View: Complex and Hyperbolic Space

Whole View

Category Model Performance
MR MRR Hit@1 Hit@3 Hit@10

Complex RotatE 2639.09 0.1818 0.1166 0.1943 0.3128
ComplEx 3419.68 0.1516 0.0857 0.1627 0.2832

Hyperbolic
AttH 973.13 0.1497 0.0969 0.1571 0.2498
RefH 1012.54 0.1333 0.0855 0.1372 0.2223
RotH 1004.64 0.1316 0.0830 0.1358 0.2221

biomedical KG which can be applied to answer biomedical research questions, such as drug devel-
opment and therapeutics as well as disease biomarker discovery and prognosis. This framework is
both scalable and extensible to allow for the integration of additional biomedical KBs. As the source
databases update, researchers can use this framework to integrate the latest findings and create their
own KGs. We will periodically update and release Know2BIO.

Limitations: Biomedical knowledge representation is inherently incomplete because biological
systems are only partially understood. Incomplete knowledge of different biomedical data types can
bias the data, resulting in different results over time as databases update, as has been shown with data
from GO (Tomczak et al. (2018)). Although we sought evidence-backed reasons when choosing the
confidence thresholds (Section 3.1), there is some arbitrariness. In this benchmark, the unweighted
version of the graph was used, (e.g., equating all non-zero disease-disease similarity edges), which
likely hindered the performance of some representation learning models.

Future Work: Future benchmarking work on Know2BIO can test various graph learning models
(e.g., KG embeddings, GNNs), multi-modal models (e.g., text and graph embedding models), and
training strategies (e.g., parameter initialization, curriculum learning). Multi-view graph learning
approaches can use the instance and ontology views. Multi-modal models can use the non-KG data
to further enrich the KG representation; non-KG data modalities can be extracted (e.g., by language
models, graph learning models) and integrated as node information into KG learning models via
different feature fusion approaches (e.g., early, mixed, late fusion). Some feature fusion approaches
can also double as a pre-training parameter initialization strategy, one of many initialization strategies
to test. The edge weights can be utilized by graph learning approaches that incorporate weights into
the training objective. Edge weights can also be used for curriculum learning. This will enable
researchers to access a more extensive and holistic view of biomedical knowledge, providing a wider
range of benchmarking tasks and challenges.

Additionally, other emerging technologies can take advantage of Know2BIO. In particular,
large language models (LLMs) can leverage the up-to-date information and structure of Know2BIO.
This can facilitate reasoning and mitigate hallucination for the LLM, both for predictive analyses
(e.g., in-context learning) and retrieval augmented generation (e.g., multi-hop question answering).
We plan to explore each of these topics in future works.
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A KNOWLEDGE GRAPH SCHEMA

Figure 2 illustrates the organization of Know2BIO. White rectangles represent different source
databases, within which the smaller rectangles with round corners represent different node types. The
lines linking them represent the relationships between various node types and source databases.
The figure shows the various biomedical relationships and prerequisite node identifier map-
pings/alignments needed to construct Know2BIO. The italicized text at the top of a database rectangle
is the database name. The text without parentheses in a node type rectangles is the node type, and the
text in parentheses is the identifier vocabulary used. 5

Here we provide details on the biomedical categories and data sources in Table 3. Know2BIO inte-
grates data of 11 biomedical types represented by 16 data types using 32 identifiers extracted from 30
sources. Biomedical types are anatomy, biological process, cellular component, compounds/drugs,
disease, drug class, genes, molecular function, pathways, proteins, and reactions. Each biomedical
type has at least one data type/identifier in Know2BIO. Due to unalignable/disjoint sets of pathways

5Although very recent versions of the data were used, the data used in this KG do not necessarily reflect the
most current data from each source at the time of publication (e.g., PubMed, GO).
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Figure 2: Database schema of Know2BIO.

across pathway databases, 3 pathway identifiers are used (Reactome, KEGG, SMPDB). Because we
need to represent both the ontological structure of the anatomy data and MeSH disease, the anatomy
and disease have 2 identifiers, one for unique MeSH IDs pointing to the potentially multiple MeSH
tree numbers in the ontology; and the other for compounds due to incomplete alignment between
DrugBank and MeSH identifiers. The remaining data types have 1 identifier to which all other
identifiers are aligned.

