
It Takes Two: Your GRPO Is Secretly DPO

Yihong Wu∗1, Liheng Ma∗2,3, Lei Ding4, Muzhi Li5, Xinyu Wang2, Kejia Chen6, Zhan Su1,
Zhanguang Zhang7, Chenyang Huang7,8,9, Yingxue Zhang7, Mark Coates2,3, Jian-Yun Nie1

1Université de Montréal 2McGill University 3Mila - Quebec AI Institute
4University of Manitoba 5The Chinese University of Hong Kong 6Zhejiang University

7Huawei Noah’s Ark Lab 8University of Alberta 9Alberta Machine Intelligence Institute (Amii)

Abstract

Group Relative Policy Optimization (GRPO) is a prominent reinforcement learning
algorithm for post-training Large Language Models (LLMs). It is commonly
believed that GRPO necessitates a large group size to ensure stable training via
precise statistical estimation, which incurs substantial computational overhead.
In this work, we challenge this assumption by reframing GRPO as a form of
contrastive learning, which reveals a fundamental connection to Direct Preference
Optimization (DPO). Motivated by DPO’s empirical success, we investigate the
minimal two-rollout case (2-GRPO)—a configuration previously deemed infeasible.
We provide a rigorous theoretical analysis to validate 2-GRPO and demonstrate
empirically that it achieves performance on par with 16-GRPO, despite using only
1/8 of the rollouts and reducing training time by over 70%.

1 Introduction

Reinforcement Learning (RL) is now a central paradigm for post-training Large Language Models
(LLMs), aligning preference through RL with Human Feedback (RLHF) (Ouyang et al., 2022) and
incentivizing reasoning capability through RL with Verifiable Rewards (RLVR) (Shao et al., 2024;
Guo et al., 2025). Among recent advances, Group Relative Policy Optimization (GRPO) (Shao
et al., 2024; Guo et al., 2025), has emerged as a powerful variant of Proximal Policy Optimization
(PPO) (Schulman et al., 2017). Unlike PPO, which relies on value networks to stabilize rewards,
GRPO samples multiple responses (rollouts) per prompt and normalizes their rewards within each
group. This simple and effective strategy achieves state-of-the-art performance on various tasks while
reducing significant computational resources.

Despite GRPO’s strong empirical performance, its theory remains largely unexplored. In this work,
we revisit GRPO through the lens of contrastive learning (Wang and Isola, 2020; Chen et al., 2020;
He et al., 2020; Wu et al., 2024). From this viewpoint, the GRPO objective naturally resembles a
contrastive loss: its intra-group normalization implicitly divides responses into positive and negative
samples, encouraging positive responses while suppressing negative ones. This perspective reveals a
key conceptual link between GRPO and Direct Preference Optimization (DPO) (Rafailov et al., 2023),
a prominent alignment algorithm in RLHF. Both approaches optimize policies based on preference
signals, though under different settings. Building on this connection, we introduce 2-GRPO, a
DPO-inspired variant of GRPO with a response group size of two. Despite its simplicity, 2-GRPO
preserves unbiased gradient estimation while offering greater efficiency.

Conventional viewpoint attributes GRPO’s empirical success to its stable group normalization, which
relies on large group sizes for accurate statistical estimation. However, generating many rollouts per
prompt leads to substantial computational and time costs. Our proposed 2-GRPO algorithm tackles
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this inefficiency head-on by reducing the group size to 2. At first glance, this design might violate the
principle of GRPO, yet our theoretical analysis and experiments reveal the opposite. Specifically, we
show that: (i) 2-GRPO preserves an implicit form of advantage estimation; (ii) the potential increase
in gradient variance can be mitigated by a larger batch size; and (iii) 2-GRPO does not have less
positive signals compared to its large-group counterpart. Empirically, 2-GRPO achieves performance
on par with standard GRPO while reducing computational overhead and training time significantly.

Our findings challenge the prevailing assumption that large group sizes are essential for the perfor-
mance of GRPO. By demonstrating that 2-GRPO is a competitive and substantially more efficient
alternative, we offer a new direction for designing resource-efficient RL algorithms for LLM post-
training. Our main contributions are:

• A Contrastive Reinterpretation of GRPO. We formalize GRPO as a contrastive objective
distinguishing positive from negative rollouts via group-normalized advantages. This reframing
clarifies its conceptual connection to preference-based methods like DPO.

• Theoretical Guarantees for the Pairwise Setting. In the context of RLVR, we prove that
pairwise grouping is sufficient. Our analysis shows that 2-GRPO not only preserves the contrastive
optimization behavior of standard GRPO but also provides unbiased gradient estimates, dispelling
the notion that large groups are necessary for stable learning.

• Empirical Validation. Across multiple language models and reasoning datasets, we show that
2-GRPO matches the performance of standard GRPO while significantly reducing training time
and computational resource usage.

The rest of the paper is organized as follows. We begin with a brief review of RL for LLM post-
training and summarize commonly used algorithms. Next, we present a theoretical analysis that
connects GRPO and DPO through the lens of contrastive learning via gradient analysis. We then
analyze the properties of 2-GRPO in depth, demonstrating that it yields unbiased gradients and
preserves the key characteristics of standard GRPO despite its reduced group size. Finally, we
validate our approach through extensive experiments across diverse datasets and model scales.

2 Preliminary

Our work focuses on RL-based post-training of pre-trained LLMs to improve their reasoning capabil-
ities, with particular emphasis on settings where responses can be automatically verified as correct or
incorrect, i.e., the RLVR setting.