The identifiers used include those of DrugBank, Medical Subject Headings IDs (MeSH), MeSH
tree numbers, the old Therapeutic Target Database (TTD), the current TTD, PubChem Substance,
PubChem Compound, Chemical Entities of Biological Interest (ChEBI), ChEMBLMendez et al.
(2018), Simplified Molecular Input Line Entry System (SMILES), Unique Ingredient Identifier
(UNII), International Chemical Identifier (InChI), Anatomical Therapeutic Chemical Classification
System (ATC), Chemical Abstracts Service (CAS), Disease Ontology, Online Mendelian Inheritance
in Man (OMIM), Monarch Disease Ontology (Mondo), Gene Ontology, Small Molecule Pathway
Database (SMPDB), Reactome, Kyoto Encyclopedia of Genes and Genomes (KEGG), Bgee, Uberon,
SIDER Mozzicato (2020), Comparative Toxicogenomics Database (CTD), PharmGKB, Search
Tool for the Retrieval of Interacting Genes/Proteins (STRING), UniProt, Gene Regulatory Network
database (GRNdb), HUGO Gene Nomenclature Committee (HGNC), and Entrez, and Unified Medical
Language System (UMLS).
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Table 11: Data Source for Know2BIO

Data Source License
AlphaFold Jumper et al. (2021); Váradi et al. (2021) CC-BY 4.0
Bgee Bastian et al. (2020) CC0
CTD Davis et al. (2022) Custom6

ClinGen Rehm et al. (2015) CC07

ClinVar Landrum et al. (2019) Custom8

DO Schriml et al. (2021) CC0
DisGeNET Piñero et al. (2021) CC BY-NC-SA 4.0
DrugBank Wishart et al. (2017) CC BY-NC 4.0 International9

GO Carbon et al. (2020); Ashburner et al. (2000) CC Attribution 4.010 Unported
GRNdb Fang et al. (2020) Custom Fang et al. (2020)11

HGNC Seal et al. (2022) CC0
Hetionet Himmelstein et al. (2017) CC0
Inxight Drugs Siramshetty et al. (2021) None provided
KEGG Kanehisa et al. (2022) Custom12

MeSH Lipscomb (2000) Custom13

Mondo Vasilevsky et al. (2022) CC-BY 4.0
MyChem.info Lelong et al. (2021) Custom14

MyDisease.info Lelong et al. (2021) Custom15

MyGene.info Lelong et al. (2021) Custom16

PathFX Wilson et al. (2018) CC0/CC-BY 4.0
PharmGKB Gong et al. (2021) CC-BY 4.017

PubMed 18 Custom19

Reactome Gillespie et al. (2021) CC0
SIDER Kuhn et al. (2015) CC-BY-NC-SA 4.0
SMPDB Jewison et al. (2013) None provided
STRING Szklarczyk et al. (2018) CC-BY
TTD Zhou et al. (2021) None provided20

Uberon Haendel et al. (2014); Mungall et al. (2012) CC-BY 3.0
UMLS Bodenreider (2004) Custom21

UniProt Bateman et al. (2022) CC-BY 4.0

The data sources include various databases, knowledge bases, API services, and knowledge graphs:
MyGene.info, MyChem.info, MyDisease.info, Bgee, KEGG, PubMed, MeSH, SIDER, UMLS,

6https://ctdbase.org/about/legal.jsp
7Its sources CGI & PharmGKB are CC0 https://clinicalgenome.org/tools/

clingen-website/attribution/
8https://www.ncbi.nlm.nih.gov/clinvar/docs/maintenance_use/
9https://go.drugbank.com/about

10http://geneontology.org/docs/go-citation-policy/
11freely accessible for non-commercial use
12https://www.kegg.jp/kegg/legal.html
13https://www.nlm.nih.gov/databases/download/terms_and_conditions_mesh.

html
14https://mychem.info/terms
15https://mychem.info/terms
16https://mygene.info/terms
17https://creativecommons.org/licenses/by-sa/4.0/
18https://pubmed.ncbi.nlm.nih.gov/
19"Terms and Condition" in https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/README.

txt
20https://db.idrblab.net/ttd/
21https://www.nlm.nih.gov/databases/umls.html, https://www.nlm.nih.gov/

databases/umls.html
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CTD, PathFX, DisGeNET, TTD, Hetionet, Uberon, Mondo, PharmGKB, DrugBank, Reactome, DO,
ClinGen, ClinVar, UniProt, GO, STRING, InxightDrugs, SMPDB, HGNC, and GRNdb.

We used these for different edges: Bgee for gene-anatomy edges; CTD for compound-gene and
gene-disease; ClinGen for gene-disease; ClinVar for gene-disease; Disease Ontology for disease-
disease alignments; DisGeNET for gene-disease; DrugBank for compound-compound (interactions
and alignment), protein-compound, and pathway-compound; Gene Ontology for GO term ontology
edges of molecular function, biological process, and cellular component, as well as edges between
the GO terms and proteins; GRNdb for transcription factor to regulon edges, i.e., protein-gene;
HGNC for gene-protein; Hetionet for compound-disease; Inxight Drugs for compound-compound
alignments; KEGG for compound-pathway, pathway-pathway, pathway-gene, and alignments for
disease-disease and gene-gene; MeSH for disease-disease, anatomy-anatomy, and compound-
compound alignments, as well as disease-disease and anatomy-anatomy ontology edges; Mondo for
disease-disease alignments; MyChem.info for compound-compound alignments; MyDisease.info for
compound-compound alignments; MyGene.info for gene-gene alignments; PathFX for compound-
disease; PharmGKB for gene-disease; PubMed for disease-anatomy; Reactome for reaction-reaction,
compound-reaction, pathway-reaction, pathway-pathway, disease-pathway, and pathway-pathway, as
well as alignments for disease-disease; SIDER for compound-disease (i.e., side effect / adverse drug
event); SMPDB for protein-pathway and compound-pathway; STRING for protein-protein; TTD
for compound-compound and protein-protein alignments, as well as compound-protein; Uberon for
anatomy-anatomy alignments; UMLS for disease-disease and compound-compound alignments; and
UniProt for protein-protein and gene-gene alignments.

The way in which the data and the identifiers were mapped to each other and merged into the same
node is shown in Figure 2 and in the source code on GitHub, with provided documentation in the
notebooks and README file. Except for the additional 5 of the 16 main identifiers discussed
above, all other identifiers were mapped/aligned (often circuitously) to the main identifier types. In
Know2BIO, these entities/concepts are represented by a unique node, not duplicating for the different
identifiers as this would be computationally counterproductive and not biomedically insightful.

Node feature data is also included. DNA sequences were obtained from Ensembl and UniProt.
Protein sequences were obtained from UniProt. Compound sequences were obtained from DrugBank.
Protein structures were obtained from EBI DeepMind. Natural language names were obtained from
the nodes’ respective data sources.

Graph benchmarks are often very large. Therefore, we follow the common graph benchmarking
practice of subdividing the data to be benchmarked on multiple basic models. Here, we separately
benchmark the ontology and instance views and then benchmark the whole dataset. Various toolkits
have been developed to expedite the repetitive and time-consuming task of adapting models to
datasets Han et al. (2018); Sadeghi et al. (2021); Cappelletti et al. (2021); Ali et al. (2020). We use
the OpenKE Han et al. (2018) toolkit as it provides base models and tasks needed.

Below, we summarize the mapping process in more detail for the scripts that create the edge files /
triple files22:

anatomy_to_anatomy The official xml file from MeSH was used to map anatomy MeSH
IDs and MeSH tree numbers to each other, as well as MeSH tree numbers to each other to form the
hierarchical relationships in the ontology. MeSH IDs were aligned to Uberon IDs via the official
Uberon obo file (used in gene-to-anatomy)

compound_to_compound The compound_to_compound_alignment script aligned numerous com-
pound identifiers in order to align DrugBank and MeSH IDs, two of the most prevalent IDs from
data sources for different relationships in the scripts here. To produce this file, numerous resources
were used to directly map DrugBank to MeSH IDs or to indirectly align the IDs (e.g., via DrugBank
to UNII from DrugBank, then UNII to MeSH via MyChem.info). Resources include UMLS’s MR-
CONSO.RRF file, DrugBank, MeSH, MyChem.info, the NIH’s Inxight Drugs, KEGG, and TTD. In
other scripts, DrugBank and MeSH compounds are mapped to one another via this mapping file.

Compound interactions were extracted from DrugBank.