Let πθ denote the policy network, i.e., the LLM parameterized by θ. Given an input prompt q, the
model generates a response oi = (oi,1, . . . , oi,T ), where oi,t is the token generated at step t ∈ [0, T ]
and oi,<t denotes the sequence of preceding tokens.

We let Q be the set of prompts, each consisting of a question and any necessary instructions2. A
trajectory τ ∈ T is defined as a pair consisting of a prompt q ∈ Q and its corresponding LLM-
generated response sequence o, i.e., τ = (q, o).

In RL-based post-training, the reward function is typically defined at the trajectory level, i.e., r :
T → R. The learning objective is to maximize the expected reward over the space of trajectories:

J (θ) = Eq∼QEo∼πθ(·|q)[r(τ)] . (1)

Vanilla Policy Gradient (VPG) (Williams, 1992): VPG (a.k.a. REINFORCE) aims to maximize
the reward with gradient ascent:

∇θJ (θ) = Eq∼QEoi∼πθ(·|q)

ri |oi|∑
t=0

∇θπθ(oi,t|oi,<t, q)

 . (2)

where ri is the reward of (q, oi).

2Throughout this paper, we use the terms “prompt” and “question” interchangeably.
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Proximity Policy Optimization (PPO) (Schulman et al., 2017): VPG might suffer from high
variance and instability (Schulman et al., 2015). To reduce the variance and instability, PPO introduces
importance sampling, clipping, and a value function for computing advantage:

JPPO(θ) = E
q∼Q

oi∼πθold

1

T

T∑
t=1

min

[
πθ(oi,t|oi,<t, q)

πθold(oi,t|oi,<t, q)
Ai,t, clip

(
πθ(oi,t|oi,<t, q)

πθold(oi,t|oi,<t, q)
, 1− ϵ, 1 + ϵ

)
Ai,t

]
,

(3)
where πθold is the policy which generates the sequences, πθ is the policy to update, ϵ is a hyperparame-
ter for clipping, and Ai,t is the advantage, which is computed from ri by subtracting a value baseline.
Here, the baseline is provided by a value function, which is usually parameterized as another LLM in
LLM post-training.

Direct Preference Optimization (DPO) (Rafailov et al., 2023): DPO is proposed for RLHF,
which is usually trained with offline human-annotated preference data (q, o+, o−) ∼ DDPO. The loss
function of DPO is

LDPO = −E(q,o+,o−)∼DDPO

[
log σ

(
β log

πθ(o+|q)
πref(o+|q)

− β log
πθ(o−|q)
πref(o−|q)

)]
, (4)

where o+ and o− denote a preferred (positive) and a dispreferred (negative) response, respectively; β
is a parameter controlling the deviation from the base reference policy πref.

Group Relative Policy Optimization (GRPO) (Shao et al., 2024): GRPO – the RL algorithm
behind the success of DeepSeek-R1 (Guo et al., 2025) – has become one of the most widely used
RL algorithms for LLM post-training. Instead of maintaining a value network like PPO, GRPO
generates a group of G trajectories for each prompt (usually referred to as rollouts), and normalizes
the corresponding rewards within each group to compute the advantages:

JGRPO(θ) =

E
q∼Q

oi∼πθold

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min

[
πθ(oi,t|oi,<t, q)

πθold(oi,t|oi,<t, q)
Ai,t, clip

(
πθ(oi,t|oi,<t, q)

πθold(oi,t|oi,<t, q)
, 1− ϵ, 1 + ϵ

)
Ai,t

]
,

(5)
where G ≥ 2, oi denotes the i-th trajectory, and Ai,t denotes the corresponding advantage.

The token-level advantage is given by the intra-group normalization:

Ai,t =
ri − mean(r)

std(r) + ϵ
, (6)

where ri ∈ r is the reward of the rollout, and ϵ is a small constant added to avoid division by zero.
In the degenerate cases, where all generated trajectories receive identical rewards (all correct or all
incorrect), we have Ai,t = 0 for all i, t, leading to a zero gradient for the parameter update. In practice,
the choice of G is typically relatively large, e.g., 16, in order to perform proper normalization.

3 Bridging GRPO and DPO with Contrastive Learning

In this section, we bridge GRPO and DPO from the perspective of contrastive learning via gradient
analysis. This perspective not only clarifies the underlying mechanism of GRPO but also motivates a
deeper investigation into how group structures in GRPO can be more effectively designed.

The key insight is that advantage values are inherently signed quantities: they are either positive or
negative. This observation naturally leads to a contrastive interpretation: trajectories with positive
advantages can be viewed as “positive examples”, while those with negative advantages correspond to
“negative examples”. This mirrors the core principle of contrastive learning, which seeks to increase
the likelihood of positive samples (given an anchor) while decreasing that of negative ones.

Although various contrastive loss functions and settings exist—ranging from 1-vs-1 (one positive
sample and one negative sample) (Rendle et al., 2009) and 1-vs-n (Oord et al., 2018) to n-vs-n (Frosst
et al., 2019)—we aim to unify them under a general framework. To this end, we define a general
form of contrastive loss inspired by the analysis of Tao et al. (2022):
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Definition 3.1 (General contrastive loss). Let πθ be a probabilistic model, D an arbitrary data
distribution, x ∼ D be an anchor, and D+(· | x) and D−(· | x) be the positive and negative
distributions conditioned on x. We call y+ ∼ D+ the positive sample and y− ∼ D− the negative
sample w.r.t. x. We say a differentiable loss function L is contrastive if its gradient has the following
form:

∇θL = −Ex,y+,y−
[
a(x,y+,D−)∇θπθ(y

+|x)− b(x,y−,D+)∇θπθ(y
−|x)

]
, (7)

where a, b are arbitrary coefficient functions that weight positive and negative contributions. In
practice we only have access to empirical gradients: given groups {y+

i } and {y−
j } we use empirical

coefficients â(x,y+, {y−
j }) and b̂(x,y−, {y+

i }) in place of a, b.