22https://anonymous.4open.science/r/Know2BIO/dataset/create_edge_files_utils
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compound_to_disease The majority of the compound-treats-disease and compound-biomarker_of-
disease edges were from the Comparative Toxicogenomics Database. Additional edges were from
PathFX (i.e., from repoDB) and Hetionet (reviewed by 3 physicians).

compound_to_drug_class Mappings from compounds to drug classes (ATC) were provided by
DrugBank.

compound_to_gene Mapping compound to gene largely relies on CTD, though some relationships
come from KEGG. Like many other compound mappings, this relies on the DrugBank-to-MeSH
alignments from compound_to_compound_alignment.

compound_to_pathway Mapping compounds to SMPDB pathways relies on DrugBank. Mapping
compounds to Reactome pathways relies on Reactome, plus alignments to ChEBI compounds.
Mapping compounds to KEGG pathways relies on KEGG.

compound_to_protein Most compound-to-protein relationships are from DrugBank. Some are taken
from TTD, relying on mappings provided by TTD and aligning identifiers based on DrugBank- and
TTD-provided identifiers.

disease_to_disease The official xml file from MeSH was used to map disease MeSH IDs and MeSH
tree numbers to each other, as well as MeSH tree numbers to each other to form the hierarchical
relationships in the ontology.

To measure disease similarity, edges were obtained from DisGeNET’s curated data. The UMLS-to-
MeSH alignment was used (from compound_to_compound_alignment).

Disease Ontology was used to align Disease Ontology to MeSH. Mondo and MyDisease.info were
relied on to align Mondo to MeSH, DOID, OMIM, and UMLS. These alignments were used to align
relationships from other scripts to the MeSH disease identifiers.

compound_to_side_effect Mappings from compounds to the side effects they are associated with
were provided by SIDER. This required alignments from PubChem to DrugBank (provided by
DrugBank) and UMLS to MeSH (provided in compound_to_compound_alignment.py).

disease_to_anatomy Disease and anatomy association mappings rely on MeSH for aligning the
MeSH IDs and MeSH tree numbers and rely on the disease-anatomy coocurrences in PubMed articles’
MeSH annotations.

disease_to_pathway KEGG was used to map KEGG pathways to disease. Reactome was used to
map Reactome pathways to diseases, relying on the DOID-to-MeSH alignments for disease.

gene_to_anatomy Gene expression in anatomy was derived from Bgee. To align the Bgee-provided
Ensembl gene IDs to Entrez, MyGene.info was used. To align the Bgee-provided Uberon anatomy
IDs to MeSH, Uberon was used (see anatomy_to_anatomy)

gene_to_disease Virtually all gene-disease associations were obtained from DisGeNET’s entire
dataset. Additional associations—many of which were already present in DisGeNET—were obtained
from ClinVar, ClinGen, and PharmGKB. (Users may be interested in only using the curated evidence
from DisGeNET or increasing the confidence score threshold for DisGeNET gene-disease association.
We chose a threshold of 0.06 based on what a lead DisGeNET author mentioned to the Hetionet
creator in a forum.

gene_to_protein We relied on UniProt and HGNC to map proteins to the genes that encode them.
Notably, there is a very large overlap between these sources ( 95%). HGNC currently broke, so only
UniProt is being used.

go_to_go The source of the Gene Ontology ontologies is Gene Ontology itself.

go_to_protein The source of the mappings between proteins and their GO terms is Gene Ontology.

pathway_to_pathway The source of pathway hierarchy mappings for KEGG is KEGG and for
Reactome is Reactome. (SMPDB does not have a hierarchy)

protein_and_compound_to_reaction The source of mappings from proteins and compounds to
reactions is Reactome. This file relies on alignments from ChEBI to DrugBank.

22



Under review as a conference paper at ICLR 2024

protein_and_gene_to_pathway To map proteins and genes to pathways, KEGG was used for KEGG
pathways (genes), Reactome for Reactome pathways (proteins and genes), and SMPDB for SMPDB
pathways (proteins).

protein_to_gene_ie_transcription_factor_edges To map the proteins (i.e., transcription factors)
to their targeted genes (i.e., the proteins that affect expression of particular genes), GRNdb’s high
confidence relationships virtually all derived from GTEx, were used. This also required aligning gene
names to Entrez gene IDs through MyGene.info

protein_to_protein Protein-protein interactions (i.e., functional associations) were derived from
STRING. To map the STRING protein identifiers to UniProt, the UniProt API was used. A confidence
threshold of 0.7 was used. (Users may adjust this in the script)

reaction_to_pathway To map reactions to the pathways they participate in, Reactome was used.

reaction_to_reaction To map reactions to reactions that precede them, Reactome was used.