Let q ∼ Q be a prompt sample from Q and {oi}Gi=1 be a group of trajectories drawn i.i.d. from the
policy πθ(· | q). Let G > 1 denote the group size of GRPO (i.e., the number of rollouts/trajectories
generated per prompt). Given the prompt q and the policy πθ, we let G+

q and G−
q denote the numbers

of correct and incorrect trajectories, respectively, in the G sampled trajectories. p̂θ,q = G+
q /G is the

proportion of correct trajectories in the sampled G trajectories, which approximates the probability of
correct pθ,q given the policy πθ,q on the prompt q. In the following discussion, we drop the subscript
θ for simplicity.

In the analysis, we can assume that clipping is not triggered, since the gradient will be zero outside
the clipping range. Then we have the following equation for the GRPO objective function:

JGRPO(θ,G)

= E
q∼Q

o∼πθ(·|q)

√
V̂arG(q)

 1

G+

G+∑
j=1

1

|oj |

|oj |∑
t=1

πθ(oj,t|oj,<t, q)−
1

G−

G−∑
k=1

1

|ok|

|ok|∑
t=1

πθ(ok,t|ok,<t, q)

 ,

(8)
where V̂arG(q) = (1 − p̂q)p̂q, is the empirical standard deviation of a group of G samples from
Bernoulli(pq), which is the distribution of rewards in the verifiable setting.

Regarding the group of sampled trajectories, the empirical objective equation 8 is approximating the
true objective:

JGRPO(θ)

= E
q∼Q

√
Var(q)

 E
oj∼π+

θ (·|q)

1

|oj |

|oj |∑
t=1

πθ(oj,t|oj,<t, q)− E
ok∼π−

θ (·|q)

1

|ok|

|ok|∑
t=1

πθ(ok,t|ok,<t, q)

 .

(9)
where Var(q) = (1− pq)pq is the variance of the Bernoulli(pq). For simplicity, we use π+

θ (·|q) and
π−
θ (·|q) to denote the corresponding positive and negative subdistribution, respectively. The detailed

derivation is provided in Appendix A.1.

In the theoretical analysis that follows, we center our attention on the true objective equation 9, since
the empirical version equation 8 merely serves as an approximation derived from finite samples.

For each prompt q, the GRPO objective equation 9 can be interpreted as an intra-group contrastive
loss: it increases the likelihood of positive trajectories while suppressing the likelihood of negative
ones. Importantly, each prompt is weighted by the standard deviation of the reward distribution,
Bernoulli(pq), which quantifies the uncertainty of the policy πθ under that prompt. As a result, equa-
tion 9 naturally emphasizes prompts where the policy exhibits higher uncertainty. This observation
leads to the following proposition: the GRPO objective is, in essence, a form of contrastive loss.
Proposition 3.2. The GRPO objective is a contrastive loss.

Proof of Proposition 3.2. equation 9 has the following derivatives:

∇θJGRPO = E
q∼Q

√
Var(q)

(
E

oj∼π+
θ (·|q)

∇θπ
GRPO
θ (oj |q)− E

ok∼π−
θ (·|q)

∇θπ
GRPO
θ (ok|q)

)
, (10)

where we denote πGRPO
θ (oi|q) = 1

|oi|
∑|oi|

t=1 πθ(oi,t|oi,<t, q) (see Appendix A.2 for further discussion).

Let a = b = −
√
Var(q). Under this choice, the expectation in equation 10 can be factored out of the
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parentheses, aligning the expression with the form of equation 7. Therefore, by Definition 3.1, the
GRPO objective satisfies the definition of a contrastive loss, which completes the proof.

Proposition 3.3. The DPO objective is a contrastive loss.

Proof of Proposition 3.3. The DPO objective has the following derivatives:

∇θLDPO = −βE(q,o+,o−)∼DDPO

[
σ′ (∇θ log πθ(o

+|q)−∇θ log πθ(o
−|q)

)]
(11)

= −βEq,o+,o−

(
σ′

πref(o+|q)
∇θπθ(o

+|q)− σ′

πref(o−|q)
∇θπθ(o

−|q)
)
, (12)

where r̂θ = β(x, y) log πθ(y|x)
πref(y|x) and σ′ = σ(r̂θ(q, o

−) − r̂θ(q, o
+)). Let a = βσ′

πref(o+|q) and b =
βσ′

πref(o−|q) . equation 11 aligns with the form of equation 7, which indicates the DPO objective is a
contrastive loss.

According to Proposition 3.2 and Proposition 3.3, both the GRPO and DPO objectives can be
interpreted as contrastive losses.

4 Rethinking Group Size in GRPO from DPO: Why 2 Is Enough

Building on our contrastive interpretation of GRPO, we are naturally led to 2-GRPO. At first
glance, using only two rollouts per prompt may seem insufficient, since one might intuitively expect
poor reward normalization and less positive signals. In this section, we analyze it from multiple
perspectives and show that large groups are not strictly necessary for effective learning.

In standard GRPO, each training step generates G trajectories per prompt. A reward function partitions
these trajectories into positive and negative groups, which are then used to compute gradients for
policy updates. Crucially, the generation phase is the dominant computational bottleneck, accounting
for up to 70% of total training time (Liu et al., 2025). Reducing the group size G, therefore, offers a
direct path to higher training throughput via more frequent updates.