B KNOWLEDGE GRAPH MODELS BENCHMARKED IN EXPERIMENTS

The KG representation learning models used for experiments can be classified into five categories
based on their mechanism (scoring function, etc.): translation-based models, bilinear models, neural
network models, complex vector models, and hyperbolic space models. Generally, the neural network
models’ scoring functions are very flexible and can include various spatial transformations; while
most translation-based and bilinear models are models in Euclidean space.

Translation-based models, also known as Trans-X models, conceptualize relations as translation
operations on the representations of entities. For example, TransE perceives each relation type as a
translation operator that moves from the head entity to the tail entity. The principle of this movement
can be represented mathematically as vh + vr ≈ vt. TransE is particularly suited for capturing 1-to-1
relationships, where each head entity is linked to a maximum of 1 tail entity for a given relation type.
Later, TransH, TransR, and TransD extended the core idea of translation-based representation.

Bilinear models such as DistMult represent each relation as a diagonal matrix, facilitating interactions
between entity pairs. SimplE is an extension of DistMult, allowing for the learning of two dependent
embeddings for each entity.

Neural network models leverage neural networks (e.g. convolutional neural networks) for knowledge
graph embedding. ConvE and ConvKB are prime examples. ConvE employs a convolution layer
directly on the 2D reshaping of the embeddings of the head entity and relation. ConvKB applies a
convolution layer over embedding triples. Each of these triples is represented as a 3-column matrix,
where each column vector represents one element of the triple.

Complex vector models use vectors from Complex or Euclidean space to expand their expressive
capacity. Notable examples include ComplEx, RotatE, and AttE.

Hyperbolic space models take advantage of hyperbolic space’s ability to represent hierarchical
structures with minimal distortion. In Euclidean space, distances between points are measured using
the Euclidean metric, which assumes a flat space. However, in hyperbolic space, distances are
measured using the hyperbolic metric, which takes into account the negative curvature of the space.
This property allows hyperbolic space models to capture long-range dependencies more efficiently
than Euclidean space models. Models like RefH and AttH enhance the quality of KG embedding by
incorporating hyperbolic geometry and attention mechanisms to model complex relational patterns.

C RELATION TABLE IN KNOW2BIO

Out of the 6.18 million edges, there are 108 unique edge types. While most edges (i.e., relations)
are between only one pair of biomedical categories, some relations exist across multiple pairs (e.g.,
the -is_a- edge connects drug classes to drug classes, diseases to diseases, anatomies to anatomies,
pathways to pathways, and GO terms to GO terms for the ontology edges). Detailed in Tables 13 &
14, there are 30 unique pairs of biomedical category nodes, with the number of unique relationships
between each pair of biomedical categories and the names of relations between them. Compound-
compound is the node pair with the highest number of relations, with over 2.9 million edges across
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Table 12: Model categorization and scoring functions

Model Scoring function f(h, r, t)

Tr
an

sl
at

io
n

TransE Bordes et al. (2013) −∥h+ r− t∥1/2 where r ∈ Rk

TransH Wang et al. (2014) −∥(I − rpr
⊤
p )h+ r− (I − rpr

⊤
p )t∥1/2 where rp, r ∈ Rk , I denotes an identity matrix size k × k

TransR Lin et al. (2015) −∥Mrh+ r− Mrt∥1/2 where Mr ∈ Rn×k, r ∈ Rn

TransD Ji et al. (2015) −∥(I + rph
⊤
p )h+ r − (I + rpt

⊤
p )t∥1/2 where r, rp, hp, tp ∈ Rk

B
ili

ne
ar DistMult Yang et al. (2014) h⊤Mrt where Mr is a diagonal matrix ∈ Rk×k

SimplE Kazemi & Poole (2018) 1
2

(
h1

⊤Mrt2 + t1
⊤Mr−1h2

)
where h1,h2, t1, t2 ∈ Rk ; Mr and Mr−1 are diagonal matrices ∈ Rk×k

N
eu

ra
ln

et
w

or
k NTN Socher et al. (2013)

r⊤ tanh(h⊤Mrt+ Mr,1h+ Mr,2t+ br)

where r, br ∈ Rn ; Mr ∈ Rk×k×n ; Mr,1, Mr,2 ∈ Rn×k

ER-MLP Dong et al. (2014) sigmoid(w⊤ tanh(W · concat(h, r, t)))