Our gradient analysis in Sec. 3 shows that GRPO estimates expectations over positive and negative
trajectories, which closely mirrors the formulation of DPO, where only a single positive–negative
pair is used. This connection raises a natural question: if DPO succeeds with just one pair, could
GRPO perform well with a minimal group size?

To push the limit, we introduce 2-GRPO, i.e., GRPO with group size G = 2, which has unbiased
gradient estimation and is substantially more efficient:

J2-GRPO = EqEo+Eo−
1

2

(
πGRPO
θ (o+|q)− πGRPO

θ (o−|q)
)
. (13)

This expression is obtained by replacing
√
Var(q) in equation 9 with the constant 1/2.

4.1 Advantage Estimate

The first concern lies in the spurious lack of advantage to stabilize rewards. In 2-GRPO, the
advantage computation is straightforward: A+ = 1, A− = −1 for a positive-negative pair and
A+ = A− = 0 otherwise. It seems 2-GRPO simply shifts the reward from 0/1 to −1/1 and lacks
any normalization effect. However, the following proposition exposes that 2-GRPO does implicitly
perform the normalization.

Proposition 4.1. Given a constant p ∈ (0, 1) and a small positive constant ϵ, we consider two
scenarios below:

• Case 1: Consider X1, · · · , X2N
i.i.d.∼ Bernoulli(p). Let Yi =

Xi−µ̂
σ̂+ϵ , where µ̂ = 1

2N

∑2N
i=1 Xi and

σ̂ =
√

1
2N

∑2N
i=1 (Xi − µ̂)

2. Then, it follows that

lim
ϵ→0

lim
N→∞

E[Yi|Xi = x] =
x− p√
p(1− p)

. (14)
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• Case 2: Consider N pairs of (Xi,1, Xi,2) with each Xi,j
i.i.d.∼ Bernoulli(p). Let Yi,j =

Xi,j−µ̂i

σ̂i+ϵ ,

where µ̂i =
1
2 (Xi,1 +Xi,2) and σ̂i =

√
1
2

∑2
j=1(Xi,j − µ̂i)2. Then, it follows that

lim
ϵ→0

E[Yi,j |Xi,j = x] = x− p. (15)

The limϵ→0 E[Yi,j |Xi,j = x] differs from limϵ→0 limN→∞ E[Yi|Xi = x] by a scaling factor
1√

p(1−p)
.

In Proposition 4.1, Case 1 corresponds to regular GRPO with sufficiently large group size; in this case
E[Yi|Xi = 1] and E[Yi|Xi = 0] are, respectively, the advantage estimates of positive and negative
trajectories given a prompt. A large G will lead to a smaller bias, and thus better estimation of
the advantages. Case 2 corresponds to 2-GRPO, where E[Yi,j |Xi,j = 1] and E[Yi,j |Xi,j = 0] are
unbiased advantage estimates. These advantage estimates differ from the ones of regular GRPO
merely by a scaling factor. This indicates that, even though the possible advantage values in 2-GRPO
are only −1, 0, 1, the advantage estimates are still proportional to p across training steps, suggesting
the rationale behind the optimization. The proof is in Appendix A.3.

4.2 Gradient Estimate

A second concern is that decreasing the group size increases gradient variance. We first provide a
formal definition of gradient variance, followed by a lemma for empirical gradient estimation.

Definition 4.2 (Gradient Variance). Let {xi}Bi=1 be a training batch of size B, where xi are sampled
from the same distribution D, and let gi = ∇θLθ(xi) denote the gradient of Lθ(xi) w.r.t. θ. Define
the empirical batch gradient ĝ(ξB) = 1

B

∑B
i=1 gi, where ξB denote the randomness from sampling

B samples from the distribution and the expectation of gradient ḡ = Exi∼D[∇gi]. The variance of
the gradient estimate over the batch is then defined as:

Var(ĝ) = Eξ(ĝ − ḡ)2.

Lemma 4.3. Let {xi}B1
i=1, {xi}B2

i=1 be two training batches of batch size B1 and B2, respectively.
Assume all data are i.i.d. sampled from the same distribution and the gradient of each data point has
the same variance σg . Let ĝB1

, ĝB2
denote the average of gradient of batch B1 and B2, respectively.

If B1 < B2, then Var[ĝB1
] > Var[ĝB1

].

Proof of Lemma 4.3.

Var(ĝB) = Var

(
1

B

B∑
i

gi

)
=

1

B2

(
B∑
i

Var(gi)

)
=

σ2
g

B
, (16)

where the second equation is obtained by the fact that the covariance between i.i.d. data is zero. By
the above equation, increasing B decreases Var.

At first glance, decreasing the group size in equation 10 seems to increase the variance of the gradient
by Lemma 4.3. However, we have omitted the fact that the actual gradient calculation is obtained
across different prompts. The actual calculation is described by the empirical GRPO objective:

ĴGRPO(θ,G,Q) =
1

QG

Q∑
j=1

G∑
i=1

Aijπ
GRPO
θ (oij |qj), (17)

where Q is the number of prompts in the mini-batch, and the batch size of training is B = QG
rollouts. When we decrease G, we can increase Q to compensate. Since the total number of questions
in the dataset is fixed, increasing Q will not affect the overall computational burden.

Note that we are not arguing that we must pursue low variance or that high variance must necessarily
lead to poor training outcomes. In fact, there are works showing that moderate variance can benefit
the model generalization (Zhou et al., 2020). Therefore, the goal here is to use a reduced group size
to improve efficiency while controlling variance by adjusting Q.
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4.3 Exploration on Hard Questions

Another common concern with using a small group size (e.g., G = 2) is that it may perform poorly
on difficult prompts, where multiple attempts are often needed to produce a correct answer. The
intuition is that a smaller group provides fewer opportunities to sample a correct response within a
single batch, potentially slowing down learning.

However, under a fixed computational budget – where the dominant cost is rollout generation –
2-GRPO and 16-GRPO explore approximately the same total number of rollouts across all training
epochs. Consequently, the overall probability of sampling a correct answer under G = 2 is comparable
to that under G = 16.
Proposition 4.4. Let pi ∈ [0, 1] denote the probability that a single rollout under the policy πi

produces a correct answer. Then:

1. The probability of obtaining at least one correct answer in 2m independent rollouts with policy
π0 is

P2m = 1− (1− p0)
2m. (18)

2. The probability of obtaining at least one correct answer when performing m consecutive trials of
2 independent rollouts each, with the corresponding policy [π0, π1, · · · , πm−1] is

Pm×2 = 1−
∏

i=0,···m−1

(1− pi)
2 ≥ 1− (1− p0)

2m = P2m (19)

when we have pi ≥ p0, ∀i > 0.

Note that the assumption pi ≥ p0, ∀i > 0 is prevailing, as we assume that the reasoning ability of
LLM can be improved by RL post-training.

Proposition 4.4 indicates that for hard questions, 2-GRPO will not breakdown compared to 16-GRPO,
given the same total rollouts traversed. It is worth mentioning that, due to its greater number of policy
updates, 2-GRPO may have a higher probability of getting a correct output for a difficult question
and is more adaptive to capture more nuanced update requirements for different questions.

5 Experiments

5.1 Experiment Details

Tasks and Training Framework Following prior studies, we consider mathematical tasks as
representative instances of RLVR to verify our hypothesis, given their demonstrated transferability to
a broad range of other tasks (Yu et al., 2025). For training, we adopt the verl framework (Sheng et al.,
2025) and utilize the built-in implementation of GRPO (Shao et al., 2024) as the baseline algorithm.

Dataset and Baselines Following prior work (Chu et al., 2025), we employ Qwen-2.5-Math-
1.5B (Qwen-1.5B) and Qwen-2.5-Math-7B (Qwen-7B) (Yang et al., 2025) as base models. Both
models are post-trained via RL on the MATH (Hendrycks et al., 2021a) and DAPO-Math-17k (Yu
et al., 2025) datasets, and evaluated on MATH-500 (Hendrycks et al., 2021b), AMC23, Minerva
Math (Lewkowycz et al., 2022), AIME-2025, and OlympiadBench (Huang et al., 2024). For DAPO-
Math-17k dataset, we randomly sample 7.5k questions from the original data to form a subset for
training in order to align with the size of MATH. In addition, we assess the proposed method on
DeepSeek-R1-Distill-Qwen-1.5B (DS-1.5B) (DeepSeek-AI, 2025), which is post-trained on MATH.
Owing to computational constraints, we do not extend its post-training to DAPO-Math-17k. All 1.5B
models are trained on 4 GPUs. Qwen-7B is trained on 8 GPUs. We evaluate model performance
using two metrics: Mean@32, the average accuracy across 32 i.i.d. samples, and Pass@32, which
measures whether a problem is solved in at least one of those 32 attempts.

Hyper-parameters We mainly follow the default configuration of the verl framework. For sampling
parameters in training generation, we set temperature to 1, top-p to 1 to encourage exploration,
sequence length to 4096 for Qwen-series model and 8192 for DS-1.5B. For sampling parameters in
test generation, we set temperature to 0.7, top-p to 0.8, top-k to 20 and sequence length to 4096 for
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all models. For optimization, training employs the Adam optimizer (Kingma, 2014) with a constant
learning rate and a linear warm-up over the first 10 steps. For GRPO hyper-parameters, All models
are trained for 10 epochs. The baseline method, 16-GRPO, is trained with batch sizes of 32 (32
prompts and 16 rollouts per prompt) and a learning rate 1 × 10−6. As discussed in Sec. 4.2, we
trained 2-GRPO with a larger batch size of 256 (256 prompts and 2 rollouts per prompt). Both case
will have 512 rollouts in each mini-batch of training. Since we have fewer update steps due to the
larger batch size, we adjust the learning rate of 2-GRPO to 8× 10−6 based on the linear relationship
of learning rate and batch size (Goyal et al., 2017).

Goal of Experiment Building on the theoretical justification for 2-GRPO, we seek to empirically
assess its validity in RLVR. We anticipated that 2-GRPO will exhibit better efficiency—with respect
to computational resources and/or wall-clock time—while maintaining the same performance as
regular GRPO (16-GRPO).

5.2 Main Experiments

Table 1: 2-GRPO v.s. 16-GRPO: post-trained on MATH/DAPO-Math-Sub and evaluated on five
mathematical reasoning benchmarks. M/P@32 stands for Mean@32 and Pass@32. G is the group
size. ∆ denotes the difference 16 → 2.