ConvE Dettmers et al. (2017) t⊤ ReLU
(
W · vec

(
ReLU

(
concat(h, r) ∗Ω

)))
where h and r denote a 2D reshaping of h and r, respectively

ConvKB Nguyen et al. (2017) w⊤ concat (ReLU ([h, r, t] ∗Ω))

C
om

pl
ex ComplEx Trouillon et al. (2016)

Re
(
c⊤h Crĉt

)
where Re(c) denotes the real part of the complex value c ∈ C

ch, ct ∈ Ck ; Cr ∈ Ck×k is a diagonal matrix ; ĉt is the conjugate of ct

RotatE Sun et al. (2018) −∥ch ◦ cr − ct∥1/2 where ch, cr, ct ∈ Ck ; ◦ denotes the element-wise product

H
yp

er
bo

lic

MuRP Balazevic et al. (2019) −dB (exp
c
0 (R logc0 (h)) , t⊕c r)

2
+ bh + bt where h, r, t ∈ Bd

c , bh, bt ∈ R

RefH Chami et al. (2020) −dcrB
(
qH
Ref , e

H
t

)2
+ bh + bt where h, t ∈ Bd

c , bh, bt ∈ R, r ∈ Bd
c , qH

Ref = Ref(Θr)e
H
h

RotH Chami et al. (2020) −dcrB
(
qH
Rot, e

H
t

)2
+ bh + bt where h, t ∈ Bd

c , bh, bt ∈ R, r ∈ Bd
c , qH

Rot = Rot(Θr)e
H
h

AttH Chami et al. (2020) −dcrB
(
Att

(
qH
Rot,q

H
Ref ;ar

)
⊕cr rHr , eHt

)2
+ bh + bt where h, t ∈ Bd

c , bh, bt ∈ R, r ∈ Bd
c

two types of relations: ’-is-’ and ’-interacts_with->’ indicating an alignment between two identical
drugs and interaction between two compounds, respectively. While most pairs of biomedical concepts
consist of one or two types of relations, the pair with the largest number of relation types is between
protein and compound with 51 different relations, shown separately in Table 14 for practical purposes.
These relations describe specifically how a protein interacts with a compound.

D DATASET ACCESSIBILITY AND MAINTENANCE

The intended use of this dataset is as a general-use biomedical KG. We note that many other
biomedical KGs were constructed with a single use-case in mind and were often assembled in a
one-time effort and have not been updated continuously. Source codes used to generate and update
this dataset as well as the accompanying software codes to process and model this KG are available
at https://anonymous.4open.science/r/Know2BIO. Datasheet describing the dataset
and accompanying metadata is also included in the GitHub repository. The licenses for all datasets
are detailed in Table 11. We acknowledge that we bear responsibility in case of violation of license
and rights for data included in our KG. We release the data available under the respective licenses of
the data sources (See Table 9) license publicly; the remainder are available upon request with the
appropriate easily-requestable academic credentials from DrugBank. Some resources require free
accounts to access and use the data (e.g., UMLS). The source code to obtain the data is released under
MIT license and the data are released under the respective license of the data sources. The dataset will
be updated periodically as new biomedical knowledge are updated and made available. The dataset is
currently not yet released and will be released upon acceptance of the manuscript, through the GitHub
repository. The dataset is available in three formats: 1) as raw input files (.csv) detailing individually
extracted biomedical knowledge via API and downloads. These files also include intermediate files
for mapping between ontologies as well as node features (e.g., text descriptions, sequence data,
structure data), and edge weights which were not included in the combined dataset as they were not
included in the model evaluation. A folder also contains only the final edges to be used in the KG. 2)
a combined KG following the head-relation-tail (h,r,t) convention, as a comma-separated text file.
These KGs are released for the ontology view, instance view, and bridge view, as well as a combined
whole KG. 3) To facilitate benchmark comparison between different KG embedding models, we also
release the train, validation, and test split KGs. Long-term preservation of the dataset will be done
through versioning as the data are updated and the source codes are run to construct the updated
KG. The construction of this KG uses the API available through numerous APIs and biomedical
research knowledge sources. Therefore, the source codes to construct the KG may deprecate when
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Table 13: Unique Relations Between Entity Types [1]