M/P@32 ↑ G Time (h) ↓ MATH-500 AMC 2023 Minerva Math AIME 2025 Olympiad Bench
Post-training on MATH dataset

Qwen-1.5B

w/o - 31.83 / 81.92 34.30 / 79.23 5.33 / 28.91 3.64 / 22.31 15.40 / 37.16

2 2.05 69.28 / 87.43 49.53 / 81.76 16.25 / 33.26 9.48 / 32.88 22.31 / 37.24

16 8.53 70.24 / 87.24 51.25 / 83.46 16.84 / 33.46 10.10 / 35.82 23.11 / 37.82

∆ -75.96% -0.96 / +0.19 -1.71 / -1.70 -0.59 / -0.19 -0.62 / -2.94 -0.80 / -0.58

Qwen-7B

w/o - 47.16 / 85.95 38.36 / 85.29 5.99 / 31.10 5.00 / 25.17 9.83 / 34.30

2 2.43 75.23 / 89.77 64.60 / 81.53 23.13 / 38.45 12.81 / 38.85 26.39 / 40.20

16 9.30 75.90 / 88.24 61.79 / 80.77 22.81 / 37.68 13.23 / 34.22 25.99 / 40.11

∆ -73.87% -0.67 / +1.53 +2.81 / +0.76 +0.32 / +0.77 -0.42 / +4.63 +0.40 / 0.09

DS-1.5B

w/o - 65.11 / 84.90 44.14 / 73.86 14.64 / 32.80 22.40 / 42.79 20.07 / 33.23

2 7.07 74.36 / 88.85 56.95 / 88.63 21.28 / 38.34 24.89 / 46.79 33.69 / 45.86

16 38.40 75.98 / 89.16 58.91 / 87.26 21.76 / 38.29 26.97 / 56.36 35.39 / 47.05

∆ -81.6% -1.62 / -0.31 -1.96 / +1.38 -0.48 / -0.05 -2.08 / -9.56 -1.70 / -1.19
Post-training on DAPO-Math-Sub dataset

Qwen-1.5B

w/o - 31.83 / 81.92 34.30 / 79.23 5.33 / 28.91 3.64 / 22.31 15.40 / 37.16

2 2.12 68.81 / 87.36 52.19 / 85.77 16.79 / 33/61 8.13 / 29.33 23.52 / 39.29

16 13.30 70.66 / 87.04 56.56 / 85.54 18.00 / 34.16 9.58 / 32.31 24.56 / 39.19

∆ -84.06% -1.85 / +0.32 -4.37 / +0.23 -1.21 / +0.71 -2.50 / -2.98 -1.04 / +0.10

Qwen-7B

w/o - 47.16 / 85.95 38.36 / 85.29 5.99 / 31.10 5.00 / 25.17 9.83 / 34.30

2 3.63 77.43 / 90.51 64.84 / 91.59 21.95 / 38.05 14.58 / 33.03 29.86 / 45.24

16 17.68 77.35 / 88.79 69.69 / 87.31 24.45 / 40.04 14.27 / 33.73 28.86 / 39.84

∆ -79.47% +0.08 / 1.72 -4.85 / +4.28 -2.50 / -1.99 +0.31 / -0.70 +1.00 / +5.4

As shown in Table 1, 2-GRPO requires at least 70% less wall-clock time than 16-GRPO while
achieving comparable performance. The models are post-trained on the MATH and DAPO-Math-Sub
datasets and evaluated on five widely-used mathematical reasoning benchmarks, representing an
out-of-distribution evaluation. This setting imposes stringent requirements on the generalization
ability of the post-trained models. Notably, 2-GRPO is optimized with only 0.15 million generated
rollouts — just 12.5% of the 1.2 million rollouts utilized by 16-GRPO. 3 These results provide
strong corroboration of our theoretical finding that reducing group size preserves performance while
substantially improving efficiency. To further support this statement, we conduct ablation study on
various k-GRPO (k = 4, 8) in Appendix B.2.

3Appendix B.1 discusses the relationship between the total number of rollouts and computational cost.
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5.3 Visualization

In Sec. 5.2, we present empirical results comparing 2-GRPO and 16-GRPO. However, the out-of-
distribution evaluation setting may not fully reflect the post-training with 2-GRPO, as the distribution
shift could obscure the underlying performance differences. Therefore, in this section, we visualize the
reward and evaluation scores on the MATH dataset to demonstrate the in-distribution generalization
of the post-trained models using 2-GRPO in comparison to 16-GRPO. 4

The figures presented in Fig. 1 and Fig. 2 illustrate the performance of Qwen-2.5-Math-1.5B and
Qwen-2.5-Math-7B, respectively. As depicted, the reward and evaluation scores for 2-GRPO are
comparable to those of 16-GRPO, indicating that the in-distribution generalization of the post-trained
models using 2-GRPO is on par with that of 16-GRPO.
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Figure 1: Qwen-1.5B: Visualization of reward and evaluation scores on the MATH dataset.
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Figure 2: Qwen-7B: Visualization of reward and evaluation scores on the MATH dataset.

6 Discussion

Stronger Efficiency There remains potential for further enhancements of 2-GRPO in efficiency.
In 2-GRPO, many rollouts generated are ultimately assigned zero advantage, which actually do not
demand the computation of gradients. Consequently, a more advanced implementation could optimize
these computations during the training phase. It is important to note that, as discussed in Sec. 4.1,
these zero-advantage rollouts are still necessary for accurate advantage estimation. Therefore, we
must simulate the contributions of these zero-advantage rollouts during the training phase rather than
simply discarding them after the inference phase.

2-GRPO is a Quantization of GRPO An alternative perspective on 2-GRPO is that it serves
as a quantization of standard GRPO, wherein the candidate values for advantages are discretized
to −1, 0, 1. Nevertheless, due to the stochastic nature of neural network optimization, 2-GRPO is
capable of approximating continuous advantage values effectively, provided that a sufficiently large
number of training steps are employed.