Head Type Tail Type # Type of Relations # Triple Relations

Gene Compound 2 546 -decreases->, -increases->

Disease Pathway 1 751 -disease_involves->

Pathway Pathway 2 3025 -pathway_is_parent_of->, isa

Compound Drug Class 1 5152 -is-

Drug Class Drug Class 1 5707 isa

Anatomy Anatomy 2 6299 -is-, isa

Cellular Component Cellular Component 1 6498 isa

Compound Reaction 1 11934 -participates_in->

Molecular Function Molecular Function 1 13747 isa

Reaction Pathway 1 14925 -involved_in->

Compound Pathway 3 17401 -compound_participates_in->, -drug_participates_in_pathway->,
-drug_participates_in->

Gene Protein 1 21330 -encodes->

Biological Process Biological Process 4 64560 -negatively_regulates->, isa, -positively_regulates->, -regulates->

Compound Disease 1 67715 -treats->

Protein Molecular Function 4 72032 NOT|enables, NOT|contributes_to, enables, contributes_to

Gene Pathway 1 80486 -may_participate_in->

Protein Cellular Component 8 89741
is_active_in, colocalizes_with,
NOT|colocalizes_with, NOT|part_of,
NOT|is_active_in, located_in, NOT|located_in, part_of

Disease Disease 4 136406
-diseases_share_variants-, -is-,
isa,
-diseases_share_genes-

Protein Biological Process 10 139399

NOT|acts_upstream_of_or_within_negative_effect,
acts_upstream_of,
acts_upstream_of_or_within_negative_effect,
acts_upstream_of_positive_effect,
acts_upstream_of_negative_effect,
acts_upstream_of_or_within_positive_effect,
acts_upstream_of_or_within,
NOT|involved_in,
NOT|acts_upstream_of_or_within,
involved_in

Gene Disease 2 201336 -not_associated_with-, -associated_with-

Protein Reaction 5 209254 -output->, -entityFunctionalStatus->, -regulatedBy->,
-input->, -catalystActivity->

Gene Anatomy 2 217166 -overexpressed_in->, -underexpressed_in->

Protein Protein 1 245958 -ppi-

Protein Pathway 2 350832 -participates_in->, -may_participate_in->

Compound Gene 6 487733 increases, -decreases->, -associated_with->,
-affects->, -increases->, decreases

Protein Gene 1 748831 -transcription_factor_targets->

Compound Compound 2 2902659 -is-, -interacts_with->

these resources update their APIs. However the functionality will be restored upon the next update of
the dataset.
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Table 14: Unique Relations Between Entity Types [2]

Head Type Tail Type # Type of Relations # Triple Relations

Drug Protein 51 59737

-binder->, -inhibitor->, -translocation_inhibitor->,
-drug_targets_protein->, -chelator->, -inhibitory_allosteric_modulator->,
-inverse_agonist->, -allosteric_modulator->, -antagonist->,
-unknown->, -product_of->, -inactivator->,
-cofactor->, -regulator->, -chaperone->,
-partial_antagonist->, -other/unknown->, -cleavage->,
-inhibits_downstream_inflammation_cascades-> -neutralizer->,
-gene_replacement->, -blocker->, -drug_uses_protein_as_carriers-,
-partial_agonist->, -incorporation_into_and_destabilization->,
-suppressor->, -drug_uses_protein_as_enzymes-,
-drug_uses_protein_as_transporters-,
-multitarget->, -potentiator->, -inducer->,
-binding->, -degradation->, -stimulator->,
-antisense_oligonucleotide->, -modulator->, -component_of->,
-substrate->, -positive_allosteric_modulator->,
-downregulator->, -weak_inhibitor->, -activator->,
-other->, -stabilization->, -inhibition_of_synthesis->,
-agonist->, -ligand->, -negative_modulator->,
-antibody->, -oxidizer->, -nucleotide_exchange_blocker->
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