Data Efficiency The quantized nature of 2-GRPO inherently results in the rejection of a number of
generated rollouts. While this characteristic enhances computational efficiency, it may concurrently
compromise data efficiency – numerous rollouts are discarded when the policy exhibits either
exceptionally poor or exceptionally strong performance. This limitation in data efficiency could

4The DAPO dataset does not provide a test set.
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impede the ability of the policy post-trained by 2-GRPO to attain near-optimal performance. This
observation motivates the design of adaptive adjustments to the group size, aiming to strike a balance
between computational and data efficiency, where we leave this direction to future exploration.

Conclusion In this work, we present a theoretical analysis of GRPO from a contrastive learning
perspective, establishing a key conceptual connection between GRPO and DPO and offering a new
lens for understanding GRPO. Building on this insight, we propose 2-GRPO, a DPO-inspired variant
with a group size of two, which achieves significant efficiency gains while maintaining comparable
performance.
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Appendix

A Theorems

A.1 Reveal GRPO as Contrastive

Details of Sec. 3. In the RLVR setting, rewards are binary, which leads to binary advantages given a
prompt. Let A+

q , A
−
q denote the positive and negative advantage, respectively. From equation 6, we

can have

A+
q =

1− p̂q√
p̂q(1− p̂q)

=

√
1− p̂q
p̂q

,

A−
q =

0− p̂q√
p̂q(1− p̂q)

= −

√
p̂q

1− p̂q
.

(20)

In equation 5, the clipping function can be considered as applying an indicator function to the token,
which does not affect trajectory-level behavior. The omission of the clipping function does not affect
the analysis, as the out of range will lead to zero gradient.

The key derivation is as follows:

JGRPO(θ)

= E q∼Q
oi∼πθold (·|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

πθ(oi,t|oi,<t, q)

πθold(oi,t|oi,<t, q)
Ai,t ,

= E q∼Q
oi∼πθ(·|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

πθ(oi,t|oi,<t, q)Ai,t ,

= E q∼Q
oj∼π+

θ (·|q)
ok∼π−

θ (·|q)

1

G

G+∑
j=1

1

|oj |

|oj |∑
t=1

A+
j πθ(oj,t|oj,<t, q) +

G−∑
k=1

1

|ok|

|ok|∑
t=1

A−
k πθ(ok,t|ok,<t, q)

 ,

= E q∼Q
oj∼π+

θ (·|q)
ok∼π−

θ (·|q)

A+
q

G+

G

1

G+

G+∑
j=1

1

|oj |

|oj |∑
t=1

πθ(oj,t|oj,<t, q) +A−
q

G−

G

1

G−

G−∑
k=1

1

|ok|

|ok|∑
t=1

πθ(ok,t|ok,<t, q) ,

= E q∼Q
oj∼π+

θ (·|q)
ok∼π−

θ (·|q)

√
V̂arG(q)

 1

G+

G+∑
j=1

1

|oj |

|oj |∑
t=1

πθ(oj,t|oj,<t, q)−
1

G−

G−∑
k=1

1

|ok|

|ok|∑
t=1

πθ(ok,t|ok,<t, q)

 .

(21)
The first equation is obtained by omitting the clipping function. The second equation is obtained
by the fact of important sampling that Eq[

p(x)
q(x)f(x)] = Ep[f(x)]. The third equation is obtained by

dividing the trajectories into two groups: positive and negative. The fourth equation is obtained by
the fact that all positive advantages are the same and that all negative advantages are the same. Since

A+G+

G =
√

1−p̂
p̂ p̂ =

√
(1− p̂)p̂ and A−G−

G = −
√
(1− p̂)p̂, we obtain equation 8. When G → ∞,
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we have the following facts:

lim
G→∞

G+ = ∞ ,

lim
G→∞

G− = ∞

lim
G→∞

√
(1− p̂)p̂ =

√
(1− p)p ,

lim
G+→∞

1

G+

G+∑
j=1

f(oj) = Eoj∼O+
θ
f(oj) ,

lim
G−→∞

1

G−

G−∑
k=1

f(ok) = Eok∼O−
θ
f(ok) .

(22)

Based on the above facts, it is easy to derive equation 9.

A.2 Justification of Proposition 3.2

Most of autoregressive LLMs adopt causal probability modelling that
∑

t log πθ(ot|o<t, q) =
log πθ(o|q). Then we have the following equation to describe the gradient of trajectory probability
and the gradient of token probabilities:

∇θπθ(o|q) = πθ(o|q)
∑
t

1

πθ(ot|o<t, q)
πθ(ot|o<t, q)

However, the original GRPO objective does not hold this property. Or one can consider GRPO using
the mean-field assumption for probability modelling. Some papers believe that GRPO should be
corrected by sequence level importance sampling (Zheng et al., 2025; Zhao et al., 2025; Pang and
Jin, 2025). It is still an open question for the choice of important sampling for GRPO. To avoid
overhead discussion, we keep the assumption implicit adopted by the original GRPO and denote
πGRPO
θ =

∑
t πθ(ot|o<t, q).

A.3 Proof of Proposition 4.1

Proof. Case 1. Notice that σ̂ =
√

1
2N

∑2N
k=1(Xk − µ̂)2 =

√
µ̂(1− µ̂) and µ̂ = 1

2N

∑2N
k=1 Xk. Fix

an index i and condition on the event {Xi = x} with x ∈ {0, 1}. In this case, by the strong law of
large numbers and the continuous mapping theorem, we have µ̂ a.s.→ p and σ̂

a.s.→
√
p(1− p). Thus, it

follows that
lim
ϵ→0

lim
N→∞

E[Yi | Xi = x] =
x− p√
p(1− p)

.

Case 2. When Xi,1 = Xi,2, we have Xi,j = µ̂i and Yi,j = 0 for any j ∈ {1, 2}. When Xi,1 ̸= Xi,2,
we have µ̂i = 0.5, σ̂i = 0.5, and Yi,j =

2Xi,j−1
1+2ϵ . By the law of total expectation, it follows that

E [Yi,j | Xi,j = 1] =
1− p

1 + 2ϵ
, E [Yi,j | Xi,j = 0] =

−p

1 + 2ϵ
.

Thus, we have
lim
ϵ→0

E[Yi,j | Xi,j = x] = x− p.

B Experiments

B.1 The Connection Between Training Rollouts and Computational Cost

In Sec. 5.2, the total number of rollouts generated and utilized during training is adopted as a metric
for comparing the computational cost of different methods.
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The rationale for this choice is as follows. A principled measure of computational cost in the context
of RL post-training is the number of floating-point operations (FLOPs) performed. Unlike wall-
clock time, which is susceptible to variations arising from software implementation details (e.g.,
optimization of training libraries) and hardware characteristics (e.g., GPU/CPU architecture, I/O
throughput), FLOPs provide a more direct and stable measure of computational effort.

For a fixed base model and the same type of RL algorithm (GRPO in our case), the FLOPs required
for a single forward or backward pass with one input prompt can be considered constant, for both the
generation and training phases. Accordingly, the total number of rollouts executed during training is
directly proportional to the FLOPs executed, thereby serving as a theoretically justified and consistent
proxy for computational cost.

B.2 Ablation Study on the Group Size

We conducted an ablation study on the effect of group size. In this experiment, the batch size was
fixed at 32 and the learning rate at 1 × 10−6, following the configuration of the standard GRPO
(16-GRPO). 5 Only the group size was varied in order to isolate and evaluate its impact.

Table 2: Ablation study on group size G: post-trained on MATH and DAPO, respectively, and
evaluated on five mathematical reasoning benchmarks. M/P@32 stands for Mean@32 and Pass@32.

M/P@32 ↑ G Time (h) ↓ MATH-500 AMC 2023 Minerva Math AIME 2025 Olympiad Bench
Post-training on MATH dataset

Qwen-1.5B

w/o - 31.83 / 81.92 34.30 / 79.23 5.33 / 28.91 3.64 / 22.31 15.40 / 37.16

2 2.05 67.73 / 87.85 53.28 / 86.21 14.15 / 34.02 6.15 / 29.54 23.11 / 37.82

4 2.78 69.05 / 87.49 52.50 / 92.01 15.29 / 33.57 8.33 / 27.13 23.08 / 38.99

8 4.67 69.34 / 86.05 51.64 / 83.96 14.60 / 32.63 7.18 / 32.24 22.77 / 36.69

16 8.53 70.24 / 87.24 51.25 / 83.46 16.84 / 33.46 10.10 / 35.82 22.30 / 38.33

Qwen-7B

w/o - 47.16 / 85.95 38.36 / 85.29 5.99 / 31.10 5.00 / 25.17 9.83 / 34.30

2 2.43 74.41 / 89.25 63.83 / 89.58 21.53 / 37.72 11.67 / 33.05 26.04 / 41.34

4 3.48 76.24 / 88.16 63.51 / 84.97 23.09 / 41.03 10.83 / 32.42 26.25 / 40.78

8 5.48 75.12 / 89.53 64.38 / 88.63 22.24 / 35.94 12.71 / 35.85 26.25 / 40.52

16 9.30 75.90 / 88.24 61.79 / 80.77 22.81 / 37.68 13.23 / 34.22 25.99 / 40.11

Post-training on DAPO-Math-Sub dataset

Qwen-1.5B

w/o - 31.83 / 81.92 34.30 / 79.23 5.33 / 28.91 3.64 / 22.31 15.40 / 37.16

2 3.63 67.71 / 87.68 53.82 / 88.35 16.85 / 34.83 8.12 / 32.99 23.21 / 39.26

4 4.90 69.14 / 87.78 54.69 / 86.88 17.53 / 35.74 8.43 / 36.18 23.30 / 39.00

8 8.62 70.25 / 86.84 57.57 / 81.19 17.80 / 35.08 8.54 / 29.42 24.23 / 39.95

16 13.30 70.66 / 87.03 56.56 / 85.53 18.00 / 34.16 9.58 / 32.31 24.55 / 39.19

Qwen-7B

w/o - 47.16 / 85.95 38.36 / 85.29 5.99 / 31.10 5.00 / 25.17 9.83 / 34.30

2 3.43 74.41 / 89.25 63.83 / 89.58 21.53 / 37.72 11.67 / 33.05 26.04 / 41.34

4 5.39 76.24 / 88.16 63.51 / 84.97 23.09 / 41.03 10.83 / 32.42 26.25 / 40.78

8 9.18 75.12 / 89.53 64.38 / 88.63 22.24 / 35.94 12.71 / 35.85 26.25 / 40.52

16 17.68 75.90 / 88.24 61.79 / 80.77 22.81 / 37.68 13.23 / 34.22 25.99 / 40.11

C The Use of Large Language Models (LLMs)

We used LLMs to polish the writing.

5It is worth noting that the batch size and learning rate used for 2-GRPO in this ablation differ from those
employed in the main experiment.
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